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Average Rate of Changing over [a, b]: f(b)−f(a)
b−a

Limits at a point:

If L, M , c, and k are real numbers and limx→c f(x) = L and limx→c g(x) = M , then the following properties
are true:

� Limit of a constant: limx→c k = k

� Limit of x: limx→c x = c

� Sum rule: limx→c(f(x) + g(x)) = L+M

� Difference rule: limx→c(f(x)− g(x)) = L−M

� Product rule: limx→c(f(x) · g(x)) = L ·M

� Constant multiple rule: limx→c(k(f(x))) = k · L

� Quotient rule: limx→c
f(x)
g(x) = L

M ,M ̸= 0

� Power rule: limx→c(f(x))
r/s = Lr/s, if r and s are integers, and s ̸= 0

� Limit of a composite function: limx→c f(g(x)) = f(limx→c g(x)), if f is a continuous function

Properties of limits as x → ±∞

If L, M , c, and k are real numbers and limx→±∞ f(x) = L and limx→±∞ g(x) = M , then the following
properties are true:

� Constant rule: limx→±∞ c = c

� Sum rule: limx→±∞(f(x) + g(x)) = L+M

� Difference rule: limx→±∞(f(x)− g(x)) = L−M

� Product rule: limx→±∞(f(x) · g(x)) = L ·M

� Constant multiple rule: limx→±∞(k(f(x))) = k · L

� Quotient rule: limx→±∞
f(x)
g(x) = L

M , M ̸= 0

� Power rule: limx→±∞(f(x))r/s = Lr/s, if r and s are integers and s ̸= 0

� Limit of c
xr : limx→±∞

c
xr = 0

Squeeze Theorem

Conditions:

� g(x) ≤ f(x) ≤ h(x) for x ̸= c

� limx→c g(x) = L and limx→c h(x) = L

Conclusion: limx→c f(x) = L

Definition of Continuity

A function f(x) is continuous at x = c if all of the following conditions are met:

� f(c) is defined

� limx→c f(x) exists

� limx→c f(x) = f(c)

The graph of a continuous function has no “gaps”.

Intermediate Value Theorem

If a function f is continuous on the interval [a, b] and k is a number between f(a) and f(b), then there is at
least one x-value c between a and b such that f(c) = k.

Any continuous function connecting (a, f(a)) and (b, f(b)) must pass through every y-value between f(a)
and f(b) at least once.
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Limit Definitions of the Derivative Derivative of f at x = a: f ′(a) = limx→a
f(x)−f(a)

x−a

Defintion of derivative of f at x = a: f ′(a) = limh→0
f(a+h)−f(a)

h

Definition of Differentiability

f is differentiable at x = c: limx→c
f(x)−f(c)

x−c exists and is equal to f ′(c). f(x)−f(c)
x−c is the difference quotient.

Derivative Rules Basic:

� Constant: d
dx [c] = 0

� Power: d
dx [x

n] = nxn−1

� Natural exponential: d
dx [e

x] = ex

� Exponential: d
dx [a

x] = (ln a)ax

� Natural log: d
dx [ln(x)] =

1
x

� Constant multiple: d
dx [cf(x)] = cf ′(x)

� Sum and difference: d
dx [f(x)± g(x)] = f ′(x)± g′(x)

Trig:

�
d
dx [sinx] = cosx

�
d
dx [cosx] = − sinx

�
d
dx [tanx] = sec2 x

�
d
dx [cotx] = − csc2 x

�
d
dx [cscx] = − csc(x) cot(x)

�
d
dx [secx] = sec(x) tan(x)

Product Rule: d
dx [uv] = uv′ + vu′

Quotient Rule: d
dx [

u
v ] =

vu′−uv′

v2

Chain Rule: d
dx [f(g(x))] = f ′(g(x)) · g′(x)

Derivatives of Inverse Functions: (f−1)′(a) = 1
f ′(b)

PVA Derivatives:

� Position: x(t)

� Velocity: v(t) = x′(t)

� Acceleration: a(t) = x′′(t)

Integrals:

� Integrate a(t) to get v(t)

� Integrate v(t) to get s(t)

L’Hospital’s Rule

Use L’Hospital’s Rule to find the limit of the ratio of two differentiable functions f(x)
g(x) as x approaches c. If

direct substitution produces one of the indeterminate forms 0
0 or ∞

∞ , then differentiate the numerator f and
the denominator g independently.

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)

L’Hospital’s Rule also applies to limits such as x → ∞ or x → −∞

Mean Value Theorem

Conditions:



3

� f is continuous on [a, b]

� f is differentiable on (a, b)

Conclusion: For some c in (a, b): f ′(c) = f(b)−f(a)
b−a . f ′(c) is the instantaneous rate of change at x = c and

f(b)−f(a)
b−a is the average rate of change on [a, b].

Rolle’s Theorem

If a function f satisfies each of the following conditions:

� continuous on the closed interval [a, b]

� differentiable on the open interval (a, b)

� f(a) = f(b)

then there is at least one number c in (a, b) such that f ′(c) = 0

Graphically, the slope of the secant line on [a, b] and the slope of the tangent line at x = c both equal zero
for at least one value of c in (a, b).

Rolle’s Theorem is a special case of the Mean Value Theorem in which the average rate of change is 0:

f ′(c) =
f(b)− f(a)

b− a
= 0

Extreme Value Theorem

If a function f is continuous on the closed interval [a, b], then f is guaranteed to attain an absolute minimum
and absolute maximum value on [a, b].

First Derivative Test

If f ′(c) = 0 or undefined, there is a local maximum if f ′(x) changes from positive to negative and a local
minimum when f ′(x) changes from negative to positive.

Second Derivative Test

If f ′′(c) < 0, f(c) is a relative maximum. If f ′′(c) = 0 the test is inconclusive. If f ′′(c) > 0 then f ′(c) is a
relative minimum.

Riemann Sums A left Riemann sum approximates the value of a definite integral
� b

a
f(x)dx. The interval

[a, b] is divided into subintervals, and the area boudned by the graph of f and the x-axis on each subinterval
is estimated with a rectangle.

The base length bn of each rectangle is the distance between the endpoints of the subinterval, and the height
hn is the function value at the left endpoint.

� b

a

f(x)dx ≈ b1h1 + b2h2 + . . .

A midpoint Riemann sum approximates the value of a definite integral
� b

a
f(x)dx. The interval [a, b] is divided

into subintervals, and the area bounded by the graph of f and the x-axis on each subinterval is estimated
with a rectangle.

The base length bn of each rectangle is the distance between the endpoints of the subinterval, and the height
hn is the function value at the midpoint of the subinterval mn.

� b

a

f(x)dx ≈ b1h1 + b2h2 + . . .

A right Riemann sum approximates the value of a definite integral
� b

a
f(x)dx. The interval [a, b] is divided

into subintervals, and the area boudned by the graph of f and the x-axis on each subinterval is estimated
with a rectangle.
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The base length bn of each rectangle is the distance between the endpoints of the subinterval, and the height
hn is the function value at the right endpoint.

� b

a

f(x)dx ≈ b1h1 + b2h2 + . . .

A trapezoidal sum approximates the value of a definite integral
� b

a
f(x)dx. The interval [a, b] is divided into

subintervals, and the area bounded by the graph of f and the x-axis on each subinterval is estimated with a
trapezoid.

The height hn of each trapezoid is the distance between the endpoints of the subinterval, and the bases bn
and bn+1 are the function values at the endpoints.

� b

a

f(x)dx ≈ 1

2
h1(b1 + b2) +

1

2
h2(b2 + b3)

Limit of a Right Riemann Sum

lim
n→∞

n∑
i=1

f(a+∆xi)∆x =

� b

a

f(x)dx

Fundamental Theorem of Calculus
� b

a
f(x)dx = F (b)− F (a)

� b

a
f ′(x)dx = f(b)− f(a)

f(b) = f(a) +
� b

a
f ′(t)dt, where f(b) is the final quantity, f(a) is the initial quantity and

� b

a
f ′(t)dt is the

net change.

Second FTC d
dx [

� x

a
f(t)dt] = f(x)

Basic Integration Rules

� Constant:
�
cdx = cx+ C

� Power:
�
xndx = xn+1

n+1 + C

� Constant multiple:
�
cf(x)dx = c

�
f(x)dx

� Sum and difference:
�
f(x)± g(x)dx =

�
f(x)dx±

�
g(x)dx

� Natural exponential:
�
exdx = ex + C

� Natural log:
�

1
xdx = ln |x|+ C

Trig Integrals

�

�
sinudu = − cosu+ C

�

�
cosudu = sinu+ C

�

�
sec2 udu = tanu+ C

�

�
csc2 udu = − cotu+ C

�

�
(secu tanu)du = secu+ C

�

�
(cscu cotu)du = − cscu+ C

�

�
tanudu = − ln | cosu|+ C

�

�
cotudu = ln | sinu|+ C

�

�
secudu = ln | secu+ tanu|+ C

�

�
cscudu = − ln | cscu+ cotu|+ C

Properties of Definite Integrals The following are properties of definite integrals, where functions f and g
are continuous on the closed interval [a, b] and a, b, and k are constants.
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�

� a

a
f(x)dx = 0

�

� b

a
f(x)dx = −

� a

b
f(x)dx

�

� c

a
f(x)dx =

� b

a
f(x)dx+

� c

b
f(x)dx

�

� b

a
kf(x)dx = k

� b

a
f(x)dx

�

� b

a
[f(x)± g(x)]dx =

� b

a
f(x)dx±

� b

a
g(x)dx

Improper Integral � ∞

a

f(x)dx = lim
t→∞

� t

a

f(x)dx

Integration by Parts
�
udv = uv −

�
vdu

Euler’s Method yn+1 = yn+f ′(xn)(∆x), where yn+1 is the next y-value, f ′(xn) is the derivative at current
xn-value and ∆x is the step size.

Exponential Growth and Decay Differential Equation: dy
dt = k · y, where dy

dt is the rate of change of y and
k is the constant of proportionality.

General Solution: y = C·ek·t, where C is the initial value of y (when t = 0), k is the constant of proportionality,
and t is time.

Logistic Growth/Decay dP
dt = kP

(
1− P

a

)
dP
dt = kP (a− P )

Average Value 1
b−a

� b

a
f(x)dx

Total Distance Traveled
� t2
t1

|v(t)|dt

Area Between Curves In terms of x: A =
� x2

x1
(top − bottom)dx is the area bounded by two functions on

[x1, x2].

In terms of y: A =
� y2

y1
(right− left)dy is the area bounded by two functions on [y1, y2].

Disk Method Use the disk method to determine the volume of a solid of revolution formed by rotating a
region about a horizontal line y = c (axis of revolution) over the interval a < x < b when y = c is a boundary
of the region - there is no space between the region and y = c.

π

� b

a

r2dx

When a region is revolved about an axis of revolution, a perpendicular cross section of the solid is a disk
where

� r is the distance from the axis of revolution to the closest function f(x)

� dx is the thickness of the disk

Use the disk method to determine the volume of a solid of revolution formed by rotating a region about a
vertical line x = k (axis of revolution) over the interval c < y < d when x = k is a boundary of the region -
there is no space between the region and the line x = k.

� d

c

(r(y))2dy

When a region is revolved about an axis of revolution, a perpendicular cross section of the solid is a disk
where:

� r is the distance from the axis of revolution to the closest function f(y)

� dy is the thickness of the disk
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Washer Method Use the washer method to determine the volume of a solid of revolution formed by rotating a
region bounded by f(x) and g(x) about a horizontal line y = c (axis of revolution) over the interval a < x < b
when y = c is not a boundary of the region - there is space between the region and y = c.

π

� b

a

((R(x))2 − (r(x))2)dx

When a region is revolved about an axis of revolution, a perpendicular cross section of the resulting solid is a
disk with a hole (washer) where:

� R is the distance from the axis of revolution to the farthest function f(x)

� r is the distance from the axis of revolution to the closest function g(x)

� dx is the thickness of the washer

Use the washer method to determine the volume of a solid of revolution formed by rotating a region bounded
by f(y) and g(y) about a horizontal line x = k (axis of revolution) over the interval c < y < d when x = k
is not a boundary of the region - there is space between the region and x = k.

π

� d

c

((R(y))2 − (r(y))2)dy

When a region is revolved about an axis of revolution, a perpendicular cross section of the resulting solid is a
disk with a hole (washer) where:

� R is the distance from the axis of revolution to the farthest function f(y)

� r is the distance from the axis of revolution to the closest function g(y)

� dy is the thickness of the washer

Arc Length � b

a

√
1 + (f ′(x))2dx

Parametrics Parametric Slope: dy
dx = y′(t)

x′(t)

Parametric Speed: s(t) =
√
(x′(t))2 + (y′(t))2

Parametric Arc Length:
� t2
t1

√
(x′(t))2 + (y′(t))2dt

Derivatives of Vector Valued Functions f(t) = ⟨x(t), y(t)⟩

f ′(t) = ⟨x′(t), y′(t)⟩

f ′′(t) = ⟨x′′(t), y′′(t)⟩

Total Distance of Vectors
� t2
t1

√
(x′(t))2 + (y′(t))2dt

Polar to Rectangular Coordinates x = r cos θ

y = r sin θ

Slope of Polar Curve dy
dx =

d
dθ [y]
d
dθ [x]

Sum of Geometric Series S = a1

1−r

Convergence Tests The harmonic series is an infinite series given by

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ . . .

The harmonic series diverges by the p-series test.

p-series test.

� p-series of the form 1
np converges for p > 1
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∞∑
n=1

1

n
=⇒

∞∑
n=1

1

n1
, p = 1

nth Term Test
∑∞

n=1 an diverges if limn→∞ an ̸= 0 and is inconclusive when limn→∞ an = 0

A series of the form
∑∞

n=1
1
np = 1

1p + 1
2p + 1

3p + 1
4p + . . . is called a p-series.

� p-series converges if p > 1

� p-series diverges if 0 < p ≤ 1

If p = 1, the resulting series
∑∞

n=1
1
n = 1 + 1

2 + 1
3 + 1

4 + . . . is called a harmonic series, which diverges.

Geometric Series
∞∑

n=0

arn

When |r| < 1 the series converges to S = a1

1−r , where a1 is the first term of the series. If |r| ≥ 1 the series
diverges.

Integral Test

If f is continuous, positive, and eventually decreases as x → ∞, and
�∞
c

f(x):

� converges then
∑∞

n=c f(n) converges and
∑∞

n=c f(n) >
�∞
c

f(x)dx

� diverges: then,
∑∞

n=c f(n) diverges

Direct Comparison Test
0 < an < bn

If the larger series
∑∞

n=1 bn converges, the smaller series
∑∞

n=1 an converges

If the smaller series
∑∞

n=1 an diverges, the larger series
∑∞

n=1 bn diverges.

Limit Comparison Test

If limn→∞
an

bn
= L, where L is finite and positive and an > 0, bn > 0, then:∑∞

n=1 bn and
∑∞

n=1 an converge or
∑∞

n=1 bn and
∑∞

n=1 an diverge.

Ratio Test

If limn→∞

∣∣∣an+1

an

∣∣∣ = k, then
∑∞

n=1 an converges absolutely if k < 1 or diverges if k > 1.

Alternating Series Test
∞∑

n=1

(−1)nan

converges if:

� limn→∞ an = 0 and

� an is a positive, decreasing sequence

Taylor/Maclaurin Polynomials nth-degree Taylor polynomial of f about x = c

Pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + · · ·+ f (n)(c)

n!
(x− c)n

Maclaurin polynomial

Pn(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·+ f (n)(0)

n!
xn

Known Power Series

�
1

1−x = 1 + x+ x2 + x3 + · · ·+ xn + . . .

� ex = 1 + x+ x2

2! +
x3

3! + · · ·+ xn

n! + . . .
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� sinx = x− x3

3! +
x5

5! −
x7

7! + · · ·+ (−1)n x2n+1

(2n+1)! + . . .

� cosx = 1− x2

2! +
x4

4! −
x6

6! + · · ·+ (−1)n x2n

(2n)! + . . .


