1 Integration with Data, Functions De-
fined by Integrals, and Natural Logs

1.1 Integration Using Data

Example

Water is flowing into a tank over a 24-hour period. The rate at which water is flowing into the tank
at various times is measured, and the results are given in the table below, where R(¢) is measured in
gallons per hour and ¢ is measured in hours. The tank contains 150 gallons of water when ¢t = 0.

t(hours) 0] 4 | 8 |12 | 16| 20 | 24
R(t) (gal/hr) [ 8] 8893|9289 |81]67

(a) Estimate the number of gallons of water in the tank at the end of 24 hours by using a midpoint
Riemann sum with three subintervals and values from the table. Show the computations that lea dto
your answer.

We are estimating 150 + [ R(t)dt = W (24) — W (0).
So 150 + [3(8.8) + 8(9.2) + 8(8.1)] = 358.8 gallons

(b) Estimate the number of gallons of water in the tank at the end of 24 hours by using a trapezoidal
sum with three subintervals and values from the table. Show the computations that lead to your answer.

This is 150 + [8 (342:3) + 8 (23189 4 8 (8246.7)] = 354.4 gallons.

(c) A model for this function is given by W (t) = == (600 + 20t — t*). Use the model to find the number
of gallons of water in the tank at the end of 24 hours.

S w(t)dt = W (24) — W(0).

150 + [ W (t)dt = 357.36

(d) Use the model given in (c) to find the average rate of water flow over the 24-hour period.

1 24

5175 Jo W (t)dt = 8.64 gallons/hr

1.2 Second Fundamental Theorem of Calculus

Let us investigate first.
Find <L [ t2dt. This is equal to 2°.
Find & f:/ﬁ costdt. This is equal to cosz.

See a pattern?

Theorem 1.1: Second Fundamental Theorem of Calculus

= " pdt = ()
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Example

d [*,

— tdt

dx/x
This is —% ff 2dt = —a2

In general, L [ f(t)dt = — f(x).

Example

2
d T
—/ cos tdt
d{,E 7!‘/6

This is -L [sin¢] with bounds 7/6 to z2.

We end up getting L [sin(z?) — 3] = cos(2?) - 2z.

Theorem 1.2: Second Fundamental Theorem of Calculus
d g(x) ,
2 swdt=re@) g @)

Example

Use the Second Fundamental Theorem to evaluate.
(2) g Js VI+e2dt

This is 1+ 22

(b) < [ tan(t®)dt

This is tan(z?).

3
; da [r 1
Exercise Same as above for - [, 5dt

Exercise Same as above for % f;im V1 + t2dt
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Example

The graph of a function f consists of a quarter circle and line segments. Let g be the function given by
T
o) = [ s
0

e
2

Graph of f

(a) Find ¢(0),9(=1),9(2),9(5)

(0) = fy f(t)dt =0

g(=1) = [y f(ydt = — [°) f(t)dt = -1
9(2) = [§ f(Hydt =

9(5) = fy f(ydt =7 —4

(b) Find all values of = on the open interval (—1,5) at which g has a relative maximum. Justify your
answer.

g

g'(z) = f(x) crosses the z-axis from positive to negative at x = 2.

Exercise Using the information above, (c) Find the absolute minimum value of g on [—1,5] and the value of
x at which it occurs. Justify your answer.

Exercise Using the information above, (d) Find the z-coordinate of each point of inflection of the graph of g
on (—1,5). Justify your answer.

1.3 Natural Logs and Differentiation

Definition: Natural Logarithmic Function

The natural logarithmic function is defined by Inx = flx %dt where z > 0.

The base of natural logs is the number e. e was named for a Swiss mathematician, Leonhard Euler.

1 n 1 n
e = lim (1+) — lim ("+ ) ~ 27183, ..
n—o00 n n—o0 n

y =Inz and y = e are inverses.

By definition:

Properties of Natural Logs:
1. Domain of y =1Inx is (0,00). Range of y =1Inz is (—o0, c0).
2. The graph of y = Inz is continuous, increasing, and one-to-one
3. The graph of y = Inxz is concave down.

Other properties:

If @ and b are positive numbers and n is rational, then:



CHAPTER 1. INTEGRATION WITH DATA, FUNCTIONS DEFINED BY INTEGRALS, AND NATURAL LOGS4

In1=0
Ine=1
Inab=Ina+Inbd

Iny =Ina—Ind

o> W=

Ina™ =nlna

) . i . . (z243)2
Exercise Write as a sum, difference, or multiple of logs: In FoT T

Exercise Write as a single log: 2In(z + 3) + 3 In(z — 2)

Definition

Example

If y = In(2x), what is y'.

x

Exercise Find f'(x) if f(z) = In(2? + 1)
Exercise Find ¢/ if y =zlnx

Exercise Find f'(x) if f(z) =Invz+1
Exercise Find 3/ if y = In(lnx)

Exercise Find o/ if y = In(2®)

Exercise Find ¢/ if y = (Inz)?

Example
Show that y = zlnx — 4z is a solution to the differential equation

r+y—xy =0

/ —

y' = =3+ Inz, so plugging this in gives z + (xInz — 42) — (-3 + Inz) = 0.

Everything cancels out and we see that 0 = 0 which is true.

1.4 The Natural Log Function and Integration

We previously saw differentiation.

Now integration.
1
/fdu:ln|u| +C
u

Example

f%dx
Simple! This is 2In|z| 4+ C.
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. €
Exercise [, 2dx

Exercise [ 5t —dx

) 2
Exercise [ 3%*ldx

3
Exercise [ 7(1“;”") dx

. e (Inz)?
Exercise [ U2 gy

32
Exercise [ &= da

If you are integrating a quotient and the power of the numerator is greater than or equal to the power of the
denominator you must divide.

Four more integration formulas:
e [tanudu = —In|cosu|+ C
e [cotudu =1In|sinu|+C
e [secudu =In|secu+ tanu|+ C

e [cscudu=—In|cscu+ cotul + C

Example

Why is [ tanzdz = —In|cosz| + C true?

Let [ S22 4 and this is equal to —In|cos x|+ C.

cosx

Exercise Show why [ sec zdx works.

Exercise [ tan(3z)dx

1.5 Derivatives of Inverse Functions

A function g is the inverse of a function f if and only if
f(g(z)) = x for each x in the domain of g and g(f(x)) = x for each x in the domain of f.
The inverse of f is denoted f~1.
Properties of inverses:
e If g is the inverse of f, then f is the inverse of g.
e The domain of f~! is equal to the range of f, and the range of f~! is equal to the domain of f.

e Not every function has an inverse, but if a function does have an inverse, the inverse is unique.

Example

(a) Find the inverse function of f.

The inverse function is 22 + 1 = y.

(b) State the domain and range of f and f~1!.
For f(x) the domain is > 1, range y > 0.

For f~1(x) the domain is x > 0, range is y > 1.
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Example

Given f(z) = 2% and f~1(z) = /&
(a) £(2)

8

(b) f'(x)

3z

e) What is the derivative of f~!(z)?

r—2/3

L
12

In (c) and (f) notice they are reciprocals.

Theorem 1.3: Derivative of an Inverse Function

Let f be any function that is differentiable on an interval I. If f has an inverse function g, then g is

differentiable at any z for which f'(g(x)) # 0 and ¢'(x) = 3,5y S0 that (f~1)'(a) = prpraay-

Example

If f(3)=5and f'(3)=1
(f='05) = 7y =

find (f=1)(5).

2
=.

ol =

Exercise Let f(x) = 23 +2x — 1. Find (f~1)'(2).
Exercise Let g(x) = /z + 1. Find (g71)/(2).
Exercise Let f(x) = cosz,0 <z <. Find (f=1) (é)

1.6 Exponential Functions

You learned in the past

y = log, © means x = bY where b >0 and z > 0
y = Inx means x = e¥ where z > 0.

Exercise Solve e*T1 =7

Exercise Solve In(2z — 3) = 5.

Derivative of an exponential function: -%[e%] = e* 4%
dx dx
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Example

Find the derivative.
(a) y =™

y = 6ze3

(b) y = sin?(e*)

y' = 2sin(e”) cos(e”) - e”

Exercise Find the derivative of y = In(4 + €37)

Exercise Find the derivative of y = hl(ems)

Exercise Find the derivative of f(z) =In (3“1).

3—e®

2, —x

Exercise Find the derivative of y = x%e~

Exercise Use implicit differentiation to find the derivative % of e*¥ + 22 — y? = 10.

Example

Find the relative extrema and the points of inflection for
f(z) = ze”

The first derivative of this is ' = ze* + e*.
We can see that —1 is a relative minimum.
The second derivative is ze® + e* + e”.

We can see that —2 is a point of inflection.
The integral of an exponential function is [ e“du = e* + C'.

Example

/ e3m+1dx

Let w = 3z + 1 then %du =dx.

1 u _ 1 3z+1
5 Jetdu=ze +C.

. _ 2
Exercise [ b5xe " dx

el/m

x2

Exercise [

Exercise [ sinze®s*dx
Ll e
Exercise fO Wdf

Exercise fi)l e cos(e*)dx
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Example

Solve the differential equation

We have [dy = [(e* — e %)%dx

This gives y = 1 — 2z — 1.

Exercise Find the particular solution of the differential equation that satisfies the initial conditions.

f'(w) = sinz + €, f(0) = -, f'(0) =

Example
The rate at which water is being pumped into a tank is r(t) = 20e%°2¢ where ¢ is in minutes and 7(t)

is in gallons per minute. How many gallons of water have been pumped into the tank in the first five
minutes?

5
/ r(t)dt = 105.171 gallons
0

1.7 Bases other than e

Remember that y = log, * means x = bY where b > 0 and z > 0.
Exercise Solve 23% = 45

Exercise Solve logs(x — 2) = 3.

Formulas:
° d%[lnu] = %Z—z
o e =ende

[e'du=e“+C

d 1 du
%[IOga U,} ~ wlna dx
d

o [a"] =a" lna%

o [a"du= a’ | ¢

Ina

Example

Find the derivative of y = 22°
Let u =23 so & = 322,

Soy = 27" . In2 - 322.

Exercise Differentiate f(x) = logs(z2 + 1)
Exercise [ 2%dx
Exercise [ 223 da

If you are asked to differentiate a function that contains a variable raised to a power that contains a variable,
we have no formula for this and must use a process called logarithmic differentiation.
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Example

Find g—g in terms of .
y=(z+1)*7°

Let y = x*.
We can see logarithmic differentiation is needed.

d—dm(lny = (z—3)In(z +1))

We can see that 3y’ = (fT__‘;’ + In(x + 1))

1.8 Inverse Trig Functions and Differentiation

In the past, you learned two notations for inverse trig functions. The inverse of cosine can be symbolized as
arccosz or cos ' x. You were also taught restrictions for these.

)

Exercise arctan(—0.3)

~—

Exercise arcsin (—%

ot

Exercise cos™! (—

We can derive the formulas for the derivatives of the inverse trig functions by using implicit differentia-
tion.

Example

Let y = arcsinx

r =siny
1=cosy- -y
/1 __ 1
Y= sy = Va2

A similar process can be done for y = arctan z.

u/

V1—u?

T [arcsinu] =

/

a [arctan u] =
dx B

1+ u?
d [ } —u’
—[arccos u] = ——
dz V1—u?

Exercise f(x) = arcsin(2z). What is f'(x)?
Exercise f(x) =tan™'(3z). What is f'(x)?

Exercise f(x) = cos(arcsin(3z)). What is f/(z)?
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1.9 Inverse Trig Integration

/ajili — =sin~! (%) +C

Example

=

a:2,u:m,%:1,du:dx.

Integrate to get sin™" (%) +C

EXerCise f\/ﬁw
. 3
Exercise [z g7—dx

Exercise fﬂ%‘i-&-?
. V2/2 ,
Exercise [, / et da
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