
1 Integration with Data, Functions De-
fined by Integrals, and Natural Logs

1.1 Integration Using Data

Example

Water is flowing into a tank over a 24-hour period. The rate at which water is flowing into the tank
at various times is measured, and the results are given in the table below, where R(t) is measured in
gallons per hour and t is measured in hours. The tank contains 150 gallons of water when t = 0.

t (hours) 0 4 8 12 16 20 24
R(t) (gal/hr) 8 8.8 9.3 9.2 8.9 8.1 6.7

(a) Estimate the number of gallons of water in the tank at the end of 24 hours by using a midpoint
Riemann sum with three subintervals and values from the table. Show the computations that lea dto
your answer.

We are estimating 150 +
� 24

0
R(t)dt = W (24)−W (0).

So 150 + [3(8.8) + 8(9.2) + 8(8.1)] = 358.8 gallons

(b) Estimate the number of gallons of water in the tank at the end of 24 hours by using a trapezoidal
sum with three subintervals and values from the table. Show the computations that lead to your answer.

This is 150 +
[
8
(
8+9.3

2

)
+ 8

(
9.3+8.9

2

)
+ 8

(
8.9+6.7

2

)]
= 354.4 gallons.

(c) A model for this function is given by W (t) = 1
75 (600+20t− t2). Use the model to find the number

of gallons of water in the tank at the end of 24 hours.� 24

0
w(t)dt = W (24)−W (0).

150 +
� 24

0
W (t)dt = 357.36

(d) Use the model given in (c) to find the average rate of water flow over the 24-hour period.

1
24−0

� 24

0
W (t)dt = 8.64 gallons/hr

1.2 Second Fundamental Theorem of Calculus

Let us investigate first.

Find d
dx

� x

1
t2dt. This is equal to x2.

Find d
dx

� x

π/6
cos tdt. This is equal to cosx.

See a pattern?

Theorem 1.1: Second Fundamental Theorem of Calculus

d

dx

� x

a

f(t)dt = f(x)

1
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Example

d

dx

� 4

x

t2dt

This is − d
dx

� x

4
t2dt = −x2

In general, d
dx

� a

x
f(t)dt = −f(x).

Example

d

dx

� x2

π/6

cos tdt

This is d
dx [sin t] with bounds π/6 to x2.

We end up getting d
dx [sin(x

2)− 1
2 ] = cos(x2) · 2x.

Theorem 1.2: Second Fundamental Theorem of Calculus

d

dx

� g(x)

a

f(t)dt = f(g(x)) · g′(x)

Example

Use the Second Fundamental Theorem to evaluate.

(a) d
dx

� x

3

√
1 + t2dt

This is
√
1 + x2

(b) d
dx

� x

2
tan(t3)dt

This is tan(x3).

Exercise Same as above for d
dx

� x3

−1
1

1+tdt

Exercise Same as above for d
dx

� sin x

2
3
√
1 + t2dt
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Example

The graph of a function f consists of a quarter circle and line segments. Let g be the function given by

g(x) =

� x

0

f(t)dt

(a) Find g(0), g(−1), g(2), g(5)

g(0) =
� 0

0
f(t)dt = 0

g(−1) =
� −1

0
f(t)dt = −

� 0

−1
f(t)dt = −1

g(2) =
� 2

0
f(t)dt = π

g(5) =
� 5

0
f(t)dt = π − 4

(b) Find all values of x on the open interval (−1, 5) at which g has a relative maximum. Justify your
answer.

g′(x) = f(x) crosses the x-axis from positive to negative at x = 2.

Exercise Using the information above, (c) Find the absolute minimum value of g on [−1, 5] and the value of
x at which it occurs. Justify your answer.

Exercise Using the information above, (d) Find the x-coordinate of each point of inflection of the graph of g
on (−1, 5). Justify your answer.

1.3 Natural Logs and Differentiation

Definition: Natural Logarithmic Function

The natural logarithmic function is defined by lnx =
� x

1
1
t dt where x > 0.

The base of natural logs is the number e. e was named for a Swiss mathematician, Leonhard Euler.

By definition:

e = lim
n→∞

(
1 +

1

n

)n

= lim
n→∞

(
n+ 1

n

)n

≈ 2.7183 . . .

y = lnx and y = ex are inverses.

Properties of Natural Logs:

1. Domain of y = lnx is (0,∞). Range of y = lnx is (−∞,∞).

2. The graph of y = lnx is continuous, increasing, and one-to-one

3. The graph of y = lnx is concave down.

Other properties:

If a and b are positive numbers and n is rational, then:
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1. ln 1 = 0

2. ln e = 1

3. ln ab = ln a+ ln b

4. ln a
b = ln a− ln b

5. ln an = n ln a

Exercise Write as a sum, difference, or multiple of logs: ln (x2+3)2

3√x2+1

Exercise Write as a single log: 2 ln(x+ 3) + 1
2 ln(x− 2)

Definition

d

dx
[lnu] =

1

u

du

dx
, u > 0

Example

If y = ln(2x), what is y′.

y′ = 1
2x · 2 = 1

x .

Exercise Find f ′(x) if f(x) = ln(x2 + 1)

Exercise Find y′ if y = x lnx

Exercise Find f ′(x) if f(x) = ln
√
x+ 1

Exercise Find y′ if y = ln(lnx)

Exercise Find y′ if y = ln(x3)

Exercise Find y′ if y = (lnx)3

Example

Show that y = x lnx− 4x is a solution to the differential equation

x+ y − xy′ = 0

y′ = −3 + lnx, so plugging this in gives x+ (x lnx− 4x)− x(−3 + lnx) = 0.

Everything cancels out and we see that 0 = 0 which is true.

1.4 The Natural Log Function and Integration

We previously saw differentiation.

Now integration. �
1

u
du = ln |u|+ C

Example

�
2
xdx

Simple! This is 2 ln |x|+ C.
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Exercise
� e

1
2
xdx

Exercise
�

1
2x−1dx

Exercise
�

3x2+1
x3+x dx

Exercise
� e

1
(1+ln x)3

x dx

Exercise
� e2

e
(ln x)4

x dx

Exercise
� 3

0
x2−5
x+2 dx

If you are integrating a quotient and the power of the numerator is greater than or equal to the power of the
denominator you must divide.

Four more integration formulas:

�

�
tanudu = − ln | cosu|+ C

�

�
cotudu = ln | sinu|+ C

�

�
secudu = ln | secu+ tanu|+ C

�

�
cscudu = − ln | cscu+ cotu|+ C

Example

Why is
�
tanxdx = − ln |cosx|+ C true?

Let
�

sin x
cos xdx and this is equal to − ln | cosx|+ C.

Exercise Show why
�
secxdx works.

Exercise
�
tan(3x)dx

1.5 Derivatives of Inverse Functions

A function g is the inverse of a function f if and only if

f(g(x)) = x for each x in the domain of g and g(f(x)) = x for each x in the domain of f .

The inverse of f is denoted f−1.

Properties of inverses:

� If g is the inverse of f , then f is the inverse of g.

� The domain of f−1 is equal to the range of f , and the range of f−1 is equal to the domain of f .

� Not every function has an inverse, but if a function does have an inverse, the inverse is unique.

Example

(a) Find the inverse function of f .

The inverse function is x2 + 1 = y.

(b) State the domain and range of f and f−1.

For f(x) the domain is x ≥ 1, range y ≥ 0.

For f−1(x) the domain is x ≥ 0, range is y ≥ 1.
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Example

Given f(x) = x3 and f−1(x) = 3
√
x

(a) f(2)

8

(b) f ′(x)

3x2

(c) f ′(2)

12

(d) f−1(8)

2

(e) What is the derivative of f−1(x)?

1
3x

−2/3

(f) (f−1)′(8)

1
12

In (c) and (f) notice they are reciprocals.

Theorem 1.3: Derivative of an Inverse Function

Let f be any function that is differentiable on an interval I. If f has an inverse function g, then g is
differentiable at any x for which f ′(g(x)) ̸= 0 and g′(x) = 1

f ′(g(x)) so that (f−1)′(a) = 1
f ′(f−1(a)) .

Example

If f(3) = 5 and f ′(3) = 7
2 , find (f−1)′(5).

(f−1)′(5) = 1
f ′(3) =

1
7
2

= 2
7 .

Exercise Let f(x) = x3 + 2x− 1. Find (f−1)′(2).

Exercise Let g(x) =
√
x+ 1. Find (g−1)′(2).

Exercise Let f(x) = cosx, 0 ≤ x ≤ π. Find (f−1)′
(√

3
2

)
.

1.6 Exponential Functions

You learned in the past

y = logb x means x = by where b > 0 and x > 0

y = lnx means x = ey where x > 0.

Exercise Solve ex+1 = 7

Exercise Solve ln(2x− 3) = 5.

Derivative of an exponential function: d
dx [e

u] = eu du
dx .
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Example

Find the derivative.

(a) y = e3x
2

y′ = 6xe3x
2

(b) y = sin2(ex)

y′ = 2 sin(ex) cos(ex) · ex

Exercise Find the derivative of y = ln(4 + e3x)

Exercise Find the derivative of y = ln(ex
3

)

Exercise Find the derivative of f(x) = ln
(

3+ex

3−ex

)
.

Exercise Find the derivative of y = x2e−x

Exercise Use implicit differentiation to find the derivative dy
dx of exy + x2 − y2 = 10.

Example

Find the relative extrema and the points of inflection for

f(x) = xex

The first derivative of this is f ′ = xex + ex.

We can see that −1 is a relative minimum.

The second derivative is xex + ex + ex.

We can see that −2 is a point of inflection.

The integral of an exponential function is
�
eudu = eu + C.

Example

�
e3x+1dx

Let u = 3x+ 1 then 1
3du = dx.

1
3

�
eudu = 1

3e
3x+1 + C.

Exercise
�
5xe−x2

dx

Exercise
�

e1/x

x2 dx

Exercise
�
sinxecos xdx

Exercise
� 1

0
ex

1+ex dx

Exercise
� 0

−1
ex cos(ex)dx
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Example

Solve the differential equation
dy

dx
= (ex − e−x)2

We have
�
dy =

�
(ex − e−x)2dx

This gives y = 1
2e

2x − 2x− 1
2 .

Exercise Find the particular solution of the differential equation that satisfies the initial conditions.

f ′′(x) = sinx+ e2x, f(0) =
1

4
, f ′(0) =

1

2

Example

The rate at which water is being pumped into a tank is r(t) = 20e0.02t where t is in minutes and r(t)
is in gallons per minute. How many gallons of water have been pumped into the tank in the first five
minutes?

� 5

0

r(t)dt = 105.171 gallons

1.7 Bases other than e

Remember that y = logb x means x = by where b > 0 and x > 0.

Exercise Solve 23x = 45

Exercise Solve log5(x− 2) = 3.

Formulas:

�
d
dx [lnu] =

1
u

du
dx

�
d
dx [e

u] = eu du
dx

�

�
eudu = eu + C

�
d
dx [loga u] =

1
u ln a

du
dx

�
d
dx [a

u] = au ln adu
dx

�

�
audu = au

ln a + C

Example

Find the derivative of y = 2x
3

.

Let u = x3 so du
dx = 3x2.

So y′ = 2x
3 · ln 2 · 3x2.

Exercise Differentiate f(x) = log3(x
2 + 1)

Exercise
�
2xdx

Exercise
�
x23x

3

dx

If you are asked to differentiate a function that contains a variable raised to a power that contains a variable,
we have no formula for this and must use a process called logarithmic differentiation.
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Example

Find dy
dx in terms of x.

y = (x+ 1)x−3

Let y = xx.

We can see logarithmic differentiation is needed.

d
dx (ln y = (x− 3) ln(x+ 1))

We can see that y′ =
(

x−3
x+1 + ln(x+ 1)

)
.

1.8 Inverse Trig Functions and Differentiation

In the past, you learned two notations for inverse trig functions. The inverse of cosine can be symbolized as
arccosx or cos−1 x. You were also taught restrictions for these.

Exercise arcsin
(
− 1

2

)
Exercise cos−1

(
−

√
2
2

)
Exercise arctan(−0.3)

We can derive the formulas for the derivatives of the inverse trig functions by using implicit differentia-
tion.

Example

Let y = arcsinx

x = sin y

1 = cos y · y′

y′ = 1
cos y = 1√

1−x2

A similar process can be done for y = arctanx.

d

dx
[arcsinu] =

u′
√
1− u2

d

dx
[arctanu] =

u′

1 + u2

d

dx
[arccosu] =

−u′
√
1− u2

Exercise f(x) = arcsin(2x). What is f ′(x)?

Exercise f(x) = tan−1(3x). What is f ′(x)?

Exercise f(x) = cos(arcsin(3x)). What is f ′(x)?



CHAPTER 1. INTEGRATIONWITH DATA, FUNCTIONS DEFINED BY INTEGRALS, AND NATURAL LOGS10

1.9 Inverse Trig Integration
�

du√
a2 − u2

= sin−1
(u
a

)
+ C

�
du

a2 + u2
=

1

a
tan−1

(u
a

)
+ C

Example

�
dx√
4− x2

a = 2, u = x, du
dx = 1, du = dx.

Integrate to get sin−1
(
x
2

)
+ C

Exercise
�

dx√
4−25x2

Exercise
� 3√

3
1

9+x2 dx

Exercise
�

dx
x2−4x+7

Exercise
�√

2/2

0
arccos x√

1−x2
dx
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