
1 Oscillations

1.1 Defining Simple Harmonic Motion (SHM)

Simple harmonic motion (SHM) is a special case of periodic motion.

SHM results when the magnitude of the restoring force exerted on an object is proportional to that object’s
displacement from its equilibrium position.

A restoring force is a force that is exerted in a direction opposite to the object’s displacement from an
equilibrium position.

� An equilibrium position is a location at which the net force exerted on an object or system is zero.

Example

A block of mass m is attached to a spring, with force constant k, on a horizontal surface. The block
is pulled to a position of x and allowed to oscillate back and forth. The coefficient of kinetic friction
between the block and the table is µ. Derive an expression for the acceleration of the block and write
the differential equation, but don’t solve, that can be used to determine the position function of the
block with respect to time.

Start with
∑

Fx = max.

From this we get Fsp − fk = max =⇒ −kx− µmg = max. Solving for ax gives ax = −kx
m − µg.

Substitute d2x
dt2 for ax to get the differential equation.

Exercise

A cart is initially at rest near the top of a straight ramp, as shown in the figure. A spring is attached to a wall
near the bottom of the ramp and is parallel to the ramp surface. The cart is released from rest, rolls down
the ramp, compresses the spring, reverses direction, and is then launched back up the ramp by the spring.
The cart returns to its initial position, and the motion repeats. Although the cart’s motion is periodic, it is
not simple harmonic motion. Why does the cart not undergo simple harmonic motion.

Exercise
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A small ball is initially at rest at the top of a smooth curved hill. The hill’s surface is in the shape of a
parabola. If the ball is rolled down the hill, is the x-component of its motion an example of simple harmonic
motion? Support your claim.

1.2 Frequency and Period of SHM

The period of SHM is related to the angular frequency, ω, of the object’s motion by the following equation:

ω =
2π

T
ω = 2πf

The period of the object-ideal spring oscillator is given by the equation:

Tsp = 2π

√
m

k

The period of a simple pendulum displaced by a small angle is given by the equation:

Tp = 2π

√
l

g

Example

A 2.0 m long pendulum is pulled back and allowed to swing freely on Earth. What is the frequency
of the pendulum? How does the frequency of the pendulum compare to that on the Moon (g = 1.67
m/s2)?

Plug this in to the formula to get TE = 2.84 s, and the frequency is 1
2.84 = 0.352 Hz.

Plug into the same formula for the moon, and you get 0.445 Hz for the frequency.

Exercise A metal sphere is hung vertically from the bottom of a spring, and the top end of the spring is
attached to the ceiling inside a car. When the car is stationary, the frequency of oscillation for the sphere-
spring system is f0. How does the oscillation frequency change, if at all, when the car starts moving forward
along a horizontal road with a constant acceleration? Assume the frequency is measured by an observer at
rest with respect to the road in both situations.

Exercise
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A small ball is hung from a string of length 3L0, as shown in the figures. There is a small peg just to the
left of the string at a distance L0 above the center of the ball. The ball is displaced to the left and released
from rest, as shown in the middle figure, and moves as a pendulum of length L0 until the string is vertical
and loses contact with the peg. The ball then continues moving to the right as a pendulum of length 3L0,
as shown in the right-hand figure, until the string becomes vertical and again contacts the peg. The ball
continues moving to the left, again as a pendulum of length L0, until it returns to its initial release potision
and completes one oscillation, and then the motion is repeated. What is the period of a complete oscillation
for the ball?

1.3 Representing and Analyzing SHM

For an object exhibiting SHM, the displacement of that object measured from its equilibrium position can be
represented by the equations:

x = A cos(2πft) → x = A, t = 0

x = A sin(2πft) → x = 0, t = 0

The position as a function of time for an object exhibiting SHM is a solution of the second order differential
equation derived from the application of Newton’s 2nd Law.

d2x

dt2
= a = −ω2x

Characteristics of SHM, such as velocity and acceleration can be determined by or derived from the equation:

x = A cos(ωt+ φ)

In the presence of a sinusodial external force, a system may exhibit resonance.

� Resonance occurs when an external force at the natural frequency of an oscillating system and it
increases the amplitude of oscillating motion.

Changing the amplitude of a system exhibiting SHM will not change its period.

Properties of SHM can be determined and analyzed using graphical representations.

Example

A 5.0 kg object suspended on a spring oscillates such that its position x as a function of time t is given
by the equation x(t) = A cos(ωt), where A = 0.80 m and ω = 2.0 s−1. What is the maximum velocity
and acceleration of the object? What is the magnitude of the maximum net force on the object during
the motion.

The maximum velocity is simpliy Aω = (2.0)(0.8) = 1.6 m/s, likewise the acceleration is Aω2 = 3.2
m/s.

The maximum net force is FNET = ma = 16 N.

Exercise
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An object undergoes simple harmonic motion. The graph shows the acceleration of the object as a function
of time, and at time t0 the acceleration is in the positive direction as indicated. Describe the object’s
displacement and velocity at time t0.

Exercise

The graph shows the position x as a function of time t for an object in one-dimensional simple harmonic
motion. Write an expression that gives the object’s velocity as a function of t.

1.4 Energy of Simple Harmonic Oscillators

The total energy of a system exhibiting SHM is the sum of the system’s kinetic and potential energies.

Conservation of energy indicates that the total energy of a system exhibiting SHM is constant.

The kinetic energy of a system exhibiting SHM is at a maximum when the system’s potential energy is at a
minimum, and vice versa.

Changing the amplitude of a system exhibiting SHM will change the maximum potential energy of the system
and, therefore, the total energy of the system.

Example

An object on the end of a spring with spring constant k moves in simple harmonic motion with amplitude
A and frequency f . Write an expression for the kinetic energy of the object as a function of time t.

Let x = A cos(2πft). We know that KA = UB and kA = 1
2kA

2 = 1
2k(A cos(2πft))2.

This simplifies to KA = 1
2kA

2 cos2(2πft).

Exercise A block on a horizontal surface is attached to one end of a horizontal spring, and the other end
of the spring is fixed in place. The block, which is free to move in the x-direction along the surface with
negligible friction, oscillates in simple harmonic motion. The block’s mass is 2.0 kg, and its motion has an
oscillation period of 2.0 s. When the block is 0.30 m from the equilibrium position, it has a speed of 0.50
m/s. What is the amplitude of the block’s motion?

Exercise A block of mass M1 is on a horizontal surface and attached to one end of a spring, while the other
end of the spring is fixed in place. The block oscillates on the spring with an amplitude A1 as it moves with
negligible friction on the horizontal surface, and the block-spring system has total mechanical energy E1 and
maximum kinetic energy K1. The block is replaced with a second block that has mass M1

2 , and the second
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block is then made to oscillate on the same spring with amplitude 2A1. What is the total mechanical energy
and maximum kinetic energy of the second block-spring system?

1.5 Simple and Physical Pendulums

A physical pendulum is a rigid body that undergoes oscillation about a fixed axis.

For small amplitudes of motion, the period of a physical pendulum is derived from the application Newton’s
2nd law of motion.

When displaced from equilibrium, the gravitational force exerted on a physical pendulum’s center of mass
provides a restoring torque.

The small-angle approximation and Newton’s 2nd law in rotational form yield a second-order differential
equation that describes SHM.

d2θ

dt2
= −ω2θ

A simple pendulum is a special case of physical pendulums in which the hanging object can be modeled as a
point mass at a distance from the pivot point.

A torsional pendulum is a special case of SHM where the restoring torque is proportional to the angular
displacement of a rotating system.

Example

Derive an expression for the period and frequency of a torsion pendulum of torsion constant κ and
displacement ∆θ.

We can let the torque be −k∆θ.

This gives us Iα+ k∆θ = 0.

From this, we get ω2θ + k∆θ
I = 0.

Exercise A physical pendulum is made from a uniform bar with a pivot at its top end. A second physical
pendulum is made from another uniform bar of twice the length, also with a pivot at its top end. How does
the small-angle oscillation period of the second pendulum compare to that of the first? The rotational inertia
about one end of a bar of mass M and length L is 1

3ML2.

Exercise
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Near the surface of a distant planet, a physical pendulum made from a uniform bar of length L0 exhibits
small-angle oscillations about a pivot located at the top end of the bar, as shown in the figure. The planet
has 1

40 the mass and 1
5 the radius of Earth. The bar has mass M0 and rotational inertia I0 = 1

3M0L
2
0 about

the pivot axis. Write a differential equation that describes the pendulum’s motion, where g is the acceleration
of gravity on Earth. The pendulum angle θ is taken relative to the vertical.
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