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1 Kinematics

1.1 Scalars and Vectors

Scalars are quantities described by magnitude only, vectors are quantities described by both magnitude and
direction.

Vectors can be visually modeled as arrows with appropriate direction and lengths proportional to their mag-
nitudes.

Vectors can be expressed in unit vector notation or as a magnitude and a direction.

� Unit vector notation can be used to represent vectors as the sum of their constituent components in
the x, y, and z directions, denoted by î, ĵ and k̂.

r⃗ = Aî+Bĵ + Ck̂

� The position vector of a point is given by r⃗ and the unit vector in the direction of the position vector
is denoted r̂.

� A resultant vector is the vector sum of the addend vectors’ components.

C⃗ = A⃗+ B⃗ = (Ax +By )̂i+ (Ay +By)ĵ

In a given one-dimensional coordinate system, opposite directions are denoted by opposite signs.

Example

If a⃗ = 3̂i+ 4ĵ − k̂ and b⃗ = −2̂i+ ŷ + 2k̂, what is (a) c⃗ = a⃗+ b⃗

c⃗ = (3 +−2)̂i+ (4 + 1)ĵ + (−1 + 2)k̂ = î+ 5ĵ + k̂

(b) c⃗ = a⃗− b⃗

c⃗ = (3 + 2)̂i+ (4− 1)ĵ + (−1− 2)k̂ = 5̂i+ 3ĵ − 3k̂

(c) c⃗ = b⃗− a⃗

c⃗ = (−2− 3)̂i+ (1− 4)ĵ + (2 + 1)k̂ = −5̂i− 3ĵ + 3k̂

Exercise An object moves in the xy-plane a distance A at an angle θ measured counterclockwise from the
positive x-direction, where 0 < θ < 90°. The object then moves a distance B in the positive x-direction.
The change in the x-component of the object’s position is equal to the change in the y-component of its
positions. What is B in terms of A and θ?

Exercise An object is moving with an initial velocity v⃗1 = (3.00̂i+ 4.00ĵ) m/s. After a certain time interval,
its velocity is v⃗2 = (−8.00̂i+ 15.0ĵ) m/s. What is the magnitude of the change in the velocity of the object
over this time interval?

1.2 Displacement, Velocity, and Acceleration

When using the object model, the size, shape and internal configuration are ignored.

� The object may be treated as a single point with extensive properties such as mass and charge.

Displacement is the change in an object’s position: ∆x = x− x0

2



CHAPTER 1. KINEMATICS 3

Averages of velocity and acceleration are calculated considering the initial and final states of an object over
an interval of time.

Average velocity is the displacement of an object divided by the interval of time in which that displacement
occurs:

v⃗avg =
∆x⃗

∆t

Average acceleration is the change in velocity divided by the interval of time in which that change in velocity
occurs.

a⃗avg =
∆v⃗

∆t

As the time interval used to calculate the average value of a quantity approaches zero, the average value of
that quantity approaches the value of the quantity that is instant, called the instantaneous value.

� v⃗ = dx
dt

� a⃗ = dv
dt

Time dependent functions and instantaneous values of position, velocity and acceleration can be determined
using differentiation and integration.

Example

A particle moves along the x-axis with an acceleration of a = 18t, where a has units of m/s2. If the
particle at t = 0 is at the origin with a velocity of −12 m/s, what is its position at t = 4.0 s?

The velocity is the integral of acceleration: v =
�
18tdt = 9t2 + C. Substituting the initial conditions

gives v(0) = −12.

Integrating the velocity function:
�
9t2 − 12dt = 3t3 − 12t+ C.

Since we know x(0) = 0, plug this in and we find that C = 0. Therefore, x(4) = 144 m.

Exercise An object moves in one dimension along the x-axis. At time t = 0, the object is located at position
x = 1 m and has a velocity of v = 1 m/s. The object’s acceleration varies as a = 3t, where a is in m/s2 and
t is time in seconds. A student incorrectly derives the equation for the object’s position as x = 1

2 t
3+1 where

x is in meters. What is a possible error that could have resulted in the incorrect equation?

Exercise Two objects, Object 1 and Object 2, have velocities v⃗1 = (3t2î+5tĵ) m/s and v⃗2 = (5t2î−3tĵ) m/s,
respectively, where t is time in seconds. What is the relationship between the magnitudes of the acceleration
a1 of Object 1 at t = 1 s and the acceleration a2 of Object 2 at t = 1 s?

1.3 Representing Motion

Motion can be represented by motion diagrams, figures, graphs, equations and narrative descriptions.

For constant acceleration, three kinematics equations can used to describe the instantaneous linear motion in
one dimension:

� v = v0 + at

� x = x0 + v0t+
1
2at

2

� v2 = v20 + 2a∆x

Near the surface of the Earth, the vertical acceleration caused by the force of gravity is downward, constant
and has a measured value of g = 9.8 m/s2 or g = 10 m/s2.

Graphs of position, velocity and acceleration as functions of time can be used to find the relationships between
those quantities.
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Example

A large cat, running at a constant velocity of 5.0 m/s in the positive x direction, runs past a small dog
that is initially at rest. Just as the cat passes the dog, the dog begins accelerating at 0.5 m/s2 in the
positive x direction. (a) How much time passes before the dog catches up to the cat?

We know from the formula x = v0t+
1
2at

2 that the cat will have position 5t and the dog 0.25t2.

Setting these equal to each other gives t = 20 s.

(b) How far has the dog traveled at this point?

Plug in t = 20 s to get 100 m.

(c) How fast is the dog traveling at this point?

The formula v = v0 + at can be used to get 10 m/s.

Exercise

An object moves in one dimension along the x-axis as described by the position versus time graph shown in
the figure. During the time interval of the graph, how many times does the object change direction and what
feature or features of the graph justifies this response?

Exercise On a distant planet where the acceleration due to gravity is gP , an object takes a time tP to reach
the ground when dropped from a height h0. On a small moon of the planet, the acceleration due to gravity
is gP

16 . How long does it take an object to reach the ground when it is dropped from the same height on the
moon?

1.4 Reference Frames and Relative Motion

The choice of reference frame will determine the direction and magnitude of quantities measured by an
observer in that reference frame.

Measurements from a given reference frame may be converted to measurements from another reference frame.

The observed velocity of an object results from the combination of the object’s velocity and the velocity of
the observer’s reference frame.

� Combining the motion of an object and the motion of an observer in a given reference frame involves
the addition or subtraction of vectors.

� The acceleration of any object is the same as measured from all inertial reference frames.

Example

A cat passes a dog, traveling in the positive x-direction at 5.0 m/s. As the cat passes, the dog begins
accelerating at 0.5 m/s2 in the positive y-direction.



CHAPTER 1. KINEMATICS 5

(a) What is the cat’s acceleration relative to the dog?

The acceleration of the cat relative to the ground is 0̂i and the acceleration of the dog relative to the
ground is 0.5ĵ so the acceleration of the cat relative to the dog is 0̂i− 0.5ĵ.

(b) What is the cat’s velocity relative to the dog at time t = 5.0 seconds after the dog begins running?

We have v = vcat + aCDt = (5̂i− 2.5ĵ) m/s

(c) What is the cat’s position relative to the dog at t = 5.0 seconds after the dog begins running?

From ∆r = vCDt+ 1
2aCDt2, we get that ∆r = 25̂i− 6.25ĵ.

Exercise A toy plane which maintains an airspeed vp flies between points A and B in a time t0 when there
is negligible wind. When the air is moving at a velocity of 1

2vp from point B to point A, the toy plane can
make the trip from A to B in tAB , and the return trip from B to A in tBA. How do the three travel times
compare?

Exercise Car A is traveling east with a speed of 30 m/s. Car B is traveling north with speed of 40 m/s. What
is the direction of the velocity of Car B relative to Car A?

1.5 Motion in Two or Three Dimensions

Motion in two or three dimensions can be analyzed using one-dimensional kinematic relationships if the motion
is separated into componenets.

Velocity and acceleration may be different in each dimension and be nonuniform.

Motion in one dimension may be changed without causing a change in the perpendicular dimension.

Projectile motion is a special case of two-dimensional motion that has zero acceleration in one dimension and
constant, nonzero acceleration in the second dimension.

Example

The motin of an object can be described by the equations

� x(t) = 4t2 − 3t

� y(t) = 3t3 − 2t2 − 9t

(a) What is the objects displacement after 2.5 s?

Plug in t = 2.5 for both equations to get ∆r⃗ = (17.5̂i+ 11.9ĵ) m.

(b) Find the two equations that describe the object’s velocity in the x and y directions.

Take the derivative of both equations to get vx = 8t− 3 and vy = 9t2 − 4t− 9.

(c) What is the object’s velocity after 2.5 s?

Plug in 2.5 to both equations from part (b) to get v = (17̂i+ 37.25ĵ) m/s.

Exercise Object 1 is launched at an initial speed v0 at an angle θ above the horizontal and reaches a maximum
height of y1. Object 2 is launched at an initial speed 2v0 at the same angle θ, reaching a maximum height
of y2. What is the relationship between y1 and y2?

Exercise
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A river has width W and a current vr. A boat maintains a constant velocity as it travels from Point A to
Point B. Point B is located at a distance D upstream from point A. The boat’s water speed is vbw with a
heading of angle θbw, as shown in the figure. What is a correct expression for D?



2 Force and Translational Dynamics

2.1 Systems and Center of Mass

� System properties are determined by the interactions between objects within the system.

� If the properties or interactions of the constituent objects within a system are not important in modeling
the behavior of a macroscopic system, the system can itself be treated as a single object.

� Systems may allow interactions between constituent parts of the system and the environment, which
may result in the transfer of energy or mass.

� For objects with symmetrical mass distributions, the center of mass is located on lines of symmetry.

� The location of a system’s center of mass along a given axis can be calculated using the equation:

xcm =

∑
mixi

M

� For a nonuniform solid that can be considered as a collection of differential masses, dm, the solid’s
center of mass can be calculated using

xcm =

�
xdm/M

� A system can be modeled as a singular object that is located at the system’s center of mass.

Example

A triangular rod of length L and mass M has a nonuniform linear mass density given by the equation
λ = γx2 where γ = 3M

L2 and x is the distance from the left end of the rod. Determine the horizontal
location of the center of the mass relative to point P . Express your answer in terms of L.

From λ = dm
dl we know that dm = λdl. Plugging this into the center of mass formula xcm =

�
dm
M

gives us xcm =
γ
�L
0

x3dx

M = 3
4L.

Exercise

Six identical uniform spheres are arranged on a set of coordinate axes in two different triangular arrangements,
A and B, as shown. How does the y-coordinate of the center of mass of the three spheres in arrangement
A, ycm,A compare to the y-coordinate of the center of mass of the three spheres in arrangement B, ycm,B?

Exercise

7



CHAPTER 2. FORCE AND TRANSLATIONAL DYNAMICS 8

The center of mass of an irregularly shaped platform is balanced on a pivot Point P with coordinates (7.0 m,
1.0 m). Two rocks are then placed on top of the platform, as shown in the top view. One rock has a mass of
1.0 kg and is located at (-2.0 m, -3.0 m), and the second rock has a mass of 3.0 kg and is located at (5.0 m,
4.0 m). At what coordinates should a third rock of mass 4.0 kg be placed such that the three rock-platform
system is balanced.

2.2 Forces and Free-Body Diagrams

� Forces are vector quantitites that describe interactions between objects or systems.

� Contact forces describe the interaction of an object or system touching another object or system.

� Free-body diagrams (FBDs) are useful tools for visualizing forces exerted on a single object or system
and for determining the equations that represent a physical situation.

� The FBD of an object or system shows each of the forces exerted on the object or system by the
environment.

� Forces exerted on an object or system are represented as vector originating from the center of mass,
such as a dot.

� Choose a coordinate system such that one axis is parallel to the acceleration of the object or system.

Example

A skier of mass M is skiing down a frictionless hill that makes an angle θ with the horizontal, as shown
in the diagram. The skier starts from rest at time t = 0 and is subject to a velocity-dependent drag
force due to air resistance of the form F = −bv, where v is the velocity of the skier and b is a positive
constant. Express all algebraic answer in terms of M, b, θ, and fundamental constants. Draw a dot that
represents the skier, and draw a free-body diagram indicating and labeling all of the forces that act on
the skier while the skier descends the hill.

The correct answer will be Fg = mg pointing downwards, a normal force an angle and the force −bv
perpendicular to this force.

Exercise
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Two different blocks, A and B, are next to each other on an inclined smooth surface which has negligible
friction. An applies force, FP , pushes Block A as shown and the blocks move up the ramp. A student sketch
of the free-body diagram representing the forces is given. What changes should be made to this free-body
diagram?

Exercise A block is at rest on a desk’s horizontal surface. A student correctly identifies the force exerted on
the block as the force of Earth on the block and the force of the desk on the block. A book then is placed
between the block and the desk. Which objects exert forces of equal magnitude on the block after the book
has been introduced?

2.3 Newton’s Third Law

Newton’s third law describes the interaction of two objects or systems in terms of the paired forces that exerts
on the other.

F⃗A on B = −F⃗B on A

Interactions between objects within a system do not influence the motion of a system’s center of mass.

Tension is the macroscopic net results of forces that infinitesimal segments of a string, cable, chain or similar
systme exert on each other in response to an external force.

� An ideal string has negligible mass and does not stretch when under tension.

� The tension in an ideal string is the same at all points within the string.

� In a string with nonneglibible mass, tension may not be the same at all points within the string.

� An ideal pulley that has negligible mass and rotates about an axle through its center of mass with
negligible friction.

Example

Blocks X and Y of masses 3.0 kg and 5.0 kg, respectively, are connected by a light string and are both
on a level horizontal surface of negligible friction. A force F = 12 N is exerted on Block Y , as shown
in the figure above. What is the tension in the string connecting the two blocks?

After drawing a free body diagram, we see that the
∑

Fx = max and we can find that ax = 1.5 m/s2.

We alsk now that FT = max, so FT = 4.5 N.

Exercise A cart moving to the right collides with a stationary block, resulting in the two objects sliding
together along the horizontal surface until coming to a stop. During the collision, the cart exerts a force F1

on the block, the surface exerts a force of friction F2 on the block, and the block exerts a force F3 on the
cart. Which two forces are equal during the collision?

Exercise
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An elephant pushes two heavy boxes across a rough surface. The force that Box A exerts on Box B is FAB

and the force that Box B exerts on Box A is FBA. What must be true of the two boxes to support that
|FAB | = |FBA|?

2.4 Newton’s First Law

The net force on a system is the vector sum of all forces exerted on the system.

Translational equilibrium is the configuration of forces that the net force exerted on a system is zero.∑
F = 0

Newton’s first law states that if the net force exerted on a system is zero, the velocity of that system will
remain constant.

Forces may be balanced in one dimension but unbalanced in another.

Example

A heavy sign of mass M is held at rest by two supporting wires between two buildings, with each wire
making an angle θ with the vertical, as shown in the figure. What is the tension in each wire?

Drawing the free body diagram of the system results in the following:

In the x-direction, we get T = T .

In the y-direction we get 2T cos θ = Mg.

Solving this for T gives T = Mg
2 cos θ

Exercise An object is moving while a constant force is exerted on it. Could the addition of a force of the same
magnitude cause the object to move with a constant velocity? Why or why not?

Exercise
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A heavy block is suspended by a string which is attached to a plastic ring. The ring is attached to two
other strings which are tied to vertical supports at the angles shown. The masses of the ring and strings are
negligible. Compare the magnitudes of the tensions in the strings T1, T2, and T3.

2.5 Newton’s Second Law

Unbalanced forces are a configuration of forces such that the net force exerted on a system is not equal to
zero.

Newton’s second law of motion states that the acceleration of a system’s center of mass has a magnitude
proportional to the magnitude of the net force exerted on the system and is in the same direction of the force.∑

F = ma = 0

The velocity of a system’s center of mass will only change if a nonzero net external force is exerted on that
system/

Example

An object of mass 10 kg starts from rest at time t = 0 and moves in a straight line. For time t > 0, the
object’s velocity as a function of time t is given by v = 2t+ 3t2, where v is in m/s and t is in seconds.
What is the instantaneous net force that acts on the object at t = 2 s?

The acceleration function is given by 2 + 6t, so a(2) = 14 m/s2.

F = ma, so plugging in numbers gives 140 N.

Exercise

Three large blocks, A, B, and C, and a small block attached to Block B slide across a horizontal surface
as a constant force F is exerted on Block A, as shown in the figure. There is negligible friction between
the blocks and the horizontal surface. Block A pushes Block B with a force FAB . The small block is then
removed from Block B and attached to Block C and the same force F is exerted on Block A. How does
FAB compare in the second situation to the first situation and why?

Exercise



CHAPTER 2. FORCE AND TRANSLATIONAL DYNAMICS 12

Two identical blocks are placed on a table as shown in the figure. The block on the left is attached to
another identical block hanging over the edge of the table. The block on the right is attached to a motor
pulling downward with a constant tension equal to the weight of one block. The mass of the strings and
friction between the blocks and table are negligible and the pulleys are ideal. How do the magnitudes of the
acceleration of the blocks compare and why?

2.6 Gravitational Force

Newton’s law of universal gravitation describes the gravitational force between two objects as directly pro-
portional to each of their masses and inversely proportional to the square of the distance between their
centers.

FG =
Gm1m2

d2

A field models the effects of a noncontact force exerted on an object at various positions in space.

The magnitude of the gravitational field created by a system of mass M at a point in space is equal to the
ratio of the gravitational force exerted by the system on a test object of mass m to the mass of the test
object.

g⃗ =
F⃗g

m

If a system is accelerating, the apparent weight of the system is not equal to the magnitude of the gravitational
force exerted on the system.

Newton’s shell law theorem describes the net gravitational force exerted on an object by a uniform spherical
shell of mass.

Example

Spheres X, Y , and Z have the masses and locations indicated in the figure above. What is the
magnitude of the net gravitational force on sphere X due to the other two spheres?

We have that Fy = Gm2

r2 and Fz = 1
2
Gm2

r2 so adding these two together gives 3
2
Gm2

r2 .

Exercise
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The gravitational field g of a spherically symmetric object of radius R0 as a function of distance r from the
object’s center is shown in the graph. What best describes the object?

Exercise

A large spherical shell with a uniform mass distribution contains a small object within the thickness of the
shell, as shown in the figure. At which locations could the object be moved to increase the magnitude of the
gravitational force exerted on the object by the shell?

2.7 Kinetic and Static Friction

Kinetic friction occurs when two surfaces in contact move relative to each other.

� It opposes the direction of motion.

� The surface area of contact is not a factor.

The magnitude of the kinetic friction force exerted on an object is the product of the normal force the surface
exerts on the object and the coefficient of kinetic friction.

fk = µkFN

Static friction may occur between the contacting surfaces of two objects that are not moving relative to each
other.

Static friction adopts the value and direction required to prevent an object from slipping or sliding on a
surface.

fs ≤ µsFN

The coefficient of static friction is typically greater than the coefficient of kinetic friction for a given pair of
surfaces.
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Example

A horizontal force F pushes a block of mass m against a vertical wall. The coefficient of friction between
the block and the wall is µ. What value of F is necessary to keep the block from slipping down the
wall?

In the x direction the forces result in FN = F .

In the y direction the forces end up with f = Fg or µFN = mg = µF = mg. The force is therefore
F = mg

µ .

Exercise

A block of mass m1 rests on a rough horizontal tabletop, as shown in the figure. The block is connected by
a string to a second block of mass m2, which hangs below a pulley at the edge of the table. The coefficient
of static friction between the tabletop and the first block is µs. The masses of the string and the pulley are
negligible, and the pulley can rotate with negligible friction on its axle. What is the minimum mass m2 that
will cause the blocks to start moving?

Exercise A rectangular block is pushed by a constant force and accelerates along a rough horizontal surface.
The block can be oriented to slide along any of three different sides, A, B, and C. Sides A, B, and C have
surface areas SA, SB , and SC , respectively where SA < SB < SC . On which side should the block be placed
to have the greatest magnitude of acceleration?

2.8 Spring Forces

An ideal spring has negligible mass and exerts a force that is proportional to the change in its length as
measured from its relaxed length.

The magnitude of the force exerted by an ideal spring on an object is given by Hooke’s Law:

Fsp = −k∆x
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The force exerted on an object by a spring is always directed toward the equilibrium position of the object-
spring system.

A collection of springs that exert forces on an object may behave as though they were a single spring with an
equivalent spring constant.

� Springs in series: 1
keff

= 1
k1

+ 1
k2

+ . . .

� Springs in parallel: keff = k1 + k2 + . . .

Example

To illustrate a human soft tissue deformation, a science teacher uses two ideal springs and a small sphere.
The sphere of mass ms is attached to the free ends of the two springs. Then, the system is suspended
vertically. The upper string has an equilibrium Lu and a spring constant ku. The lower spring has an
equilibrium length Ll and a spring constant kl. The teacher fixes an additional small block of mass mb

to the free end of the lower spring. Find the expression of the system’s total length.

The upper string is given as Fsp = ku∆xu. Plugging in total mass and gravity we get (mb +ms)g =

ku∆xu. Solving for ∆xu gives ∆xu = (mb+ms)g
ku

The lower string is given by a similar approach and gives us ∆xl =
mbg
kl

.

The total length is therefore LT = Ll + Lu + (mb+ms)g
ku

+ mbg
kl

.

Exercise When a block of mass M is hung vertically from a spring, the spring is stretched by a distance D
compared to its unstretched length. If a second identical spring is connected in series with the first spring
and a larger block of mass 2M is then hung vertically from the two-spring combination, by how much is the
combination stretched compared to its unstretched length?

Exercise

Some students attach a single spring to a clamp and let the spring hang vertically. Objects of different mass
are attached to the free end of the spring and allowed to hang at rest. The students measure the distance
∆y the spring stretches from its equilibrium length for each object. The students produce the graph of ∆y as
a function of the weight Fg of the objects shown in the figure, and the slope of the best-fit line to the data
is determined to be S1. Next, the students take a second spring that is identical to the first and arrange the
two springs as shown in the two-spring arrangement next to the graph. Once again, the objects of different
mass are attached to the two-spring arrangement, ∆y is measured, and the data is plotted on another graph
showing ∆y as a function of Fg. What best describes the slope of the best-fit line to the data collected for
the two-spring arrangement?

2.9 Resistive Forces

A resistive force is defined as a velocity-dependent force in the opposite direction of an object’s velocity.

FR = −kv[FR = −bv2]

Applying Newton’s second law to an object upon which a resistive force is exerted results in a differential
equation for velocity.

� The differential portion of a=the equation comes from substituting in a = dv
dt
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Terminal velocity is defined as the maximum speed achieved by an object moving under the influence of a
constant force and a resistive force that are exerted on the object in opposite directions.

� For a falling object, this occurs when the air resistance equals the weight of the object.

Example

The object of mass m shown above is dropped from rest near Earth’s surface and experiences a resistive
force of magnitude kv, where v is the speed of the object and k is a constant. Derive an expression for
the velocity of the object at any point in time. (Assume that the direction of the gravitational force is
positive.)

We have that ∆F = ma so we have mg − kv = ma. We also have mg − kv = mdv
dt as well as

mg − kvT = 0, so vT = mg
k .

From mg − kv = mdv
dt we can simplify this to

� t

0
dt =

� v(t)

0
dv

g− kv
m

.

Solving this gives t = −m
k ln(1− kv

mg ).

Simplifying for v(t) gives v(t) = mg
k

(
1− e−

kt
m

)
.

Exercise An object is released from rest and falls to the ground near Earth’s surface. The resistive force
exerted on the object is directly proportional to the speed of the object which results in a velocity function

which includes the term e−
t
β , where β is a positive constant. What best describes the motion of the object

if it falls for a time equal to β?

Exercise Two spheres, A and B, of identical size and surface material, but different masses, are dropped from
rest near the surface of Earth. While falling, each sphere experiences a resistive force which is proportional
to the sphere’s velocity. What are the relationships of the magnitude of the initial acceleration a0 of each
sphere and of the terminal speed vT of each sphere if mA < mB?
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2.10 Circular Motion

Centripetal acceleration is the component of an object’s acceleration directed toward the center of the object’s
circular path.

� The magnitude of the acceleration for an object moving in a circular path is the ratio of the object’s
tangential speed squared to the radius of the circular path.

ac = v2/r

Centripetal acceleration can result from a single force, more than one force, or components of forces that are
exerted on an object in circular motion.

Tangential acceleration is the rate at which an object’s speed changes and is directed tangent to the object’s
circular path.

a =
√

a2c + a2T

The net acceleration of an object moving in a circle is the vector sum of the centripetal acceleration and
tangential acceleration.

The revolution of an object traveling in a circular path at a constant speed (UCM) can be described using
period and frequency.

v =
2πr

T
= 2πrf T =

1

f

Example

A billiard ball (mass m = 0.150 kg) is attached to a light string that is 0.50 meters long and swung so
that it travels in a horizontal, circular path of radius 0.40 m, as shown.

a. On the diagram, draw a free-body diagram of the forces acting on the billiard ball.

There will be a force T in the direction of the string, ac pointing right from the billiard ball and Fg

pointing downwards.

b. Calculate the force of tension in the string as the ball swings in a horizontal circle.

We know that T sin θ = Fg. From this we can determine that T = 2.5 N.

c. Determine the magnitude of the centripetal acceleration of the ball as it travels in the horizontal
circle.

We know that T cos θ = mac, so solving for ac gives us 13.3 m/s2.

d. Calculate the period T (time for one revolution) of the ball’s motion.

We know that ac =
v2

r so we can find that that v = 2.30 m/s. We also know that v = 2πr
T , so solving

for T gives 1.15.

Exercise An object of mass m is attached to the end of a spring. The string is spun around in a vertical circle
of radius r. When the object is at the top of its path, the speed of the object is v and the string has a tension
FT . Write an expression for v at the top of the circular path.
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Exercise Two small blocks, P and Q rotate without slipping on a horizontal disk with Block P being twice
as far from the rotational axis of the disk as Block Q. The blocks are made of the same material and Block
P is half the mass of Block Q. As the disk increases in speed, which block will be the first to begin to slide
on the disk’s surface?



3 Work, Energy and Power

3.1 Translational Kinetic Energy

An object’s translational kinetic energy is given by the equation

K =
1

2
mv2

Translational kinetic energy is a scalar quantity.

Different observers may measure different values of the translational kinetic energy of an object, depending
on the observer’s frame of reference.

Example

A 100 kg box shown is being pulled along the x-axis by a student. The box slides across a rough surface,
and its position x varies with time according to the equation x = 0.5t3 + 2t, where x is in meters and
t is in seconds.

(a) Determine the speed of the box at time t = 0. The derivative of the position function is 1.5t2 + 2,
so v(0) = 2 m/s

(b) Determine the kinetic energy of the box as a function of time.

We know that K = 1
2mv2. Plugging in m and v, we get K(t) = 50(1.5t2 + 2)2.

Exercise Two identical blocks, Block A and Block B, slide across a horizontal surface. Block A has a speed
v, and kinetic energy KA. Block B has a speed 2v and a kinetic energy KB . What is the ratio KA : KB

with a correct justification?

Exercise

A student stands on a bus moving with a constant speed v to the left as shown in Figure 1. The student S
is at rest relative to the bus and a ball sits at rest on the floor of the bus next to the student. Outside the
bus standing at rest relative to the ground is an observer O. The kinetic energies of the ball as measured by
the student and the observer at this moment are KS1 and KO1 respectively. As the bus passes the observer,
the student kicks the ball toward the back of the bus with a constant speed less than v as shown in Figure 2.
The kinetic energies of the ball as measured by the student and the observer after the ball is kicked are KS2

and KO2, respectively. How do the kinetic energies measured by the student and observer compare before
and after the ball is kicked?

19
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3.2 Work

Work is the amount of energy transferred into or out of a system by a force exerted on that system over a
distance.

� The work done by a conservative force is path-independent and only depends on the initial and final
configurations of that system.

� The work done by a nonconservative force is path-dependent.

Work is scalar quantity that may be positive, negative or zero.

The work done on an object by a variable force is calculated as

W =

� b

a

F⃗ (r) · dr⃗ [W = Fd cos θ]

The work-energy theorem states that the change in an object’s kinetic energy is equal to the sum of the work
being done by all forces exerted on the object.

δK = W

Work is equal to the area under the curve of a graph of F as a function of displacement.

Example

A skier of mass m will be pulled up by a hill by a rope, as shown. The magnitude of the acceleration
as a function of time t can be modeled by

� a = amax sin
πt
T (0 < t < T )

� a = 0(t ≥ T )

Where amax and T are constants. The hill is inclined at an angle θ above the horizontal, and friction
between the skis and the snow is negligible. Express your answers in terms of given quantities and
fundamental constants.

(a) Derive an expression for the velocity of the skier as a function of time during the acceleration.
Assume the skier starts from rest.

We have v =
�
a(t)dt =

� t

0
amax sin

πt
T dt,

Integrating this and applying the limits of integration give −amaxT
π

(
1− cos πt

T

)
for v.

(b) Derive an expression for work done by the net force from the skier from rest until terminal speed is
reached.

We know W = ∆k and that ∆k = 1
2mv2 in this case.
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Plugging in the v just derived gives W = −2amaxm
T 2

π2 .

Exercise A block of mass m slides with an initial velocity v0 along a rough surface where the coefficient of
kinetic friction between the block and the surface is µ. The box comes to rest after sliding a distance d0.
A new block of unknown mass slides with an initial velocity of 2v0 across a surface where the coefficient of
kinetic friction between the new block and the surface is µ

2 . Write an expression that represents the distance
the new block slides before coming to rest in terms of d0.

Exercise A force F is exerted on an obejct which is initially at rest. The force varies with positions x and can
be described by the equation F⃗ = (Ax − B)̂i, where A and B are constants with appropriate units. After
moving a distance D0, the block again comes to rest. An identical object, also initially at rest, experiences
a force 2F . The second object comes to rest again after moving a distance D1. Describe the relationship
between D0 and D1.

3.3 Potential Energy

A system composed of two or more objects has potential energy if the objects within that system only interact
with each other through conservative forces.

Potential energy is a scalar quantity associated with the position of objects within a system.

The definition of zero potential energy for a given system is a decision made by the observer considering the
situation to simplify or otherwise assist in analysis.

The relationship between conservative forces exerted on a system and the system’s potential energy is

δU = −
�

F⃗ (r) · dr⃗

The conservative forces exerted on a single dimension can be determined using the slope of a system’s potential
energy with respect to position in that dimension, these forces point in the direction of decreasing potential
energy.

Fx = −du(x)/dx

The potential energy of common physical systems can be described using the physical properties of that
system.

Example

When a certain spring is stretched by an amount x, it produces a restoring force of F (x) = −ax+ bx2,
where a and b are constants. How much work is done by an external force in stretching the spring by
an amount D from its equilibrium length?

Integrate this function with bounds 0 to D to get bD3

3 − aD2

2 .

Exercise The force exerted by a non-linear spring is given by F (x) = −kx(
4
3 ). Write an expression that

correctly models the potential energy stored in the spring when it is compressed a distance of D.

Exercise

An object in space is placed between two planets as shown. Planet A has a mass m and the distance from
the center of Planet A to the object is d. Planet B has a mass 2m and the distance from the center of
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Planet B to the object is 2d. Upon releasing the object from rest, where will the object move and how will
the potential energy of the two-planet object system change?

3.4 Conservation of Energy

A system that contains objects that interact via conservative forces or that can change its shape reversibly
may have both kinetic and potential energies.

Mechanical energy is the sum of a system’s kinetic and potential energy.

A system may be selected so that the total energy of the system is constant.

If the total energy of a system changes, that change will be equivalent to the energy transferred into or out
of the system.

Energy is conserved in all interactions.

If the work done on a selected system is zero and there are no nonconservative interactions within the system,
the total mechanical energy of the system is constant.

If the work done on a selected system is nonzero, the energy is transferred between the system and the
environment.

Example

A horizontal spring with spring constant k is compressed by x and then used to launch a m box across
the floor. The coefficient of kinetic friction between the box and the floor is µk. Derive an expression
for the box’s launch speed v.

We can determine the conservatino equation to be − 1
2kx

2 = 1
2mv2 +Wf .

Wf = µmgx, so kx2 = mv2 + 2µmgx.

Solving this equation for v gives v =
√

kx2

m − 2µgx.

Exercise In an experiment, an object of mass m slides along a horizontal surface where friction between the
object and the surface is negligible. The object has an initial speed v and then collides with a spring of
spring constant k, and the object compresses the spring a total distance x from the equilibrium length of
the spring before coming to rest. Students observing the experiment expected the object to compress the
spring a distance D from equilibrium, where D > x. Assuming the students’ expectation is correct, write
an expression that can shown the change in the mechanical energy of the object-spring system during the
experiment.

Exercise

Three ramps, A, B, and C, have the dimensions shown in the figure. Identical blocks are released from rest
at the top of each of the three ramps and slide to the bottom. The coefficient of kinetic friction between
each of the blocks and the ramp is the same. Rank the speeds of the blocks at the bottom of the ramps.
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3.5 Power

Power is the rate at which energy changes with respect to time, either by transfer into or out of a system or
by converstion from one type to another within the system.

Average power is the amount of energy being transferred or converted, divided by the time it took for that
transfer to happen.

The instantaneous power delivered to an object by a force is given by the equation:

pins =
dE

dt

The instantaneous power delivered to an object by the component of a constant force parallel to the object’s
velocity can be described with the derived equation:

pins = Fv cos θ

Example

A factory uses a motor and a cable to drag a 300 kg machine to the proper place on the factory floor.
What power must the motor supply to drag the machine at a speed of 0.50 m/s? The coefficient of
friction between the machine and the floor is 0.60.

Let FNET = 0, so F = µmg.

This gives us F = 1764N.

The power formula is Pins = F∥v = 882W.

Exercise A box is pushed across a surface where friction between the box and the surface is negligible. There
is a resistive force from the air exerted on the box equal to FR = −kv. Draw a graph that correctly models
the relationship between the power P required to move the box at a constant speed v to the speed of the
box.

Exercise

A 0.250 kg cart is being pushed up a track that is inclined at 30° above the horizontal as shown. Friction
between the cart and the track is negligible. Calculate the minimum power required to push the cart up the
track at a constant speed of 2.4 m/s.



4 Linear Momentum

4.1 Linear Momentum

Linear momentum is defined by the equation:
p⃗ = mv⃗

Momentum is a vector quantity and has the same direction as the velocity.

Momentum can be used to analyze collisions and explosions.

� A collision is a model for an interaction where the forces exerted between the involved objects in the
system are much larger than the net external force exerted on those objects during the interaction.

� An explosion is a model for an interaction in which forces internal to the system move objects within
that system apart.

Example

(a) Derive an expression for the kinetic energy of an object in terms of momentum.

Substitute p = mv into K = 1
2mv2 to get K = p2

2m .

(b) Derive an expression for the momentum of an object in terms of kinetic energy.

We get that v =
√

2k
m . Substituting this into p = mv gives p =

√
2mk.

Exercise A moving block of mass m0 has kinetic energy K0 and momentum of magnitude p0. A second block
of mass 2m0 is moving with the same kinetic energy K0. What is the magnitude of the momentum of the
second blocK?

Exercise A student is pulling a cart full of water horizontally on flat ground at a constant velocity. The cart
has a small hole through which the water slowly leaks out of the cart. For the system consisting of the cart
and the water within the cart, how is the magnitude of the momentum of the system changing, if at all?

4.2 Change in Momentum and Impulse

The rate of change of a system’s momentum is equal to the net external force exerted on that system.

FNET =
dp⃗

dt

Impulse is defined as the integral of a force exerted on an object or system over a time interval.

J =

�
F (t)dt

Impulse is a vector quantity and has the same direction as the net force exerted on the system.

Change in momentum is the difference between a system’s final momentum and its initial momentum.

∆p⃗ = p⃗f − p⃗i

The impulse-momentum theorem relates impulse delivered to an object and the object’s change in momentum.

J⃗ = ∆p⃗

�
F (t)dt = m∆v⃗

24
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Example

The net force F acting on an object that moves along a straight line is given as a function of time t by
F (t) = κt2 + τ , where κ = 2N/s2 and τ = 4N. What is the change in momentum of the object from
t = 0 s to t = 3 s?

Integrate F (t)dt from 0 to 3 to get ∆p⃗ = 59 N·m.

Exercise A 50-kg student sitting in a rolling chair at rest pushes against a wall, which applies a 10 N·s
horizontal impulse to the student. Later, a 40-kg student is at rest in the same rolling chair and catches a
10-kg ball while applying a 10 N·s horizontal impulse to the ball. Describe the students’ final speeds and
provide a valid reasoning to support this claim.

Exercise

A block of mass m can move with negligible friction on a ramp that is at an angle θ from the horizontal, as
shown in the figure. Starting at time t = 0, the motor creates a varying string tension FT given by FT = 2kt,
where k is a positive constant. If the positive direction is taken to be up the ramp, what is the magnitude of
the impulse exerted on the block between t1 > 0 and a later time t2?

4.3 Conservation of Linear Momentum

A collection of objects with individual momenta can be described as one system with one center of mass
velocity.

� The velocity of a system’s center of mass can be calculated using the equation

vcm =

∑
mivi∑
m

The total momentum of a system is the sum of the momenta of the system’s constituent parts.

In the absence of net external forces, any change to the momentum of an object within a system must be
balanced by an equivalent and opposite change of momentum elsewhere within the system.

Momentum is conserved in all interactions.

If the net external force on the selected system is zero, the total momentum of the system is constant.

If the net external force on the selected system is nonzero, momentum is not transferred between the system
and the environment.

Example

An object of mass m is moving with speed v0 to the right on a horizontal frictionless surface, when it
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explodes into two points. Subsequently, one piece of mass (2/5)m moves with a speed v0/2 to the left.
What is the speed of the other piece of the object?

We know momentum before has to equal the momentum after.

So we get mv0 = 3
5mvf − 2

5m
v0
2 . Solving for vf gives vf = 2v0.

Exercise In three different scenarios, a student of mass 3m pulls on a lightweight rope attached to a block
of mass m. The student and the block are both initially at rest in each scenario. In Scenario 1, the student
stands on the shore of a frozen lake and the block is on the ice. After the student starts pulling on the rope
in Scenario 1, the block slides with negligible friction while the student remains in the same location on the
shore. In Scenario 2, both the student and the block are on the ice. After the student starts pulling the rope
in Scenario 2, both the student and the block slide with negligible friction. In Scenario 3, the block is at rest
on the shore while the student is on the ice. After the student starts pulling on the rope in Scenario 3, the
student slides with negligible friction while the block remains in the same location on the shore. The final
velocity of the block relative to the student is the same in each scenario. Which scenario, if any, is the final
speed of the center of mass of the block-student system the greatest?

Exercise

A small block of mass m is held in place inside a larger, U-shaped block of mass 3m, as shown in the figure.
Initially, the centers of mass of the two blocks are located at the same position, and a spring attached to the
larger block is compressed a distance D from its relaxed length by the smaller block. At time t = 0, the two
blocks are released from rest. At time t1 > 0, the spring is at its relaxed length, the centers of mass of the
two blocks are a distance D apart, and the small block is moving to the right with a velocity v just as it
loses contact with the spring. If there are no external forces exerted on the block-spring system, what is the
distance of separation of the two centers of mass at a later time t > t1?

4.4 Elastic and Inelastic Collisions

An elastic collision between objects is one in which the initial kinetic energy of the system is equal to the final
kinetic energy of the system.

In an elastic collision, the final kinetic energies of each of the objects within the system may be different from
their initial kinetic energies.

An inelastic collision between objects is one in which the total kinetic energy of the system decreases.

In an inelastic collision, some of the initial kinetic energy is not restored to kinetic energy but it is transformed
by nonconservative forces into other forms of energy.

In a perfectly inelastic collision, the objects stick together and move the same velocity after the collision.
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Example

A child of mass 20 kg who is running at a speed of 4.0 m/s jumps onto a stationary sled of mass 5.0
kg on a frozen lake. What is the speed at which the child and sled begin to slide across the ice?

From inelastic collision formula, we get m1v1B = (m1 +m2)vf . So, we get vf = m1v1B

m1+m2
= 80

25 = 3.2
m/s.

Exercise

Two pucks are free to slide on a horizontal surface with negligible friction. The figure shows a top view of
the pucks, one of mass 4.0 kg and one of mass 3.0 kg, before and after they undergo an elastic collision with
each other. Before the collision, the 4.0-kg puck slides at 6.0 m/s in the +x-direction and the 3.0-kg puck is
at rest. After the collision, the 3.0-kg puck moves with a speed of 2.0 m/s at an unknown angle θ3 measured
clockwise from the +x-direction, as indicated, while the 4.0-kg puck moves at an unknown speed and at an
unknown angle θ4 measured counterclockwise from the +x-direction, as indicated. What is the speed of the
4.0-kg puck after the elastic collision.

Exercise Students perform an experiment with mutiple trials using blocks that can slide with negligible friction
on a straight, horizontal track. In each trial, a block of mass m1 slides with speed v1 on the track and collides
with a stationary block of mass m2. The blocks stick together and move with speed vf after the collision. In
each trial, m1 and v1 are kept constant but the mass m2 of the stationary block is varied, and vf is recorded.
The students graph vf as a function of m2. Graph a best-fit curve to the data collected by the students.



5 Torque and Rotational Dynamics

5.1 Rotational Kinematics

Angular displacement is the measurement of the angle, in radians, through which a point on a rigid system
rotates about a specific axis.

� In general, the counterclockwise motion is positive, and the clockwise motion is negative.

Angular velocity is the rate at which angular displacement position changes with respect to time.

ω =
dθ

dt

Angular acceleration is the rate at which angular velocity changes with respect to time.

α =
dω

dt

Angular displacement, angular velocity, and angular acceleration around one axis are analogous to linear dis-
placement, velocity, and acceleration in one dimension and demonstrate the same mathematical relationships.

Graphs of angular displacement, angular velocity, and angular acceleration as functions of time can be used
to find the relationships between the above quantitites.

Example

A windmill is spinning because of the nonuniform force of the wind. The windmill is originally spinning
at a speed of ω0, and a crosswind slows it with an angular acceleration of −Aω2. What will be the
angular speed of the windmill at time t = T?

From α = −Aω2, we get that 1
ω2 = −A.

Integrating this from ω0 to ω gives us ω = ω0

ω0AT+1 .

Exercise Two disks, Disk 1 and Disk 2, are initially at rest and begin to rotate with a constant angular
acceleration. Disk 1 has an angular acceleration α1 and rotates through an angle θ1 in a time ∆t. Disk 2 has
an angular acceleration α2 = 2a1 and rotates through an angle θ2 in the same amount of time ∆t. What is
θ2 in terms of θ1?

Exercise A wheel spins with an initial angular velocity of 18 rad/s in the clockwise direction and a constant
angular acceleration. After 3 seconds the wheel is spinning at 6 rad/s in the counterclockwise direction. What
is the magnitude and direction of the angular acceleration?

5.2 Connecting Linear and Rotational Motion

For a point at a distance r from a fixed axis of motion, the linear distance s traveled by the point as the
system rotates through an angle ∆θ is given by the equation

s = r∆θ

Derived relationships of linear velocity and of the tangential component of acceleration to their respective
angular quantities are given by the following equations

x = rθ

28
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v = rω

a = rα

For a rigid system, all points within that system have the same angular velocity and angular acceleration.

Exercise A car with tires of radius r0 is moving along a straight road. Each tire’s angular displacement is
given by the equation θ = At4 +Bt, where t is time and A and B are constants with appropriate units. The
tires do not slip on the road’s surface. What is the car’s acceleration as a function of time?

Exercise

Two disks each rotate about axes through their centers, and are connected by a belt that does not slip as the
disks rotate, as shown in the figure. The disk on the left has a larger radius than the disk on the right. Points
L and R are points at the edges of the disks on the left and right, respectively. Are the angular speeds and
linear speeds of points L and R the same or different?

5.3 Torque

Torque results only from the force component perpendicular to the position to the position vector from the
axis of rotation to the point of the application of the force.

The lever arm is perpendicular distance from the axis of rotation to the line of action of the exerted forces.

Torques can be described using force diagrams.

� These are sometimes referred to as a rigid body diagrams.

� The forces are placed on the object at the point of application in relation to the axis of rotation.

The torque exerted on a rigid system about a chosen pivot point by a given force is described by

τ⃗ = r⃗ × F⃗

||τ || = rF sin θ

The direction of the torque is determined by using the right hand curl rule.

Example

A torque of 5.00 × 103 N·m is required to raise a drawbridge (see the following figure). What is the
tension necessary to produce this toruqe? Would it be easier to raise the drawbridge if the angle θ were
larger or smaller?
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Just plug into the formula. τ = rF sin θ =⇒ T = τ
r sin θ = 1700N.

If you increase θ, the tension would be smaller.

Exercise

A force F , directed to the right, is exerted on a disk, as shown in the figure. The disk may pivot in the plane
of the page about any one of the three labeled points, and the force results in lever arms of length LA, LB ,
and LC for pivots at points A, B, and C, respectively. Rank LA, LB , and LC .

Exercise
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Two pulley wheels are rigidly connected so that they can rotate together around a common center, as shown
in the figure. The wheels have radii r0 and 2r0, and strings wrapped around each wheel are pulled by two
students. One student pulls downward on the smaller wheel’s string with a force of magnitude F0 exerted a
vetical distance L0 below the wheels’ center. The other student pulls downward on the larger wheel’s string
with a force of magnitude 2F0 exerted a distance 2L0 below the wheels’ center. The students make the
correct claim that the force 2F0 results in a greater torque with respect to the wheels’ center. Provide the
evidence needed to justify this claim.

5.4 Rotational Inertia

Rotational inertia measures a rigid system’s resistance to changes in rotation and is related to the mass of
the system and the distribution of the mass relative to the axis of rotation.

The rotational inertia of an object rotating a perpendicular distance r from an axis is described by the equation

I = mr2

The total rotational inertia of a collection of objects about an axis is the sum of the rotational inertias of
each about that that axis.

I =
∑

mir
2
i

For a solid that can be considered as a collection of differential masses, dm, the solid’s rotational inertia can
be calculated using the equation

I =

�
r2dm

A rigid system’s rotational inertia in a given plane is at minimum when the rotational axis passes through the
system’s center of mass.

The parallel axis theorem uses the following equation to relate the rotational inertia of a rigid system about
any axis that is parallel to an axis through its center of mass.

I ′ = Icm +md2

Example

A triangular rod of length L and mass M has a nonuniform linear mass density given by the equation
λ = γx2, where γ = 3M

L3 and x is the distance from point P at the left end of the rod. Using integral
calculus, show that the rotational inertia I of the rod about an axis perpendicular to the page and
through point P is 3

5ML2.

First integrate
� L

0
x2dm. We can substitute dm = γx2dx, and simplifying, we get I = γ

� L

0
x4dx.

Integrating this will give you I = 3
5ML2

Exercise
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The figure shows a narrow, uniform rectangular plate. The place can rotate about any of three axes that are
each perpendicular to the plane of the figure and pass through one of the points P1, P2, or P3. Correctly
compare the rotational inertias I1, I2, and I3 of the plate about points P1, P2, and P3 respectively.

Exercise

Figure 1 shows a uniform rod of mass M0 and length D0. Its rotational inertia when rotated about its end at
point P is given by I0 = 1

3M0D
2
0. A second uniform rod with twice the length and the same width is made

of the same material, and the two rods are connected at their ends at point P , as shown in Figure 2. What
is the rotational inertia about Point P for the two-rod system in Figure 2?

5.5 Newton’s First and Second Law in Rotational Form

A system may exhibit rotational equilibrium (constant angular velocity) without being in translational equi-
librium, and vice versa.

� FBD and force diagrams describe the nature of the forces and torques exerted on an object or rigid
system.

� Rotational equilibrium is a configuration of torques such that the net torque exerted on the system is
zero.

� The rotational analog of Newton’s 1st law is that a system will have a constant angular velocity only if
the net torque exerted on the system is zero.

A rotational collolary to Newton’s 2nd law states that if the torques exerted on a rigid system are not balanced,
the system’s angular velocity must be changing.

Angular velocity changes when the net torque exerted on the object or system is not equal to zero.

The rate at which angular velocity of a rigid system changes is directly proportional to the net torque exerted
on the rigid system as in the same direction. ∑

τ = Iα

To fully a describe a rotating rigid system, linear and rotational analyses may need to be performed indepen-
dently.
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Example

A solid disk of unknown mass and known radius R is used as a pulley in a lab experiment, as shown.
A small block of mass m is attached to a string, the other end of which is attached to the pulley and
wrapped around it several times. The block of mass m is released from rest and takes a time t to fall
the distance D to the floor. Calculate the linear acceleration a of the falling block in terms of the given
quantitites.

We first must find T , the tension.

To find this, we can determine that T = 1
2ma, from plugging in known quantities and the fact that

I = 1
2mr2.

Now the sum of the forces is
∑

F = ma, so T = mg −ma.

Solving for a after plugging in everything should give 2
3g.

Exercise

A thin rod of negligible mass has spheres of different masses attached to its ends, as shown in the figure.
The rod is free to rotate about an axis perpendicular to the plane of the figure and located at a triangular
fulcrum that supports the rod. If the rod is held in place horizontally and then released from rest, what is the
magnitude of the angular acceleration of the rod-spheres system immediately after the rod is released?

Exercise
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A uniform rod of length L0 is free to rotate about an axis through its left end and perpendicular to the
horizontal plane of the figure shown. When a force with magnitude F0 is exerted perpendicular to the rod at
the right end, the angular acceleration of the rod is α1. The same force is then exerted on the right end of
a second uniform rod with the same linear mass density and twice the length as the original rod, as shown
on the right side of the figure. The rod of length 2L0 has an angular acceleration of α2. What is the ratio
α2 : α1?



6 Energy and Momentum of Rotating
Systems

6.1 Rotational Kinetic Energy

The rotational kinetic energy of an object or rigid system is related to the rotational intertia and angular
velocity of the rigid system and is given by the equation

KR =
1

2
Iω2

The total kinetic energy of a rigid system is the sum of its center of mass and the translational kinetic energy
due to the linear motion of the center of mass.

KTOT = KT +KR =
1

2
mv2 +

1

2
Iω2

A rigid system can have rotational kinetic energy while its center of mass is at rest due to the individual points
within the rigid system having linear speed, and therefore, kinetic energy.

Example

A wheel with rotational inertia I is mounted on a fixed, frictionless axle. The angular speed ω of the
wheel is increased from zero to ωf in a time interval T .

What is the average power input to the wheel during this time interval?

Use power formula: P = ∆k
t =

1/2Iω2
f− 1

2 Iω
2
0

t .

The power is therefore P =
Iω2

f

2t .

Exercise Three identical uniform disks, A, B, and C, can each slide along a horizontal surface with negligible
friction. Disk A is rotating with angular speed ωA while its center of mass remains in place. Disk B is moving
with speed vB without rotating. Disk C is rotating with the same angular speed ωA as Disk A while its center
of mass is moving with the same speed vB as Disk B. Which disk has the greatest total kinetic energy?

Exercise A solid, uniform disk is spinning about an axis through its center while its center of mass remains at
rest. Describe the disk’s kinetic energy K with supporting reasoning.

6.2 Torque and Work

A torque can transfer energy into and out of an object or rigid system if the torque is exerted over an angular
displacement.

τ = rF

The amount of work done on a rigid system by a torque is related to the magnitude of that torque and
the angular displacement through which the rigid system rotates during the interval in which that torque is
exerted.

W =

� θ

θ0

τdθ

Work done on a rigid system by a given torque can be found from the area under the curve of a graph of the
torque as a function of angular position.

35
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Example

A torsion spring is fixed to the end of rod of rotational inertia IR. The torsion spring is fixed to a
horizontal table with negligible friction, as shown in the image. WHen the rod is displaced an angle
θ from equilibrium the torsion spring exerts a restoring torque of magnitude τ = 2κθ2, κ is a positive
constant with appropriate units. After being displaced by an angle θ0, the rod is released and rotates
through its equilibruim position with angular speed ω0. How much work was done in moving the rod to
this position?

Integrate 2κθ2 from 0 to θ0 to get W = 2κ
3 θ30.

Exercise

An object can rotate about an axis passing through its center of mass. At t = 0, the object is spinning in
the positive direction and has an initial angular position of zero. The graph represents the net torque τnet
exerted on the object as a function of angular position θ. What is the total work done on the object and the
maximum rotational kinetic energy of the object as it rotates from 0 radians to 4 radians?

Exercise
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A wheel can rotate about an axis that passes through its center and is perpendicular to the page. THe edge
of the wheel is attached to one end of a wire that is connected to a motor, which is fixed in place. The
motor exerts a force on the wire such that the wire exerts a counterclockwise torque of magnitude τ0 about
the center of the wheel when the wheel is at an angular position θ0 = 0. As the wheel rotates, the torque
exerted on the wheel changes as a function of θ that is given by τ = τ0e

− θ
k , where k is a positive constant.

If the positive direction for θ is counterclockwise, how much work is done by the wire on the wheel as the
wheel rotates from θ0 to an angular position θf?

6.3 Angular Momentum and Angular Impulse

The magnitude of the angular momentum of a rigid system about a specific axis can be described with the
equation:

L = Iω

The angular momentum of an object about a given point is

L = r⃗ × p⃗ = r⃗ ×mv⃗ =⇒ L = mvr sin θ

Angular impulse is defined as the product of the torque exerted on an object or rigid system at the time
interval during which the torque is exerted.

Jang =

�
τdt

The magnitude of the change in angular momentum can be described by comparing the magnitudes of the
final and initial momenta of the object or rigid system.

∆L =

� t1

t0

τdt

A rotational form of the impulse-momentum theorem relates the angular impulse delivered to an object or
rigid system and the change in the angular momentum of that object or rigid system.

τNBT =
dL

dt
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Example

A particle of mass 2.0 kg is moving in the xy-plane at a constant speed of 0.80 m/s in the +x-direction
along the line y = 4 m. As the particle travels from x = −3 m to x = +3 m, what is the magnitude of
its angular momentum with respect to the origin?

L = mvr = 6.4 kg·m2/s, from the formulas given above.

Exercise

In the two collisions depicted in the figures, a bar is rotating about a pivot at one end, labeled Point P , on
top of a horizontal surface before striking a disk that is initially at rest. The two collisions use the same bar
but different disks, where the two disks are the same mass and size but are made of different materials. After
each collision, the disk moves to the right at a constant velocity. After Collision 1, the bar stops rotating.
After Collision 2, the bar is still rotating in the same direction, and the disk is moving more slowly than after
Collision 1. There is negligible friction between the bar and the pivot, between the bar and the surface, and
between each disk and the surface. Compare the magnitudes of J1 and J2 of the angular impulse delivered
to each disk during their respective collisions, and provide evidence that supports this claim.

Exercise

A mallet rotates about a pivot near one end of its handle and is moving clockwise with an angular speed ω0 as
it strikes a small, stationary rubber bumper, as shown in the figure. Immediately after the impact, the mallet
is rotating counterclockwise about the pivot with an angular speed ω0

2 . The handle of the mallet has length
l0, mass m0, and rotational inertia I0 = 1

3m0l
2
0 about the pivot. The head of the mallet is small compared

to the length of the handle, has the same mass m0 as the handle, and is located a distance l0 from the pivot.
If the mallet is in contact with the bumper for an amount of time ∆t, what is the magnitude of the average
force that the mallet exerts on the rubber bumper during the contact time?

6.4 Conservation of Angular Momentum

The total angular momentum of a system about a rotational axis is the sum of the angular momenta of the
system’s constituent parts about that axis of rotation.

Any change to a system’s angular momentum must be due to an interaction between the system and its
surroundings.

Angular momentum is conserved in all interactions.

If the net external torque is exerted on a selected object or rigid system is:
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� Zero: the total angular momentum is constant

� Nonzero: angular momentum is transferred between the system and the environment

Example

A circular platform has a radius R and rotational inertia I. The platform rotates about a fixed pivot at
its center with negligible friction and an initial angular velocity ω. A child of mass m rungs tangentially
with speed v and jumps on the outer edge of the platform. When the child is standing on the outer
edge of the platform, what is the system’s new angular velocity?

We have Lci + Lpi
= LT , so we get mvr + Iω = (Ic + Ip)ωf .

Solving for ωf gives mvr+Iω
I+mr2

Exercise

A small disk can move on a horizontal surface with negligible friction. The disk is attached to a string that
passes through a small hole in the surface and is held in place at the other end, under the surface. Initially,
the disk is moving in a circle of radius 0.10 m about the hole with an angular speed of 4.0 rad/s. The bottom
end of the string is then raised upward so that the disk travels in a new circle of radius 0.20 m. What is the
angular speed of the disk at the new radius?

Exercise

A projectile launcher is attached to one end of a rod, as shown in the figure. The other end of the rod can
pivot freely about an axle with negligible friction. Initially, the rod and launcher, with a projectile inside, are
all at rest. The projectile is then launched to the right, causing the rod and launcher to recoil in the clockwise
direction. Immediately after the projectile is launched, what is true regarding both the angular momenta
of the rod-launcher system and the projectile, and the kinetic energies of the rod-launcher system and the
projectile? Angular momentum is to be taken about the axle.

6.5 Rolling

The total kinetic energy of a system is the sum of the system’s translational and rotational kinetic energies.
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While rolling without slipping, the translational motion of a system’s center of mass is related to the rotational
motion of the system itself with the following equations:

xcm = rθ

vcm = rω

acm = rα

Rolling without slipping implies that the frictional force does not dissipate any energy from the system.

If the rolling object is slipping, the force of kinetic friction moves with respect to the surface, so the force of
kinetic friction will dissipate energy from the system.

Example

A sphere of mass M , radius r, and rotational inertia I is released from rest at the top of an inclined
plane of height h. If the plane has friction so that the sphere rolls without slipping, whta is the speed
vcm of the center of mass at the bottom of the incline?

The inertia is 2
5mr2.

We know that the there is no kinetic energy initially and all the energy is kinetic at the bottom of the
plane, so Ui = Kf .

Plugging numbers gives us mgh = KT +KR = 1
2mv2 + 1

2Iω
2.

When we solve for v, we get
√

10
7 gh = v.

Exercise

A solid sphere is initially moving at a constant speed v0 on a horizontal surface, as shown in the figure. At
first, the sphere is sliding without rotating and moves with negligible friction on a smooth section of the
surface. The sphere then reaches a rough section of the surface where the coefficient of kinetic friction is
µk. Sometime later, the sphere is rolling without slipping on the rough section. The sphere has a mass mS ,
a radius rS , and a rotational inertia about its center IS = 2

5mSr
2
S . What is the final angular speed of the

sphere?

Exercise

A hollow cylinder is initially sliding without rotating up a smooth section of a ramp that makes an angle θR
with the horizontal, as shown in the figure. The cylinder then reaches a rouch section of the ramp where the
coefficient of kinetic friction between the cylinder and the ramp is µk. The cylinder, which has mass mC ,
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radius rC , and rotational inertia about its center of IC = mCr
2
C , starts to rotate while slipping on the rough

section of the ramp. When the cylinder is rolling upward while slipping on the rough section, what is the
magnitude a of the cylinder’s translational acceleration in terms of the magnitude α of its angular acceleration
and the given quantities?

6.6 Motion of Orbiting Satellites

In a system consisting only of a massive central object and an orbiting satellite with mass that is negligible
to the central object’s mass, the motion of the central object itself is negligible.

The motion of satellites in orbits is constrained by conservation laws.

� In circular orbits, mechanical energy, potential energy, kinetic energy, and angular momentum are
conserved.

� In elliptical orbits, mechanical energy and angular momentum are conserved, but potential and kinetic
energies are not.

� The gravitational PE is defined to be zero when a satellite is an infinite distance from the central object.

The total energy of a system with a central object and an orbiting satellite can be written in terms of GPE.

The escape velocity of a satellite is the satellite’s velocity such that the ME of the satellite-central object
system is equal to zero.

Example

A rocket of mass m is launched from the surface of Earth with an initial speed equal to one-half the
escape speed. The mass and the radius of Earth are 6.0× 1024 kg and 6.4× 106 m, respectively. What
is the maximum altitude achieved by the rocket? Assume air resistance is negligible.

Start with VE =
√

2GM
R and plug this into K = 1

2mv2 to get ∆K = 1
4
GMm

R .

From this, we know that ∆U = Uf − Ui.

This gives us 1
4
GMm

R = −GMm
R+h + GMm

R .

From this, solving for h gives h = 1
5R.

Exercise Two satellies with the same mass, Satellite X and Satllite Y , are in different circular orbits around
a planet. Satellite Y orbits with twice the speed of Satllite X. If UX is the gravitational potential energy of
the Satellite X-planet system, what is the gravitational potential energy of the Satellite Y -planet system?

Exercise
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A satellite is in an elliptical orbit around a planet, as shown in the figure. Why does the satellite’s kinetic
energy change as it orbits the planet?



7 Oscillations

7.1 Defining Simple Harmonic Motion (SHM)

Simple harmonic motion (SHM) is a special case of periodic motion.

SHM results when the magnitude of the restoring force exerted on an object is proportional to that object’s
displacement from its equilibrium position.

A restoring force is a force that is exerted in a direction opposite to the object’s displacement from an
equilibrium position.

� An equilibrium position is a location at which the net force exerted on an object or system is zero.

Example

A block of mass m is attached to a spring, with force constant k, on a horizontal surface. The block
is pulled to a position of x and allowed to oscillate back and forth. The coefficient of kinetic friction
between the block and the table is µ. Derive an expression for the acceleration of the block and write
the differential equation, but don’t solve, that can be used to determine the position function of the
block with respect to time.

Start with
∑

Fx = max.

From this we get Fsp − fk = max =⇒ −kx− µmg = max. Solving for ax gives ax = −kx
m − µg.

Substitute d2x
dt2 for ax to get the differential equation.

Exercise

A cart is initially at rest near the top of a straight ramp, as shown in the figure. A spring is attached to a wall
near the bottom of the ramp and is parallel to the ramp surface. The cart is released from rest, rolls down
the ramp, compresses the spring, reverses direction, and is then launched back up the ramp by the spring.
The cart returns to its initial position, and the motion repeats. Although the cart’s motion is periodic, it is
not simple harmonic motion. Why does the cart not undergo simple harmonic motion.

Exercise

43
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A small ball is initially at rest at the top of a smooth curved hill. The hill’s surface is in the shape of a
parabola. If the ball is rolled down the hill, is the x-component of its motion an example of simple harmonic
motion? Support your claim.

7.2 Frequency and Period of SHM

The period of SHM is related to the angular frequency, ω, of the object’s motion by the following equation:

ω =
2π

T
ω = 2πf

The period of the object-ideal spring oscillator is given by the equation:

Tsp = 2π

√
m

k

The period of a simple pendulum displaced by a small angle is given by the equation:

Tp = 2π

√
l

g

Example

A 2.0 m long pendulum is pulled back and allowed to swing freely on Earth. What is the frequency
of the pendulum? How does the frequency of the pendulum compare to that on the Moon (g = 1.67
m/s2)?

Plug this in to the formula to get TE = 2.84 s, and the frequency is 1
2.84 = 0.352 Hz.

Plug into the same formula for the moon, and you get 0.445 Hz for the frequency.

Exercise A metal sphere is hung vertically from the bottom of a spring, and the top end of the spring is
attached to the ceiling inside a car. When the car is stationary, the frequency of oscillation for the sphere-
spring system is f0. How does the oscillation frequency change, if at all, when the car starts moving forward
along a horizontal road with a constant acceleration? Assume the frequency is measured by an observer at
rest with respect to the road in both situations.

Exercise
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A small ball is hung from a string of length 3L0, as shown in the figures. There is a small peg just to the
left of the string at a distance L0 above the center of the ball. The ball is displaced to the left and released
from rest, as shown in the middle figure, and moves as a pendulum of length L0 until the string is vertical
and loses contact with the peg. The ball then continues moving to the right as a pendulum of length 3L0,
as shown in the right-hand figure, until the string becomes vertical and again contacts the peg. The ball
continues moving to the left, again as a pendulum of length L0, until it returns to its initial release potision
and completes one oscillation, and then the motion is repeated. What is the period of a complete oscillation
for the ball?

7.3 Representing and Analyzing SHM

For an object exhibiting SHM, the displacement of that object measured from its equilibrium position can be
represented by the equations:

x = A cos(2πft) → x = A, t = 0

x = A sin(2πft) → x = 0, t = 0

The position as a function of time for an object exhibiting SHM is a solution of the second order differential
equation derived from the application of Newton’s 2nd Law.

d2x

dt2
= a = −ω2x

Characteristics of SHM, such as velocity and acceleration can be determined by or derived from the equation:

x = A cos(ωt+ φ)

In the presence of a sinusodial external force, a system may exhibit resonance.

� Resonance occurs when an external force at the natural frequency of an oscillating system and it
increases the amplitude of oscillating motion.

Changing the amplitude of a system exhibiting SHM will not change its period.

Properties of SHM can be determined and analyzed using graphical representations.

Example

A 5.0 kg object suspended on a spring oscillates such that its position x as a function of time t is given
by the equation x(t) = A cos(ωt), where A = 0.80 m and ω = 2.0 s−1. What is the maximum velocity
and acceleration of the object? What is the magnitude of the maximum net force on the object during
the motion.

The maximum velocity is simpliy Aω = (2.0)(0.8) = 1.6 m/s, likewise the acceleration is Aω2 = 3.2
m/s.

The maximum net force is FNET = ma = 16 N.

Exercise
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An object undergoes simple harmonic motion. The graph shows the acceleration of the object as a function
of time, and at time t0 the acceleration is in the positive direction as indicated. Describe the object’s
displacement and velocity at time t0.

Exercise

The graph shows the position x as a function of time t for an object in one-dimensional simple harmonic
motion. Write an expression that gives the object’s velocity as a function of t.

7.4 Energy of Simple Harmonic Oscillators

The total energy of a system exhibiting SHM is the sum of the system’s kinetic and potential energies.

Conservation of energy indicates that the total energy of a system exhibiting SHM is constant.

The kinetic energy of a system exhibiting SHM is at a maximum when the system’s potential energy is at a
minimum, and vice versa.

Changing the amplitude of a system exhibiting SHM will change the maximum potential energy of the system
and, therefore, the total energy of the system.

Example

An object on the end of a spring with spring constant k moves in simple harmonic motion with amplitude
A and frequency f . Write an expression for the kinetic energy of the object as a function of time t.

Let x = A cos(2πft). We know that KA = UB and kA = 1
2kA

2 = 1
2k(A cos(2πft))2.

This simplifies to KA = 1
2kA

2 cos2(2πft).

Exercise A block on a horizontal surface is attached to one end of a horizontal spring, and the other end
of the spring is fixed in place. The block, which is free to move in the x-direction along the surface with
negligible friction, oscillates in simple harmonic motion. The block’s mass is 2.0 kg, and its motion has an
oscillation period of 2.0 s. When the block is 0.30 m from the equilibrium position, it has a speed of 0.50
m/s. What is the amplitude of the block’s motion?

Exercise A block of mass M1 is on a horizontal surface and attached to one end of a spring, while the other
end of the spring is fixed in place. The block oscillates on the spring with an amplitude A1 as it moves with
negligible friction on the horizontal surface, and the block-spring system has total mechanical energy E1 and
maximum kinetic energy K1. The block is replaced with a second block that has mass M1

2 , and the second
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block is then made to oscillate on the same spring with amplitude 2A1. What is the total mechanical energy
and maximum kinetic energy of the second block-spring system?

7.5 Simple and Physical Pendulums

A physical pendulum is a rigid body that undergoes oscillation about a fixed axis.

For small amplitudes of motion, the period of a physical pendulum is derived from the application Newton’s
2nd law of motion.

When displaced from equilibrium, the gravitational force exerted on a physical pendulum’s center of mass
provides a restoring torque.

The small-angle approximation and Newton’s 2nd law in rotational form yield a second-order differential
equation that describes SHM.

d2θ

dt2
= −ω2θ

A simple pendulum is a special case of physical pendulums in which the hanging object can be modeled as a
point mass at a distance from the pivot point.

A torsional pendulum is a special case of SHM where the restoring torque is proportional to the angular
displacement of a rotating system.

Example

Derive an expression for the period and frequency of a torsion pendulum of torsion constant κ and
displacement ∆θ.

We can let the torque be −k∆θ.

This gives us Iα+ k∆θ = 0.

From this, we get ω2θ + k∆θ
I = 0.

Exercise A physical pendulum is made from a uniform bar with a pivot at its top end. A second physical
pendulum is made from another uniform bar of twice the length, also with a pivot at its top end. How does
the small-angle oscillation period of the second pendulum compare to that of the first? The rotational inertia
about one end of a bar of mass M and length L is 1

3ML2.

Exercise
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Near the surface of a distant planet, a physical pendulum made from a uniform bar of length L0 exhibits
small-angle oscillations about a pivot located at the top end of the bar, as shown in the figure. The planet
has 1

40 the mass and 1
5 the radius of Earth. The bar has mass M0 and rotational inertia I0 = 1

3M0L
2
0 about

the pivot axis. Write a differential equation that describes the pendulum’s motion, where g is the acceleration
of gravity on Earth. The pendulum angle θ is taken relative to the vertical.
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