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1 Vectors and the Geometry of Space

1.1 Vectors in the Plane

Vectors are quantities that have both length and direction. The vector whose tail is at the point P and whose
head is at the point Q is denoted P⃗Q. We also label vectors with single boldface characters such as u and v.

Two vectors are equal, written u = v if they have equal length and point in the same direction. They do not
necessarily need to have the same location. Any two vectors with the same length and direction are equal.

Not all quantites are represented by vectors. Quantities describes with a magnitude but without a direction,
such as mass and temperature are called scalars.

Scalar Multiplication

A scalar c and a vector v can be combined using scalar-vector multiplication. The resulting vector, denoted
cv is called a scalar multiple of v. The length of cv is |c| multiplied by the length of v. The vector cv has the
same direction as v if c > 0. If c < 0, then cv and v point in opposite directions. If c = 0, then the product
is 0 (the zero vector).

Definition: Scalar Multiples and Parallel Vectors

Given a scalar c and a vector v, the scalar multiple cv is a vector whose length is |c| multiplied by the
length of v. If c > 0, then cv has the same direction as v. If c < 0, then cv and v point in opposite
directions. Two vectors are parallel if they are scalar multiples of each other.

Notice that 0v = 0 for all vectors v. It follows that the zero vector is parallel to all vectors.

Vector Addition and Subtraction

We can represent the sum of two vectors u and v geometrically using the parallelogram rule. The tails of u and
v are connected to form adjacent sides of a parallelogram; then the remaining two sides of the parallelogram
are sketched. The sum u+ v is the vector that coincides with the diagonal of the parallelogram, beginning at
the tails of u and v.

The difference u− v is defined to be the sum u+ (−v).

Vector Components

To do calculations with vectors, it is necessary to introduce a coordinate system. We will start by considering
a vector v whose tail is at the origin in the Cartesian plane and whose head is at the point (v1, v2).

Definition: Position Vectors and Vector Components

A vector v with its tail at the origin and head at the point (v1, v2) is called a position vector and is
written ⟨v1, v2⟩. The real numbers v1 and v2 are the x and y components of v, respectively. The
Position vectors u = ⟨u1, u2⟩ and v = ⟨v1, v2⟩ are equal if and only if u1 = v1 and u2 = v2.

There are infinitely many vectors equal to the position vector v, all with the same length and direction. It is
important to abide by the convention that v = ⟨v1, v2⟩ refers to the position vector v or to any other vector
equal to v.

Now consider the vector P⃗Q equal to v = ⟨v1, v2⟩, but not in standard position, with its tail at the point

P (x1, y1) and its head at the point Q(x2, y2). The x-component of P⃗Q is the difference in the x-coordinates

2



CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 3

of Q and P , or x2 − x1. The y-component of P⃗Q is the difference in the y-coordinates, y2, y1. Therefore,
P⃗Q = ⟨x2 − x1, y2 − y1⟩ = ⟨v1, v2⟩ = v.

Magnitude

The magnitude of a vector is simpliy its length.

Definition: Magnitude of a Vector

Given the points P (x1, y1) and Q(x2, y2), the magnitude, or length, of P⃗Q = ⟨x2, x1, y2−y1⟩, denoted
|P⃗Q| is the distance between P and Q:

|P⃗Q| =
√
(x2 − x1)2 + (y2 − y1)2

The magnitude of the position vector v = ⟨v1, v2⟩ is |v| =
√

v21 + v22 .

Example

Given the points O(0, 0), P (−3, 4), and Q(6, 5), find the components and magnitude of the following
vectors:

� a. O⃗P

� b. P⃗Q

|O⃗P | =
√
(−3)2 + 42 = 5

|P⃗Q| =
√
92 + 12 =

√
82

Vector Operations in Terms of Components

We now show how vector addition, vector subtraction, and scalar multiplication are performed using compo-
nents. Suppose u = ⟨u1, u2⟩ and v = ⟨v1, v2⟩. The vector sum u and v is u + v = ⟨u1 + v1, u2 + v2⟩. The
definition of a vector sum is conistent with the Parallelogram Rule given earlier.

For a scalar c and a vector u, the scalar multiple cu is cu = ⟨cu1, cu2⟩; that is, the scalar c multiplies each
component of u. If c > 0, u and cu have the same direction. If c < 0, u and cu have opposite directions. In
either case, |cu| = |c||u|.

Notice that u − v = u + (−v), where −v = ⟨−v1,−v2⟩. Therefore the vector difference of u and v is
u− v = ⟨u1 − v1, u2, v2⟩.

Definition: Vector Operations in R2

Suppose c is a scalar, u = ⟨u1, u2⟩ and v = ⟨v1, v2⟩.

u+ v = ⟨u1 + v1, u2 + v2⟩

u− v = ⟨u1 − v1, u2 − v2⟩

cu = ⟨cu1, cu2⟩
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Example

Let u = ⟨−1, 2⟩ and v = ⟨2, 3⟩.

� a. Evaluate |u+ v|

� b. Simplify 2u− 3v

� c. Find two vectors half as long as u and parallel to u

a. Because u+ v = ⟨1, 5⟩, the magnitude is
√
26.

b. 2u− 3v = ⟨−2, 4⟩ − ⟨6, 9⟩ = ⟨−8,−5⟩.

c. The vectors 1
2u = ⟨− 1

2 , 1⟩ and − 1
2u = ⟨ 12 ,−1⟩ have half the length of u and are parallel to u.

Unit Vectors

A unit vector is any vector with length 1. Two useful unit vectors are the coordiante unit vectors i = ⟨1, 0⟩
and j = ⟨0, 1⟩. These vectors are directed along the coordinate axes and enable us to express all vector in an
alternative form.

For example ⟨3, 4⟩ = 3i+ 4j.

In general, the vector v = ⟨v1, v2⟩ is also written as v1i+ v2j.

Given a nonzero vector v, we sometimes need to construct a new vector parallel to v of a specified length.
Dividing v by its length, we obtain the vector u = v

|v| . Because u is a positive scalar multiple of v, it follows

that u has the same direction as v. Furthermore, u is a unit vector because |u| = |v|
|v| = 1. The vector −u is

also a unit vector with a direction opposite that of v. Therefore ± v
|v| are unit vectors parallel to v that point

in opposite directions.

To construct a vector that points in the direction of v and has a specified length c > 0, we form the vector
cv
|v| . It is a positive scalar multiple of v, so it points in the direction of v, and its length is

∣∣∣ cv|v| ∣∣∣ = |c| |v||v| = c.

The vector − cv
|v| points in the opposite direction and also has length c. With this construction, we can also

write v as the prodcut of its magnitude and a unit vector in the direction of v:

v = |v| · v

|v|

Example

Consider the points P (1,−2) and Q(6, 10).

� a. Find P⃗Q and two unit vectors parallel to P⃗Q.

� b. Find two vectors of length 2 parallel to P⃗Q.

� c. Express P⃗Q as the product of its magnitude and a unit vector.

a. P⃗Q = ⟨5, 12⟩. The magnitude of this vector is 13, so a unit vector parallel to P⃗Q is P⃗Q

|P⃗Q|
= 5

13 i+
5
13 j.

The unit vector parallel in the opposite direction is ⟨− 5
13 ,−

12
13 ⟩.

b. To obtain two vectors of length 2 that are parallel to P⃗Q, we multiply the unit vector 5
13 i+

5
13 j by

±2. This obtains 10
13 i+

24
13 j and − 10

13 i−
24
13 j.

c. The unit vector ⟨ 5
13 ,

12
13 ⟩ points in the direction of P⃗Q, so we have P⃗Q = |P⃗Q| P⃗Q

|P⃗Q|
= 13⟨ 5

13 ,
12
13 ⟩.

Properties of Vector Operations

When we stand back and look at vector operations, ten general properties emerge.

The following are the ten properties of vector operations:
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1. u+ v = v+ u

2. (u+ v) +w = u+ (v+w)

3. v+ 0 = v

4. v+ (−v) = 0

5. c(u+ v) = cu+ cv

6. (a+ c)v = av+ cv

7. 0v = 0

8. c0 = 0

9. 1v = v

10. a(cv) = (ac)v

These properties allow us to solve vector equations.

Applications of Vectors

Vectors have countless practical applications, particularly in the physical sciences and engineering. For now,
we will present two common uses of vectors: to describe velocities and forces.

Consider a motorboat crossing a river whose current is everywhere represented by the constant vector w; this
means that |w| is the speed of the moving water and w points in the direction of the moving water. Assume
the vector vw is the sum vg = vw +w, which is the velocity of the boat that would be observed by someone
on the shore.

Example

Suppose the water in a river moves southwest (45° west of south) at 4 mi/hr and a motorboat travels
due east at 15 mi/hr relative to the shore. Determine the speed of the boat and its heading relative to
the moving water.

Because the boat moves east at 15 mi/hr, the velocity relative to the shore is vg = ⟨15, 0⟩.

To obtain the components of w, observe that |w| = 4 and since it is a 45-45-90 triangle, we can find
that |wx| = |wy| = 2

√
2.

Given the orientation of w, w = ⟨−2
√
2,−2

√
2⟩. Because vg = vw +w, vw = ⟨15 + 2

√
2, 2

√
2⟩.

The magnitude of this is approximately 18, so the speed of the boat relative to the water is approximately
18 mi/hr.

The heading of the boat is given by the angle θ between vw and the positive x-axis. Therefore,

θ = tan−1
(

2
√
2

15+2
√
2

)
≈ 9°.

Therefore the heading of the boat is approximately 9° north of east, and its speed relative to the water
is approximately 18 mi/hr.

Suppose a child pulls on the handle of a wagon at an angle of θ with the horizontal. The vector F represents
the force exerted on the wagon; it has a magnitude |F| and a direction given by θ. We denote the horizontal
and vertical components of F as Fx and Fy respectively. We see that Fx = |F| cos θ, Fy = |F| sin θ, and the
force vector is F = ⟨|F| cos θ, |F| sin θ⟩.

Example

A child pulls a wagon with a force of |F| = 20 lb at an angle of θ = 30° to the horizontal. Find the
force vector F.

F = ⟨20 cos 30°, 20 sin 30°⟩ = ⟨10
√
3, 10⟩.
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Exercise A 400-lb engine is suspended from two chains that form 60° angles with a horizontal ceiling. How
much weight does each chain support?

Exercise If u = ⟨u1, u2⟩ and v = ⟨v1, v2⟩, how do you find u+ v?

Exercise Find the vector v that has a magnitude of 10 and a direction opposite that of the unit vector
⟨3/5,−4/5⟩.

Exercise Find the position vector O⃗P if O is the origin and P has polar coordinates (8, 5π/6).

Exercise Determine the necessary air speed and heading that a pilot must maintain in order to fly her
commercial jet north at a speed of 480 mi/hr relative to the ground in a crosswind that is blowing 60° south
of east at 20 mi/hr.

Exercise For the points A(3, 4), B(6, 10), C(a+2, b+5), and D(b+4, a− 2), find the values of a and b such

that A⃗B = C⃗D.

Exercise An ant walks due east at a constant speed of 2 mi/hr on a sheet of paper that rests on a table.
Suddenly, the sheet of paper starts moving southeast at

√
2 mi/hr. Describe the motion of the ant relative

to the table.

Exercise Prove that |cv| = |c||v|, where c is a scalar and v is a vector.

1.2 Vectors in Three Dimensions

We can create a z-axis to create a three dimensional system.

The xyz-plane is divided into octants and has 3 planes, the xy-plane, the xz-plane, and the yz-plane.

We can also extend the distance formula to 3 dimensions. It is similar to the distance formula in two
dimensions, with the z-component added, essentially:

|PQ| =
√
|PR|2 + |RQ|2 =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

The midpoint formula works the same way:

Midpoint =

(
x1 + x2

2
+

y1 + y2
2

+
z1 + z2

2

)
The normal form of the circle equation is:

(x− h)2 + (y − k)2 = r2

For a disk we have
(x− h)2 + (y − k)2 ≤ r2

We can generalize this to a sphere. A sphere centered at (a, b, c) with radius r is the set of points satisfying:

(x− a)2 + (y − b)2 + (z − c)2 = r2

A ball centered at (a, b, c) with radius r is the set of points satisfying:

(x− a)2 + (y − b)2 + (z − c)2 ≤ r2

Example

Find an equation of the sphere passing through P (−4, 2, 3) and Q(0, 2, 7) with its center at the midpoint
of PQ.

We can find the midpoint from the midpoint formula and it is equal to (−2, 2, 5).

The radius can be found through the distance formula and is equal to
√
8.
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The equation is (x+ 2)2 + (y − 2)2 + (z − 5)2 = 8

All the vector operations from two-dimensions work in three-dimensions.

Example

A model airplane is flying horizontally due east at 10 mi/hr when it encounters a horizontal crosswind
blowing south at 5 mi/hr and an updraft blowing vertically upward at 5 mi/hr.

� Find the position vector that represents the velocity of the plane relative to the ground.

� Find the speed of the plane relative to the ground.

The velocity vector of the model plane p⃗ is equal to ⟨10, 0, 0⟩

The velocity vector of the horizontal crosswind w⃗ is equal to ⟨0,−5, 0⟩

The velocity vector of the updraft u⃗ is ⟨0, 0, 5⟩

Adding the three vectors results in the speed: ⟨10,−5, 5⟩

The magnitude of this is roughly 12.25.

Exercise A plane is flying horizontally due north in calm air at 300 mi/hr when it encounters a horizontal
crosswind blowing southeast at 40 mi/hr and a downdraft blowing vertically downward at 30 mi/hr. What
are the resulting speed and direction of the plane relative to the ground?

Exercise Describe the set of poinst that satisfy the equation x2 + y2 + z2 − 2x+ 6y − 8z = −1.

1.3 Dot Products

The dot product is used to determine the angle between two vectors. It is also a tool for calculating projections
- the measure of how much of a given vector lies in the direction of another vector.

Definition

Given two nonzero vectors u and v in two or three dimensions, the dot product is

u · v = |u||v| cos θ

The dot product is 0 when θ = π
2 , negative when θ > π

2 and positive when θ < π
2 .

Two vectors are parallel if and only if u·v=±|u||v|

When the dot product is zero, we call u⃗ and v⃗ orthogonal.

Theorem 1.1: Dot Product

Given two vectors u = ⟨u1, u2, u3⟩ and v = ⟨v1, v2, v3⟩,

u · v = u1v1 + u2v2 + u3v3

We now apply the dot product to vector projections.

Definition

The orthogonal projection of u on v, denoted projvu is:

projvu = |u| cos θ
(

v

|v|

)
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The orthogonal projections can also be computed with the formulas:

projvu = scalvu

(
v

|v|

)
=

(u · v
v · v

)
v

where the scalar component of u in the direction of v is

scalvu = |u| cos θ =
u · v
|v|

1.4 Cross Products

Definition

Given two vectors u and v in R3, the cross product u× v is a vector with magnitude

|u× v| = |u||v| sin θ

Note that u⃗× v⃗ = −(v⃗ × u⃗)

There are some useful properties of the cross product.

� The cross product u× v is orthogonal to both u⃗ and v⃗

� The cross product is zero when sin(θ) = 0.

� Two vectors are parallel if the cross product between them is zero.

We define the determinant of a 2× 2 array

∣∣∣∣a b
c d

∣∣∣∣ as ad− bc.

For a matrix

∣∣∣∣∣∣
a b c
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
the determinant is a

∣∣∣∣u2 u3

v2 v3

∣∣∣∣− b

∣∣∣∣u1 u3

v1 v3

∣∣∣∣+ c

∣∣∣∣u1 u2

v1 v2

∣∣∣∣ or:
a(u2v3 − u3v2)− b(u1v3 − u3v1) + c(u1v2 − u2v1)

1.5 Lines and Planes in Space

Recall that in two dimensions, we needed a point and a slope to write an equation for a line.

We can write an equation in three dimensions as well.

A vector equation of a line passing through the point P0(x0, y0, z0) in the direction of vector v = ⟨a, b, c⟩ is
r = r0 + tv or:

⟨x, y, z⟩ = ⟨x0, y0, z0⟩+ t⟨a, b, c⟩

The corresponding parametric equations of the line also are:

x = x0 + at, y = y0 + bt, z = z0 + ct

The general equation of a plane in R3 with the plane passing through P0(x0, y0, z0) with vector v = ⟨a, b, c⟩
is described by:

a(x− x0) + b(y − y0) + c(z − z0) = 0

or
ax+ by + cz = d

where d = ax0 + by0 + cz0.
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1.6 Cylinders and Quadric Surfaces

A cylinder is a surface that is parallel to a line.

A trace of a surface is the set of points at which the surface intersects a plane that is parallel to one of the
coordinate planes. The traces in the coordinate planes are called the xy-trace, the yz-trace, and the xz-trace.

To sketch quadric surfaces:

� Determine the points where the surface intersects the coordinate axes.

� Finding traces of the surface helps visualize the surface

� Sketch at least two traces in parallel planes

Example

For:

x2

9
+

y2

16
+

z2

25
= 1

We set certain variables to zero to find the x-intercept to be ±3, the y-intercept to be ±4 and the
z-intercept to be ±5.

We can also find the traces:

� xy: x2

9 + y2

16 = 1

� xz: x2

9 + z2

25 = 1

� yz: y2

16 + z2

25 = 1

The resulting shape is a ellipsoid.

In general the equation of an ellipsoid is:

x2

a2
+

y2

b2
+

z2

c2
= 1

In this all traces are ellipses.

For an elliptic cone the equation is:
x2

a2
+

y2

b2
=

z2

c2

Traces with z = z0 ̸= 0 are ellipses. Traces with x = x0 or y = y0 are hyperbolas or intersecting lines.

For an elliptic paraboloid the equation is:

z =
x2

a2
+

y2

b2

Traces with z = z0 > 0 are ellipses. Traces with x = x0 or y = y0 are parabolas.

For a hyperbolic paraboloid:

z =
x2

a2
− y2

b2

Traces with z = z0 ̸= 0 are hyperbolas. Traces with x = x0 or y = y0 are parabolas.

For a hyperboloid of one sheet:
x2

a2
+

y2

b2
− z2

c2
= 1

Traces with z = z0 are ellipses for all z0. Traces with x = x0 or y = y0 are hyperbolas.

For a hyperboloid of two sheets:

−x2

a2
− y2

b2
+

z2

c2
= 1

Traces with z = z0 with |z0| > |c| are ellipses. Traces with x = x0 and y = y0 are hyperbolas.



2 Vector-Valued Functions

2.1 Vector-Valued Functions

A vector valued function has the form r(t) = ⟨x(t), y(t), z(t)⟩.

A set of parametric equations x = x(t), y = y(t), z = z(t) can describe a curve in space.

It can also be viewed as a vector function where each variable varies with respect to an independent variable
t.

A point (x(t), y(t), z(t)) on the curve is the head of the vector r(t) = ⟨x(t), y(t), z(t)⟩.

We can consider the vector-valued function of the form:

r(t) = ⟨f(t), g(t), h(t)⟩

or
f(t)i+ g(t)j+ h(t)k

where f, g, h are defined on some interval a to b.

The positive orientation of a curve is the direction the curve is generated as the parameter increases.

Example

Find the domain of r(t) = 4√
1−t

i+ 2
t+3 j

The domain is the largest set of values of t on which both f and g are defined.

The first component has 1− t > 0, therefore the domain is (−∞, 1).

The second component’s domain is (−∞,−3) ∪ (−3,∞).

We now find the intersection which is (−∞,−3) ∪ (−3, 1)

Definition

A vector valued function r approaches the limit L as t approaches a, written

lim
t→a

r(t) = L

, provided
lim
t→a

|r(t)− L| = 0

A function r(t) = ⟨f(t), g(t), h(t)⟩ is continuous at a provided limt→a r(t) = r(a).

2.2 Calculus of Vector-Valued Functions

We can define the derivative of a vector-valued function as:

r′(t) = lim
∆t→0

r(t+∆t)− r(t)

∆t

The result of the derivative is a vector-valued function.

Geometrically, as ∆t → 0, ∆r
∆t → r’(t), which is a tangent vector at point P .

10
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Much like single variable calculus, we can simply use the power rule as we know, rather than the limit definition.

The unit tangent vector for a particular value t is:

T(t) =
r′(t)

|r′(t)|

A vector-valued function is smooth if it is differentiable and the derivative is not equal to ⟨0, 0, 0⟩.

We can also integrate vector-valued functions. The rules remain the same as in single variable calculus, just
breaking it into three vector components.

2.3 Motion in Space

The derivative of the position vector function is the velocity vector function.

The speed of a scalar function is

|v(t)| =
√
x′(t)2 + y′(t)2 + z′(t)2

Acceleration is the derivative of the velocity vector function.

Straight-line motion has a uniform velocity. Given:

r(t) = ⟨x0 + at, y0 + bt, z0 + ct⟩

the velocity v(t) = ⟨a, b, c⟩

Circular motion has constant |r(t)|. We let r(t) = ⟨A cos t, A sin t⟩.

r(t) describes a circular trajectory counter-clockwise around a circle with radius A and center at the origin.

We have:
|r(t)| =

√
(A cos t)2 + (A sin t)2 = A

and
v(t) = ⟨−A sin t, A cos t⟩

as well as
a(t) = ⟨−A cos t,−A sin t⟩ = −r(t)

Also there are some important properties - the position and acceleration vectors are both orthogonal to the
velocity vector as seen:

� r(t) · v(t) = −A2 cos t sin t+A2 sin t cos t = 0

� a(t) · v(t) = A2 sin t cos t−A2 cos t sin t = 0

Let r describe a path on which |r| is constant.

We can show that r · v = 0, showing that the position and velocity vectors are always orthogonal.

For two-dimensional motion in a gravitational field:

The gravitational force is F = ⟨0,−mg⟩.

Therefore: F = ma(t) = ⟨0,−mg⟩.

This shows that a(t) = ⟨0,−g⟩.

We can summarize this:

The velocity of the object is
v(t) = ⟨x′(t), y′(t)⟩ = ⟨u0,−gt+ v0⟩

where v(0) = ⟨u0, v0⟩ and r(0) = ⟨x0, y0⟩.

The position is:

r(t) = ⟨x(t), y(t)⟩ = ⟨u0t+ x0,−
1

2
gt2 + v0t+ y0⟩
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2.4 Length of Curves

We know the arc length of a parametric equation is:

L =

� b

a

√
f ′(t)2 + g′(t)2dt

Now we can consider this equation in three dimensions.

The arc length of a parametrized curve is:

L =

� b

a

√
f ′(t)2 + g′(t)2 + h′(t)2dt =

� b

a

|r′(t)|dt

To find the arc length of a curve given r(t) = ⟨f(t), g(t), h(t)⟩ for t ≥ a, we have:

s(t) =

� t

a

√
(f ′(u))2 + (g′(u))2 + (h′(u))2du =

� t

a

|v(u)|du

Suppose |v(t)| = 1, then we have t− a. This shows the parameter t corresponds to arc length.

2.5 Curvature and Normal Vectors

Curvature will be a measure of how fast a curve r(t) turns at a point.

Recall the unit tangent vector:

T(t) =
r′(t)

|r′(t)|

The curvature is

κ(s) =

∣∣∣∣dTds
∣∣∣∣

where s denotes arc length, and T denotes the tangent vector.

Lines have zero curvature.

We can write the curvature in terms of arclength:

κ(t) =
1

|v|

∣∣∣∣dTdt
∣∣∣∣ |T′(t)|
|r′(t)|

Circles have constant curvature of 1
R .

An alternative curvature formula is used for trajectories of moving objects in three-space:

κ =
|v× a|
|v|3

where v = r’ is the velocity and a = v’ is the acceleration.

The principal unit normal vector will determine the direction in which the curve turns.

The principal unit normal vector at point P on the curve at which kappa ̸= 0 is:

N(s) =
dT/ds

|dT/ds|
=

1

κ

dT

ds

For other parameters t, we use the equivalent formula:

N(s) =
dT/dt

|dT/dt|
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There are two ways to change the velocity of an object or accelerate - to change its speed or its direction of
motion.

The acceleration vector of an object moving in space along a smooth curve has the following representation
of its tangential component aT (in the direction of T) and its normal component aN (in the direction of N):

a = aNN+ aTT

where aN = κ|v|2 = |v×a
|v| and aT = d2s

dt2 .

Alternatively a ·N = aN and a · T = aT .

If we have the unit tangent and principal unit vectors T and N. The unit binormal vector at each point in
the curve is:

B = T×N

and the torsion is:

τ = −dB

ds
·N

The binormal vector is orthogonal to both T and N.

|τ | =
∣∣dB
ds

∣∣ and the torsion gives the rate at which the curve moves out of the osculating plane formed by T
and N.



3 Functions of Several Variables

3.1 Graphs and Level Curves

Definition

A function z = f(x, y) assigns to each point (x, y) in a set D in R2 a unique real number z in a subset
of R. The set D is the domain of f . The range of f is the set of all real numbers z that are assumed
as the points (x, y) vary over the domain.

Example

Find the domain of

f(x, y) =
1√

x2 + y2 − 25

Note that the denominator cannot be zero or is negative.

Therefore, the domain is D = (x, y) : x2 + y2 > 25.

Definition

For a function of two variables f(x, y) a level curve is the set of points (x, y) in the xy-plane where
f(x, y) is equal to a constant z0.

We can extend our defintions to functions of more than two variables.

Definition

For a function of three variables f(x, y, z) a level surface is the set of points (x, y, z) in xyz-space where
f(x, y, z) is equal to a constant w0.

We can describe level surfaces as well.

3.2 Limits and Continuity

We can write the limit of two variables as:

lim
(x,y)→(a,b)

f(x, y) = lim
P→P0

f(x, y) = L

There are some laws of limits.

Theorem 3.1

Let a, b, and c be real numbers.

� Constant function f(x, y) = c:
lim

(x,y)→(a,b)
c = c

� Linear function f(x, y) = x:
lim

(x,y)→(a,b)
x = a

14
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� Linear function f(x, y) = y:
lim

(x,y)→(a,b)
y = b

If we let the limit of a function f(x, y) = L and the limit of a function g(x, y) = M , we can see:

� The sum of the limits is L+M .

� The difference of the limits is L−M .

� If we multiply a function by a constant c, the limit is cL.

� The product of the limits is LM .

� The difference of the limits is L
M .

� Putting a limit to a power n is Ln.

Definition

Let R be a region in R2. An interior point P of R lies entirely within R, which means it is possible to
find a disk centered at P that contains only points of R.

A boundary point Q of R lies on the edge of R in the sense that every disk centered at Q contains at
least one point in R and at least one point not in R.

Definition

A region is open if it consists entirely of interior points. A region is closed if it contains all its boundary
points.

The two-path test for nonexistence of limits:

If f(x, y) approaches the two different values as (x, y) approaches (a, b) along two different paths in the
domain of f , then the limit does not exist.

Definition

The function f is continuous at the point (a, b) provided:

� f is defined at (a, b).

� The limit for f exists.

� The two quantities must be equal.

3.3 Partial Derivatives

The idea of a partial derivative is to differentiate f with respect to one variable, treating the other variable
as a constant.

Definition

The partial derivative of f with respect to x at the point (a, b) is:

fx(a, b) = lim
h→0

f(a+ h, b)− f(a, b)

h

The partial derivative of f with respect to y at the point (a, b) is:

fy(a, b) = lim
h→0

f(a+ h)− f(a, b)

h
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provided these limits exist.

The notation for these are:

fx =
∂f

∂x
fy =

∂f

∂y

We can first partially differentiate f with respect to x and then with respect to x denoted as:

∂2f

∂x2

We can do it first with respect to x and then with respect to y denoted as:

∂2f

∂y∂x

We can also differentiate with respect to y and then with respect to x:

∂2f

∂x∂y

Lastly, we can differentiate with respect to y twice:

∂2f

∂y2

Theorem 3.2: Equality of Mixed Partial Derivatives

Assume f is defined on an open set D of R2, and that fxy and fyx are continuous throughout D. Then
fxy = fyx at all points of D.

3.4 The Chain Rule

Theorem 3.3

Let z be a differentiable function on x and y on its domain, where x and y are differentiable functions
of t on an interval I. Then

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt

Let’s suppose that we have a function w = f(x, y, z) where x, y, z depend on t.

Then we have:
dw

dt
=

∂w

∂x

dx

dt
+

∂w

∂y

dy

dt
+

∂w

∂z

dz

dt

Theorem 3.4

Let z be a differentiable function of x and y, where x and y are differentiable functions of s and t. Then

∂z

∂s
=

∂z

∂x

∂x

∂s
+

∂z

∂y

∂y

∂s

and
∂z

∂s
=

∂z

∂x

∂x

∂t
+

∂z

∂y

∂y

∂t
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Theorem 3.5

Let F be differentiable on its domain and suppose F (x, y) = 0 defines y as a differentiable function of
x. Provided Fy ̸= 0,

dy

dx
= −Fx

Fy

3.5 Directional Derivatives and the Gradient

Suppose we have the function f(x, y).

fx(x, y) measures the rate of change in the direction of positive x-axis and fy(x, y) measures the rate of
change in the direction of positive y-axis.

Definition

Let f be differentiable at (a, b) and let u = ⟨u1, u2⟩ be a unit vector in the xy-plane. The directional
derivative of f at (a, b) in the direction of u is

Duf(a, b) = lim
h→0

f(a+ hu1, b+ hu2)− f(a, b)

h

provided the limit exists.

The directional derivative Duf(a, b) measures the rate of change of f at the point (a, b) in the direction of u.

Theorem 3.6

Let f be differentiable at (a, b) and let u = ⟨u1, u2⟩ be a unit vector in the xy-plane. The directional
derivative of f at (a, b) in the direction of u is

Duf(a, b) = ⟨fx(a, b), fy(a, b)⟩ · ⟨u1, u2⟩

Definition

Let f be differentiable at the point (x, y). The gradient of f at (x, y) is the vector-valued function

∇f(x, y) = ⟨fx(x, y), fy(x, y)⟩ = fx(x, y)i+ fy(x, y)j

The applications of this are:

Directional derivatives: Duf(a, b) = ∇f(a, b) · u

The gradient gives the direction of maximum increase of a function.

Gradient is normal to level curves.

Theorem 3.7

Let f be differentiable at (a, b) with ∇(a, b) ̸= 0.

f has its maximum rate of increase at (a, b) in the direction of the gradient ∇f(a, b). The rate of
change in this direction is |∇f(a, b)|. (This will be maximized if θ = 0.)

f has its maximum rate of decrease at (a, b) in the direction of −∇f(a, b). The rate of change in this
direction is −|∇f(a, b)|. (This will be minimized if θ = π.)

The directional derivative is zero in any direction orthogonal to ∇f(a, b).
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Theorem 3.8

Given a function f differentiable at (a, b), the line tangent to the level curve of f at (a, b) is orthogonal
to the gradient ∇f(a, b), provided ∇f(a, b) ̸= 0.

We can now consider gradients of functions of three variables.

Theorem 3.9

Let f be differentiable at (a, b, c) and let u = ⟨u1, u2, u3⟩ be a unit vector. The directional derivative
of f at (a, b, c) in the direction of u is

Duf(a, b, c) = ∇(a, b, c) · u
= ⟨fx(a, b, c), fy(a, b, c), fz(a, b, c)⟩ · ⟨u1, u2, u3⟩

Assuming ∇f(a, b, c) ̸= 0, the gradient in three dimensions has the following properties.

f has its maximum rate of increase at (a, b, c) in the direction of the gradient ∇f(a, b, c), and the rate
of change in this direction is |∇f(a, b, c)|.

f has its maximum rate of decrease at (a, b, c) in the direction of −∇f(a, b, c), and the rate of change
in this direction is −|∇f(a, b, c)|.

The directional derivative is zero in any direction orthogonal to ∇f(a, b, c).

3.6 Tangent Planes and Linear Approximation

Definition

Let F be differentiable at the point P0(a, b, c) with ∇F (a, b, c) ̸= 0. The plane tangent to the surface
F (x, y, z) = 0 at P0, called the tangent plane, is the plane passing through P0 orthogonal to∇F (a, b, c).
An equation of the tangent plane is

Fx(a, b, c)(x− a) + Fy(a, b, c)(y − b) + Fz(a, b, c)(z − c) = 0

Definition

Let f be differentiable at the point (a, b). An equation of the plane tangent to the surface z = f(x, y)
at the point (a, b, f(a, b)) is

z = fx(a, b)(x− a) + fy(a, b)(y − b) + f(a, b)

One of the main applications of tangent planes is linear approximation for a function near a point.

Definition

Let f be differentiable at (a, b). The linear approximation to the surface z = f(x, y) at the point
(a, b, f(a, b)) is the tangent plane at that point, given by the equation

L(x, y) = fx(a, b)(x− a) + fy(a, b)(y − b) + f(a, b)

For a function of three variables, the linear approximation to w = f(x, y, z) at the point (a, b, c, f(a, b, c))
is given by

L(x, y, z) = fx(a, b, c)(x− a) + fy(a, b, c)(y − b) + fz(a, b, c)(z − c) + f(a, b, c)
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The idea for linear approximations of functions gives the defintion of the differential.

Definition

Let f be differentiable at the point (x, y). The change in z = f(x, y) as the independent variables
change from (x, y) to (x+ dx, y + dy) is denoted ∆z and is approximated by the differential dz.

∆z ≈ dz = fx(x, y)dx+ fy(x, y)dy

Note that ∆z is the change in f on the surface and is equal to f(x, y)− f(a, b).

Note that dz is the change in l on the tangent plane and is equal to L(x, y)− f(a, b).

3.7 Maximum/Minimum Problems

Definition

Suppose (a, b) is a point in a region R on which f(x, y) is defined. If f(x, y) ≤ f(a, b) for all (x, y)
in the domain of f and in some open disk centered at (a, b), then f(a, b) is a local maximum value of
f . If f(x, y) ≥ f(a, b) for all (x, y) in the domain of f and in some open disk centered at (a, b), then
f(a, b) is a local minimum value of f . Local maximum and local minimum values are also cllaed local
extreme values or local extrema.

Theorem 3.10

If f has a local maximum or minimum value at (a, b) and the partial derivatives fx and fy exist at
(a, b), then fx(a, b) = fy(a, b) = 0.

Definition

An interior point (a, b) in the domain of f is a critical point of f is either:

� fx(a, b) = fy(a, b) = 0 or

� at least one of the partial derivatives fx and fy does not exist at (a, b).

Theorem 3.11

Suppose the second partial derivatives of f are continuous throughout an open disk centered at the
point (a, b), where fx(a, b) = fy(a, b) = 0. Let D(x, y) = fxx(x, y)fyy(x, y)− (fxy(x, y))

2.

� If D(a, b) > 0 and fxx(a, b) < 0, then f has a local maximum value at (a, b).

� If D(a, b) > 0 and fxx(a, b) > 0, then f has a local minimum value at (a, b).

� If D(a, b) < 0, then f has a saddle point at (a, b).

� If D(a, b) = 0, then the test is inconclusive.

Definition

Let f be defined on a set R in R2 containing the point (a, b). If f(a, b) ≥ f(x, y) for every (x, y) in R,
then f(a, b) is an absolute maximum value of f on R. If f(a, b) ≤ f(x, y) for every (x, y) in R, then
f(a, b) is an absolute minimum value of f on R.

We can describe the procedure for finding the absolute maximum/minimum values on closed bounded sets:

Let f be continuous on a closed bounded set R in R2. To find the absolute maximum and minimum values
of f on R:
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� Determine the values of f at all critical points in R.

� Find the maximum and minimum values of f on the boudnary of R.

� The greatest function value found in the previous steps is the absolute maximum value of f on R, and
the least function value found is the absolute minimum value of f on R.

3.8 Lagrange Multipliers

The goal is to maximize (or minimize) a function f(x, y) subject to the constraint g(x, y) = 0.

To find find absolute extrema on closed and bounded constraint curves using Lagrange Multipliers:

Let the objective function f and the constraint function g be differentiable on a region of R2 with∇g(x, y) ̸= 0
on the curve g(x, y) = 0. To locate the absolute maximum and minimum values of f subject to the constraint
g(x, y) = 0, carry out the following steps:

1. Find the values of x, y, and λ (if they exist) that satisfy the equations

∇f(x, y) = λ∇g(x, y) and g(x, y) = 0

2. Evalute f at the values (x, y) found in Step 1 and at the endpoints of the constraint curve (if they exist).
Select the largest and smallest corresponding function values. These values are the absolute maximum and
minimum values of f subject to the constraint.

(This section is kinda annoying, I don’t like the amount of steps each question has) Basically, I hate opti-
mization.



4 Multiple Integration

4.1 Double Integrals over Rectangular Regions

Definition

A function f defined on a rectangular region R in the xy-plane is integrable on R if

lim
∆→0

n∑
k=1

f (x∗
k, y

∗
k)∆Ak

exists for all partitions of R and for all choices of (x∗
k, y

∗
k) within those partitions. The limit is the double

integral of f over R, which we write

�
R

f(x, y)dA = lim
∆→0

n∑
k=1

f (x∗
k, y

∗
k)∆Ak

We usually use Fubini’s theorem.

Theorem 4.1

Let f be continuous on the rectangular region R = (x, y) : a ≤ x ≤ b, c ≤ y ≤ d. The double integral
of f over R may be evaluated by either of two iterated integrals:

�
R

f(x, y)dA =

� d

c

� b

a

f(x, y)dxdy =

� b

a

� d

c

f(x, y)dydx

Definition

The average value of an integrable function f over a region R is

f̄ =
1

area of R

�
R

f(x, y)dA

The average height of f(x, y) is 1
Area(R) (Volume under f(x, y)).

4.2 Double Integrals over General Regions

In order to do a double integral over a general integral:

� Divide the plane into rectangles.

� In each rectangle Rk inside R, choose a point (x∗
k, y

∗
k).

� Let ∆Ak = area(Rk), calculate
∑n

k=1 f(x
∗
k, y

∗
k)∆Ak

� Take the limit as ∆ → 0, where ∆ is the maximum length of diagonal of Rk.

We get �
R

f(x, y)dA = lim
∆→0

n∑
k=1

f(x∗
k, y

∗
k)∆Ak

Given the graph of a surface z = f(x, y) for (x, y) in a planar region R where f(x, y) ≥ 0 for all (x, y) in R,

21
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the volume of the solid bounded by the surface z = f(x, y) and the set R in the xy-plane is given by

Volume =

�
R

f(x, y)dA

If R can be described as a ≤ x ≤ b and g(x) ≤ y ≤ h(x) then

�
R

f(x, y)dA =

� a

b

� h(x)

g(x)

f(x, y)dydx

If R can be described as g(y) ≤ x ≤ h(y) and c ≤ y ≤ d then

�
R

f(x, y)dA =

� d

c

� h(y)

g(y)

f(x, y)dxdy

To evaluate a dydx double integral of the form

� b

a

� f(x)

g(x)

f(x, y)dyd

1. Integrate f(x, y) with respect to y.

2. Substitute y = h(x), y = g(x) and subtract, resulting in a function of x (call it A(x)).

3. Evaluate the integral of the resulting function

� b

a

A(x)dx

To evaluate a dxdy double integral of the form

� d

c

� h(y)

g(y)

f(x, y)dxd

1. Integrate f(x, y) with respect to x.

2. Substitute x = h(y), x = g(y) and subtract, resulting in a function of y (call it A(y)).

3. Evaluate the integral of the resulting function

� d

c

A(y)dy

Definition

Let R be a region in the xy-plane. Then

area of R =

�
R

dA

4.3 Double Integrals in Polar Coordinates

A cartesian rectangle can be described as:

R = (x, y) : a ≤ x ≤ b, c ≤ y ≤ d

A polar rectangle is:
R = (r, θ) : a ≤ r ≤ b, α ≤ θ ≤ β
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Approximation to polar double integral: Given f(x, y) = f(r cos θ, r sin θ)

If we let ∆Ak be the area of the kth polar rectangle, then the approximation is

n∑
k=1

f(r∗k cos θ
∗
k, r

∗
k sin θ

∗
k)∆Ak

Which can be written as:

�
R

f(x, y)dA = lim
∆→0

n∑
k=1

f(r∗k cos θ
∗
k, r

∗
k sin θ

∗
k)∆Ak

Over polar rectangles we have:

�
R

f(x, y)dA =

� β

α

� b

a

f(r cos θ, r sin θ)rdrdθ

R = (r, θ) : a ≤ r ≤ b, α ≤ θ ≤ β

Theorem 4.2

Let f be continuous on the region R in the xy-plane expressed in polar coordinates as

R = (r, θ) : 0 ≤ g(θ) ≤ r ≤ h(θ), α ≤ θ ≤ β

where 0 < β − α ≤ 2π. Then

�
R

f(x, y)dA =

� β

α

� b

a

f(r cos θ, r sin θ)rdrdθ

4.4 Triple Integrals

Consider f(x, y, z) defined on D.

� Divide region containing D into rectangular boxes, numbered k = 1, 2, . . . , n.

� Let ∆Vk be the volume of the kth box.

� For each k, choose a point (x∗
k, y

∗
k, z

∗
k) in the kth box.

Approximation =
∑n

k=1 f(x
∗
k, y

∗
k, z

∗
k)∆Vk.

� Set ∆ = maximum length of a diagonal of a box.

�
D

f(x, y, z)dV = lim
∆→0

n∑
k=1

f(x∗
k, y

∗
k, z

∗
k)∆Vk

Two applications of triple integrals:

1. �
D

1dV = Volume(D)

2. If ρ(x, y, z) represents the density of a solid at any point (x, y, z) of a solid then

�
D

ρ(x, y, z)dV = mass(D)

Possible orders for integration:
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1. dxdydz

2. dxdzdy

3. dydxdz

4. dydzdx

5. dzdxdy

6. dzdydx

Let’s consider the dzdydx order.

Theorem 4.3

Let f be continuous over the region

D = (x, y, z) : a ≤ x ≤ b, g(x) ≤ y ≤ h(x), G(x, y) ≤ z ≤ H(x, y)

, where g, h, G, and H are continuous functions. Then f is integrable over D and the triple integral is
evaluated as the iterated integral

�
D

f(x, y, z)dV =

� b

a

� h(x)

g(x)

� H(x,y)

G(x,y)

f(x, y, z)dzdydx

4.5 Triple Integrals in Cylindrical and Spherical Coordinates

A point P in three-dimensional space can be described in cylindrical coordinates P (r, θ, z).

� P ∗ is the projection of P into the xy-plane.

� (r, θ) is the polar coordinates of P ∗.

� (r, θ, z) is the cylindrical coordinates of P .

We can transform from Rectangular to cylindrical:

r2 = x2 + y2 tanθ = y/x z = z

To convert from cylindrical to rectangular:

x = r cos θ y = r sin θ z = z

Approximate volume given a cylindrical point: (r∗k, θ
∗
k, z

∗
k) and rectangular point: (x∗

k, y
∗
k, z

∗
k), the approximate

volume is ∆Vk = r∗k∆r∆θ∆z.

�
D

f(x, y, z)dV = lim
∆→0

n∑
k+1

f(r∗k cos θ
∗
k, r

∗
k sin θ

∗
k, z

∗
k)r

∗
k∆r∆θ∆z

Theorem 4.4

Let f be continuous over the region D, expressed in cylindrical coordinates as

D = (r, θ, z) : 0 ≤ g(θ) ≤ r ≤ h(θ), α ≤ θ ≤ β,G(x, y) ≤ z ≤ H(x, y)

Then f is integrable over D, and the triple integral of f over D is

�
D

f(x, y, z)dV =

� β

α

� h(θ)

g(θ)

� H(r cos θ,r sin θ)

G(r cos θ,r sin θ)

f(r cos θ, r sin θ, z)dzrdrdθ
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In a triple integral in spherical coordinates, the coordinate is described as P (ρ, ϕ, θ).

� ρ is the distance from the origin to P .

� ϕ is the angle between the positive z-axis and the line from the origin to P .

� θ is the same angle as in cylindrical coordinates; measures rotation around the z-axis relative to x-axis.

Some relations:

� x2 + y2 = r2.

� tan θ = y
x .

� x = r cos θ.

� y = r sin θ.

� x2 + y2 + z2 = ρ2.

� r = ρ sinϕ.

� z = ρ cosϕ.

� tanϕ = r
z .

� x = ρ sinϕ cos θ.

� y = ρ sinϕ sin θ.

Given the spherical coordinate (ρ∗k, ϕ
∗
k, θ

∗
k) and the rectangular coordinate (x∗

k, y
∗
k, z

∗
k).

The approximate volume of would be ∆Vk = ρ∗2p sinϕ∗
k∆ρ∆ϕ∆θ.

�
D

f(x, y, z)dV = lim
∆→0

n∑
k=1

f(ρ∗k sinϕ
∗
k cos θ

∗
k, ρ

∗
k sinϕ

∗
k sin θ

∗
k, ρ

∗
k cosϕ

∗
k)ρ

∗2
k sinϕ∗

k∆ρ∆ϕ∆θ

Theorem 4.5

Let f be continuous over the region D, expressed in spherical coordinates as

D = (ρ, ϕ, θ) : 0 ≤ g(ϕ, θ) ≤ ρ ≤ h(ϕ, θ), a ≤ ϕ ≤ b, α ≤ θ ≤ β

Then f is integrable over D and the triple integral of f over D is

�
D

f(x, y, z)dV =

� β

α

� b

a

� h(ϕ,θ)

g(ϕ,θ)

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)ρ2 sinϕdρdϕdθ

4.6 Integrals for Mass Calculations

If masses m1,m2, . . . ,mn are arranged on the x-axis at coordinates x1, x2, . . . , xn respectively the masses
will be balanced about the point x̄ if

n∑
k=1

mk(xk − x̄) = 0 =⇒ x̄ =

∑n
k=1 mkxk∑n
k=1 mk

We can obtain the center of mass in 1 dimension as

x̄ =

� b

a
xρ(x)dx� b

a
ρ(x)dx
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Definition

Let ρ be a integrable density function on the interval [a, b] (which represents a thin rod or wire). The
center of mass is located on the point x̄ = M

m , where the total moment M and mass m are

M =

� b

a

xρ(x)dx m =

� b

a

ρ(x)dx

Definition

Let ρ be an integrable area density function defined over a closed bounded region R in R2. The
coordinates of the center of mass of the object represented by R are

x̄ =
My

m
=

1

m

�
R

xρ(x, y)dA ȳ =
Mx

m
=

1

m

�
R

yρ(x, y)dA

where m =
�

R
ρ(x, y)dA is the mass, and My and Mx are the moments with respect to the y-axis and

x-axis, respectively. If ρ is constant, the center of mass is called the centroid and is independent of the
density.

My =

�
R

xρ(x, y)dA Mx =

�
R

yρ(x, y)dA

Definition

Let ρ be an integrable density function on a closed bounded region D in R3. The coordinates of the
center of mass of the region are

x̄ =
Myz

m
=

1

m

�
D

xρ(x, y, z)dV ȳ =
Mxz

m
=

1

m

�
D

yρ(x, y, z)dV

z̄ =
Mxy

m
=

1

m

�
D

zρ(x, y, z)dV

Myz =

�
D

xρ(x, y, z)dV Mxz =

�
D

yρ(x, y, z)dV Mxy =

�
zρ(x, y, z)dV

4.7 Change of Variables in Multiple Integrals

We have substitution in single integrals as:

� b

a

f(u(x))
du

dx
dx =

� u(b)

u(a)

f(u)du

For double integrals, we could use polar coordiantes using the following we know:

� x = r cos θ

� y = r sin θ

� r2 = x2 + y2

� tan θ = y
x .

� dA → rdrdθ
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Definition

A transformation T from a region S to a region R is one-to-one on S if T (P ) = T (Q) only when
P = Q, where P and Q are points in S.

Definition

Given a transformation T : x = g(u, v), y = h(u, v), where g and h are differentiable on a region of the
uv-plane, the Jacobian determinant (or Jacobian) of T is

J(u, v) =
∂(x, y)

∂(u, v)
=

∣∣∣∣ ∂x∂y ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ = ∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

Theorem 4.6

Let T : x = g(u, v), y = h(u, v) be a transformation that maps a closed bounded region S in the
uv-plane to a region R in the xy-plane. Assume T is one-to-one on the interior of S and g and h have
continuous first partial derivatives there. If f is continuous on R, then

�
R

f(x, y)dA =

�
S

f(g(u, v), h(u, v)) | J(u, v) | dA

Definition

Given a transformation T : x = g(u, v, w), y = h(u, v, w), and z = p(u, v, w), where g, h, and p are
differentiable on a region of uvw-space, the Jacobian determinant (or Jacobian) of T is

J(u, v, w) =
∂(x, y, z)

∂(u, v, w)
=

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣
We can express J(u, v, w) = ∂x

∂u
∂y
∂v

∂z
∂w + ∂x

∂v
∂y
∂w

∂z
∂u + ∂x

∂w
∂y
∂u

∂z
∂v − ∂x

∂w
∂y
∂u

∂z
∂v − ∂x

∂u
∂y
∂w

∂z
∂v − ∂x

∂v
∂y
∂u

∂z
∂w − ∂x

∂w
∂y
∂v

∂z
∂u

Theorem 4.7

Let T : x = g(u, v, w), y = h(u, v, w), and z = p(u, v, w) be a transformation that maps a closed
bounded region S in uvw-space to a region D = T (S) in xyz-space. Assume T is one-to-one on the
interior of S and g, h, and p have continuous first partial derivatives there. If f is continuous on D,
then �

D

f(x, y, z)dV =

�
S

f(g(u, v, w), h(u, v, w), p(u, v, w, )) | J(u, v, w) | dV



5 Vector Calculus

5.1 Vector Fields

Definition

Let f and g be defined on a region R of R2. A vector field in R2 is a function F that assigns to each
point (x, y) in R a vector F(x, y) where

F(x, y) = f(x, y)i+ g(x, y)j

or

F (x, y) = ⟨f(x, y), g(x, y)⟩

The vector field R is continuous or differentiable on R is f and g are continuous or differentiable on R.

Note: A vector field is both a vector valued function and a function of several variables.

Definition

Let f , g, and h be defined on a region D of R3. A vector field in R3 is a function F that assigns to
each point (x, y, z) in D a vector F(x, y, z) where

F(x, y, z) = f(x, y, z)i+ g(x, y, z)j+ h(x, y, z)k

or

F(x, y, z) = ⟨f(x, y, z), g(x, y, z), h(x, y, z)⟩

The vector field F is continuous or differentiable on D is f , g, and h are continuous or differentiable on
D.

Definition: Radial Vector Field in R2

Let r = ⟨x, y⟩ and p is any real number, then

F(x, y) =
r

|r|p
=

⟨x, y⟩
|r|p

is a radial vector field.

28
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Definition

Let φ be a differentiable region of R2 or R3. The vector field F= ∇φ is a gradient field and the function
φ is a potential function for F.

Recall ∇φ = ⟨φx, φy⟩ or ⟨φx, φy, φz⟩ and that the vector field F = ∇φ is orthogonal to the level curves
of φ at (x, y).

In R3 the gradient field will be orthogonal to level surfaces of φ.

Definition

Let φ be a potential function for a vector field in F in R2. That is, F= ∇φ.

The level curves of a potential function are called equipotential curves.

Also, the vector field may be visualized by drawing continuous flow curves or streamlines that are
everywhere orthogonal to the equipotential curves.

These ideas can be extended to R3 in which case we will have equipotential surfaces.

5.2 Line Integrals

Definition

Suppose the scalar-valued function f is defined on the region containing the smooth curve C given by
r(t) = ⟨x(t), y(t)⟩, for a ≤ t ≤ b.

The line integral of f over C is

�
C

f(x(t), y(t))d = lim
∆→0

n∑
k=1

f(x(t∗k), y(t
∗
k))∆sk

provided this limit exists over all partitions of [a, b].

If f > 0 then the line integral computes the area of the “curtain” under f and over C.

Scalar line integrals are independent of the orientation and parameterization of the curve C.

Evaluting Scalar Line integrals in R2. �
C

fds

What is ds?

Let C be given by r(t) = ⟨x(t), y(t)⟩ for a ≤ t ≤ b.

Recall: The length of the curve C over [a, t] is given by s(t) =
� t

a
|r′(u)|du.

By differentiating both sides, s′(t) = |r′(t)|.
Thus, ds = s′(t)dt = |r′(t)|.
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Theorem 5.1

Let f be continuous on a region containing a smooth curve C: r(t) = ⟨x(t), y(t)⟩, for a ≤ t ≤ b. Then

�
C

fds =

� b

a

f(x(t), y(t))|r′(t)|dt =
� b

a

f(x(t), y(t))
√

((x′(t))2 + (y′(t))2)dt

Theorem 5.2

Let f be continuous on a region containing a smooth curve C: r(t) = ⟨x(t), y(t), z(t)⟩, for a ≤ t ≤ b.
Then

�
C

fds =

� b

a

f(x(t), y(t), z(t))|r′(t)|dt

=

� b

a

f(x(t), y(t), z(t))
√
(x′(t))2 + (y′(t))2 + (z′(t))2dt

Definition: Line Integral of a Vector Field

Let F be a vector field that is continuous on a region containing a smooth oriented curve C parametrized
by arc length. Let T be the unit tangent vector at each point of C consistent with the orientation. The
line integral of F over C is �

C

F · Tds

Observations

� F·T=|f||T|cos θ = |F| cos θ

� The line integral adds up these components

� The orientation of the curve matters!
�
−C

F · Tds = −
�
C
f · Tds

Evaluating The Line Integral of a Vector Field

�
C

F · Tds =
� b

a

F · r′(t)

|r′(t)|
|r′(t)|dt =

� b

a

F · r′(t)dt

Different Forms of Line Integrals of Vector Fields: Given F = ⟨f, g, h⟩ and C with parameterization r(t) =
⟨x(t), y(t), z(t)⟩ for a ≤ t ≤ b:

�
C

F · Tds =
� b

a

F · r′(t)dt =
� b

a

(f(t)x′(t) + g(t)y′(t) + h(t)z′(t))dt

=

�
C

(fdx+ gdy + hdz)

=

�
C

F · dr

This works similarly for vector fields in R2.

Definition

Let F be a continuous force field in a region D of R3. Let

C : r(t) = ⟨x(t), y(t), z(t)⟩fora ≤ t ≤ b

be a smooth curve in D with a unit tangent vector T consistent with the orientation.
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The work done (by the force field) in moving an object along C in the positive direction is

W =

�
C

F · Tds =
� b

a

F · r′(t)dt

� F · T = |F| cos θ is the tangential component of F along C (in direction of the motion).

� The vector line integral sums the work done at each point along C.

Definition

Definition: Circulation

Let F be a continuous vector field on a region R of R2, and let C be a closed smooth oriented curve in
R. The circulation of F on C is

�
C
F · Tds, where T is the unit vector tangent to C consistent with

the orientation.

A curve C in R2 is closed if its initial and terminal points are the same.

Circulation is a measure of how much of the vector field points in the direction of C.

Definition

Definition: Flux

Let F be a continuous vector field on a region R of R2, and let C be a closed smooth oriented curve in
R. The flux of the vector field F across C is

�
C
F · nds, where n = T× k is the unit normal vector and

T is the vector tangent to C consistent with the orientation.

Flux is a measure of how much the vector field points orthogonally to C.

In practice, use n = T× k and ds = |r′(t)|dt.

Given F = ⟨f, g⟩ and C : r(t) = ⟨x(t), y(t)⟩ for a ≤ t ≤ b, then

�
C

F · nds =
� b

a

(f(t)y′(t)− g(t)x′(t))dt

=

�
C

fdy − gdx

5.3 Conservative Vector Fields

Definition: Simple and Closed Curves

Suppose a curve C (in R2 or R3) is described parametrically by r(t), where a ≤ t ≤ b.

� Then C is a simple curve if r(t1) ̸= r(t2) for all t1 and t2, with a < t1 < t2 < b; that is, C never
intersects itself between its endpoints.

� The curve C is closed if r(a) = r(b); that is, the initial and terminal points of C are the same.
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Definition: Connected and Simply Connected Regions

� An open region R in R2 (or D in R3) is connected if it is possible to connect any two points in
R by a continuous curve lying in R. (Think: R is in one piece)

� An open region R is simply connected if every closed simple curve in R can be deformed and
contracted to a point in R. (Think: R has no holes.)

Recall that all points of an open set are interior points. An open set does not contain any of its boundary
points.

Definition: Conservative Vector Fields

A vector field F is said to be conservative on a region (in R2 or R3) if there exists a scalar function φ
such that F = ∇φ on that region.

Recall that when F = ∇φ, the function φ is a potential function for F.

Note: any function of the form φ(x, y) = xy + C would be a potential function for F.

Definition: Test for Conservative Vector Fields

Suppose F = ⟨f, g⟩ has continuous first partial derivatives on a connected and simply connected region
D in R2.

If F is conservative =⇒ there is a function φ such that F = ∇φ.

=⇒ (1)f = φx and (2) g = φy.

Now by taking partial derivatives,

fy = φxy and gx = φyx.

By equality of mixed partial derivatives,

φxy = φyx.

Thus we can conclude, fy = gx.

The other direction is also true. That is, if fy = gx then F is conservative.

This provides us with a test for a conservative vector field in two dimensions, which can be extended to
the following test for vector fields in three dimensions.

Theorem 5.3: Test for Conservative Vector Fields

Let F = ⟨f, g, h⟩ be a vector field defined on a connected and simply connected region D in R3, where
f , g, and h have continuous first partial derivatives on D.

Then F is a conservative vector field on D if and only if

∂f
∂y = ∂g

∂x ,
∂f
∂z = ∂h

∂x and ∂g
∂z = ∂h

∂y .

For vector fields in R2, we have the single condition ∂f
∂y = ∂g

∂x .

Theorem 5.4: Fundamental Theorem for Line Integrals

Let R be a region in R2 or R3 and let φ be a differentiable potential function defined on R. If F = ∇φ
(which means that F is conservative), then

�
C

F · Tds =
�
C

F · dr = φ(B)− φ(A)
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for all points A and B in R and all piecewise-smooth oriented curves C in R from A to B.

Why? Let r(t) be any parameterization of C for a ≤ t ≤ b and one can use the chain rule to show that
dφ
dt = F · r′(t). This, �

C

F · dr =
� b

a

F · r′(t)dt =
� b

a

dφ

dt
dt = φ(B)− φ(A)

Interpretation: If F is a conservative vector field, then the value of a line integral of F depends only on the
endpoints of the path!

Definition: Path Independence

Let F be a continuous vector field with domain R. If�
C1

F · dr =
�
C2

Fdr

for all piecewise-smooth curves C1 and C2 in R with the same initial and terminal points, then the line
integral is independent of path.

Theorem 5.5

Let F be a continuous vector field on an open connected region R in R2. If

�
C

F · dr

is independent of path, then F is conservative; that is, there exists a potential function φ such that
F = ∇φ on R.

Line Integrals on Closed Curves Notation: We will ues
�
C
F · dr to denote a line integral over a closed

curve C.

Theorem 5.6

Let R be an open connected region in R2 or R3. Then F is a conservative vector field on R if an only
if
�
C
F · dr = 0 on all simple closed piecewise-smooth oriented curves C in R.

Why?
F is a conservative =⇒

�
C
F · dr = φ(B)− φ(A) = φ(A)− φ(A) = 0�

C
F · dr = 0 =⇒ 0 =

�
C1

F · dr+
�
C2

F · dr
=⇒

�
C1

F · dr = −
�
C2

F · dr =
�
−C2

F · dr

5.4 Green’s Theorem

Theorem 5.7: Green’s Theorem - Circulation Form

Let C be a simple closed piecewise-smooth curve, oriented counterclockwise, that encloses a connected
and simply connected region R in the plane. Assume F = ⟨f, g⟩ where f and g have continuous first
partial derivatives in R. Then

�
C

F · dr =
�
C

fdx+ gdy =

�
R

(
∂g

∂x
− ∂f

∂y

)
dA

Green’s Theorem relates the circulation on C to a double integral over the region R.

If needed:
�
−C

F · dr = −
�
C
F · dr
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Definition: Two-Dimensional Curl

The two-dimensional curl of the vector field F = ⟨f, g⟩ is

∂g

∂x
− ∂f

∂y

If the curl is zero throughout a regio, the vector field is irrotational throughout that region.

Recall: If F = ⟨f, g⟩ is conservative then fy = gx

Thus, gx − fy = 0 and the curl of F is zero.

Under the conditions of Green’s Theorem:
�
C
F · dr =

�
R

(
∂g
∂x − ∂f

∂y

)
dA = 0.

Circulation integrals of conservative vector fields are always zero!

Theorem 5.8: Area of a Plane Region by Line Integrals

Let C be a simple closed piecewise-smooth curve, oriented counterclockwise, that encloses a connected
and simply connected region R in the plane.

Then the area of R is given by:

�
C

xdy = −
�
C

ydx =
1

2

�
C

(xdy − ydx)

Theorem 5.9: Green’s Theorem - Flux Form

Let C be a simple closed piecewise-smooth curve, oriented counterclockwise, that encloses a connected
and simply connected region R in the plane. Assume F = ⟨f, g⟩ where f and g have continuous first
partial derivatives in R. Then

�
C

F · nds =
�
C

fdy − gdx =

�
R

(
∂f

∂x
+

∂g

∂y

)
dA

Interpretation:

� Green’s theorem says that the net divergence throughout the region R equals the flux across the
boundary of R.

Definition: Two-Dimensional Divergence

The two-dimensional divergence of the vector field F = ⟨f, g⟩ is

∂f

∂x
+

∂g

∂y

If the divergence is zero throughout a region, the vector field is source free throughout that region.

The outward flux of a source free vector field is always zero!

5.5 Divergence and Curl

Definition: Divergence
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The divergence of a vector field F = ⟨f, g, h⟩ that is differentiable on a region of R3 is

divF =
∂f

∂x
+

∂g

∂y
+

∂h

∂z

If div F = 0, the vector field is source free.

Divergence measures the expansion or contraction of the vector field at each point.

Del operator: ∇ =
〈

∂
∂x ,

∂
∂y ,

∂
∂z

〉
Alternation notation: ∇ · F =

〈
∂
∂x ,

∂
∂y ,

∂
∂z

〉
· ⟨f, g, h⟩ = ∂f

∂x + ∂g
∂y + ∂h

∂z = divF

Theorem 5.10: Divergence of Radial Vector Fields

For a real number, p, the divergence of the radial vector field

F =
r

|r|p
=

⟨x, y, z⟩
(x2 + y2 + z2)p/2

is ∇ · F =
3− p

|r|p

Definition: Curl

The curl of a vector field F = ⟨f, g, h⟩ that is differentiable in a region of R3 is

curlF =

(
∂h

∂y
− ∂g

∂z

)
i+

(
∂f

∂z
− ∂h

∂x

)
j+

(
∂g

∂x
− ∂f

∂y

)
k

Curl is a measure of rotation within a vector field at each point.

We can express the curl as a cross product:

curl F = ∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

f g h

∣∣∣∣∣∣
If curl F = 0, the vector field is irrotational.

The k-component of the curl (or the two-dimensional curl) gives the rotation of the vector field in the xy-plane
at a point.

The other components of the curl give similar information about the rotation of the vector field.

Theorem 5.11: Curl of a Conservative Vector Field

Suppose F is a conservative vector field on an open region D of R3. Let F = ∇φ, where φ is a potential
function with continuous second partial derivatives on D.

Then curl F=0 and F is irrotational.

Theorem 5.12: Divergence of the Curl

Suppose F = ⟨f, g, h⟩, where f , g, and h have continuous second partial derivatives, then

div curl F = 0.

That is, the divergence of the curl is zero.

Note: If F is a vector field in R3 then div F is a scalar valued function and not a vector field. Hence,
curl div F is not defined.
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General Rotation Field:

F = a× r = ⟨a1, a2, a3⟩ × ⟨x, y, z⟩.

� The vector a is the axis of rotation for the vector field F.

� The length of the curl of F, |∇ × F| = 2|a|.

� The divergence of the vector field F is zero, or F is source free.

5.6 Surface Integrals

Recall a curve in R2 is defined parametrically by r(t) = ⟨x(t), y(t)⟩, for a ≤ t ≤ b.

For a surface in R3 we’ll need two parameters and three dependent variables:

r(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩

A cylinder with radius a > 0 and height h > 0 can be described parametrically as r(u, v) = ⟨a cosu, a sinu, v⟩
where 0 ≤ u ≤ 2π and 0 ≤ v ≤ h.

A cone with radius a > 0 and height h > 0 can be described parametrically as r(u, v)
〈
av
h cosu, av

h sinu, v
〉

where 0 ≤ u ≤ 2π and 0 ≤ v ≤ h.

A sphere with radius a > 0 can be described parametrically as r(u, v) = ⟨a sinu cos v, a sinu sin v, a cosu⟩,
where 0 ≤ u ≤ π and 0 ≤ v ≤ 2π.

For an explicitly defined surface:

z = g(x, y) on R = (x, y) : a ≤ x ≤ b, c ≤ y ≤ d

can be parametrically described:
u,v = ⟨u, v, g(u, v)⟩

where a ≤ u ≤ b and c ≤ v ≤ d.

Now we will develop the surface integral of a scalar-valued function f defined on a smooth parametrized
surface S. �

S

f(x, y, z)dS

Applications:

� Compute the surface area of S.

� Compute the mass of a thin sheet described by the surface S with mass density function f .

� Compute the average value of f over the surface S.

Definition: Surface Integrals of Scalar-Valued Functions

Let f be a continuous scalar-valued function on a smooth surface S given parametrically by r(u, v) =
⟨x(u, v), y(u, v), z(u, v)⟩, where u and v vary over the rectangle R = (u, v) : a ≤ u ≤ b, c ≤ v ≤ d.
Assume also that the tangent vectors

tu =
∂r

∂u
=

〈
∂x

∂u
,
∂y

∂u
,
∂z

∂u

〉
and tv =

∂r

∂v
=

〈
∂x

∂v
,
∂y

∂v
,
∂z

∂v

〉
are continuous on R and the normal vector tu × tv is nonzero on R.

The surface integral of f over S is

�
S

f(x, y, z)dS =

�
R

f(x(u, v), y(u, v), z(u, v))|tu × tv|dA

If f(x, y, z) = 1, this integral equals the surface area of S.
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Theorem 5.13: Evaluation of Surface Integrals of Scalar-Valued Functions on Explicitly Defined Surfaces

Let f be a continuous scalar-valued function on a smooth surface S given parametrically by z = g(x, y),
for (x, y) in a region R. The surface integral of f over S is

�
S

f(x, y, z)dS =

�
R

f(x, y, g(x, y))
√
z2x + z2y + 1dA

If f(x, y, z) = 1, the surface integral equals the area of the surface.

Orientable Surfaces: To be orientable, a surface must have a choice of normal vectors that varies continuously
over the surface. (The surface is two-sided.)

If a surface encloses a region then we will choose normal vectors to point in the outward direction. For other
surfaces, we must specify the direction of the normal vector.

Definition

Flux Integrals: Consider a continuous vector field F = ⟨f, g, h⟩. Let S be a smooth oriented surface
with unit normal vector n.

The flux integral �
S

F · ndS

computes the net flux of the vector field across the surface.

F · n = |F||n| cos θ = |F| cos θ.

The flux integral adds up the components of the vector field F normal to the surface.

Definition: Surface Integral of a Vector Field

Suppose F = ⟨f, g, h⟩ is a continuous vector field on a region of R3 containing a smooth oriented surface
S. If S is defined parametrically as u,v = ⟨x(u, v), y(u, v), z(u, v)⟩, for (u, v) in a region R, then

�
S

F · ndS =

�
R

F · (tu × tv)dA

where tu = ∂r
∂u =

〈
∂x
∂u ,

∂y
∂u ,

∂z
∂u

〉
and tv = ∂r

∂v =
〈

∂x
∂v ,

∂y
∂v ,

∂z
∂v

〉
are continuous on R, and the

normal vector tu × tv is nonzero on R, and the direction of the normal vector is consistent with the
orientation of S.

Definition: Surface Integral of a Vector Field

If S is defined in the form z = w(x, y) for (x, y) in a region R, then

�
S

F · ndS =

�
R

F · (tu × tv)dA =

�
R

(−fzx − gzy + h)dA

5.7 Stokes’ Theorem

Theorem 5.14: Stokes’ Theorem

Let S be an oriented surface in R3 with a piecewise-smooth closed boundary C whose orientation is
consistent with that of S. Assume F = ⟨f, g, h⟩ is a vector field whose components have continuous
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first partial derivatives on S. Then

�
C

F · dr =
�

S

(∇× F) · ndS

where n is the unit normal vector to S determined by the orientation of S.

Stokes’ Theorem says that the line integral around the boundary C of the tangential component of F is
equal to the surface integral over S of the normal component of the curl of F.

The right hand rule relates the orientations of S and C and determines the choice of normal vectors.

Stokes’ Theorem is the three-dimensional version of the circulation form of Green’s Theorem.

Note: If a closed curve C is the boundary of two different smooth oriented surfaces S1 and S2 which both
have orientation consistent with that of C, then the integrals of (∇× F) · n on the two surfaces are equal.

5.8 Divergence Theorem

Theorem 5.15: Divergence Theorem

Let F be a vector field whose components have continuous first partial derivatives in a connected and
simply connected region D in R3 enclosed by an oriented surface S. Then

�
S

F · ndS =

�
D

∇ · FdV

where n is the outward unit normal vector to S.

The Divergence Theorem says that the flux of F across the boundary surface of D is equal to the triple
integral over the divergence of F over D.

Theorem 5.16: Divergence Theorem for Hollow Regions

Suppose the vector field F satisfies the conditions of the Divergence Theorem on a region D in R3

bounded by two oriented surfaces S1 and S2 where S1 lies within S2. Let S be the entire boundary of
D(S = S1∪S2) and let n1 and n2 be the outward unit normal vectors for S1 and S2 respectively. Then

�
D

∇ · FdV =

�
S

F · ndS =

�
S2

F · n2dS −
�

S1

F · n1dS

This form ot the Divergence Theorem is applicable to vector fields that are not differentiable at the
origin, as is the case with some important radial vector fields of the form:

F =
r

|r|p
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