
1 Vectors and the Geometry of Space

1.1 Vectors in the Plane

Vectors are quantities with both magnitude and direction. The vector who’s tail is at point P and head at

point Q is denoted as
−−→
PQ.

Two vectors, u and v are equal if they have equal length and point in the same direction. They do not
necessarily have to be in the same location.

Scalar multiplication happens when a c is multiplied to vector v. If c < 0, then vector cv and v will point in
opposite directions, otherwise they will point in the same direction. Two vectors are parallel if they are scalar
multiples of each other.

If you place the tail of a vector v at the head of another vector u, the sum u+v is the vector that extends
from the tail of u to the head of v.

The vector difference u-v is defined as u+(-v).

In order to do calculations with vectors, we must introduce a cartesian plane. Angle brackets ⟨a, b⟩ show the
components of a vector.

The magnitude of a vector is simply its length. Given points P (x1, y1) and Q(x1, y1), the magnitude of the

vector P⃗Q = ⟨x2 − x1, y2 − y1⟩ is denoted as |P⃗Q|, is equal to:

|P⃗Q| =
√
(x2 − x1)2 + (y2 − y1)2

We can also now do vector addition with components. Given two vectors u and v, the vector sum is:

u+ v = ⟨u1 + v1, u2 + v2⟩

For a scalar c and a vector u, the scalar multiple is cu. i.e |cu| = |c||u|

A unit vector is any vector with length 1. i is a unit vector in the x-direction and j is a unit vector in the
y-direction.

Example

Determine the necessary air speed and heading that a pilot must maintain in order to fly her commercial
jet north at a speed of 480 mi/hr relative to the ground in a crosswind that is blowing 60deg south of
east at 20 mi/hr.

Let p⃗ be the velocity vector we are trying to find.

We have ground vector ⟨0, 480⟩ and a crosswind vector ⟨10,−10
√
3⟩. Note we got the x-component

and the y-component of the crosswind vector from the formula: v⃗ = ⟨a cos θ, b cos θ⟩

We can find the vector p⃗ from adding this vector to the crosswind vector resulting in: p⃗ = g⃗ − c⃗ =
⟨−10, 480 + 10

√
3⟩.

The magnitude of this vector is the speed and is equal to 497.2 mi/hr roughly.

1.2 Vectors in Three Dimensions

We can create a z-axis to create a three dimensional system.

The xyz-plane is divided into octants and has 3 planes, the xy-plane, the xz-plane, and the yz-plane.
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We can also extend the distance formula to 3 dimensions. It is similar to the distance formula in two
dimensions, with the z-component added, essentially:

|PQ| =
√
|PR|2 + |RQ|2 =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

The midpoint formula works the same way:

Midpoint =

(
x1 + x2

2
+

y1 + y2
2

+
z1 + z2

2

)

The normal form of the circle equation is:

(x− h)2 + (y − k)2 = r2

For a disk we have
(x− h)2 + (y − k)2 ≤ r2

We can generalize this to a sphere. A sphere centered at (a, b, c) with radius r is the set of points satisfying:

(x− a)2 + (y − b)2 + (z − c)2 = r2

A ball centered at (a, b, c) with radius r is the set of points satisfying:

(x− a)2 + (y − b)2 + (z − c)2 ≤ r2

Example

Find an equation of the sphere passing through P (−4, 2, 3) and Q(0, 2, 7) with its center at the midpoint
of PQ.

We can find the midpoint from the midpoint formula and it is equal to (−2, 2, 5).

The radius can be found through the distance formula and is equal to
√
8.

The equation is (x+ 2)2 + (y − 2)2 + (z − 5)2 = 8

All the vector operations from two-dimensions work in three-dimensions.

Example

A model airplane is flying horizontally due east at 10 mi/hr when it encounters a horizontal crosswind
blowing south at 5 mi/hr and an updraft blowing vertically upward at 5 mi/hr.

� Find the position vector that represents the velocity of the plane relative to the ground.

� Find the speed of the plane relative to the ground.

The velocity vector of the model plane p⃗ is equal to ⟨10, 0, 0⟩

The velocity vector of the horizontal crosswind w⃗ is equal to ⟨0,−5, 0⟩

The velocity vector of the updraft u⃗ is ⟨0, 0, 5⟩

Adding the three vectors results in the speed: ⟨10,−5, 5⟩

The magnitude of this is roughly 12.25.

1.3 Dot Products
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Definition

Given two nonzero vectors u and v in two or three dimensions, the dot product is

u · v = |u||v| cos θ

The dot product is 0 when θ = π
2 , negative when θ > π

2 and positive when θ < π
2 .

Two vectors are parallel if and only if u·v=±|u||v|

When the dot product is zero, we call u⃗ and v⃗ orthogonal.

Theorem 1.1: Dot Product

Given two vectors u = ⟨u1, u2, u3⟩ and v = ⟨v1, v2, v3⟩,

u · v = u1v1 + u2v2 + u3v3

We now apply the dot product to vector projections.

Definition

The orthogonal projection of u on v, denoted projvu is:

projvu = |u| cos θ
(

v

|v|

)

The orthogonal projections can also be computed with the formulas:

projvu = scalvu

(
v

|v|

)
=

(u · v
v · v

)
v

where the scalar component of u in the direction of v is

scalvu = |u| cos θ =
u · v
|v|

1.4 Cross Products

Definition

Given two vectors u and v in R3, the cross product u× v is a vector with magnitude

|u× v| = |u||v| sin θ

Note that u⃗× v⃗ = −(v⃗ × u⃗)

There are some useful properties of the cross product.

� The cross product u× v is orthogonal to both u⃗ and v⃗

� The cross product is zero when sin(θ) = 0.

� Two vectors are parallel if the cross product between them is zero.

We define the determinant of a 2× 2 array

∣∣∣∣a b
c d

∣∣∣∣ as ad− bc.

For a matrix

∣∣∣∣∣∣
a b c
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
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the determinant is a

∣∣∣∣u2 u3

v2 v3

∣∣∣∣− b

∣∣∣∣u1 u3

v1 v3

∣∣∣∣+ c

∣∣∣∣u1 u2

v1 v2

∣∣∣∣ or:
a(u2v3 − u3v2)− b(u1v3 − u3v1) + c(u1v2 − u2v1)

1.5 Lines and Planes in Space

Recall that in two dimensions, we needed a point and a slope to write an equation for a line.

We can write an equation in three dimensions as well.

A vector equation of a line passing through the point P0(x0, y0, z0) in the direction of vector v = ⟨a, b, c⟩ is
r = r0 + tv or:

⟨x, y, z⟩ = ⟨x0, y0, z0⟩+ t⟨a, b, c⟩

The corresponding parametric equations of the line also are:

x = x0 + at, y = y0 + bt, z = z0 + ct

The general equation of a plane in R3 with the plane passing through P0(x0, y0, z0) with vector v = ⟨a, b, c⟩
is described by:

a(x− x0) + b(y − y0) + c(z − z0) = 0

or
ax+ by + cz = d

where d = ax0 + by0 + cz0.

1.6 Cylinders and Quadric Surfaces

A cylinder is a surface that is parallel to a line.

A trace of a surface is the set of points at which the surface intersects a plane that is parallel to one of the
coordinate planes. The traces in the coordinate planes are called the xy-trace, the yz-trace, and the xz-trace.

To sketch quadric surfaces:

� Determine the points where the surface intersects the coordinate axes.

� Finding traces of the surface helps visualize the surface

� Sketch at least two traces in parallel planes

Example

For:

x2

9
+

y2

16
+

z2

25
= 1

We set certain variables to zero to find the x-intercept to be ±3, the y-intercept to be ±4 and the
z-intercept to be ±5.

We can also find the traces:

� xy: x2

9 + y2

16 = 1

� xz: x2

9 + z2

25 = 1

� yz: y2

16 + z2

25 = 1

The resulting shape is a ellipsoid.
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In general the equation of an ellipsoid is:

x2

a2
+

y2

b2
+

z2

c2
= 1

In this all traces are ellipses.

For an elliptic cone the equation is:
x2

a2
+

y2

b2
=

z2

c2

Traces with z = z0 ̸= 0 are ellipses. Traces with x = x0 or y = y0 are hyperbolas or intersecting lines.

For an elliptic paraboloid the equation is:

z =
x2

a2
+

y2

b2

Traces with z = z0 > 0 are ellipses. Traces with x = x0 or y = y0 are parabolas.

For a hyperbolic paraboloid:

z =
x2

a2
− y2

b2

Traces with z = z0 ̸= 0 are hyperbolas. Traces with x = x0 or y = y0 are parabolas.

For a hyperboloid of one sheet:
x2

a2
+

y2

b2
− z2

c2
= 1

Traces with z = z0 are ellipses for all z0. Traces with x = x0 or y = y0 are hyperbolas.

For a hyperboloid of two sheets:

−x2

a2
− y2

b2
+

z2

c2
= 1

Traces with z = z0 with |z0| > |c| are ellipses. Traces with x = x0 and y = y0 are hyperbolas.
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