
1 Multiple Integration

1.1 Double Integrals over Rectangular Regions

Definition

A function f defined on a rectangular region R in the xy-plane is integrable on R if

lim
∆→0

n∑
k=1

f (x∗
k, y

∗
k)∆Ak

exists for all partitions of R and for all choices of (x∗
k, y

∗
k) within those partitions. The limit is the double

integral of f over R, which we write

�
R

f(x, y)dA = lim
∆→0

n∑
k=1

f (x∗
k, y

∗
k)∆Ak

We usually use Fubini’s theorem.

Theorem 1.1

Let f be continuous on the rectangular region R = (x, y) : a ≤ x ≤ b, c ≤ y ≤ d. The double integral
of f over R may be evaluated by either of two iterated integrals:

�
R

f(x, y)dA =

� d

c

� b

a

f(x, y)dxdy =

� b

a

� d

c

f(x, y)dydx

Definition

The average value of an integrable function f over a region R is

f̄ =
1

area of R

�
R

f(x, y)dA

The average height of f(x, y) is 1
Area(R) (Volume under f(x, y)).

1.2 Double Integrals over General Regions

In order to do a double integral over a general integral:

� Divide the plane into rectangles.

� In each rectangle Rk inside R, choose a point (x∗
k, y

∗
k).

� Let ∆Ak = area(Rk), calculate
∑n

k=1 f(x
∗
k, y

∗
k)∆Ak

� Take the limit as ∆ → 0, where ∆ is the maximum length of diagonal of Rk.

We get �
R

f(x, y)dA = lim
∆→0

n∑
k=1

f(x∗
k, y

∗
k)∆Ak

Given the graph of a surface z = f(x, y) for (x, y) in a planar region R where f(x, y) ≥ 0 for all (x, y) in R,

1
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the volume of the solid bounded by the surface z = f(x, y) and the set R in the xy-plane is given by

Volume =

�
R

f(x, y)dA

If R can be described as a ≤ x ≤ b and g(x) ≤ y ≤ h(x) then

�
R

f(x, y)dA =

� a

b

� h(x)

g(x)

f(x, y)dydx

If R can be described as g(y) ≤ x ≤ h(y) and c ≤ y ≤ d then

�
R

f(x, y)dA =

� d

c

� h(y)

g(y)

f(x, y)dxdy

To evaluate a dydx double integral of the form

� b

a

� f(x)

g(x)

f(x, y)dyd

1. Integrate f(x, y) with respect to y.

2. Substitute y = h(x), y = g(x) and subtract, resulting in a function of x (call it A(x)).

3. Evaluate the integral of the resulting function

� b

a

A(x)dx

To evaluate a dxdy double integral of the form

� d

c

� h(y)

g(y)

f(x, y)dxd

1. Integrate f(x, y) with respect to x.

2. Substitute x = h(y), x = g(y) and subtract, resulting in a function of y (call it A(y)).

3. Evaluate the integral of the resulting function

� d

c

A(y)dy

Definition

Let R be a region in the xy-plane. Then

area of R =

�
R

dA

1.3 Double Integrals in Polar Coordinates

A cartesian rectangle can be described as:

R = (x, y) : a ≤ x ≤ b, c ≤ y ≤ d

A polar rectangle is:
R = (r, θ) : a ≤ r ≤ b, α ≤ θ ≤ β
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Approximation to polar double integral: Given f(x, y) = f(r cos θ, r sin θ)

If we let ∆Ak be the area of the kth polar rectangle, then the approximation is

n∑
k=1

f(r∗k cos θ
∗
k, r

∗
k sin θ

∗
k)∆Ak

Which can be written as:

�
R

f(x, y)dA = lim
∆→0

n∑
k=1

f(r∗k cos θ
∗
k, r

∗
k sin θ

∗
k)∆Ak

Over polar rectangles we have:

�
R

f(x, y)dA =

� β

α

� b

a

f(r cos θ, r sin θ)rdrdθ

R = (r, θ) : a ≤ r ≤ b, α ≤ θ ≤ β

Theorem 1.2

Let f be continuous on the region R in the xy-plane expressed in polar coordinates as

R = (r, θ) : 0 ≤ g(θ) ≤ r ≤ h(θ), α ≤ θ ≤ β

where 0 < β − α ≤ 2π. Then

�
R

f(x, y)dA =

� β

α

� b

a

f(r cos θ, r sin θ)rdrdθ

1.4 Triple Integrals

Consider f(x, y, z) defined on D.

� Divide region containing D into rectangular boxes, numbered k = 1, 2, . . . , n.

� Let ∆Vk be the volume of the kth box.

� For each k, choose a point (x∗
k, y

∗
k, z

∗
k) in the kth box.

Approximation =
∑n

k=1 f(x
∗
k, y

∗
k, z

∗
k)∆Vk.

� Set ∆ = maximum length of a diagonal of a box.

�
D

f(x, y, z)dV = lim
∆→0

n∑
k=1

f(x∗
k, y

∗
k, z

∗
k)∆Vk

Two applications of triple integrals:

1. �
D

1dV = Volume(D)

2. If ρ(x, y, z) represents the density of a solid at any point (x, y, z) of a solid then

�
D

ρ(x, y, z)dV = mass(D)

Possible orders for integration:
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1. dxdydz

2. dxdzdy

3. dydxdz

4. dydzdx

5. dzdxdy

6. dzdydx

Let’s consider the dzdydx order.

Theorem 1.3

Let f be continuous over the region

D = (x, y, z) : a ≤ x ≤ b, g(x) ≤ y ≤ h(x), G(x, y) ≤ z ≤ H(x, y)

, where g, h, G, and H are continuous functions. Then f is integrable over D and the triple integral is
evaluated as the iterated integral

�
D

f(x, y, z)dV =

� b

a

� h(x)

g(x)

� H(x,y)

G(x,y)

f(x, y, z)dzdydx

1.5 Triple Integrals in Cylindrical and Spherical Coordinates

A point P in three-dimensional space can be described in cylindrical coordinates P (r, θ, z).

� P ∗ is the projection of P into the xy-plane.

� (r, θ) is the polar coordinates of P ∗.

� (r, θ, z) is the cylindrical coordinates of P .

We can transform from Rectangular to cylindrical:

r2 = x2 + y2 tanθ = y/x z = z

To convert from cylindrical to rectangular:

x = r cos θ y = r sin θ z = z

Approximate volume given a cylindrical point: (r∗k, θ
∗
k, z

∗
k) and rectangular point: (x∗

k, y
∗
k, z

∗
k), the approximate

volume is ∆Vk = r∗k∆r∆θ∆z.

�
D

f(x, y, z)dV = lim
∆→0

n∑
k+1

f(r∗k cos θ
∗
k, r

∗
k sin θ

∗
k, z

∗
k)r

∗
k∆r∆θ∆z

Theorem 1.4

Let f be continuous over the region D, expressed in cylindrical coordinates as

D = (r, θ, z) : 0 ≤ g(θ) ≤ r ≤ h(θ), α ≤ θ ≤ β,G(x, y) ≤ z ≤ H(x, y)

Then f is integrable over D, and the triple integral of f over D is

�
D

f(x, y, z)dV =

� β

α

� h(θ)

g(θ)

� H(r cos θ,r sin θ)

G(r cos θ,r sin θ)

f(r cos θ, r sin θ, z)dzrdrdθ
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In a triple integral in spherical coordinates, the coordinate is described as P (ρ, ϕ, θ).

� ρ is the distance from the origin to P .

� ϕ is the angle between the positive z-axis and the line from the origin to P .

� θ is the same angle as in cylindrical coordinates; measures rotation around the z-axis relative to x-axis.

Some relations:

� x2 + y2 = r2.

� tan θ = y
x .

� x = r cos θ.

� y = r sin θ.

� x2 + y2 + z2 = ρ2.

� r = ρ sinϕ.

� z = ρ cosϕ.

� tanϕ = r
z .

� x = ρ sinϕ cos θ.

� y = ρ sinϕ sin θ.

Given the spherical coordinate (ρ∗k, ϕ
∗
k, θ

∗
k) and the rectangular coordinate (x∗

k, y
∗
k, z

∗
k).

The approximate volume of would be ∆Vk = ρ∗2p sinϕ∗
k∆ρ∆ϕ∆θ.

�
D

f(x, y, z)dV = lim
∆→0

n∑
k=1

f(ρ∗k sinϕ
∗
k cos θ

∗
k, ρ

∗
k sinϕ

∗
k sin θ

∗
k, ρ

∗
k cosϕ

∗
k)ρ

∗2
k sinϕ∗

k∆ρ∆ϕ∆θ

Theorem 1.5

Let f be continuous over the region D, expressed in spherical coordinates as

D = (ρ, ϕ, θ) : 0 ≤ g(ϕ, θ) ≤ ρ ≤ h(ϕ, θ), a ≤ ϕ ≤ b, α ≤ θ ≤ β

Then f is integrable over D and the triple integral of f over D is

�
D

f(x, y, z)dV =

� β

α

� b

a

� h(ϕ,θ)

g(ϕ,θ)

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)ρ2 sinϕdρdϕdθ

1.6 Integrals for Mass Calculations

If masses m1,m2, . . . ,mn are arranged on the x-axis at coordinates x1, x2, . . . , xn respectively the masses
will be balanced about the point x̄ if

n∑
k=1

mk(xk − x̄) = 0 =⇒ x̄ =

∑n
k=1 mkxk∑n
k=1 mk

We can obtain the center of mass in 1 dimension as

x̄ =

� b

a
xρ(x)dx� b

a
ρ(x)dx
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Definition

Let ρ be a integrable density function on the interval [a, b] (which represents a thin rod or wire). The
center of mass is located on the point x̄ = M

m , where the total moment M and mass m are

M =

� b

a

xρ(x)dx m =

� b

a

ρ(x)dx

Definition

Let ρ be an integrable area density function defined over a closed bounded region R in R2. The
coordinates of the center of mass of the object represented by R are

x̄ =
My

m
=

1

m

�
R

xρ(x, y)dA ȳ =
Mx

m
=

1

m

�
R

yρ(x, y)dA

where m =
�

R
ρ(x, y)dA is the mass, and My and Mx are the moments with respect to the y-axis and

x-axis, respectively. If ρ is constant, the center of mass is called the centroid and is independent of the
density.

My =

�
R

xρ(x, y)dA Mx =

�
R

yρ(x, y)dA

Definition

Let ρ be an integrable density function on a closed bounded region D in R3. The coordinates of the
center of mass of the region are

x̄ =
Myz

m
=

1

m

�
D

xρ(x, y, z)dV ȳ =
Mxz

m
=

1

m

�
D

yρ(x, y, z)dV

z̄ =
Mxy

m
=

1

m

�
D

zρ(x, y, z)dV

Myz =

�
D

xρ(x, y, z)dV Mxz =

�
D

yρ(x, y, z)dV Mxy =

�
zρ(x, y, z)dV

1.7 Change of Variables in Multiple Integrals

We have substitution in single integrals as:

� b

a

f(u(x))
du

dx
dx =

� u(b)

u(a)

f(u)du

For double integrals, we could use polar coordiantes using the following we know:

� x = r cos θ

� y = r sin θ

� r2 = x2 + y2

� tan θ = y
x .

� dA → rdrdθ
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Definition

A transformation T from a region S to a region R is one-to-one on S if T (P ) = T (Q) only when
P = Q, where P and Q are points in S.

Definition

Given a transformation T : x = g(u, v), y = h(u, v), where g and h are differentiable on a region of the
uv-plane, the Jacobian determinant (or Jacobian) of T is

J(u, v) =
∂(x, y)

∂(u, v)
=

∣∣∣∣ ∂x∂y ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ = ∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

Theorem 1.6

Let T : x = g(u, v), y = h(u, v) be a transformation that maps a closed bounded region S in the
uv-plane to a region R in the xy-plane. Assume T is one-to-one on the interior of S and g and h have
continuous first partial derivatives there. If f is continuous on R, then

�
R

f(x, y)dA =

�
S

f(g(u, v), h(u, v)) | J(u, v) | dA

Definition

Given a transformation T : x = g(u, v, w), y = h(u, v, w), and z = p(u, v, w), where g, h, and p are
differentiable on a region of uvw-space, the Jacobian determinant (or Jacobian) of T is

J(u, v, w) =
∂(x, y, z)

∂(u, v, w)
=

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣
We can express J(u, v, w) = ∂x

∂u
∂y
∂v

∂z
∂w + ∂x

∂v
∂y
∂w

∂z
∂u + ∂x

∂w
∂y
∂u

∂z
∂v − ∂x

∂w
∂y
∂u

∂z
∂v − ∂x

∂u
∂y
∂w

∂z
∂v − ∂x

∂v
∂y
∂u

∂z
∂w − ∂x

∂w
∂y
∂v

∂z
∂u

Theorem 1.7

Let T : x = g(u, v, w), y = h(u, v, w), and z = p(u, v, w) be a transformation that maps a closed
bounded region S in uvw-space to a region D = T (S) in xyz-space. Assume T is one-to-one on the
interior of S and g, h, and p have continuous first partial derivatives there. If f is continuous on D,
then �

D

f(x, y, z)dV =

�
S

f(g(u, v, w), h(u, v, w), p(u, v, w, )) | J(u, v, w) | dV
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