
1 Vector Calculus

1.1 Vector Fields

Definition

Let f and g be defined on a region R of R2. A vector field in R2 is a function F that assigns to each
point (x, y) in R a vector F(x, y) where

F(x, y) = f(x, y)i+ g(x, y)j

or

F (x, y) = ⟨f(x, y), g(x, y)⟩

The vector field R is continuous or differentiable on R is f and g are continuous or differentiable on R.

Note: A vector field is both a vector valued function and a function of several variables.

Definition

Let f , g, and h be defined on a region D of R3. A vector field in R3 is a function F that assigns to
each point (x, y, z) in D a vector F(x, y, z) where

F(x, y, z) = f(x, y, z)i+ g(x, y, z)j+ h(x, y, z)k

or

F(x, y, z) = ⟨f(x, y, z), g(x, y, z), h(x, y, z)⟩

The vector field F is continuous or differentiable on D is f , g, and h are continuous or differentiable on
D.

Definition: Radial Vector Field in R2

Let r = ⟨x, y⟩ and p is any real number, then

F(x, y) =
r

|r|p
=

⟨x, y⟩
|r|p

is a radial vector field.
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Definition

Let φ be a differentiable region of R2 or R3. The vector field F= ∇φ is a gradient field and the function
φ is a potential function for F.

Recall ∇φ = ⟨φx, φy⟩ or ⟨φx, φy, φz⟩ and that the vector field F = ∇φ is orthogonal to the level curves
of φ at (x, y).

In R3 the gradient field will be orthogonal to level surfaces of φ.

Definition

Let φ be a potential function for a vector field in F in R2. That is, F= ∇φ.

The level curves of a potential function are called equipotential curves.

Also, the vector field may be visualized by drawing continuous flow curves or streamlines that are
everywhere orthogonal to the equipotential curves.

These ideas can be extended to R3 in which case we will have equipotential surfaces.

1.2 Line Integrals

Definition

Suppose the scalar-valued function f is defined on the region containing the smooth curve C given by
r(t) = ⟨x(t), y(t)⟩, for a ≤ t ≤ b.

The line integral of f over C is

�
C

f(x(t), y(t))d = lim
∆→0

n∑
k=1

f(x(t∗k), y(t
∗
k))∆sk

provided this limit exists over all partitions of [a, b].

If f > 0 then the line integral computes the area of the “curtain” under f and over C.

Scalar line integrals are independent of the orientation and parameterization of the curve C.

Evaluting Scalar Line integrals in R2. �
C

fds

What is ds?

Let C be given by r(t) = ⟨x(t), y(t)⟩ for a ≤ t ≤ b.

Recall: The length of the curve C over [a, t] is given by s(t) =
� t

a
|r′(u)|du.

By differentiating both sides, s′(t) = |r′(t)|.
Thus, ds = s′(t)dt = |r′(t)|.
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Theorem 1.1

Let f be continuous on a region containing a smooth curve C: r(t) = ⟨x(t), y(t)⟩, for a ≤ t ≤ b. Then

�
C

fds =

� b

a

f(x(t), y(t))|r′(t)|dt =
� b

a

f(x(t), y(t))
√

((x′(t))2 + (y′(t))2)dt

Theorem 1.2

Let f be continuous on a region containing a smooth curve C: r(t) = ⟨x(t), y(t), z(t)⟩, for a ≤ t ≤ b.
Then

�
C

fds =

� b

a

f(x(t), y(t), z(t))|r′(t)|dt

=

� b

a

f(x(t), y(t), z(t))
√
(x′(t))2 + (y′(t))2 + (z′(t))2dt

Definition: Line Integral of a Vector Field

Let F be a vector field that is continuous on a region containing a smooth oriented curve C parametrized
by arc length. Let T be the unit tangent vector at each point of C consistent with the orientation. The
line integral of F over C is �

C

F · Tds

Observations

� F·T=|f||T|cos θ = |F| cos θ

� The line integral adds up these components

� The orientation of the curve matters!
�
−C

F · Tds = −
�
C
f · Tds

Evaluating The Line Integral of a Vector Field

�
C

F · Tds =
� b

a

F · r′(t)

|r′(t)|
|r′(t)|dt =

� b

a

F · r′(t)dt

Different Forms of Line Integrals of Vector Fields: Given F = ⟨f, g, h⟩ and C with parameterization r(t) =
⟨x(t), y(t), z(t)⟩ for a ≤ t ≤ b:

�
C

F · Tds =
� b

a

F · r′(t)dt =
� b

a

(f(t)x′(t) + g(t)y′(t) + h(t)z′(t))dt

=

�
C

(fdx+ gdy + hdz)

=

�
C

F · dr

This works similarly for vector fields in R2.

Definition

Let F be a continuous force field in a region D of R3. Let

C : r(t) = ⟨x(t), y(t), z(t)⟩fora ≤ t ≤ b

be a smooth curve in D with a unit tangent vector T consistent with the orientation.
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The work done (by the force field) in moving an object along C in the positive direction is

W =

�
C

F · Tds =
� b

a

F · r′(t)dt

� F · T = |F| cos θ is the tangential component of F along C (in direction of the motion).

� The vector line integral sums the work done at each point along C.

Definition

Definition: Circulation

Let F be a continuous vector field on a region R of R2, and let C be a closed smooth oriented curve in
R. The circulation of F on C is

�
C
F · Tds, where T is the unit vector tangent to C consistent with

the orientation.

A curve C in R2 is closed if its initial and terminal points are the same.

Circulation is a measure of how much of the vector field points in the direction of C.

Definition

Definition: Flux

Let F be a continuous vector field on a region R of R2, and let C be a closed smooth oriented curve in
R. The flux of the vector field F across C is

�
C
F · nds, where n = T× k is the unit normal vector and

T is the vector tangent to C consistent with the orientation.

Flux is a measure of how much the vector field points orthogonally to C.

In practice, use n = T× k and ds = |r′(t)|dt.

Given F = ⟨f, g⟩ and C : r(t) = ⟨x(t), y(t)⟩ for a ≤ t ≤ b, then

�
C

F · nds =
� b

a

(f(t)y′(t)− g(t)x′(t))dt

=

�
C

fdy − gdx

1.3 Conservative Vector Fields

Definition: Simple and Closed Curves

Suppose a curve C (in R2 or R3) is described parametrically by r(t), where a ≤ t ≤ b.

� Then C is a simple curve if r(t1) ̸= r(t2) for all t1 and t2, with a < t1 < t2 < b; that is, C never
intersects itself between its endpoints.

� The curve C is closed if r(a) = r(b); that is, the initial and terminal points of C are the same.
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Definition: Connected and Simply Connected Regions

� An open region R in R2 (or D in R3) is connected if it is possible to connect any two points in
R by a continuous curve lying in R. (Think: R is in one piece)

� An open region R is simply connected if every closed simple curve in R can be deformed and
contracted to a point in R. (Think: R has no holes.)

Recall that all points of an open set are interior points. An open set does not contain any of its boundary
points.

Definition: Conservative Vector Fields

A vector field F is said to be conservative on a region (in R2 or R3) if there exists a scalar function φ
such that F = ∇φ on that region.

Recall that when F = ∇φ, the function φ is a potential function for F.

Note: any function of the form φ(x, y) = xy + C would be a potential function for F.

Definition: Test for Conservative Vector Fields

Suppose F = ⟨f, g⟩ has continuous first partial derivatives on a connected and simply connected region
D in R2.

If F is conservative =⇒ there is a function φ such that F = ∇φ.

=⇒ (1)f = φx and (2) g = φy.

Now by taking partial derivatives,

fy = φxy and gx = φyx.

By equality of mixed partial derivatives,

φxy = φyx.

Thus we can conclude, fy = gx.

The other direction is also true. That is, if fy = gx then F is conservative.

This provides us with a test for a conservative vector field in two dimensions, which can be extended to
the following test for vector fields in three dimensions.

Theorem 1.3: Test for Conservative Vector Fields

Let F = ⟨f, g, h⟩ be a vector field defined on a connected and simply connected region D in R3, where
f , g, and h have continuous first partial derivatives on D.

Then F is a conservative vector field on D if and only if

∂f
∂y = ∂g

∂x ,
∂f
∂z = ∂h

∂x and ∂g
∂z = ∂h

∂y .

For vector fields in R2, we have the single condition ∂f
∂y = ∂g

∂x .

Theorem 1.4: Fundamental Theorem for Line Integrals

Let R be a region in R2 or R3 and let φ be a differentiable potential function defined on R. If F = ∇φ
(which means that F is conservative), then

�
C

F · Tds =
�
C

F · dr = φ(B)− φ(A)
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for all points A and B in R and all piecewise-smooth oriented curves C in R from A to B.

Why? Let r(t) be any parameterization of C for a ≤ t ≤ b and one can use the chain rule to show that
dφ
dt = F · r′(t). This, �

C

F · dr =
� b

a

F · r′(t)dt =
� b

a

dφ

dt
dt = φ(B)− φ(A)

Interpretation: If F is a conservative vector field, then the value of a line integral of F depends only on the
endpoints of the path!

Definition: Path Independence

Let F be a continuous vector field with domain R. If�
C1

F · dr =
�
C2

Fdr

for all piecewise-smooth curves C1 and C2 in R with the same initial and terminal points, then the line
integral is independent of path.

Theorem 1.5

Let F be a continuous vector field on an open connected region R in R2. If

�
C

F · dr

is independent of path, then F is conservative; that is, there exists a potential function φ such that
F = ∇φ on R.

Line Integrals on Closed Curves Notation: We will ues
�
C
F · dr to denote a line integral over a closed

curve C.

Theorem 1.6

Let R be an open connected region in R2 or R3. Then F is a conservative vector field on R if an only
if
�
C
F · dr = 0 on all simple closed piecewise-smooth oriented curves C in R.

Why?
F is a conservative =⇒

�
C
F · dr = φ(B)− φ(A) = φ(A)− φ(A) = 0�

C
F · dr = 0 =⇒ 0 =

�
C1

F · dr+
�
C2

F · dr
=⇒

�
C1

F · dr = −
�
C2

F · dr =
�
−C2

F · dr

1.4 Green’s Theorem

Theorem 1.7: Green’s Theorem - Circulation Form

Let C be a simple closed piecewise-smooth curve, oriented counterclockwise, that encloses a connected
and simply connected region R in the plane. Assume F = ⟨f, g⟩ where f and g have continuous first
partial derivatives in R. Then

�
C

F · dr =
�
C

fdx+ gdy =

�
R

(
∂g

∂x
− ∂f

∂y

)
dA

Green’s Theorem relates the circulation on C to a double integral over the region R.

If needed:
�
−C

F · dr = −
�
C
F · dr
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Definition: Two-Dimensional Curl

The two-dimensional curl of the vector field F = ⟨f, g⟩ is

∂g

∂x
− ∂f

∂y

If the curl is zero throughout a regio, the vector field is irrotational throughout that region.

Recall: If F = ⟨f, g⟩ is conservative then fy = gx

Thus, gx − fy = 0 and the curl of F is zero.

Under the conditions of Green’s Theorem:
�
C
F · dr =

�
R

(
∂g
∂x − ∂f

∂y

)
dA = 0.

Circulation integrals of conservative vector fields are always zero!

Theorem 1.8: Area of a Plane Region by Line Integrals

Let C be a simple closed piecewise-smooth curve, oriented counterclockwise, that encloses a connected
and simply connected region R in the plane.

Then the area of R is given by:

�
C

xdy = −
�
C

ydx =
1

2

�
C

(xdy − ydx)

Theorem 1.9: Green’s Theorem - Flux Form

Let C be a simple closed piecewise-smooth curve, oriented counterclockwise, that encloses a connected
and simply connected region R in the plane. Assume F = ⟨f, g⟩ where f and g have continuous first
partial derivatives in R. Then

�
C

F · nds =
�
C

fdy − gdx =

�
R

(
∂f

∂x
+

∂g

∂y

)
dA

Interpretation:

� Green’s theorem says that the net divergence throughout the region R equals the flux across the
boundary of R.

Definition: Two-Dimensional Divergence

The two-dimensional divergence of the vector field F = ⟨f, g⟩ is

∂f

∂x
+

∂g

∂y

If the divergence is zero throughout a region, the vector field is source free throughout that region.

The outward flux of a source free vector field is always zero!

1.5 Divergence and Curl

Definition: Divergence
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The divergence of a vector field F = ⟨f, g, h⟩ that is differentiable on a region of R3 is

divF =
∂f

∂x
+

∂g

∂y
+

∂h

∂z

If div F = 0, the vector field is source free.

Divergence measures the expansion or contraction of the vector field at each point.

Del operator: ∇ =
〈

∂
∂x ,

∂
∂y ,

∂
∂z

〉
Alternation notation: ∇ · F =

〈
∂
∂x ,

∂
∂y ,

∂
∂z

〉
· ⟨f, g, h⟩ = ∂f

∂x + ∂g
∂y + ∂h

∂z = divF

Theorem 1.10: Divergence of Radial Vector Fields

For a real number, p, the divergence of the radial vector field

F =
r

|r|p
=

⟨x, y, z⟩
(x2 + y2 + z2)p/2

is ∇ · F =
3− p

|r|p

Definition: Curl

The curl of a vector field F = ⟨f, g, h⟩ that is differentiable in a region of R3 is

curlF =

(
∂h

∂y
− ∂g

∂z

)
i+

(
∂f

∂z
− ∂h

∂x

)
j+

(
∂g

∂x
− ∂f

∂y

)
k

Curl is a measure of rotation within a vector field at each point.

We can express the curl as a cross product:

curl F = ∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

f g h

∣∣∣∣∣∣
If curl F = 0, the vector field is irrotational.

The k-component of the curl (or the two-dimensional curl) gives the rotation of the vector field in the xy-plane
at a point.

The other components of the curl give similar information about the rotation of the vector field.

Theorem 1.11: Curl of a Conservative Vector Field

Suppose F is a conservative vector field on an open region D of R3. Let F = ∇φ, where φ is a potential
function with continuous second partial derivatives on D.

Then curl F=0 and F is irrotational.

Theorem 1.12: Divergence of the Curl

Suppose F = ⟨f, g, h⟩, where f , g, and h have continuous second partial derivatives, then

div curl F = 0.

That is, the divergence of the curl is zero.

Note: If F is a vector field in R3 then div F is a scalar valued function and not a vector field. Hence,
curl div F is not defined.



CHAPTER 1. VECTOR CALCULUS 9

General Rotation Field:

F = a× r = ⟨a1, a2, a3⟩ × ⟨x, y, z⟩.

� The vector a is the axis of rotation for the vector field F.

� The length of the curl of F, |∇ × F| = 2|a|.

� The divergence of the vector field F is zero, or F is source free.

1.6 Surface Integrals

Recall a curve in R2 is defined parametrically by r(t) = ⟨x(t), y(t)⟩, for a ≤ t ≤ b.

For a surface in R3 we’ll need two parameters and three dependent variables:

r(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩

A cylinder with radius a > 0 and height h > 0 can be described parametrically as r(u, v) = ⟨a cosu, a sinu, v⟩
where 0 ≤ u ≤ 2π and 0 ≤ v ≤ h.

A cone with radius a > 0 and height h > 0 can be described parametrically as r(u, v)
〈
av
h cosu, av

h sinu, v
〉

where 0 ≤ u ≤ 2π and 0 ≤ v ≤ h.

A sphere with radius a > 0 can be described parametrically as r(u, v) = ⟨a sinu cos v, a sinu sin v, a cosu⟩,
where 0 ≤ u ≤ π and 0 ≤ v ≤ 2π.

For an explicitly defined surface:

z = g(x, y) on R = (x, y) : a ≤ x ≤ b, c ≤ y ≤ d

can be parametrically described:
u,v = ⟨u, v, g(u, v)⟩

where a ≤ u ≤ b and c ≤ v ≤ d.

Now we will develop the surface integral of a scalar-valued function f defined on a smooth parametrized
surface S. �

S

f(x, y, z)dS

Applications:

� Compute the surface area of S.

� Compute the mass of a thin sheet described by the surface S with mass density function f .

� Compute the average value of f over the surface S.

Definition: Surface Integrals of Scalar-Valued Functions

Let f be a continuous scalar-valued function on a smooth surface S given parametrically by r(u, v) =
⟨x(u, v), y(u, v), z(u, v)⟩, where u and v vary over the rectangle R = (u, v) : a ≤ u ≤ b, c ≤ v ≤ d.
Assume also that the tangent vectors

tu =
∂r

∂u
=

〈
∂x

∂u
,
∂y

∂u
,
∂z

∂u

〉
and tv =

∂r

∂v
=

〈
∂x

∂v
,
∂y

∂v
,
∂z

∂v

〉
are continuous on R and the normal vector tu × tv is nonzero on R.

The surface integral of f over S is

�
S

f(x, y, z)dS =

�
R

f(x(u, v), y(u, v), z(u, v))|tu × tv|dA

If f(x, y, z) = 1, this integral equals the surface area of S.
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Theorem 1.13: Evaluation of Surface Integrals of Scalar-Valued Functions on Explicitly Defined Surfaces

Let f be a continuous scalar-valued function on a smooth surface S given parametrically by z = g(x, y),
for (x, y) in a region R. The surface integral of f over S is

�
S

f(x, y, z)dS =

�
R

f(x, y, g(x, y))
√
z2x + z2y + 1dA

If f(x, y, z) = 1, the surface integral equals the area of the surface.

Orientable Surfaces: To be orientable, a surface must have a choice of normal vectors that varies continuously
over the surface. (The surface is two-sided.)

If a surface encloses a region then we will choose normal vectors to point in the outward direction. For other
surfaces, we must specify the direction of the normal vector.

Definition

Flux Integrals: Consider a continuous vector field F = ⟨f, g, h⟩. Let S be a smooth oriented surface
with unit normal vector n.

The flux integral �
S

F · ndS

computes the net flux of the vector field across the surface.

F · n = |F||n| cos θ = |F| cos θ.

The flux integral adds up the components of the vector field F normal to the surface.

Definition: Surface Integral of a Vector Field

Suppose F = ⟨f, g, h⟩ is a continuous vector field on a region of R3 containing a smooth oriented surface
S. If S is defined parametrically as u,v = ⟨x(u, v), y(u, v), z(u, v)⟩, for (u, v) in a region R, then

�
S

F · ndS =

�
R

F · (tu × tv)dA

where tu = ∂r
∂u =

〈
∂x
∂u ,

∂y
∂u ,

∂z
∂u

〉
and tv = ∂r

∂v =
〈

∂x
∂v ,

∂y
∂v ,

∂z
∂v

〉
are continuous on R, and the

normal vector tu × tv is nonzero on R, and the direction of the normal vector is consistent with the
orientation of S.

Definition: Surface Integral of a Vector Field

If S is defined in the form z = w(x, y) for (x, y) in a region R, then

�
S

F · ndS =

�
R

F · (tu × tv)dA =

�
R

(−fzx − gzy + h)dA

1.7 Stokes’ Theorem

Theorem 1.14: Stokes’ Theorem

Let S be an oriented surface in R3 with a piecewise-smooth closed boundary C whose orientation is
consistent with that of S. Assume F = ⟨f, g, h⟩ is a vector field whose components have continuous
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first partial derivatives on S. Then

�
C

F · dr =
�

S

(∇× F) · ndS

where n is the unit normal vector to S determined by the orientation of S.

Stokes’ Theorem says that the line integral around the boundary C of the tangential component of F is
equal to the surface integral over S of the normal component of the curl of F.

The right hand rule relates the orientations of S and C and determines the choice of normal vectors.

Stokes’ Theorem is the three-dimensional version of the circulation form of Green’s Theorem.

Note: If a closed curve C is the boundary of two different smooth oriented surfaces S1 and S2 which both
have orientation consistent with that of C, then the integrals of (∇× F) · n on the two surfaces are equal.

1.8 Divergence Theorem

Theorem 1.15: Divergence Theorem

Let F be a vector field whose components have continuous first partial derivatives in a connected and
simply connected region D in R3 enclosed by an oriented surface S. Then

�
S

F · ndS =

�
D

∇ · FdV

where n is the outward unit normal vector to S.

The Divergence Theorem says that the flux of F across the boundary surface of D is equal to the triple
integral over the divergence of F over D.

Theorem 1.16: Divergence Theorem for Hollow Regions

Suppose the vector field F satisfies the conditions of the Divergence Theorem on a region D in R3

bounded by two oriented surfaces S1 and S2 where S1 lies within S2. Let S be the entire boundary of
D(S = S1∪S2) and let n1 and n2 be the outward unit normal vectors for S1 and S2 respectively. Then

�
D

∇ · FdV =

�
S

F · ndS =

�
S2

F · n2dS −
�

S1

F · n1dS

This form ot the Divergence Theorem is applicable to vector fields that are not differentiable at the
origin, as is the case with some important radial vector fields of the form:

F =
r

|r|p
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