
1 Introduction to Differential Equations

1.1 Background

In a variety of subject areas, mathematical models are developed to aid in understanding. These models often
yield an equation that contains derivatives of an unknown function. Such an equation is called a differential
equation.

One example is free fall of a body. An object is released from a certain height above the ground and falls
under the force of gravity. Newton’s second law states that an object’s mass times its acceleration equals the
total force acting on it.

m
d2h

dt2
= −mg

We have h(t) as position, dh
dt as velocity and d2h

dt as acceleration. The independent variable is t and the
dependent variable is h.

md2h
dt2 = −mg is a differential equation and h(t) is the unknown function that we are trying to find.

From this we have d2h
dt2 = −g and the integral of this is dh

dt = −gt+C1. To find h we integrate again and we

get h(t) = − gt2

2 + C1t+ C2.

Another example is the decay of a radioactive substance. The rate of decay is proportional to the amount of
radioactive substance present.

dA

dt
= −kA, k > 0

where A is the unknown amount of radioactive substance present at time t and k Is the proportionality
constant.

We are looking for A(t) that satisfies this equation. We can solve this from 1
AdA = kdt and integrating both

sides we get that ln |A|+ C1 = −kt+ C2. We can rewrite this as ln |A| = −kt+ C. So, e−kt+C = A.

So A(t) = e−kt + eC , so A(t) = Ce−kt. Remember A is the dependent variable and t is the independent
variable.

Notice that the solution of a differential equation is a function, not merely a number.

When a mathematical model involves the rate of change of one variable with respect to another, a differential
equation is apt to appear.

Terminology

If an equation involves the derivative of one variable with respect to another, then the former is called a
dependent variable and the latter an independent variable.

In dh
dt , h is dependent and t is independent.

A differential equation involving only ordinary derivatives with respect to a single independent variable is
called an ordinary differential equation. A differential equation involving partial derivatives with respect to
more than one independent variable is a partial differential equation.

For example we have z = f(x, y) = 4x2 + 5xy, so ∂z
∂x = 8x+ 5y and that is partial differentiation.

The order of a differential equation is the order of the highest-order derivatives present in the equation.

For example, d2h
dt2 = −g has a order of 2.
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A linear differential equation is one in which the dependent variable y and its derivatives appear in additive
combinations of their first powers. A differential equation is linear if it has the format.

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = F (x)

2x+ 3y = 7 is linear, 2x2 + 5xy + 7y + 8y = 1 is second-degree. Nothing can have a second degree for this
to be linear.

You are just looking at the dependent variable and the derivatives and adding their powers.

If an ordinary differential equation is not linear, we call it nonlinear.

Example

For each differential equation, classify as ODE or PDE, linear or nonlinear, and indicate the depen-
dent/independent variables and order.

(a) d2x
dt2 + adx

dt + kx = 0

Dependent is x, independent is t and the order is 2. This is an ODE and linear.

(b) ∂u
∂x − ∂u

∂y = x− 2y

The dependent variable is u and the independent variables are x, y, so this is a PDE. The order is 1.

(c) d2y
dx2 + y3 = 0

The dependent variable is y, the independent variable is x, the order is 2 and this is an ODE and this
is nonlinear.

(d) t3 dx
dt = t3 + x

Dependent is x, independent is t, order is 1, this is an ODE. We can rewrite this as t3 dx
dt − 1x = t3,

and this matches the form of the linear equation so this is linear.

(e) d2y
dx2 − y dy

dx = cosx

The dependent is y, the independent is x, the order is 2 and this is an ODE and this is nonlinear because
of y dy

dx .

1.2 Solutions and Initial Value Problems

An nth-order ordinary differential equation is an equality relating the independent variable to the nth derivative
(and usually lower-order derivatives as well) of the dependent variable.

Example

Identify the order, independent and dependent variable.

(a) x2 d2y
dx2 + xdy

dx + y = x3. Independent: x, dependent: y, order: 2

(b)

√
1−

(
d2y
dt2

)
− y = 0. Independent: t, dependent: y, order: 2

(c) d4x
dt4 = xt. Independent: t, dependent: x, order: 4. (This is also linear.)

A general form for an nth-order equation with x independent, y dependent can be expressed as

F (x, y,
dy

dx
, . . . ,

dny

dxn
) = 0

where F is a function that depends on x, y, and the derivatives of y up to order n. We assume the equations
holds for all x in an open interval I. In many cases, we can isolate the highest-order term and write the
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previous equation as
dny

dxn
= f

(
x, y,

dy

dx
, . . . ,

dn−1y

dxn−1

)
This is called the normal form.

A function ϕ(x) that when substituted for y in either the previous two equations satisfies the equation for all
x in the interval I is called an explicit solution to the equation on I.

Example

Show that ϕ(x) = x2 − x−1 is an explicit solution to the linear equation d2y
dx2 − frac2x2y = 0 but

ψ(x) = x3 is not.

So we have y = x2 − x−1. The first derivative of this is 2x + 1x−2. The second derivative is
y′′ = 2− 2x−3. If we plug in the values we end up getting from the derivatives, we get that 2− 2x−3−
2x+ 2x−3 = 0, so this is satisfied.

For the second part, the first derivative is 3x2 and the second derivative is 6x. Plugging this in, we get
4x which is not 0, so ψ(x) is not a solution.

Example

Show that for any choice of the constants c1 and c2, the function ϕ(x) = c1e
−x + c2e

2x is an explicit
solution to the linear equation y′′ − y′ − 2y = 0.

We have that the first derivative is −c1e−x+2c2e
2x and the second derivative is c1e

−x+4c2e
2x. When

we plug this in, we find that this does satisfy the solution for the differential equation.

Methods for solving differential equations do not always yield an explicit solution for the equation. A solution
may be defined implicitly.

Example

Show that the relation y2 − x3 +8 = 0 implicitly defines a solution to the nonlinear equation dy
dx = 3x2

2y

on the interval (2,∞).

We have from the given that y = ±
√
x3 − 8. The derivative (of the positive version) of this is 3x2

2
√
x3−8

.

This is the same and defined on the interval.

A relation G(x, y) = 0 is said to be an implicit solution to the previous equation on the interval I if it defines
one or more explicit solutions on I.

Example

Show that x+y+exy = 0 is an implicit solution to the nonlinear equation (1+xexy)dydx +1+yexy = 0.

Taking the derivative of both sides gets us that 1 + dy
dx + exy d

dx (xy) = 0. This does simplify to what
was given in the problem.

Example

Verify that for every constant C the relation 4x2 − y2 = C is an implicit solution to y dy
dx − 4x = 0.

Graph the solution curves for C = 0,±1,±4.

The derivative of what is given is 8x − 2y dy
dx = 0. This simplifies to what is given, so it is clearly an

implicit solution.

For C = 0, the solution curves for this is 2x = y and −2x = y.
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For C = ±4, the solution curves is given by a hyperbola x2

−
y2

4 = 1.

The collection of all solutions in the previous example is called a one-parameter family of solutions.

In general, the methods for solving nth-order differential equations evoke n arbitrary constants. We often can
evalute these constants if we are given n initial values y(x0), y

′(x0), . . . , y
(n−1)(x0).

Definition

By an initial value problem for an nth-order differential equation

F (x, y,
dy

dx
, . . . ,

dny

dx2
) = 0

we mean: Find a solution so the differential equation on an interval I that satisfies at x0 the n initial
conditions

y(x0) = y0,
dy

dx
(x0) = y1 · · ·

dn−1y

dxn−1
(x0) = yn−1

where x0 ∈ I and y0, y1, . . . , yn−1 are constants.

Example

Show that ϕ(x) = sinx− cosx is a solution to the initial value problem

d2y

dx2
+ y = 0; y(0) = −1

dy

dx
(0) = 1

We have y = sinx− cosx, y′ = cosx+ sinx, and y′′ = − sinx+ cosx. These satisfy the conditions.

Theorem 1.1: Existence and Uniqueness of Solution

Consider the initial value problem

dy

dx
= f(x, y), y(x0) = y0

If f and ∂f/∂y are continuous functions in some rectangle

R = {(x, y) : a < x < b, c < y < d}

that contains the point (x0, y0), then the initial value problem has a unique solution ϕ(x) in some
interval x0 − δ < x < x0δ, where δ is a positive number.

Example

Does the theorem above imply the existence for this problem.

3dy
dx = x2 − xy3, y(1) = 6

The derivative exists for all (x, y) and is continuous in all intervals containing x = 1 and all rectangular
regions containing (1, 6).

When we consider the partial derivatives, ∂f/∂y = −xy2, and this exists and is continuous for all
rectangular regions in the xy plane.
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1.3 Direction Fields

One technique useful in visualizing (graphing) the solutions to a first-order differential equation is to sketch
the direction field for the equation. A first-order equation

dy

dx
= f(x, y)

specifies a slope at each point in the xy-plane where f is defined.

Definition

A plot of short line segments drawn at various points in the xy-plane showing the slope of the solution
curve htere is called a direction field for the differential equation.

For example, consider the equation dy
dx = x2 − y. When we plug in the point (1, 0), the slope is 1. When the

point is (0, 1) the slope is −1. Notice the further right we get, the steeper the graph goes. When we look
at this function, f(x, y) = x2 − y, so taking the partial of y results in −1 which is continuous so there is a
solution curve at any point.

Note that we are basically just drawing slope fields from AP Calculus BC.

When we consider an equation dy
dx = − y

x , we have a unique solution when x ̸= 0 because f(x, y) is continuous

if x ̸= 0 and ∂f
∂y = − 1

x , so if x ̸= 0, then there is a unique solution.

Example

Consider the direction field for dy
dx = 3y2/3. Is there a unique solution passing through (2, 0)?

∂f
∂y = 2

3
√
y is not continuous when y = 0.

Example

The logistic equation of the population p (in thousands) at time t of a certain species is given by
dp
dt = p(2− p). Use its direction field to answer the following questions.

(a) If the initial population is 3000[p(0) = 3], what can you say about the limiting population limt→∞ p(t)?

We start at the point (0, 3) and as the field approaches p = 2, the rate of change becomes 0 so the
limit is equal to 2.

(b) Can a population of 1000 ever decline to 500?

No

(c) Can a population of 1000 ever increase to 3000.

No

A differential equation dy
dt = f(t, y) is autonomous if the independent variable t does not appear explicitly:

dy
dt = f(y). An autonomous equation has the following properties

� The slopes in the direction field are all identical among horizontal lines

� New solutions can be generated from old ones by time shifting [i.e., replacing y(t) with y(t− t0)]

The constant, or equilibrium, solutions y(t) = c for autonomous equations are of particular interest. The
equilibrium y = c is called a stable equilibrium, or sink, if neighboring solutions are attracted to it as t→ ∞.
Equilibria that repel neighboring solutions, are known as sources; all other equilibria are called nodes. Sources
and nodes are unstable equilibria. (Nodes are sometimes called semi stable).

A phase line indicates the zeros and signs of f(y) to describe the nature of the equilibrium solutions for an
autonomous equation.
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Example

SKetch the phase line for y′ = −(y − 1)(y − 3)(y − 5)2 and state the nature of its equilibria.

We have y′ = 0 and y = 1, 3, 5. When y = 0, then y′ < 0 that means that it is decreasing for values
below 1. When we let y = 2 then y′ > 0, so any value between 1 and 3 is increasing. When we put
y = 4, then y′ < 0 so any values between 3 and 5 are decreasing. When y = 6 then y′ < 0 so it is
decreasing.

At y = 5, above it is is attracting but repeling below, so it is semi-stable or a node. At y = 3, it is
stable or an attractor because it is approaching on both sides. At y = 1, it is a repeller.

Hand sketching the direction field for a differential equation is often tedious. Fortunately, several software
programs are available for this task. When hand sketching is necessary, the method of isoclines can be helpful
reducing the work.

A isocline for the differential equation
y′ = f(x, y)

is a set of points in the xy-plane where all the solutions have the same slope dy
dx ; thus, it is a level curve for

the function f(x, y).

Example

Find isocline curves of y′ = f(x, y) = x+ y for a few select values of c. Use the isoclines to draw hash
marks with slope c along the isocline f(x, y) = c.

When c = 0, y′ = 0, x + y = 0 and y = −x. When c = 1, y′ = 1, x + y = 1 and y = −x + 1. When
c = 2, y′ = 2, x+ y = 2 and y = −x+ 2.

1.4 The Approximation Method of Euler

Euler’s method (or the tangent-line method) is a procedure for constructing approximate solutions to an initial
value problem for a first-order differential equation

y′ = f(x, y), y(x0) = y0

Euler’s method can be summarized by the recursive formulas xn+1 = xn + h and yn+1 = yn + hf(xn, yn),
where n = 0, 1, 2, . . . .

h is the step size, y′ is the m of the tangent line. Remember that y − y0 = m(x − x0) and that y − y0 is
just f(x0, y0)(x− x0) so y = y0 + f(x0, y0) · h.

Example

Use Euler’s method with step size h = 0.1 to approximate the solution to the initial value problem

y′ = x
√
y, y(1) = 4

at the points x = 1.1, 1.2, 1.3, 1.4 and 1.5.

We know the x points so we can find the y values from yn = yn−1 + f(xn−1, yn−1)(0.1).

We have (1, 4) then (1.1, 4.2) and continuing the calculations, we get (1.2, 4.43), (1.3, 4.68), (1.4, 4.96)
and (1.5, 5.27).

Example
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Use Euler’s method to find approximations to the solution of the initial value problem

y′ = y, y(0) = 1

at x = 1, taking 1, 2, 4, 8 and 16 steps.

Let y = ex and a point (0, 1). The recursion formula is yn = yn−1 + f(xn−1 + yn−1)h.

If we use a step size of 1, then y(1) = 2.

If we use a step size of 0.5 then y(1) = 2.25

If we use a step size of 0.25 then y(1) = 2.44

Using technology we can see with a step size of 0.125 that y(1) = 2.57 and with a step size of 0.0625,
y(1) = 2.64.
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