
1 First-Order Differential Equations

1.1 Separable Equations

Definition

If the right-hand side of the equation
dy

dx
= f(x, y)

can be expressed as a function g(x) that depends only on x times a function p(y) that depends only on
y, then the differential equation is called separable.

To solve the equation
dy

dx
= g(x)p(y)

multiply by dx and by h(y) = 1/p(y) to obtain

h(y)dy = g(x)dx

Then integrate both sides and you end up getting H(y) = G(x)+C, where we have merged the two constants
of integration into a single symbol C. The last equation gives an implicit solution to the differential equation.

Example

Solve the nonlinear equation
dy

dx
=

x− 5

y2

This can be rewritten as y2dy = (x− 5)dx. Integrating both sides results in y3

3 = x2

2 − 5x+ C.

To get the explicit form just solve for y, which is trivial.

Example

Solve the initial value problem
dy

dx
=

y − 1

x+ 3
y(−1) = 0

Doing Calc BC stuff gives us y = 1− 1
2 (x+ 3).

Be careful because you can be losing solutions. Ok bye!

1.2 Linear Equations

Remember a linear first-order equation is an equation that can be expressed in the form

a1(x)
dy

dx
+ a0y = b(x)

where a1(x), a0(x), and b(x) depend only on the independent variable x, not on y.

Method for solving linear equation:
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� Write the equation in the standard form

dy

dx
+ P (x)y = Q(x)

� Calculate the integrating factor µ(x) by the formula

µ(x) = exp

[�
P (x)dx

]

� Multiply the equation in standard form by µ(x) and, recalling that the left-hand side is just d
dx [µ(x)y],

obtain

µ(x)
dy

dx
+ P (x)µ(x)y = µ(x)Q(x)

d

dx
[µ(x)y] = µ(x)Q(x)

� Integrate the last equation and solve for y by dividing by µ(x) to obtain.

Example

Find the general solution to
1

x
dydx− 2y

x2
= x cosx x > 0

We have dy
dx − 2

xy = x2 cosx.

The integrating factor µ(x) = e
�
P (x)dx which in this case is e−2

�
1
xdx and this is equivalent to 1

x2 .

Using this we can multiply through in standard form then we have 1
x2

dy
dx − 2

x3 y = cosx.

The left side is just d
dx

(
1
x2 ·

)
= cosx.

Integrating and solving for y we get that y = x2 sinx+ Cx2.

Example

For the initial value problem

y′ + y =
√
1 + cos2 x y(1) = 4

find the value of y(2).

Our P (x) is 1 here, so µ = ex.

So the equation after multiplying through by it gives us that µy′+µy = µ
√
1 + cos2 x, or exy′+ exy =

ex
√
1 + cos2 x.

This is equivalent to basically d
dx (e

xy) = ex
√
1 + cos2 x.

This is exy =
�
ex
√
1 + cos2 xdx.

Using a calculator y(2) = 2.127.

Theorem 1.1: Existence and Uniqueness of Solution

Suppose P (x) and Q(x) are continuous on an interval (a, b) that contains the point x0. Then for any
choice of initial value y0, there exists a unique solution y(x) on (a, b) to the initial value problem

dy

dx
+ P (x)y = Qx y(x0) = y0

In fact the solution is given for a suitable value of C.
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1.3 Exact Equations

Definition: Exact Differential Form

The differential form M(x, y)dx+N(x, y)dy is said to be exact in a rectangle R is there is a function
F (x, y) such that

∂F

∂x
(x, y) = M(x, y) and

∂F

∂y
(x, y) = N(x, y)

for all (x, y) in R. That is, the total differential of F (x, y) satisfies

dF (x, y) = M(x, y)dx+N(x, y)dy

If M(x, y)dx+N(x, y)dy is an exact differential form, then the equation

M(x, y)dx+N(x, y)dy = 0

is called an exact equation.

Theorem 1.2: Test for Exactness

Suppose the first partial derivatives of M(x, y) and N(x, y) are continuous in a rectangle R. Then

M(x, y)dx+N(x, y)dy = 0

is an exact equation in R if and only if the compatibility condition

∂M

∂y
(x, y) =

∂N

∂x
(x, y)

holds for all (x, y) in R.

Example

Solve the differential equation
dy

dx
= −2xy2 + 1

2x2y

Ok so this is not separable or linear, so we use exactness.

dy

dx
+

2xy2 + 1

2x2y
= 0

dy +
2xy2 + 1

2x2y
dx = 0

2xy2 + 1

2x2y
dx+ 1dy = 0

This is the same form we want.

Another form we can get is (2xy2 + 1)dx+ 2x2ydy = 0.

Another form we can get is 1dx+ 2x2y
2xy2+1dy = 0.

We are now looking for a F (x, y) = c and we know this is true when ∂m
∂y = ∂n

∂x .

So the second one of these is probably the best, so we now have m = 2xy2 + 1 and n = 2x2y.
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Doing the partial of m with respect to y we get 4xy and the partial of n with respect to x is 4xy and
these are the same.

Let F (x, y) = x2y2 + x = C. The partial of this function with respect to x is 2xy2 + 1 and the partial
of this function with respect to y is 2x2y and this is the same as previous.

Method for Solving Exact Equations:

� If Mdx+Ndy = 0 is exact, then ∂F/∂x = M . Integrate this last equation with respect to x to get

F (x, y) =

�
M(x, y)dx+ g(y)

� To determine g(y), take the partial derivative with respect to y of both sides of the aboev equation and
substitute N for ∂F/∂y. We can now solve for g′(y).

� Integrate g′(y) to obtain g(y) up to a numerical constant. Substituting g(y) into the equation from
step 1 gives F (x, y)

� The solution to Mdx+Ndy = 0 is given implicitly by

F (x, y) = C

(Alternatively, starting with ∂F/∂y = N , the implicit solution can be foudn by first integrating with respect
to y.)

Example

Solve
(2xy − sec2 x)dx+ (x2 + 2y)dy = 0

Let m be the first term and n be the second term, and the partial derivatives of these are the same, so
they are exact.

Let F (x, y) =
�
2xy− sec2 xdx. When we integrate this, we get yx2− tanx. In this case, the constant

is anything with y, so the integral is equivalent to yx2 − tanx+ g(y).

Now we take the ∂F
∂y = x2 − 0 + g′(y). These two are n so x2 + 2y = x2 + g′(y), so solving for g(y)

we get that this is equal to y2 + C.

So F (x, y) = xy2 − tanx+ y2 = C.

Exercise Solve (1 + exy + xexy)dx+ (xex + 2)dy = 0.

Solution: x+ xyex + 2y = C.

Example

Solve
(x+ 3x3 sin y)dx+ (x4 cos y)dy = 0

Doing the partials originally makes them not equal to each other.

We can get this to exact form by multiplying through by x−1. When we do this we get (1+3x2 sin y)dx+
x3 cos ydy = 0 and the partials of these are the same.

x−1 is called an integrating factor.

Integrating m with respect to x, we get that F (x, y) =
�
1 + 3x2 sin ydx = x+ sin y · x3 + g(y).

Doing the partial of F with respect to y, we get ∂F
∂y = x3 cos y = 0 + x3 cos y + g′(y), and this gets

that g(y) = C.

So the answer is x+ x3 sin y = C.
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1.4 Special Integrating Factors

Definition

If the equation
M(x, y)dx+N(x, y)dy = 0

is not exact, but the equation

µ(x, y)M(x, y)dx+ µ(x, y)N(x, y)dy = 0

which results from multiplying the first equation by the function µ(x, y), is exact, then µ(x, y) is called
an integrating factor of the first equation.

Theorem 1.3: Special Integrating Factors

If (∂M/∂y − ∂N/∂x)/N is continuous and depends only on x, then

µ(x) = exp

[� (
∂M/∂y − ∂N/∂x

N

)
dx

]
is an integrating factor for an equation. If (∂N/∂x − ∂M/∂y)/M is continuous and depends only on
y, then

µ(y) = exp

[� (
∂M/∂x− ∂N/∂y

M

)
dy

]
is an integrating factor for the same equation.

Method for Finding Special Integrating Factors:

If Mdx+Ndy = 0 is neither separable nor linear, compute ∂M/∂y and ∂N/∂x. If ∂M/∂y = ∂N/∂x, then
the equation is exact. If it is not exact, consider

∂M/∂y − ∂N/∂x

N

If this is a function of just x, then an integrating factor is given by the formula above of µ(x). If not consider

∂N/∂x− ∂M/∂y

M

If this is a function of just y¡ then an integrating factor is given by above of µ(y).

Example

Solve (2x2 + y)dx+ (x2y − x)dy = 0

When we do the partials, we get that 1 ̸= 2xy − 1.

So lets look at ∂m/∂y−∂n/∂x
N , which is 1−(2xy−1)

x2y−x = −2
x which is just a function of x. So we have that

µ = e
�
− 2

xdx, so we don’t have to look at the one in terms of y.

Doing the integral of all this gives us that e−2 ln x = x−2. So when we multiply through by x−2, we get
that (2 + x−2y)dx+ (y − x−1)dy = 0.

The partials are equal to each other, so this equation is now exact.

Now we find F (x, y) by integrating m, so
�
(2 + x−2y)dx = 2x+−x−1y + g(y) = F (x)

Now we differentiation with respect to y so ∂F
∂y = y − x−1 = −x−1 + g′(y), so g(y) = y2

2

The solution is therefore 2x− x−1y + y2

2 = C.
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1.5 Substitutions and Transformations

Substitution Procedure:

� Identify the type of equation and determine the appropriate substitution or transformation

� Rewrite the original equation in terms of new variables

� Solve the transformed equation

� Express the solution in terms of the original variables

Definition: Homogeneous Equation

If the right-hand side of the equation
dy

dx
= f(x, y)

can be expressed as a function of the ratio y/x alone, then we say the equation is homogeneous.

To solve a homogeneous equation, use the substitution v = y
x ;

dy
dx = v + x dv

dx to transform the equation into
a separable equation.

Example

Solve (xy + y2 + x2)dx− x2dy = 0.

Solving for dy
dx we get that this is equal to −x2−y2−xy

−x2 and this simplifies to 1 +
(
y
x

)2
+ y

x .

This is equivalent to v + x dv
dx = 1 + v2 + v. We end up getting that dv

dx = v2+1
x and this can be done

by separation. The solution is y = x tan(ln |x|+ C) after solving.

To solve an equation of the form dy
dx = G(ax+by), use the substitution z = ax+by to transform the equation

into a separable equation.

Example

Solve dy
dx = y − x− 1 + (x− y + 2)−1

First we have dy
dx = −(x− y)− 1 + (x− y + 2)−1

So substituting with z = x − y, we have that dz
= 1 − dz

dx . Knowing this, the equation is equal to

1− dz
dx = −z − 1 + (z + 2)−1. From this this simplifies to dz

dx = z + 2− (z + 2)−1.

So now we write this into a separable equation with (z+2)dz
(z+2)2−1 = dx.

Separating by parts and substituting gives (x− y + 2)2 = ce2x + 1

Definition: Bernoulli Equation

A first-order equation that can be written in the form

dy

dx
+ P (x)y = Q(x)yn

where P (x) and Q(x) are continuous on the interval (a, b) and n is a real number, is called a Bernoulli
equation.

To solve a Bernoulli equation use the substitution v = y1−n to transform the equation into a linear equation.
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Example

Solve dy
dx − 5y = − 5

2xy
3.

From above, we have v = y−2 and dv
dx = −2y−3 du

dx and − 1
2
dv
dx = y−3 dy

dx .

So multiplying through by y−3 and substituting, we get that − 1
2
dv
dx − 5v = − 5

2x.

This is equal to dv
dx +10v = 5x. The integrating factor here is µ = e

�
P (x)dx, which is e10x in this case.

Multiplying through by µ, we get that e10x dv
dx + 10ve10x = 5xe10x and the LHS should be equal to

d
dx (e

10xv) = 5xe10x.

Using elementary integration techniques the answer is y−2 = x
2 − 1

20 + Ce−10x.
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