
1 Linear Second-Order Equations

1.1 Introduction: The Mass-Spring Oscillator

A damped mass-spring oscillator consists of a mass m attached to a spring fixed at one end. Devise a
differential equation that governs the motion of this oscillator, taking into account the forces acting on it due
to the spring elasticity, damping friction, and possible external influences.

Newton’s second law - force equals mass times acceleration (F = ma) - is the most commonly encountered
differential equation. It is an ordinary differential equation of the second order since acceleration is the second
derivative of position (y) with respect to time (a = d2y/dt2).

If the spring is unstretched and the inertial mass m is still, the system is at equilibrium. We stretch the
coordinate y of the mass by its displacement from the equilibrium position.

When the mass m is displaced from equilibrium, the spring is stretched or compressed and it exerts a force
that resists the displacement. For most springs this force is directly proportional to the displacement y and is
given by Hooke’s law.

Fspring = −ky

where the positive constant k is known as the stiffness (spring constant) and the negative sign reflects the
opposing nature of the force. Hooke’s law is only valid for sufficiently small displacements.

Usually all mechanical systems also experience friction. For vibrational motion this force is usually modeled
accurately by a term proportional to velocity:

Ffriction = −b
dy

dt
= −by′

where b ≥ 0 is the damping coefficient and the negative sign reflects the opposing nature of the force.

The other forces on the oscillator are usually regarded as external to the system. Although they may be
gravitational, electrical, or magnetic, commonly the most important external forces are transmitted to the
mass by shaking the supports holding the system. For now we refer to the combined external forces by a
single known function Fext(t). Newton’s law provides the differential equation for the mass-spring oscillator:

my′′ = −ky − by′ + Fext(t)

or
my′′ + by′ + ky = Fext(t)

Example

Verify that if b = 0 and Fext = 0, that the above equation has a solution of the form y(t) = cos(ωt)
and the angular frequency ω increases with k and decreases with m.

The differential equation is my′′ + by′ + ky = Fext and that my′′ + ky = 0.

Since we are given what y(t) is, taking the derivative of the differential equation gives that−mω2 cos(ωt)+

k cos(ωt) = 0, and solving for ω, we get that ω =
√

k
m .

If k increases, ω increases, and if m increases, ω decreases.

Example

Verify that the exponentially damped sinusoid given by y(t) = e−3t cos 4t is a solution to the above
differential equation if Fext = 0,m = 1, k = 25, and b = 6.

From the differential equationmy′′+by′+ky = Fext, we can plug in stuff and we get that y′′+by′+25y =

1
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0.

Since we are given y(t) we can find the derivatives and substitute. What we are given is quite long, but
essentially it cancels out to 0 = 0, which means it is a solution to the system.

Exercise Verify that the simple exponential function y(t) = e−5t is a solution to the above differential equation
if Fext = 0, m = 1, k = 25, and b = 10.

Sometimes the external force will make the system look somewhat erratic. There are many real world examples
where the external force must defintely be taken into account.

1.2 Homogeneous Linear Equations: The General Solution

A second-order constant-coefficient differential equation has the form

ay′′ + by′ + cy = f(t) (a ̸= 0)

A homogeneous second-order constant-coefficient differential equation is the special case with f(t) = 0.

ay′′ + by′ + cy = 0 (a ̸= 0)

A solution of this equation has the form y = ert. The resulting equation ar2 + br + c = 0 is called the
auxiliary equation (or characteristic equation) associated with the homogeneous equation.

Example

Find a pair of solutions to
y′′ + 5y′ − 6y = 0

Plugging in y = ert, we get that ert(r2+5r−6) after substituting. Solving the quadratic r2+5r−6 = 0,
we get that r = −6 and r = 1, which is y = e−6t and y = et.

Note that the zero function, y(t) = 0 is always a solution to an equation above (figure this out later). In
addition when we have a pair of solutions y1(t) and y2(t), we can construct an infinite number of other
solutions by forming linear combinations:

y(t) = c1y1(t) + c2y2(t)

for any choice of the constants c1 and c2. This is a two-paramter solution form since there are two unknown
constants. To find a specific solution, two initial conditions are needed.

Example

Solve the initial value problem

y′′ + 2y′ − y = 0 y(0) = 0, y′(0) = −1

Doing the default substitution, our auxiliary equation is r2 + 2r − 1 = 0.

The solutions from this are r = −1 +
√
2 and r = −1 −

√
2. Remember y = ert. Using the initial

conditions, we get that c1 = −
√
2
4 and c2 =

√
2
4 .

Theorem 1.1

For any real numbers a( ̸= 0), b, c, t0, Y0, and Y1, there exists a unique soultion to the initial value
problem.

ay′′ + by′ + cy = 0 y(t0) = Y0 y′(t0) = y1

The solution is valid for all t in (−∞,∞)
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Definition

A pair of functions y1(t) and y2(t) is said to be linearly independent on the interval t if and only if
neither of them is a constant multiple of the other on all of t. We say that y1 and y2 are linearly
dependent on t if one of them is a constant multiple of the other on all of t.

Theorem 1.2

If y1(t) and y2(t) are any two solutions to the differential equation that are linearly independent on
(−∞,∞), then unique constants c1 and c2 can always be found so that c1y1(t) + c2y2(t) satisfies the
initial value problem on (−∞,∞).

Definition: Wronksian

Suppose each of the functions f1(x), f2(x), . . . fn(x) possess at least n− 1 derivatives.

The determinant

W (f1, f2, . . . , fn) =

∣∣∣∣∣∣∣∣∣
f1 f2 . . . fn
f ′
1 f ′

2 . . . f ′
n

...
...

. . .
...

f
(n−1)
1 f

(n−1)
2 . . . f

(n−1)
n

∣∣∣∣∣∣∣∣∣
is called the Wronksian of the functions.

Theorem 1.3

Let y1, y2, . . . , yn be n solutions of the homogeneous linear nth-order differential equation on an interval
I. Then the set of solutions is linearly independent on I if and only if W (y1, y2, . . . , yn) ̸= 0 for every
x in the interval.

Distinct real roots: If the auxiliary equation has distinct real roots r1 and r2, then both y1(t) = ert and
y2(t) = ert are solutions to the above differential equation and y(t) = e1e

rt + e2e
rt is a general solution.

Repeated root: if the auxiliary equation has a repeated root r, then both y1(t) = ert and y2(t) = tert are
solutions to the differential equation and y(t) = e1e

rt + e2te
rt is a general solution.

A homogeneous linear nth-order equation has a general solution of the form

y(t) = c1y1(t) + c2y2(t) + · · ·+ cnyn(t)

where the individual solutions yi(t) are linearly independent, i.e. no yi(t) is expressible as a linear combination
of the others.

1.3 Auxiliary Equations with Complex Roots

The simple harmonic equation y′′ + y = 0 so called because of its relation to the fundamental vibration of a
musical tone, has as solutions y1(t) = cos t and y2(t) = sin t.

When b2 − 4ac < 0, the roots of the auxiliary equation ar2 + br + c = 0 associated with the homogeneous
equation ay′′+by′+cy = 0 are the complex conjugate numbers r1 = α+ iβ and r2 = α− iβ where α = − b

2a

and β =
√
4ac−b2

2a

Combing the solutions er1t and er2t with Euler’s formula eiθ = cos θ+i sin θ, yields complex function solutions

e(α+iβ)t = eat(cosβt+ i sinβt) and e(α−iβ)t = eat(cosβt− i sinβt)
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Example

Solve the initial value problem y′′ + 2y′ + 2y = 0 given y(0) = 0 and y′(0) = 2.

Using the auxiliary form of the equation we have r2+2r+2 = 0. From the quadratic formula, r = −1±i,
the two roots are r1 = −1 + i and r2 = −1− i.

The solution is therefore y1 = e(−1+i)t and y2 = e(−1−i)t

From the form given from euler’s formula earlier, y1 = e−t(cos t+ i sin t) and y2 = e−t(cos t− i sin t),
so our general solution is y = c1e

−t(cos t+ i sin t) + c2e
−t(cos t− i sin t).

Plugging the initial conditions, we get that 0 = c1 + c2.

The derivative of the general solution is y′ = c1e
−t(− sin t + i cos t) + (cos t + i sin t) · c1(−1)e−t +

c2e
−t(− sin t − i cos t) + (cos t − i sin t) · c2(−1)e−t. Plugging in the initial conditions gives 2 =

c1i− c1 − c2i− c2.

Factoring we get 2 = c1(i− 1) + c2(−i− 1). Using some substitution c2 = i and c1 = −i. Plug this in
the general solution to solve.

If the auxiliary equation has complex conjugate roots a ± iβ, then two linearly independent solutions to the
equation are

eαt cosβt and eαt sinβt

and a general solution is
y(t) = c1e

αt cosβt+ c2e
αt sinβt

where c1 and c2 are arbitrary constants.

Example

Find a general solution to y′′ + 2y′ + 4y = 0.

Using the auxiliary equation the roots are −1±
√
3i. Using what was given above, the general solution

is y = c1e
−t cos(

√
3t) + c2e

−t sin(
√
3t).

Example

Newton’s second law implies the position y(t) of the mass m is governed by the second-order differential
equation my′′(t) + by′(t) + ky(t) = 0 where the terms are physically identified as my being interial, by
is damping and ky is stiffness. Determine the equation of motion for a spring system when m = 36 kg,
b = 12 kg/sec (which is equivalent to 12 N - sec/m), k = 37 kg/sec2, y(0) = 0.7 m and y′(0) = 0.1
m/sec. Also find y(10), the displacement after 10 sec.

The differential equation is 36y′′ + 12y′ + 37, so the roots are − 1
6 ± i.

Doing the methods explained above, the solution is y = .7e−t/6 cos t+ 13
60e

−t/6 sin t, and y(10) ≈ −.13
m.

Exercise Interpret the equation y′′ + 5y′ − 6y = 0 in terms of the mass-spring system.

1.4 Nonhomogeneous Equations: the Method of Undetermined Co-
efficients

The method of Undetermined Coefficients is the technique used to guess a solution’s form based on the form of
the nonhomogeneous function f(t) in a linear equation with constant coefficients such as ay′′+by′+cy = f(t).

For example the particular solution to ay′′ + by′ + cy = Ctm is of the form yp(t) = Amtm + · · ·+A1t+A0.
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Example

Find a particular solution to y′′ + 3y′ + 2y = 10e3t.

Our guess based on the form of f(t) = 10e3t is that y = Ae3t is the guess form of the particular
solution, so we know that y′ = 3A33t and y′′ = 9Ae3t.

Substituting this in gives us 9Ae3t + 3(3Ae3t) + 2(Ae3t) = 10e3t. Simplifying this gives us 20Ae3t =
10e3t so A = 1/2.

So our particular solution is 1
2e

3t.

Example

Find a particular solution to y′′ + 3y′ + 2y = sin t.

Let y = A sin t+B cos t as the form of the particualr solution.

Substituting and solving should result in A = 1/10 and B = −3/10.

This example suggests an equation of the form ay′′ + by′ + cy = C sinβt (or C cosβt) will have a particular
solution of the form yp(t) = A cosβt+B sinβt.

Example

Find a particular solution to y′′ + 4y = 5t2et.

Let y = At2et+Btet+Cet = et(At2+Bt+C). The result should be A = 1, B = −4/5, C = −2/25.

To find a particular soultion to the differential equation

ay′′ + by′ + cy = Ctmert

where m is a nonnegative integer, use the form

yp(t) = ts(Amtm + · · ·+A1t+A0)e
rt

with

1. s = 0 if r is not a root of the associated auxiliary equation;

2. s = 1 if r is a simple root of the associated auxiliary equation;

3. s = 2 if r is a double root of the associated auxiliary equation.

To find a solution to the differential equation ay′′ + by′ + cy = Ctmeαt cosβt or equal to Ctmeαt sinβt for
β ̸= 0, use the form yp(t) = ts(Amtm + . . . A1t+A0)e

αt cosβt+ ts(Bmtm + · · ·+B1t+B0)e
αt sinβt, with

1. s = 0 if α+ iβ is not a root of the associated auxiliary equation; and

2. s = 1 if α+ iβ is a root of the associated auxiliary equation

1.5 The Superposition Principle and Undetermined Coefficients Re-
visited

Theorem 1.4: Superposition Principle

Let y1 be a solution to the differential equation

ay′′ + by′ + cy = f1(t)

and y2 is a solution to
ay′′ + by′ + cy = f2(t)
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then for any constants k1 and k2, the function k1y1 + k2y2 is a solution to the differential equation

ay′′ + by′ + cy = k1f1(t) + k2f2(t)

Example

Find a particular solution to
y′′ + 3y′ + 2y = 3t+ 10e3t

The solution for equal to 3t is y = 3t
2 − 9

4 and for 10e3t is y = e3t

2 so the solution is y = 3t
2 − 9

4 + e3t

2 .

Exercise Find a particualr solution to y′′ + 3y′ + 2y = −9t+ 20e3t.

General solution for Nonhomogeneous Differential Equations: Let yp be a particular solution to

ay′′ + by′ + cy = f(t)

and c1y1 + c2y2 be the general solution to the homogeneous equation

ay′′ + by′ + cy = 0

Then the general solution to the nonhomogeneous equation is given by

y(t) = yp(t) + c1y1(t) + c2y2(t)

Theorem 1.5

For any real numbers a(̸= 0), b, c, t0, Y0, and Y1, suppose yp(t) is a particular solution to above in an
interval I containing t0 and that y1(t) and y2(t) are linearly independent solutions to the associated
homogeneous equation in I. Then there exists a unique solution in I to the initial value problem.

ay′′ + by′ + cy = f(t) y(t0) = Y0 y′(t0) = Y1

Example

Given that yp(t) = t2 is a particular solution to

y′′ − y = 2− t2

Find a general solution and a solution satisfying y(0) = 1, y′(0) = 0.

Our general solution using the auxiliary equation is y = c1e
t + c2e

−t.

Our particular solution will be in At2 +By + C.

So y = t2 + c1e
t + c2e

−t. Solving for c1 and c2 by finding the derivative of this and using the initial
conditions, the specific solution is y = t2 + 1

2e
t + 1

2e
−t.

Example

A mass-spring system is driven by a sinusodial external force 5 sin t + 5 cos t. The mass equals 1, the
spring constant equals 2, and the damping coefficient equals 2 (in appropriate units), so the motion is
governed by the differential equation

y′′ + 2y′ + y = 5 sin t+ 5 cos t

If the mass is initially located at y(0) = 1, with a velocity y′(0) = 2, find its equation of motion.

Finding the general solution to this we get that y = c1e
−t cos t+ c2e

−t sin t.
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From yp = A sin t+B cos t, we should solve that

y = 3 sin t− cos t+ 2e−t cos t+ e−t sin t

Example

Find a particular solution to
y′′ − y = 8tet + 2et

The general solution for this is y = c1e
t + c2e

−t. yp is equal to (At + B)et. Doing some calculations
should result in yp = (2t2 − t)et.

Method of Undetermined Coefficients (Revisited)

To find a particular solution to the differential equation

ay′′ + by′ + cy = Pm(t)ert

where Pm(t) is a polynomial of degree m, use the form

yp(t) = ts(Amtm + · · ·+A1t+A0)e
rt

if r is not a root of the associated auxiliary equation, take s = 0; ir r is a simple root of the associated
auxiliary equation, take s = 1; and if r is a double root of the associated auxiliary equation, take s = 2.

To find a particular solution to the differential equation

ay′′ + by′ + cy = Pm(t)eαt cosβt+Qn(t)e
αt sinβt, β ̸= 0

where Pm(t) is a polynomial of degree m and Qn(t) is a polynomial of degree n, use the form yp(t) =
ts(Akt

k + · · ·+A1t+A0)e
αt cosβt+ ts(Bkt

k + · · ·+B1t+B0)e
αt sinβt, where k is the larger of m and n.

If α + iβ is not a root of the associated auxiliary equation, take s = 0; if α + iβ is a root of the associated
auxiliary equation, take s = 1.

Exercise Write down the form of a particular solution to the equation y′′+2y′+2y = 5e−t sin t+5t3e−t cos t.

Exercise Write down the form of a particular solution to the equation y′′′+2y′′+ y′ = 5e−t sin t+3+7te−t.

1.6 Variation of Parameters

The Method of Undetermined Coefficients is a procedure for determining a particular solution when the
equation has constant coefficients and the nonhomogeneous term is of a special type.

Variation of Paramters is a more general method for finding a particular solution.

Consider a linear second-order equation

a2(x)y
′′ + a1(x)y

′ + a0(x)y = g(x)

in the standard form
y′′ + P (x)y′ +Q(x)y = f(x)

Obtain the solution to the associated homogeneous equation

y = c1y1(x) + c2y2(x)

And replace the constants with functions

y = u1y1(x) + u2y2(x)

Substituting into the DE yields the system:

y1u
′
1 + y2u

′
2 = 0

y′1u
′
1 + y′2u

′
2 = f(x)
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By Cramer’s Rule, the solution can be expressed in terms of determinants-

u′
1 =

W1

W
=

−y2f(x)

W
u′
2 =

W2

W
=

y1f(x)

W

The functions u1 and u2 are found by integrating.

A particular solution is yp = u1y1 + u2y2.

Example

Find a general solution on (−π
2 ,

π
2 ) to

d2y
dt2 + y = tan t.

The standard form is y′′ + y = tan t.

The solutions to the homogeneous equation is r = ±i, so α = 0 and β = 1, so y1 = cos t and y2 = sin t.

Using what was previously introduced, we end up with y = c1 cos t+ c2 sin t− cos t ln | sec t+ tan t|

Exercise Find a general solution on (−π
2 ,

π
2 ) to

d2y
dt2 + y = tan t+ 3t− 1.

1.7 Variable-Coefficient Equations

We now consider equations with variable coefficients of the form

a2(t)y
′′ + a1(t)y

′ + a0(t)y = f(t)

Typically, the equation is divided by the nonzero coefficient a2(t) and is expressed in standard form

y′′(t) + p(t)y′ + q(t)y(t) = g(t)

Theorem 1.6

Suppose p(t), q(t), and g(t) are continuous on an interval (a, b) that contains the point t0. The, for
any choice of the initial values Y0 and Y1, there exists a unique solution y(t) on the same interval (a, b)
to the initial value problem

y′′(t) + p(t)y′(t) + q(t)y(t) = g(t), y(t0) = Y0, y′(t0) = Y1

Example

Determine the largest interval for which the above theorem ensures the existence and uniqueness of a
solution to the initial value problem

(t− 3)y′′ + y′ +
√
ty = ln t y(1) = 3, y′(1) = −5

First, let’s put this into standard form. y′′ + 1
t−3y

′ +
√
t

t−3y = ln t
t−3 .

From this we can see that this is only continuous from (0, 3).

Definition

A linear second-order equation that can be expressed in the form

at2y′′(t) + bty′(t) + cy = f(t)

where a, b, and c are constants, is called a Cauchy-Euler, or equidimensional, equation.
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To solve a Cauchy-Euler equation, for t > 0 look for solutions of the form

y = tr

and substitute into the homogeneous form

at2y′′(t) + bty′(t) + cy = 0

the resulting equation ar2 + (b− a)r + c = 0 is called the associated characteristic equation.

Example

Find two linearly independent solutions to the equation

3t2y′′ + 11ty′ − 3y = 0 t > 0

The solutions are y = tr and plugging this into the equation results in 3r2 + 8r − 3, which factors to
r = 1

3 and r = −3.

The solutions are y = t1/3 and y = t−3.

If the roots of the associated characteristic equation r are equal, then independent solutions of the Cauchy-
Euler equation on (0,∞) are given by

y1 = tr and y2 = tr ln t

IF the roots are complex, r = α± βi, then the independent solutions are given by

y1 = ta cos(β ln t) and y2 = tα sin(β ln t)

Example

Find a pair of linearly independent solutions to the Cauchy-Euler equations for t > 0.

t2y′′ + 5ty′ + 5y = 0

Answer: y1 = t−2 cos(ln t), y2 = t−2 sin(ln t)

Exercise Do the same thing for t2y′′ + ty′ = 0.

Lemma 1.7

If y1(t) and y2(t) are any two solutions to the homogeneous differential equation

y′′(t) + p(t)y′(t) + q(t)y(t) = 0

on an interval I where the functions p(t) and q(t) are continuous and if the Wronksian is zero at any
point t of I, then y1 and y2 are linearly dependent on I.

Theorem 1.8

If y1(t) and y2(t) are any two solutions to the homogeneous differential equation that are linearly
independent on an interval I containing t0, then unique constants c1 and c2 can always be found so
that c1y1(t) + c2y2(t) satisfies the initial conditions y(t0) = Y0, y

′(t0) = Y1 for any Y0 and Y1.

yh = c1y1 + c2y2 is called a general solution to the homogeneous differential equation y′′(t) + p(t)y′(t) +
q(t)y(t) = 0 if y1 and y2 are linearly independent solutions on I.

For the nonhomogeneous equation y′′(t) + p(t)y′(t) + q(t)y(t) = g(t) a general solution on I is given by
y = yp + yh where yh = c1y1 + c2y2 is a general solution to the corresponding homogeneous equation on I
and yp is a particular solution on I.
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If linearly independent solutions to the homogeneous equation are known, yp can be determined by the
variation of parameters method.

Theorem 1.9

If y1 and y2 are two linearly independent solutions to the homogeneous equation on an interval I where
p(t), q(t), and g(t) are continuous, then a particular solution is given by yp = u1y1 + u2y2, where u1

and u2 are determined up to a constant by the pair of equations, y1v
′
1 + y2v

′
2 = 0, y′1v

′
1 + y′2v

′
2 = g,

which have the solutions

v1(t) =

�
−g(t)y2(t)

W (y1, y2)(t)
dt

and

v2(t) =

�
g(t)y1(t)

W (y1, y2)(t)
dt

Note that the formulation above presumes that the differential equation has been put into standard
form (that is divided by a2(t)).

Theorem 1.10

Let y1(t) be a solution, not identically zero, to the homogeneous equation in an interval I. Then

y2(t) = y1(t)

�
e−

�
p(t)dt

y1(t)2
dt

is a second, linearly independent solution.

Example

Given that y1(t) = t is a solution to

y′′ − 1

t
y′ +

1

t2
y = 0

use the Reduction of Order formula to determine a second linearly independent solution for t > 0.

y2 is equal to t
�

eln t

t2 dt = t ln t from the formula, so the general solution is y = c1t+ c2t ln t.

Exercise The following equation arises in the mathematical modeling of reverse osmosis.

(sin t)y′′ − 2(cos t)y′ − (sin t)y = 0, 0 < t < π

Find a general solution.


	Linear Second-Order Equations
	Introduction: The Mass-Spring Oscillator
	Homogeneous Linear Equations: The General Solution
	Auxiliary Equations with Complex Roots
	Nonhomogeneous Equations: the Method of Undetermined Coefficients
	The Superposition Principle and Undetermined Coefficients Revisited
	Variation of Parameters
	Variable-Coefficient Equations


