
1 Theory of Higher-Order Linear Dif-
ferential Equations

1.1 Basic Theory of Linear Differential Equations

A linear differential equation of order n is an equation that can be written in the form

an(x)y
(n)(x) + an−1(x)y

(n−1)(x) + · · ·+ a0(x)y(x) = b(x)

where a0(x), a1(x), . . . , an(x) and b(x) depend on on x, not y. When a0, a1, . . . , an are all constants, we
say this equation has constant coefficients; otherwise it has variable coefficients. If b(x) = 0, this equation is
called homogeneous; otherwwise it is nonhomogeneous.

We assume a0(x), a1(x), . . . , an(x) and b(x) are all continuous on an interval I and an(x) ̸= 0 on I.

We can rewrite the equation in standard form

y(n)(x) + p1(x)y
(n−1)(x) + · · ·+ pn(x)y(x) = g(x)

where the functions p1(x), . . . , pn(x), and g(x) are continuous on I.

Theorem 1.1

Suppose p1(x) . . . pn(x) and g(x) are continuous on an interval (a, b) that contains the point x0. Then,
for any choice of the initial values, γ0, γ1, . . . , γn−1, there exists a unique solution y(x) on the whole
interval (a, b) to the initial value problem

y(n) + p1(x)y
(n−1)(x) + · · ·+ pn(x)y(x) = g(x)

y(x0) = γ0, y
′(x0) = γ1 . . . y

(n−1)(x0) = γn−1

Example

For the initial value problem

x(x− 1)y′′′ − 3xy′′ + 6x2y′ − (cosx)y =
√
x+ 5

y(x0) = 1, y′(x0) = 0, y′′(x0) = 7

determine the values of x0 and the intervals (a, b) containing x0 for which the above theorem guarantees
the existence of a unique solution on (a, b).

We know that x ̸= 0, 1 from x(x− 1).

In standard form this becomes y′′′ − 3x
x(x−1)y

′′ + 6x2

x(x−1)y
′ − cos x

x(x−1)y =
√
x+5

x(x−1) .

These functions will be continuous when x ̸= 0 and x ̸= 1. We also know that x ≥ −5 from the last
term.

The intervals are (−5, 0), (0, 1) and (1,∞) in which all the x0 can have an element from.

If we let the left-hand side of equation in the standard form define the differential operator L,

L[y] =
dny

dxn
+ p1

dn−1y

dxn−1
+ · · ·+ pny = (Dn + p1D

n−1 + · · ·+ pn)[y]

1
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then the standard form equation can be expressed in the operator form

L[y](x) = g(x)

Keep in mind that L is a linear operator - that is, it satisfies

L[y1 + y2 + · · ·+ ym] = L[y1] + L[y2] + · · ·+ L[ym]

L[cy] = cL[y]

where c is any constant.

Definition: Wronksian

Let f1, . . . , fn be any n functions that are (n− 1) times differentiable.

The function

W [f1, f2, . . . , fn] =

∣∣∣∣∣∣∣∣∣
f1 f2 . . . fn
f ′
1 f ′

2 . . . f ′
n

...
...

. . .
...

f
(n−1)
1 f

(n−1)
2 . . . f

(n−1)
n

∣∣∣∣∣∣∣∣∣
is called the Wronksian of f1, . . . fn.

Theorem 1.2

Let y1, . . . yn be n solutions on (a, b) of

y(n)(x) + p1(x)y
(n−1)(x) + · · ·+ pn(x)y(x) = 0

where p1, . . . , pn are continuous on (a, b). If at some point x0 in (a, b) these solutions satisfy

W [y1, . . . , yn](x0) ̸= 0

then every solution of the above equation on (a, b) can be expressed in the form

y(x) = C1y1(x) + · · ·+ Cnyn(x)

where C1, . . . , Cn are constants.

Definition: Linear Dependence of Functions

The M functions f1, f2, . . . , fm are said to be linearly dependent on an interval I if at least one of them
can be expressed as a linear combination of the others on I; equivalently, they are linearly dependent if
there exist constants c1, c2, . . . , cm, not all zero, such that

c1f1(x) + c2f2(x) + · · ·+ cmfm(x) = 0

for all x in I. Otherwise, they are said to be linearly independent on I.

Example

Show that the functions f1(x) = ex, f2(x) = e−2x, and f3(x) = 3ex − 2e−2x are linearly dependent on
(−∞,∞).

We can see that f3 = 3f1− 2f2. We can see that f3 is a linear combination of the other two functions.

We have a set of constants, not all zero that c1f1 + c2f2 + c3f3 = 0 from 3f1 − 2f2 − 1f3, so the set
of {f1, f2, f3} is linearly dependent.

If you do the Wronksian of the functions: W [f1, f2, f3], we get 0 which eans that it is linearly dependent.
The process of writing the Wronksian takes a lot of paper, so it is easier likely to do the c1f1 + c2f2 +
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· · ·+ cnfn = 0 method.

To prove that functions f1, f2, . . . , fm are linearly independent, a convenient approach is to assume the
equation defined in the linear dependence definition holds and show that this forces c1 = c2 = · · · = cm = 0.

Example

Show that the functions f1(x) = x, f2(x) = x2, and f3(x) = 1 − 2x2 are linearly independent on
(−∞,∞).

Assume c1f1 + c2f2 + c3f3 = 0. If we can show this, then we can show its independence.

From this we will get c1x+ c2x
2 + c3(1− 2x2) = 0.

If we let x = 0, we get c3 = 0.

If we let x = 1, we get c1 + c2 − c3 = 0 and if we let x = −1, we get −c1 + c2 − c3 = 0.

From this we see that c1 + c2 = 0 and −c1 + c2 = 0.

The functions are linearly independent when c1, c2 and c3 are equal to 0, so x, x2, and 1 − 2x2 are
linearly independent.

There are other ways to do this as well.

Theorem 1.3

If y1, y2, . . . , yn are n solutions to y(n)+p1y
(n−1)+· · ·+pny = 0 on the interval (a, b), with p1, p2, . . . , pn

continuous on (a, b), then the following statements are equivalent

1. y1, y2, . . . , yn are linearly dependent on (a, b).

2. The Wronksian W [y1, y2, . . . , yn](x0) is zero at some point x0 in (a, b).

3. The Wronksian W [y1, y2, . . . , yn](x) is identically zero on (a, b).

The contrapositives of these statements are also equivalent:

1. y1, y2, . . . , yn are linearly independent on (a, b).

2. The Wronksian W [y1, y2, . . . , yn](x0) is nonzero at some point x0 in (a, b).

3. The Wronksian W [y1, y2, . . . , yn](x) is never zero on (a, b)

Whenever the last 3 are met, {y1, y2, . . . , yn} is called a fundamental solution set for linear independence
theorem on (a, b).

It is useful to keep in mind the following sets consist of functions that are linearly independencet on every
open interval (a, b):

{1, x, x2, . . . , xn}

{1, cosx, sinx, cos 2x, sin 2x, . . . , cosnx, sinnx}

{eα1x, eα2x, . . . , eαnx}

where αi are distinct constants.
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Theorem 1.4

Let yp(x) be a particular solution to the nonhomogeneous equation

y(n)(x) + p1(x)y
(n−1)(x) + · · ·+ pn(x)y(x) = g(x)

on the interval (a, b) with p1, p2, . . . , pn continuous on (a, b), and let {y1, . . . , yn} be a fundamental
solution set for the corresponding homogeneous equation

y(n)(x) + p1(x)y
(n−1)(x) + · · ·+ pn(x)y(x) = 0
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Then every solution of the original nonhomogeneous equation on the interval (a, b) can be expressed in
the form

y(x) = yp(x) + C1y1(x) + · · ·+ Cnyn(x)

Example

Find a general solution on the interval (−∞,∞) to

L[y] = y′′′ − 2y′′ − y′ + 2y = 2x2 − 2x− 4− 24e−2x

given that yp1
(x) = x2 is a particular solution to L[y] = 2x2 − 2x − 4, yp2

(x) = e−2x is a particular
solution to L[y] = −12e−12x, and that y1(x) = e−x, y2(x) = ex, and y3(x) = e2x are solutions to the
corresponding homogeneous equation.

We know that {e−x, ex, e2x} is a fundamental solution set for homogeneous equations so we have
C1e

−x + C2e
x + C3e

2x.

We know that L[x2] = 2x2 − 2x− 4 and L[e−2x] = −12e−2x. From the former, we have L[2e−2x] =
−24e−2x.

We know that Lyp = 2x2 − 2x− 4− 24e−2x. We also know that L[x2 − 2e−2x] = L[x2]− 2L[e−2x] =
2x2 − 2x− 4− 24e−2x.

The solution of the nonhomogeneous equation is x2 − 2e−2x.

The general solution is therefore y(x) = x2 − 2x−2x + C1e
−2x + C2e

x + C3e
2x.

1.2 Homogeneous Linear Equations with Constant Coefficients

Consider the homogeneous linear nth-order differential equation with constant coefficients

any
(n)(x) + an−1y

(n−1)(x) + · · ·+ a1y
′(x) + a0y(x) = 0

erx is a solution to the equation, provided r is a root of the auxiliary (or characteristic equation)

P (r) = anr
n + an−1r

n−1 + · · ·+ a0 = 0

Distinct real roots: If the roots r1, r2, . . . , rn of the auxiliary equation are real and distinct, then the n
solutions to the first equation defined are

y1(x) = er1x, y2(x) = er2x , . . . , , yn(x) = ernx

Example

Find a general solution to
y′′′ − 2y′′ − 5y′ + 6y = 0

Using the auxiliary equation we get r3 − 2r2 − 5r + 6 = 0 from this.

From algebra, we know that the possible roots are ±1,±2,±3,±6.

Let’s assume r = 1 is a solution. From synthetic division, we see that r = 1 is a root. Now we can see
that (r − 1)(r2 − r − 6) is a solution.

Factoring this gives (r − 1)(r − 3)(r + 2).

The general solution is y = C1e
x + C2e

3x + C3e
−2x.

Looking at complex roots: If α + iβ(α, β real) is a complex root of the auxiliary equation, then so is its
complex conjugate α − iβ. If we accept complex-valued functions as solutions, then both e(α+iβ)x and
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e(α−iβ)x are solutions to the original homogeneous linear equation. The real-valued functions (which are
linearly independent) corresponding to the complex roots α± iβ are

eαx cos(βx), eαx sin(βx)

Example

Find a general solution to
y′′′ + y′′ + 3y′ − 5y = 0

The auxiliary equation is r3 + r2 + 3r − 5.

The possible roots are ±1,±5.

We know that 1 works from synthetic division and we get (r − 1)(r2 + 2r + 5).

From r2 + 2r + 5, we get that −1± 2i are the roots of this.

We get c1e
x + c2e

−x cos 2x+ c3e
−x sin 2x.

If r1 is a root of multiplicity m, then the m linearly independent solutions are

er1x, xer1x, x2er1x, . . . , xm−1er1x

If α+ iβ is a repeated complex root of multiplicity m, then the 2m linearly independent real-valued solutions
are

eαx cos(βx), xeαx cos(βx), . . . , xm−1eαx cos(βx)

eαx sin(βx), xeαx sin(βx), . . . , xm−1eαx sin(βx)

Example

Find a general solution to
y(4) − y(3) − 3y′′ + 5y′ − 2y = 0

The auxiliary equation is r4 − r3 − 3r2 + 5r − 2 = 0.

The possible roots are ±1,±2.

We know that r = 1 works from plugging in. Using synthetic division, we get (r − 1)(r3 − 3r + 2).

From the r3 − 3r + 2 term, we can factor this to (r − 1)(r2 + r − 2).

The auxiliary equation ends up being (r − 1)3(r + 2).

The general solution ends up being c1e
x + C2xe

x + C3x
2ex + C4e

−2x.
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Example

Find a general solution to
y(4) − 8y(3) + 26y′′ − 40y′ + 25y = 9

The auxiliary equation is r4 − 8r3 + 26r2 − 40r + 25 = 0.

Let’s assume we are told that r1 = 2 + i and r2 = 2− i.

This means that (r − (2 + i))(r − (2− i)) = r2 − 4r + 5 is a factor.

Dividing r4 − 8r3 + 26r2 − 40r + 25 from this gives us r2 − 4r + 5.

We know the roots are 2 + i, 2− i, 2 + i, 2− i.

Since 2 + i and 2 − i have multiplicity of two, then the solution is y = C1e
2x cosx + C2e

2x sinx +
C3xe

2x cosx+ C4xe
2x sinx.

1.3 Undetermined Coefficients and the Annihilator Method

Previously we used the Method of Undetermined Coefficients to find a particular solution to a nonhomogeneous
linear second-order constant coefficient equation

L[y] = (aD2 + bD + c)[y] = f(x)

when f(x) had a particular form (a product of a polynomial, an exponential, and a sinusoid) by observing
a solution form yp must resemble f . We also had to make accomodations when yp was a solution to the
homogeneous equation L[y] = 0.

The annihilator method uses the observation that suitable types of nonhomogeneities f(x) are themselves
solutions to homogeneous differential equations with constant coefficients.

1. Any nonhomogeneous term of the form f(x) = erx satisfies (D − r)[f ] = 0

2. Any nonhomogeneous term of the form f(x) = xkerx satisfies (D−r)m[f ] = 0 for k = 0, 1, . . . ,m−1.

3. Any nonhomogeneous term of the form f(x) = cosβx or sinβx satisfies (D2 + β2)[f ] = 0

4. Any nonhomogeneous term of the form f(x) = xkeαx cosβx or xkeαx sinβx satisfies [(D − α)2 +
β2]m[f ] = 0 for k = 0, 1, . . . ,m− 1.

We have that Dn annihilates polynomial of degree n− r.

We have that D − r annihilates erx.

We have that (D − r)k annihilates xk−1erx

We have that D2 − 2αD + (α2 + β2) annihilates eαx cosβx, eαx sinβx.

If have a power of xk−1 to the above, then raise the above to the power of k to annihilate this. If we just
have cosβx or sinβx, then the operator becomes D2 + β2.

Definition

A linear differential operator A is said to annihilate a function f if

A[f ](x) = 0

for all x. That is, A annihilates f if f is a solution to the homogeneous linear differential equation
above on (−∞,∞).

Example
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Find a differential operator that annihilates

6xe−4x + 5ex sin 2x

We know that (D + 4)2 will annihilate 6xe−4x.

We saw that the form that annihilates the other part of the equation is D2 − 2αD + (α2 + β2).

We know that α = 1 and β = 2.

The operator that will annihilate that term is D2 − 2D + 5, so this term annihilates 5ex sin 2x.

The sum will be annihilated by multiplying (D + 4)2 and (D2 − 2D + 5).

Example

Find a general solution to
y′′ − y = xex + sinx

Method 1: Undetermined Coefficients

The homogeneous equation is m2−1, so the solution to the homogeneous equation is yc = c1e
x+c2e

−x

The form of the particular solution looks like yp = (Ax+B)ex + C sinx+D cosx.

Let’s find the form of xex first.

We have that yp = (Ax+B)ex, then the derivative is Aex + (Ax+B)ex = Axex + (A+B)ex. The
second derivative is Aex +Axex + (A+B)ex = Axex + (2A+B)ex.

Plugging this in gives Axex + (2A+B)ex − (Ax+B)ex = xex. We end up getting 2Aex = xex.

Because of the overlap with the homogeneous equation, the particular solution is actually yp = x(Ax+
B)ex = (Ax2 +Bx)ex.

The first derivative of this is (2Ax+B)ex + (Ax2 +Bx)ex = [Ax2 + (2A+B)x+B]ex. The second
derivative is (2Ax+ 2A+B)ex + [Ax2 + (2A+B)x+B]ex = [Ax2 + (4A+B)x+ (2A+ 2B)]ex.

Plugging this in gives [Ax2 + (4A+B)x+ (2A+ 2B)]ex − (Ax2 +Bx)ex = xex.

Simplifying this gives 4A = 1 and 2A+ 2B = 0. From this we get A = 1/4 and B = −1/4.

The solution for yp = (1/4x2 − 1/4x)ex = x( 14x− 1
4 )e

x.

Now we need to solve the other part of yp.

Doing derivatives and plugging in stuff we get C = −1/2 and D = 0, so yp = x( 14x− 1
4 )e

x − 1
2 sinx.

Therefore y = c1e
x + c2e

−x + x(− 1
4x− 1

4 )e
x − 1

2 sinx

Method 2: Annihilator Method We know that (D − 1)2 annihilates xex.

We know that for sinx the form is D2 − 2αD + (α2 + β2).

So D2 + 1 annihilates sinx.

(D − 1)2(D2 + 1) annihilates xex + sinx.

Rewrite the equation using differential operator notation. We end up getting (D2 − 1)y = xex + sinx.

This gives (D + 1)(D − 1)y = xex + sinx. Applying (D − 1)2(D2 + 1) to both sides, we get (D +
1)(D − 1)3(D2 + 1)y = (D − 1)2(D + 1)[xex + sinx].

We get that (D + 1)(D − 1)3(D2 + 1)y = 0.

We would have y = c1e
−x + c2e

x + c3xe
x + c4x

2ex + c5 sinx+ c6 cosx as the general solution to the
homogeneous equation.

The particular solution is exactly what we got in the same form using the annihilator method.
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Belpw for me later Exercise Find a general solution to y′′′ − 3y′′ + 4y = xe2x pls later anastasia come back

1.4 Method Of Variation of Parameters

The method of undetermined coefficients and the annihilator method work only for linear equations with
constant coefficients and when the nonhomogeneous term is a solution to some homogeneous linear equation
with constant coefficients. The method of variation of parameters discussed in chapter 4 generalizes to
higher-order linear equations with variable coefficients.

Our goal is to find a solution to the standard form equation

L[y](x) = g(x)

where L[y] = y(n)+p1y
(n−1)+· · ·+pny and the coefficient functions p1, p2, . . . , pn as well as g are continuous

on (a, b).

A general solution to L[y](x) = 0 is yh(x) = C1y1(x) + · · ·+ Cnyn(x).

In the method of variation of parameters, there exists a particular solution to the standard form equation of
the form

yp(x) = v1(x)y1(x) + · · ·+ vn(x)yn(x)

The functions v′1, v
′
2, . . . , v

′
n must satisfy the system

y1v
′
1 + · · ·+ ynv

′
n = 0

...
...

...
...

...

y
(n−2)
1 v′1 + · · ·+ y(n−2)

n v′n = 0

y
(n−1)
1 v′1 + · · ·+ y(n−1)

n v′n = g

Solving the system using Cramer’s Rule, we find that v′k(x) =
g(x)Wk(x)

W [y1,...,yn](x)
where k = 1, . . . , n. and where

Wk(x) is the determinant of a matrix obtained from the Wronksian W [y1, . . . , yn](x) by replacing the kth
column by Col[0, . . . , 0, 1].

Example

Find a general solution to the Cauchy-Euler equation

x3y′′′ + x2y′′ − 2xy′ + 2y = x3 sinx, x > 0

From Cauchy Euler, we see that y = xr, y′ = rxr−1, y′′ = r(r − 1)xr−2, y′′′ = r(r − 1)(r − 2)xr−3.

Plugging this in the homogeneous equation gives x3 ·r(r−1)(r−2)xr−3+x2r(r−1)xr−2−2xrxr−1+
2xr = 0.

This gives xr[r3 − 3r2 + 2r] + xr[r2 − r]− 2xr[r] + 2xr = 0. Factoring this gives xr[r3 − 3r2 + 2r +
r2 − r − 2r + 2] = 0.

Assuming x ̸= 0, we get r3 − 2r2 − r + 2 = 0. Factoring this gives (r − 2)(r − 1)(r + 1) = 0.

The general solution to the homogeneous equation is y = c1x
2 + c2x

−1 + c3x.

From above we see that y1 = x2, y2x
−1, y3 = x.

The particular solution will be of the form yp = v1x
2 + v2x

−1 + v3x.

Starting with the Wronksian of x2, x−1, x.

Before, we get g(x) = x3 sin x
x3 = sinx. This comes from dividing the x3 sinx by the leading coefficient.

The next determinant for v1 is the same as the original Wronksian above, but the first column has
0, 0, sinx instead of x2, 2x, 2.
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The determinant for v2 is the same as the original, but the second column is replaced by 0, 0, sinx
instead of x−1,−x−2, 2x−3.

The determinant for v3 is the same as the original, but the third column is replaced by 0, 0 sinx instea
dof x, 1, 0.

For the original Wronksian, we get x(4x−2 + 2x−2)− 1(2x−1 − 2x−1) = 6x−1 = W .

For the Wronksian of v1, we get sinx(x−1 + x−1) = 2x−1 sinx.

For the Wronksian of v2, we get − sinx(x2 − 2x2) = x2 sinx.

For the Wronksian of v3, we get sinx(−1− 2) = −3 sinx.

So we get v′1 = W1

W = 2x−1 sin x
6x−1 = 1

3 sinx

We get v′2 = W 2

W = x2 sin x
6x−1 = 1

6x
3 sinx

We get v′3 = W 3

W = −3 sin x
6x−1 = − 1

2x sinx.

Integrating, we get v1 = − 1
3 cosx.

For v3, we have − 1
2

�
x sinxdx. Let u = x and dv = sinx. From this, v = − cosx and du = 1.

Integrating by parts should give v3 = 1
2x cosx− 1

2 sinx.

For v2, we get u = x3 then 3x2, 6x, 6, 0. and for dv we get sinx,− cosx, sinx,− cosx, sinx.

This is tabular integration by parts. We get v2 = 1
6 [−x3 cosx+ 3x2 sinx+ 6x cosx− 6 sinx].

Simplifying this gives v2 = − 1
6x

3 cosx+ 1
2x

2 sinx+ x cosx− sinx.

We can now get yp.

Yea, so yp is simply yp = [− 1
3 cosx]x

2 + [− 1
6x

3 cosx + 1
2x

2 sinx + x cosx − sinx]x−1 + [12x cosx −
1
2 sinx]x.

Simplifying this gives cosx− x−1 sinx.

So the general solution is y = cosx− x−1 sinx+ c1x
2 + c2x

−1 + c3x.
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