1 Laplace Transforms

1.1 Definition of the Laplace Transform

Definition

Let f(t) be a function on $[0,\infty)$. The Laplace transform of f is the function F defined by the integral

$$F(s) = \int_0^\infty e^{-st} f(t) \mathrm{d}t$$

The domain of F(s) is all the values of s for which the integral above exists. The Laplace transform of f is denoted by both F and $\mathcal{L}{f}$.

Example

Determine the Laplace transform of the constant function $f(t) = 1, t \ge 0$. Let $F(s) = \int_0^\infty e^{-st} 1 dt = \int_0^\infty e^{-st} dt$. This is equal to $-\frac{1}{s}e^{-st}$ with bounds ∞ and 0. Remember this is an improper integral where we have $\lim_{b\to\infty} -\frac{1}{s}e^{-st}$ from 0 to b. This gives $-\frac{1}{s}e^{-sb} - \frac{1}{s}e^0$ on the inside of the limit, so we get $\lim_{b\to\infty} \left[-\frac{1}{s}e^{-sb} + \frac{1}{s}\right]$. The above equals $\lim_{b\to\infty} \left[-\frac{1}{s} \cdot \frac{1}{e^{rb}} + \frac{1}{s}\right]$. The restriction is s > 0 because $\frac{1}{e^{sb}}$ has to be greater than 0. Our result ends up being $\frac{1}{s}$. $\mathcal{L}\{1\} = \frac{1}{s}$.

Example

Determine the Laplace transform of f(t) = t. We have $\mathcal{L}\{t\} = \int_0^\infty e^{-st} t dt = \lim_{b \to \infty} \left[\int_0^b e^{-st} t dt \right]$.

Integrating by parts gives the inside equal to $-\frac{1}{s} \cdot t \cdot \frac{1}{e^{st}} - \frac{1}{s^2}e^{-st}$ with bounds 0 to b.

Plugging this in gives $\lim_{b\to\infty} -\frac{1}{s} \cdot \frac{b}{e^{sb}} - \frac{1}{s} \cdot \frac{1}{e^{sb}} + \frac{1}{s^2}$.

We see that $\frac{b}{e^{sb}}$ is indeterminate, so using L'Hopital's Rule, the derivative is $\frac{1}{se^{sb}}$ and the limit as b approaches ∞ gives this as 0.

We are left with $\frac{1}{s^2}$.

$$\mathcal{L}\{t\} = \frac{1}{s^2}.$$

We will see that $\mathcal{L}{t^n} = \frac{n!}{s^{n+1}}$.

Example

Determine the Laplace transform of $f(t) = e^{at}$, where a is a constant. The integral is $\int_0^\infty e^{-st} \cdot e^{at} dt = \int_0^\infty e^{-(s-a)t} dt$. Integrating this gives $-\frac{1}{s-a}e^{-(s-a)t}$ evaluated from 0 to ∞ .

As t goes to infinity, we get 0 and then we get $0-\frac{-1}{s-a}e^0=\frac{1}{s-a}.$

So
$$\mathcal{L}\{e^{at}\} = \frac{1}{s-a}$$
.

If we were to find the Laplace of e^{5t} , from the above example it would be $\frac{1}{s-5}$.

Example

Find $\mathcal{L}\{\sin bt\}$, where b is a nonzero constant. The integral this time is $\int_0^\infty e^{-st} \cdot \sin bt dt$. Integrating gives $-\frac{1}{s} \sin bt e^{-st} + \frac{b}{s} \left[-\frac{1}{s} \cos bt e^{-st} - \int -\frac{1}{s} e^{-st}(-b) \sin bt dt\right]$. (Do this example later) Involves factoring Laplace stuff. $\mathcal{L}\{\sin bt\} = \frac{b}{s^2 + b^2}$.

Example

Determine the Laplace transform of

$$f(t) = \begin{cases} 2 & 0 < t < 5\\ 0 & 5 < t < 10\\ e^{4t} & t > 10 \end{cases}$$

To do this, you just do $\int_0^\infty e^{-st} f(t) dt = \int_0^5 e^{-st} \cdot 2dt + \int_5^{10} e^{-st} \cdot 0dt + \int_1 0^\infty e^{-st} \cdot e^{4t} dt.$ Evaluating this gives the laplace as $-\frac{2}{s}e^{-5s} + \frac{2}{s} + \frac{1}{s-4}e^{-(s-4)10}$

An important property of the Laplace transform is its linearity. That is, the Laplace transform \mathcal{L} is a linear operator.

Theorem 1.1

Let $f,\,f_1,\,{\rm and}\,\,f_2$ be functions whose Laplace transforms exist for $s>\alpha$ and let c be a constant. Then, for $s>\alpha,$

$$\mathcal{L}{f_1 + f_2} = \mathcal{L}{f_1} + \mathcal{L}{f_2}$$
$$\mathcal{L}{cf} = c\mathcal{L}{f}$$

Exercise Determine $\mathcal{L}\{11 + 5e^{4t} - 6\sin 2t\}$.

A function f(t) on [a, b] is said to have a jump discontinuity at $t_0 \in (a, b)$ if f(t) is discontinuous at t_0 , but the one-sided limits

$$\lim_{t \to t_0^-} f(t) \quad \text{and} \quad \lim_{t \to t_0^+} f(t)$$

exist as finite numbers.

Definition

A function f(t) is said to be piecewise continuous on a finite interval [a, b] if f(t) is continuous at every point in [a, b], except possibly for a finite number of points at which f(t) has a jump discontinuity.

A function f(t) is said to be piecewise continuous on $[0,\infty)$ if f(t) is piecewise continuous on [0,N] for all N > 0.

In contrast, the function f(t) = 1/t is not piecewise continuous on any interval containing the origin, since it has an "infinite jump" at the origin.

A function that is piecewise continuous on a finite interval is not necessarily integrable over that interval. However, piecewise continuity on $[0, \infty)$ is not enough to guarantee the existence (as a finite number) of the improper integral over $[0, \infty)$; we also need to consider the growth of the integrand for large t. The Laplace transform of a piecewise continuous function exists, provided the function does not grow "faster than an exponential".

Definition

A function f(t) is said to be of exponential order α if there exist positive constants T and M such that

 $|f(T)| \le M e^{\alpha t}$

for all $t \geq T$.

Theorem 1.2

If f(t) is piecewise continuous on $[0,\infty)$ and of exponential order α , then $\mathcal{L}{f}(s)$ exists for s > a.

Here are common Laplace transforms:

- $\mathcal{L}\{1\} = \frac{1}{s}$
- $\mathcal{L}{t} = \frac{1}{s^2}$
- $\mathcal{L}{t^n} = \frac{n!}{s^{n+1}}$
- $\mathcal{L}\lbrace e^{at}\rbrace = \frac{1}{s-a}$
- $\mathcal{L}{\sin bt} = \frac{b}{s^2 + b^2}$
- $\mathcal{L}\{\cos bt\} = \frac{s}{s^2 + b^2}$

1.2 Properties of the Laplace Transform

Theorem 1.3

If the Laplace transform $\mathcal{L}{f}(s) = F(s)$ exists for $s > \alpha$, then

$$\mathcal{L}\{e^{\alpha t}f(t)\}(s) = F(s-a)$$

for $s > \alpha + a$

Example

Determine the Laplace transform of $e^{\alpha t} \sin bt$

We know the Laplace of $\sin bt$ is equal to $\frac{b}{s^2+b^2}$.

Multiplying by $e^{\alpha t}$ just shifts it $F(s-\alpha) = \frac{b}{(s-\alpha)^2+b^2}$

Theorem 1.4

Let f(t) be continuous on $[0,\infty)$ and f'(t) be piecewise continuous on $[0,\infty)$, with both of exponential order α . Then for $s > \alpha$,

 $\mathcal{L}{f'}(s) = s\mathcal{L}{f}(s) - f(0)$

Theorem 1.5

Let $f(t), f'(t), \ldots, f^{(n-1)}(t)$ be continuous on $[0, \infty)$ and let $f^{(n)}(t)$ be piecewise continuous on $[0, \infty)$, with all these functions of exponential order α . Then, for $s > \alpha$,

$$\mathcal{L}{f^{(n)}}(s) = s^n \mathcal{L}{f}(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{(n-1)}(0)$$

Example

Using the above theorems and the fact that $\mathcal{L}\{\sin bt\}(s) = \frac{b}{s^2+b^2}$, determine $\mathcal{L}\{\cos bt\}$ We know that $f'(t) = b \cos bt$ from this. So $\mathcal{L}\{b \cos bt\} = s\mathcal{L}\{\sin bt\} - f(0)$. We know that $b\mathcal{L}\{\cos bt\} = s\mathcal{L}\{\sin bt\}$, since f(0) = 0. So simplifying gives the Laplace transform as $\frac{s}{s^2+b^2}$

Example

Prove the following identity for continous functions f(t) (assuming the transforms exist):

$$\mathcal{L}\left\{\int_0^t f(\tau) \mathrm{d}\tau\right\}(s) = \frac{1}{s}\mathcal{L}\{f(t)\}(s)$$

We know $g(t) = \int_0^t f(\tau) d\tau$. From this we know g'(t) = f(t). We get that $\mathcal{L}\{g'(t)\} = s\mathcal{L}\{g(t)\} - g(0)$. and that $\mathcal{L}\{f(t)\} = s\mathcal{L}\{\int_0^t f(\tau) d\tau\}$. We also know g(0) = 0.

So the Laplace of the function is equal to $\frac{1}{s}\mathcal{L}{f(t)}$.

Theorem 1.6

Let $F(s) = \mathcal{L}{f}(s)$ and assume f(t) is piecewise continuous on $[0, \infty)$ and of exponential order α . Then, for $s > \alpha$,

$$\mathcal{L}\lbrace t^n f(t)\rbrace(s) = (-1)^n \frac{\mathrm{d}^n F}{\mathrm{d} s^n}(s)$$

Example

Determine $\mathcal{L}\{t \sin bt\}$. We know $f(t) = \sin bt$ and that n = 1. This is equal to $(-1)^1 \frac{d}{ds} \mathcal{L}\{\sin bt\}$. We end up getting $-\frac{d}{ds} \left(\frac{b}{s^2+b^2}\right)$. We end up getting $\frac{2bs}{(s^2+b^2)^2}$.

Here are some basic properties of Laplace Transforms

- $\mathcal{L}{f+g} = \mathcal{L}{f} + \mathcal{L}{g}.$
- $\mathcal{L}{cf} = c\mathcal{L}{f}$ for any constant c.

•
$$\mathcal{L}\lbrace e^{at}f(t)\rbrace(s) = \mathcal{L}\lbrace f\rbrace(s-a)$$

• $\mathcal{L}{f'}(s) = s\mathcal{L}{f}(s) - f(0)$

•
$$\mathcal{L}{f''(s)} = s^2 \mathcal{L}{f}(s) - sf(0) - f'(0)$$

- $\mathcal{L}{f^{(n)}}(s) = s^n \mathcal{L}{f}(s) s^{n-1} f(0) s^{n-2} f'(0) \dots f^{(n-1)}(0)$
- $\mathcal{L}{t^n f(t)}(s) = (-1)^n \frac{\mathrm{d}^n}{\mathrm{d}s^n} (\mathcal{L}{f}(s))$

1.3 Inverse Laplace Transform

Example

Solve the initial value problem

$$y'' - y = -t$$
 $y(0) = 0,$ $y'(0) = 1$

We can say that $\mathcal{L}\{y'' - y\} = \mathcal{L}\{-t\}$. Using properties we know that $\mathcal{L}\{y''\} - \mathcal{L}\{y\} = -\mathcal{L}\{t\}$ This is equal to $s^2\mathcal{L}\{y\} - sy(0) - y'(0) = \mathcal{L}\{y\} = -\frac{1}{s^2}$. Now plugging in $\mathcal{L}\{y(t)\} = Y(s)$, we get $s^2Y(s)1 - Y(s) = -\frac{1}{s^2}$. Simplifying gives $Y(s)(s^2 - 1) = \frac{s^2 - 1}{s^2}$. We see that $Y(s) = \frac{1}{s^2}$. This is the Laplace of t, so y(t) = t.

Definition

Given a function F(s), if there is a function f(t) that is cintinuous on $[0,\infty)$ and satisfies

 $\mathcal{L}{f} = F$

then we say that f(t) is the inverse Laplace transform of F(s) and employ the notation $f = \mathcal{L}^{-1}\{F\}$.

Example

Determine $\mathcal{L}{F}$ for $F(s) = \frac{2}{s^2}$.

The Inverse Laplace transform of this is t^2 .

Determine it for $F(s) = \frac{3}{s^2+9}$.

This is $\sin 3t$ from the definition.

Determine it for $\frac{s-1}{s^2-2s+5}$.

This simplifies to $\frac{s-1}{(s-1)^2+4} = F(s-1)$. This is the same as $\cos 2t$ but shifted by 1. The Inverse Laplace transform ends up being $e^t \cos 2t$.

Theorem 1.7

Assume that $\mathcal{L}^{-1}{F}$, $\mathcal{L}^{-1}{F_1}$, and $\mathcal{L}^{-1}{F_2}$ exist and are continuous on $[0, \infty)$ and let c be any constant. Then $\mathcal{L}^{-1}{F_1} = \mathcal{L}^{-1}{F_2} = \mathcal{L}^{-1}{F_2}$

$$\mathcal{L}^{-1}\{F_1 + F_2\} = \mathcal{L}^{-1}\{F_1\} + \mathcal{L}^{-1}\{F_2\}$$
$$\mathcal{L}^{-1}\{cF\} = c\mathcal{L}^{-1}\{F\}$$

Example Determine $\mathcal{L}^{-1} \left\{ \frac{5}{s-6} - \frac{6s}{s^2+9} + \frac{3}{2s^2+8s+10} \right\}.$

The first two terms of this gives $5e^6t - 6\cos 3t$.

For the last term, We see that $\frac{1}{2(s^2+4s+5)}$ lets us put $\frac{3}{2}$ in the front and we can complete the square for this for the denominator to give $\frac{1}{(s+2)^2+1}$.

The last term ends up being $\frac{3}{2}e^{-2t}\sin t$.

Exercise Determine $\mathcal{L}^{-1}\left\{\frac{5}{s+2}^{4}\right\}$ Exercise Determine $\mathcal{L}^{-1}\left\{\frac{3s+2}{s^2+2s+10}\right\}$.

Method of Partial Fractions - A rational function of the form $\frac{P(s)}{Q(s)}$, where P(s) and Q(s) are polynomials with the degree of P less than the degree of Q has a partial fraction expansion whose form is based on the linear and quadratic factors of Q(s). We consider the three cases:

- 1. Nonrepeated linear factors
- 2. Repeated linear factors
- 3. Quadratic factors

Nonrepeated Linear Factors - If Q(s) can be factored into a product of distinct linear factors, $Q(s) = (s - r_1)(s - r_2) \dots (s - r_n)$, where the r_i 's are all distinct real numbers, then the partial fraction expansion has the form

$$\frac{P(s)}{Q(s)} = \frac{A_1}{s - r_1} + \frac{A_2}{s - r_2} + \dots + \frac{A_n}{s - r_n}$$

where the A_i 's are real numbers.

Example

Determine $\mathcal{L}^{-1}\{F\}$, where $F(s) = \frac{7s-1}{(s+1)(s+2)(s-3)}$. The decomposition is equal to $\frac{A}{s+1} + \frac{B}{s+2} + \frac{C}{s-3}$. Solving for A, B, C gives 2, -3, 1 respectively. We end up getting $\frac{2}{s+1} + \frac{-3}{s+2} + \frac{1}{s-3}$. This gives us $2e^{-t} - 3e^{-2t} + e^{3t}$.

Repeated Linear Factors - Let s - r be a factor of Q(s) and suppose $(s - r)^m$ is the highest power of s - r that divides Q(s). Then the portion of the partial fraction expansion of P(s)/Q(s) that corresponds to the term $(s - r)^m$ is

$$\frac{A_1}{s-r} + \frac{A_2}{(s-r^2)} + \dots + \frac{A_m}{(s-r)^m}$$

where the A_i 's are real numbers.

Example

Determine $\mathcal{L}\left\{\frac{s^2+9s+2}{(s-1)^2(s+3)}\right\}$. We end up getting $\frac{A}{s-1} + \frac{B}{(s-1)^2} + \frac{C}{s+3}$. Solving for A, B, C gives 2, 3, -1 respectively. This gives $2e^t + 3t^tt - e^{-3t}$.

Quadratic Factors - Let $(s - \alpha)^2 + \beta^2$ be a quadratic factor of Q(s) that cannot be reduced to linear factors with real coefficients. Suppose m is the highest power of $(s - \alpha)^2 + \beta^2$ that divides Q(s). Then the portion of the partial fraction expansion that corresponds to $(s - \alpha)^2 + \beta^2$ is

$$\frac{C_1 s + D_1}{(s-\alpha)^2 + \beta^2} + \frac{C_2 s + D_2}{[(s-\alpha)^2 + \beta^2]^2} + \dots + \frac{C_m s + D_m}{[(s-\alpha)^2 + \beta^2]^m}$$

When looking up Laplace transforms, the following equivalent form is more convenient

$$\frac{A_1(s-\alpha) + \beta B_1}{(s-\alpha)^2 + \beta^2} + \frac{A_2(s-\alpha)\beta B_2}{[(s-\alpha)^2 + \beta^2]^2} + \dots + \frac{A_m(s-\alpha) + \beta B_m}{[(s-\alpha)^2 + \beta^2]^m}$$

Example

Determine $\mathcal{L}^{-1}\left\{\frac{2s^2+10s}{(s^2-2s+5)(s+1)}\right\}$. The partial fraction is $\frac{As+B}{(s^2-2s+5)} + \frac{C}{s+1}$. Solving the system gives A, B, C = 3, 5, -1. So we are now finding the Laplace transform of $\frac{3s+5}{(s-1)^2+4}0\frac{1}{s+1}$. The first term of this can be rewritten as $\frac{3(s-1)+8}{(s-1)^2+4}$. The transform ends up being $3e^t \cos 2t + 4e^t \sin 2t - e^{-t}$.

1.4 Solving Initial Value Problems

Method of Laplace Transforms

To solve initial value problems:

- Take the Laplace transforms of both sides of the equation
- Use the properties of the Laplace transform and the initial conditions to obtain an equation for the Laplace transform of the solution and then solve this equation for the transform
- Determine the inverse Laplace transform of the solution by looking it up in a table or by using a suitable method (such as partial fractions) in combination with the table.

Example

Solve the initial value problem

$$y'' - 2y' + 5y = -8e^{-t}$$
 $y(0) = 2,$ $y'(0) = 12$

This is equal to $\mathcal{L}\{y''\} - 2\mathcal{L}\{y'\} + 5\mathcal{L}\{y\} = -8\mathcal{L}\{e^{-t}\}.$ This ends up being $s^2\mathcal{L}\{y\} - sy(0) - y'(0) - 2[s\mathcal{L}\{y\} - y(0)] + 5\mathcal{L}\{y\} = -8\frac{1}{s+1}.$ We know that $\mathcal{L}\{y\} = Y(s).$ So $Y(s)[s^2 - 2s + 5] - 2s - 12 + 4 = \frac{-8}{s+1}.$ This is $Y(s)(s^2 - 2s + 5) = 2s + 8 - \frac{8}{s+1}.$ This ends up being $Y(s) = \frac{2s}{s^2 - 2s + 5} + \frac{8}{s^2 - 2s + 5} - \frac{8}{(s+1)(s^2 - 2s + 5)}.$ Simplifying ends up getting $\frac{2s^2 + 10s}{(s+1)(s^2 - 2s + 5)}.$ Doing partial fraction decomposition gives $\frac{3s+5}{s^2 - 2s + 5} + \frac{-1}{s+1} = \frac{3(s-1)+8}{(s-1)^2 + 4} + \frac{-1}{s+1}.$ The Inverse Laplace of this is $3e^t \cos 2t + 4e^t \sin 2t - e^{-t}.$

Exercise Solve the initial value problem

$$y'' + 4y' - 5y = te^t \qquad y(0) = 1 \qquad y'(0) = 0$$

Example

Solve the initial value proiblem

$$w''(t) - 2w'(t) + 5w(t) = -8e^{\pi - t} \qquad w(\pi) = 2 \qquad w'(\pi) = 12$$

Let's introduce a new function $y(t) = w(t + \pi)$.

Replace t with $t + \pi$ in this equation and we get $w''(t + \pi) - 2w'(t + \pi) + 5w(t + \pi) = -8e^{\pi - (t + \pi)}$.

Substituting the derivatives gives $y''(t) - 2y'(t) + 5y(t) = -8e^{-t}$.

This basically comes out to $y = 3e^t \cos 2t + 4e^t \sin 2t - e^{-t}$.

Replacing everything with $t - \pi$ gives $3e^{t-\pi} \cos 2(t-\pi) + 4e^{t-\pi} \sin 2(t-\pi) - e^{-(t-\pi)} = y(t-\pi)$. This gives $w(t) = 3e^{t-\pi} \cos 2t + 4e^{t-\pi} \sin 2t - e^{-(t-\pi)}$.

1.5 Transforms of Discontinuous Functions

Definition

The unit step function u(t) is defined to by

$$u(t) := \begin{cases} 0, & t < 0, \\ 1, & 0 < t \end{cases}$$

Example

Graph u(t), u(t-a), and Mu(t-a).

The graph of u(t) is just as given above.

The graph of u(t-a) is just a horizontal shift.

The graph of Mu(t-a) will just have the one with 1 multiplied by M

Definition

The rectangular window function $\prod_{a,b}(t)$ is defined by

$$\prod_{a,b} (t) := u(t-a) - u(t-b) = \begin{cases} 0, & t < a \\ 1, & a < t < b \\ 0, & b < t \end{cases}$$

Example

Write the function

$$f(t) = \begin{cases} 3 & t < 2\\ 1 & 2 < t < 5\\ t & 5 < t < 8\\ t^2/10 & 8 < t \end{cases}$$

In terms of window and step functions.

This is $3\prod_{0,2}(t) + 1\prod_{2,5}(t) + t\prod_{5,8}(t) + \frac{t^2}{10}u(t-8).$

Also this can be written as $3u(t) - 2u(t-2) + (t-1)u(t-5) + (\frac{t^2}{10} - t)u(t-8)$.

$$\mathcal{L}\{u(t-a)\}(s) = \frac{e^{-as}}{s}$$

Theorem 1.8

Let $F(s) = \mathcal{L}{f}(s)$ exist for $s > \alpha \ge 0$. If a is a positive constant, then

$$\mathcal{L}\{f(t-a)u(t-a)\}(s) = e^{-\alpha s}F(s)$$

and, conversely, an inverse Laplace transform of $e^{-as}F(s)$ is given by

$$\mathcal{L}^{-1}\{e^{-asF(s)}\}(t) = f(t-a)u(t-a)$$

$$\mathcal{L}\{g(t)u(t-a)\}(s) = e^{-as}\mathcal{L}\{g(t+a)\}(s)$$

Example

Determine the Laplace transform of $t^2u(t-1)$.

a = from here, and $g(t) = t^2$.

We take $\mathcal{L}{g(t)u(t-1)} = e^{-s} \cdot \mathcal{L}{g(t+1)}.$

Replacing g(t) gives that $t^2 + 2t + 1$ for the inside, so the Answer ends up being $e^{-s} \cdot \left[\frac{2!}{s^3} + \frac{2}{s^2} + \frac{1}{s}\right]$.

Example

Determine $\mathcal{L}\{(\cos t)u(t-\pi)\}$. This has $a = \pi$. So we can see that We are doing $e^{-\pi s}\mathcal{L}\{g(t+\pi)\}$. $g(t) = \cos t$, so $g(t+\pi) = \cos(t+\pi) = \cos t \cos \pi - \sin t \sin \pi = -\cos t$. So the Laplace is $e^{-\pi s} \cdot -1 \cdot \frac{s}{s^2+1}$.

Exercise Determine $\mathcal{L}^{-1}\left\{rac{e^{-2s}}{s^2}
ight\}$ and sketch its graph.

Example

The current I in an LC series circuit is governed by the initial value problem

$$I'' + 4I(t) = g(t)$$
 $I(0) = 0$ $I'(0) = 0$

where

$$g(t) = \begin{cases} 1 & 0 < t < 1\\ -1 & 1 < t < 2\\ 0 & 2 < t \end{cases}$$

Determine the current as a function of time t.

 $g(t) = 1 \prod_{0,1} + -1 \prod_{1,2} = 1[u(t-0) - u(t-1)] - 1[u(t-1) - u(t-2)].$ This is equal to g(t) = 1u(t-0) - 2u(t-1) + u(t-2).

This simplifies to 1 - 2u(t-1) + u(t-2)

The Laplace of the initial value problem is $s^2 \mathcal{L}\{I\} - sI(0) - I'(0) + 4\mathcal{L}\{I\} = \mathcal{L}\{1 - 2u(t-1) + u(t-2)\}$ We end up getting $(s^2 + 4)\mathcal{L}\{I\} = \frac{1}{s} - \frac{2e^{-s}}{s} + \frac{e^{-2s}}{s}$. We get that $\mathcal{L}{I} = \frac{1}{s(s^2+4)} - 2e^{-s} \left[\frac{1}{s(s^2+4)}\right] + e^{-2s} \left[\frac{1}{s(s^2+4)}\right]$. Using partial fraction decomposition of $\frac{1}{s(s^2+4)}$ gives $\frac{1}{4} \cdot \frac{1}{s} + -\frac{1}{4} \cdot \frac{s}{s^2+4}$. If we call what we got above to be F(s), we get $F(s) - 2e^{-s}F(s) + e^{-2s}F(s)$. The inverse of what we have is $I = \mathcal{L}^{-1}{F(s)} - 2\mathcal{L}^{-1}{e^{-s}F(s)} + \mathcal{L}^{-1}{e^{-2s}F(s)}$. Doing Laplace stuff gives $I = \frac{1}{4} - \frac{1}{4}\cos 2t - 2\left[\frac{1}{4} - \frac{1}{4}\cos 2(t-1)\right]u(t-1) + \left[\frac{1}{4} - \frac{1}{4}\cos 2(t-2)\right]u(t-2)$.

1.6 Transforms of Periodic and Power Functions

Definition

A function f(t) is said to be periodic of period $T \ (\neq 0)$ if

$$f(t+T) = f(t)$$

for all t in the domain of f.

To specificy a periodic function, it is sufficient to give its values over one period.

The square wave function can be epxressed as

$$f(t) = \begin{cases} 1, & 0 < t < 1\\ -1, & 1 < t < 2 \end{cases}$$

and f(t) has period 2.

For convenience, we introduce a notation for a "windowed" version of a periodic function (using a rectangular window whose width is the period T)

$$f_T(t) := f(T) \prod_{0,T} (t) = f(t) [u(t) - u(t - T)] = \begin{cases} f(t), & 0 < t < T \\ 0, & \text{otherwise} \end{cases}$$

Theorem 1.9

If f has period T and is piecewise continuous on [0, T], then the Laplace transform $F(s) = \int_0^\infty e^{-st} f(t) dt$ and $F_T(s) = \int_0^T e^{-st} f(t) dt$ are related by

$$F_T(s) = F(s)[1 - e^{-sT}]$$

or

$$F(s) = \frac{F_T(s)}{1 - e^{-st}}$$

Example

Determine $\mathcal{L}{f}$, where f is the square wave function.

The function of the step function gives

$$f_T(t) = 1 \prod_{0,1} + -1 \prod_{1,2} = u(t) - 2u(t-1) + u(t-2)$$

The Laplace of this gives $\frac{e^0}{s} - \frac{2e^{-s}}{s} + \frac{e^{-2s}}{s} = \frac{1-2e^{-s}+e^{-2s}}{s}$

F(s) is just $\frac{F_T(s)}{1-e^{-2s}} = \frac{1-e^{-s}}{s(1+e^{-s})}.$

1.7 Convolution

Definition

Let f(t) and g(t) be piecewise continuous on $[0,\infty)$. The convolution of f(t) and g(t), denoted f * g, is defined by

$$(f*g)(t) := \int_0^t f(t-v)g(v) \mathrm{d}v$$

Example

Find the convolution of t and t^2 .

Let f(t) = t and $g(t) = t^2$ $t * t^2 = \int_0^t (t - v) \cdot v^2 dv$ So let's integrate. We get $\frac{tv^3}{3} - \frac{v^4}{4}$. Putting in the bounds gives $\frac{t^4}{12}$.

Theorem 1.10

Let f(t), g(t), and h(t) be piecewise continuous on $[0, \infty)$. Then

• f * g = g * f

•
$$f * (g + h) = (f * g) + (f * h)$$

- (f * g) * h = f * (g * h)
- f * 0 = 0

Theorem 1.11

Let f(t) and g(t) be piecewise continuous on $[0, \infty)$ and of exponential order α and set $F(s) = \{f\}(s)$ and $G(s) = \mathcal{L}\{g\}(s)$. Then

$$\mathcal{L}{f*g}(s) = F(s)G(s)$$

or, equivalently,

$$\mathcal{L}^{-1}\{F(s)G(s)\}(t) = (f * g)(t)$$

Example

Use the convolution theorem to solve the initial value problem

$$y'' + y = g(t)$$
 $y(0) = 0$ $y'(0) = 0$

where g(t) is piecewise continuous on $[0,\infty)$ and of exponential order.

We can get that $\mathcal{L}\{y''\} + \mathcal{L}\{y\} = G(s)$ from the problem.

Doing the Laplace transform gives $s^2Y(s) - sy(0) - y'(0) + Y(s) = G(s)$.

This simplifies to $(s^2 + 1)Y(s) = G(s)$.

So
$$Y(s) = \frac{1}{s^2+1} \cdot G(s)$$

Taking the Laplace transform of both sides gives us $y(t) = \mathcal{L}\{\frac{1}{s^2+1}G(s)\}$.

The right side is just $\sin t * g(t)$.

We know that $y(t) = \int_0^t \sin(t-v)g(v)dv$ from this.

Example

Use the convolution theorem to find $\mathcal{L}^{-1}\left\{\frac{1}{(s^2+1)^2}\right\}$. From the Convolution Theorem, we find that $\mathcal{L}\{F(s)G(s)\} = f(t) * g(t)$. From that definition, the laplace is $\sin t * \sin t$. This is $\int_0^t \sin(t-v) \cdot \sin v dv$. Note that $\sin A \sin B = \frac{1}{2}[\cos(A-B) - \cos(A+B)]$. So applying this, we get that $\frac{1}{2}\int_0^t \cos[t-v-v] - \cos[t-v+v]dv$. This is equal to $\frac{1}{2}\int \cos[-(2v-t)] - \cos t dv$. Remember that $\cos(-A) = \cos A$. So we end up getting $\frac{1}{2}\int \cos(2v-t) - \cos t dv$. Integrating gives $\frac{1}{2}[\frac{1}{2}\sin(2v-t) - v\cos t]$ from 0 to t. Simplifying this gives you $\frac{\sin t - t\cos t}{2}$

Example

Solve the integro-differential equation

$$y'(t) = 1 - \int_0^t y(t-v)e^{-2v} dv$$
 $y(0) = 1$

The integral in the expression is just a convolution.

The integral is $y * e^{-2t}$. The Laplace transform of both sides results in $\mathcal{L}\{y'(t)\} = \mathcal{L}\{1\} - \mathcal{L}\{y(t) * e^{-2t}\}$. So this is $sY(s) - y(0) = \frac{1}{s} - \mathcal{L}\{y(t)\} \cdot \mathcal{L}\{e^{-2t}\}$. This is $sY(s) - 1 = \frac{1}{s} - Y(s) \cdot \frac{1}{s+2}$. $(s + \frac{1}{s+2})Y(s) = 1 + \frac{1}{s}$. We end up getting $\frac{s^2 + 2s + 1}{s+2}Y(s) = 1 + \frac{1}{s}$. Factoring and solving for Y(s) gives $\frac{s+2}{(s+1)^2} \cdot \frac{s+1}{s}$. This gives us $\frac{s+2}{s(s+1)}$. Doing the partial fraction decomposition gives us 2 = A and 1 = -B. So we end up getting $\frac{2}{s} - \frac{1}{s+1}$. Taking the inverse laplace transform of both sides gives us $2 - e^{-t}$.

1.8 Impulses and the Dirac Delta Function

Definition

The Dirac delta function $\delta(t)$ is characterized by the following two properties:

$$\delta(t) = \begin{cases} 0, & t \neq 0, \text{``infinite''} & t = 0 \end{cases}$$

and

$$\int_{-\infty}^{\infty} f(t)\delta(t)\mathrm{d}t = f(0)$$

for any function f(t) that is continuous on an open interval containing t = 0.

By shifting the argument of $\delta(t)$, we have $\delta(t-a) = 0.t \neq a$, and

$$\int_{-\infty}^{\infty} f(T)\delta(t-a)\mathrm{d}t = f(a)$$

for any function f(t) that is continuous on an interval containing t = a.

When $t_0 = 0$, we derive from the limiting properties of the \mathcal{F}_n 's of a "function" δ that satisfies the first equation of this topic and the integral condition

$$\int_{-\infty}^{\infty} \delta(t) \mathrm{d}t = 1$$

The Laplace transform of the Dirac Delta function can be equickly derived from the property given above from shifting the argeumtn. Since $\delta(t-a) = 0$ for $t \neq a$, then setting $f(t) = e^{-st}$ in that function, we find for $a \ge 0$

$$\int_0^\infty \delta(t-a) dt = \int_{-\infty}^\infty e^{-st} \delta(t-a) dt = e^{-as}$$

Thus, for $a \ge 0$,

$$\mathcal{L}\{\delta(t-a)\}(s) = e^{-as}$$

Example

Use the Laplace transform to solve the initial value-value problem

$$y' + y = \delta(t - 1), \qquad y(0) = 2$$

Taking the Laplace of both sides gives $sY(s) - y(0) + Y(s) = e^{-s}$.

Now we see that $Y(s) = \frac{1}{s+1}e^{-s} + \frac{2}{s+1}.$

This becomes $e^{-(t-1)}u(t-1) + 2e^{-t}$.

To write this as a piecewise function we can write this as $y(t) = \begin{cases} 2e^{-t} & 0 < t < 1\\ e^{-t-1} + 2e^{-t} & t > 1 \end{cases}$.

Example

A mass attached to a spring is released from rest 1 m below the equilibrium position for the mass-spring system and begins to vibrate. After π seconds, the mass is struck by a hammer exerting an impulse on the mass. The system is governed by the symbolic initial value problem

$$\frac{d^2x}{dt^2} + 9x = 3\delta(t - \pi); \qquad x(0) = 1, \qquad \frac{dx}{dt}(0) = 0$$

where x(t) denotes the displacement from equilibrium at time t. Determine x(t).

Doing the Laplace of the problem gives $s^2x(s) - s + 9x(s) = 3e^{-\pi s}$.

So we have $x(s) = \frac{s}{s^2+9} + \frac{3}{s^2+9}e^{-\pi s}$.

From this the inverse Laplace is $\cos(3t) + -\sin(3t)u(t-\pi)$.

1.9 Solving Linear Systems with Laplace Transforms

Example

Solve the initial value problem

$$x'(t) - 2y(t) = 4t \qquad x(0) = 4$$
$$y'(t) + 2y(t) - 4x(t) = -4t - 2 \qquad y(0) = -5$$

Doing the Laplace of everything gives $sX(s) - x(0) - 2Y(s) = 4 \cdot \frac{1}{s^2}$ for the top equation and $sY(s) - y(0) + 2Y(s) - 4X(s) = -4 \cdot \frac{1}{s^2} - 2 \cdot \frac{1}{s}$ for the second equation.

After substituting we get

$$sX(s) - 2Y(S) = \frac{4}{s^2} + 4$$
$$-4X(s)(s+2)Y(s) = -\frac{4}{s^2} - \frac{2}{s} - 5$$

By eliminating y, we get $X(s) = \frac{4s-2}{(s^2+2s-8)} = \frac{4s-2}{(s+4)(s-2)}$. This is equivalent to $\frac{3}{s+4} + \frac{1}{s-2}$. This gives us $x(t) = 3e^{-4t} + e^{2t}$. We know from the problem that $y(t) = \frac{x'(t)-4t}{2}$. So substituting values gives us $y(t) = \frac{1}{2}[-12e^{-4t} + 2e^{2t}] - 2t = -6e^{-4t} + e^{2t} - 2t$.

Example

Solve the initial value problem

$$x_1'' + 10x_1 - 4x_2 = 0$$
$$-4x_1 + x_2'' + 4x_2 = 0$$

subject to $x_1(0) = 0$, $x'_1(0) = 1$, $x_2(0) = 0$, $x'_2(0) = -1$. The top equation's laplace transformation is $s_2x_1(s) - sx_1(0) - x'_1(0) + 10x_1(s) - 4x_2(s) = 0$. The bottom equation becomes $-4x_1(s) + s^2x_2(s) - sx_2(0) - x'_2(0) + 4x_2(s) = 0$. Solving the system of equations for $x_2(s)$ gives us $\frac{-s^2-6}{(s^2+12)(s^2+2)} = \frac{-2/5}{s^2+2} + \frac{-3/5}{s^2+12}$. The Laplace gives $x_2(t) = -\frac{\sqrt{2}}{5} \sin(\sqrt{2}t) - \frac{\sqrt{3}}{10} \sin(2\sqrt{3}t)$. Doing the derivatives gives us $x_1 = -\frac{\sqrt{2}}{10} \sin(\sqrt{2}t) + \frac{\sqrt{3}}{5} \sin(2\sqrt{3}t)$.