
1 Laplace Transforms

1.1 Definition of the Laplace Transform

Definition

Let f(t) be a function on [0,∞). The Laplace transform of f is the function F defined by the integral

F (s) =

� ∞

0

e−stf(t)dt

The domain of F (s) is all the values of s for which the integral above exists. The Laplace transform of
f is denoted by both F and L{f}.

Example

Determine the Laplace transform of the constant function f(t) = 1, t ≥ 0.

Let F (s) =
�∞
0

e−st1dt =
�∞
0

e−stdt. This is equal to − 1
se

−st with bounds ∞ and 0.

Remember this is an improper integral where we have limb→∞ − 1
se

−st from 0 to b.

This gives − 1
se

−sb − 1
se

0 on the inside of the limit, so we get limb→∞
[
− 1

se
−sb + 1

s

]
.

The above equals limb→∞
[
− 1

s · 1
erb

+ 1
s

]
.

The restriction is s > 0 because 1
esb

has to be greater than 0.

Our result ends up being 1
s .

L{1} = 1
s .

Example

Determine the Laplace transform of f(t) = t.

We have L{t} =
�∞
0

e−sttdt = limb→∞

[� b

0
e−sttdt

]
.

Integrating by parts gives the inside equal to − 1
s · t · 1

est −
1
s2 e

−st with bounds 0 to b.

Plugging this in gives limb→∞ − 1
s · b

esb
− 1

s · 1
esb

+ 1
s2 .

We see that b
esb

is indeterminate, so using L’Hopital’s Rule, the derivative is 1
sesb

and the limit as b
approaches ∞ gives this as 0.

We are left with 1
s2 .

L{t} = 1
s2 .

We will see that L{tn} = n!
sn+1 .

Example

Determine the Laplace transform of f(t) = eat, where a is a constant.

The integral is
�∞
0

e−st · eatdt =
�∞
0

e−(s−a)tdt.

1
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Integrating this gives − 1
s−ae

−(s−a)t evaluated from 0 to ∞.

As t goes to infinity, we get 0 and then we get 0− −1
s−ae

0 = 1
s−a .

So L{eat} = 1
s−a .

If we were to find the Laplace of e5t, from the above example it would be 1
s−5 .

Example

Find L{sin bt}, where b is a nonzero constant.

The integral this time is
�∞
0

e−st · sin btdt.

Integrating gives − 1
s sin bte

−st + b
s

[
− 1

s cos bte
−st −

�
− 1

se
−st(−b) sin btdt

]
.

(Do this example later)

Involves factoring Laplace stuff.

L{sin bt} = b
s2+b2 .

Example

Determine the Laplace transform of

f(t) =


2 0 < t < 5

0 5 < t < 10

e4t t > 10

To do this, you just do
�∞
0

e−stf(t)dt =
� 5

0
e−st · 2dt+

� 10

5
e−st · 0dt+

�
1
0∞e−st · e4tdt.

Evaluating this gives the laplace as − 2
se

−5s + 2
s + 1

s−4e
−(s−4)10

An important property of the Laplace transform is its linearity. That is, the Laplace transform L is a linear
operator.

Theorem 1.1

Let f , f1, and f2 be functions whose Laplace transforms exist for s > α and let c be a constant. Then,
for s > α,

L{f1 + f2} = L{f1}+ L{f2}

L{cf} = cL{f}

Exercise Determine L{11 + 5e4t − 6 sin 2t}.

A function f(t) on [a, b] is said to have a jump discontinuity at t0 ∈ (a, b) if f(t) is discontinuous at t0, but
the one-sided limits

lim
t→t−0

f(t) and lim
t→t+0

f(t)

exist as finite numbers.

Definition

A function f(t) is said to be piecewise continuous on a finite interval [a, b] if f(t) is continuous at every
point in [a, b], except possibly for a finite number of points at which f(t) has a jump discontinuity.

A function f(t) is said to be piecewise continuous on [0,∞) if f(t) is piecewise continuous on [0, N ]
for all N > 0.
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In contrast, the function f(t) = 1/t is not piecewise continuous on any interval containing the origin, since it
has an “infinite jump” at the origin.

A function that is piecewise continuous on a finite interval is not necessarily integrable over that interval.
However, piecewise continuity on [0,∞) is not enough to guarantee the existence (as a finite number) of the
improper integral over [0,∞); we also need to consider the growth of the integrand for large t. The Laplace
transform of a piecewise continuous function exists, provided the function does not grow “faster than an
exponential”.

Definition

A function f(t) is said to be of exponential order α if there exist positive constants T and M such that

|f(T )| ≤ Meαt

for all t ≥ T .

Theorem 1.2

If f(t) is piecewise continuous on [0,∞) and of exponential order α, then L{f}(s) exists for s > a.

Here are common Laplace transforms:

� L{1} = 1
s

� L{t} = 1
s2

� L{tn} = n!
sn+1

� L{eat} = 1
s−a

� L{sin bt} = b
s2+b2

� L{cos bt} = s
s2+b2

1.2 Properties of the Laplace Transform

Theorem 1.3

If the Laplace transform L{f}(s) = F (s) exists for s > α, then

L{eαtf(t)}(s) = F (s− a)

for s > α+ a

Example

Determine the Laplace transform of eαt sin bt

We know the Laplace of sin bt is equal to b
s2+b2 .

Multiplying by eαt just shifts it F (s− α) = b
(s−α)2+b2

Theorem 1.4

Let f(t) be continuous on [0,∞) and f ′(t) be piecewise continuous on [0,∞), with both of exponential
order α. Then for s > α,

L{f ′}(s) = sL{f}(s)− f(0)
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Theorem 1.5

Let f(t), f ′(t), . . . , f (n−1)(t) be continuous on [0,∞) and let f (n)(t) be piecewise continuous on [0,∞),
with all these functions of exponential order α. Then, for s > α,

L{f (n)}(s) = snL{f}(s)− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0)

Example

Using the above theorems and the fact that L{sin bt}(s) = b
s2+b2 , determine L{cos bt}

We know that f ′(t) = b cos bt from this. So L{b cos bt} = sL{sin bt} − f(0).

We know that bL{cos bt} = sL{sin bt}, since f(0) = 0.

So simplifying gives the Laplace transform as s
s2+b2

Example

Prove the following identity for continous functions f(t) (assuming the transforms exist):

L
{� t

0

f(τ)dτ

}
(s) =

1

s
L{f(t)}(s)

We know g(t) =
� t

0
f(τ)dτ . From this we know g′(t) = f(t).

We get that L{g′(t)} = sL{g(t)} − g(0). and that L{f(t)} = sL{
� t

0
f(τ)dτ}.

We also know g(0) = 0.

So the Laplace of the function is equal to 1
sL{f(t)}.

Theorem 1.6

Let F (s) = L{f}(s) and assume f(t) is piecewise continuous on [0,∞) and of exponential order α.
Then, for s > α,

L{tnf(t)}(s) = (−1)n
dnF

dsn
(s)

Example

Determine L{t sin bt}.

We know f(t) = sin bt and that n = 1.

This is equal to (−1)1 d
dsL{sin bt}.

We end up getting − d
ds

(
b

s2+b2

)
.

We end up getting 2bs
(s2+b2)2 .

Here are some basic properties of Laplace Transforms

� L{f + g} = L{f}+ L{g}.

� L{cf} = cL{f} for any constant c.

� L{eatf(t)}(s) = L{f}(s− a)

� L{f ′}(s) = sL{f}(s)− f(0)
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� L{f ′′(s)} = s2L{f}(s)− sf(0)− f ′(0)

� L{f (n)}(s) = snL{f}(s)− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0)

� L{tnf(t)}(s) = (−1)n dn

dsn (L{f}(s))

1.3 Inverse Laplace Transform

Example

Solve the initial value problem

y′′ − y = −t y(0) = 0, y′(0) = 1

We can say that L{y′′ − y} = L{−t}.

Using properties we know that L{y′′} − L{y} = −L{t}

This is equal to s2L{y} − sy(0)− y′(0) = L{y} = − 1
s2 .

Now plugging in L{y(t)} = Y (s), we get s2Y (s)1− Y (s) = − 1
s2

Simplifying gives Y (s)(s2 − 1) = s2−1
s2 .

We see that Y (s) = 1
s2 . This is the Laplace of t, so y(t) = t.

Definition

Given a function F (s), if there is a function f(t) that is cintinuous on [0,∞) and satisfies

L{f} = F

then we say that f(t) is the inverse Laplace transform of F (s) and employ the notation f = L−1{F}.

Example

Determine L{F} for F (s) = 2
s2 .

The Inverse Laplace transform of this is t2.

Determine it for F (s) = 3
s2+9 .

This is sin 3t from the definition.

Determine it for s−1
s2−2s+5 .

This simplifies to s−1
(s−1)2+4 = F (s−1). This is the same as cos 2t but shifted by 1. The Inverse Laplace

transform ends up being et cos 2t.

Theorem 1.7

Assume that L−1{F},L−1{F1}, and L−1{F2} exist and are continuous on [0,∞) and let c be any
constant. Then

L−1{F1 + F2} = L−1{F1}+ L−1{F2}

L−1{cF} = cL−1{F}
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Example

Determine L−1
{

5
s−6 − 6s

s2+9 + 3
2s2+8s+10

}
.
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The first two terms of this gives 5e6t− 6 cos 3t.

For the last term, We see that 1
2(s2+4s+5) lets us put 3

2 in the front and we can complete the square for

this for the denominator to give 1
(s+2)2+1 .

The last term ends up being 3
2e

−2t sin t.

Exercise Determine L−1{ 5
s+2

4}

Exercise Determine L−1{ 3s+2
s2+2s+10}.

Method of Partial Fractions - A rational function of the form P (s)
Q(s) , where P (s) and Q(s) are polynomials

with the degree of P less than the degree of Q has a partial fraction expansion whose form is based on the
linear and quadratic factors of Q(s). We consider the three cases:

1. Nonrepeated linear factors

2. Repeated linear factors

3. Quadratic factors

Nonrepeated Linear Factors - If Q(s) can be factored into a product of distinct linear factors, Q(s) =
(s− r1)(s− r2) . . . (s− rn), where the ri’s are all distinct real numbers, then the partial fraction expansion
has the form

P (s)

Q(s)
=

A1

s− r1
+

A2

s− r2
+ · · ·+ An

s− rn

where the Ai’s are real numbers.

Example

Determine L−1{F}, where F (s) = 7s−1
(s+1)(s+2)(s−3) .

The decomposition is equal to A
s+1 + B

s+2 + C
s−3 .

Solving for A,B,C gives 2,−3, 1 respectively.

We end up getting 2
s+1 + −3

s+2 + 1
s−3 . This gives us 2e

−t − 3e−2t + e3t.

Repeated Linear Factors - Let s− r be a factor of Q(s) and suppose (s− r)m is the highest power of s− r
that divides Q(s). Then the portion of the partial fraction expansion of P (s)/Q(s) that corresponds to the
term (s− r)m is

A1

s− r
+

A2

(s− r2)
+ · · ·+ Am

(s− r)m

where the Ai’s are real numbers.

Example

Determine L
{

s2+9s+2
(s−1)2(s+3)

}
.

We end up getting A
s−1 + B

(s−1)2 + C
s+3 .

Solving for A,B,C gives 2, 3,−1 respectively.

This gives 2et + 3ttt− e−3t.

Quadratic Factors - Let (s− α)2 + β2 be a quadratic factor of Q(s) that cannot be reduced to linear factors
with real coefficients. Suppose m is the highest power of (s− α)2 + β2 that divides Q(s). THen the portion
of the partial fraction expansion that corresponds to (s− α)2 + β2 is

C1s+D1

(s− α)2 + β2
+

C2s+D2

[(s− α)2 + β2]2
+ · · ·+ Cms+Dm

[(s− α)2 + β2]m
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When looking up Laplace transforms, the following equivalent form is more convenient

A1(s− α) + βB1

(s− α)2 + β2
+

A2(s− α)βB2

[(s− α)2 + β2]2
+ · · ·+ Am(s− α) + βBm

[(s− α)2 + β2]m

Example

Determine L−1
{

2s2+10s
(s2−2s+5)(s+1)

}
.

The partial fraction is As+B
(s2−2s+5) +

C
s+1 .

Solving the system gives A,B,C = 3, 5,−1.

So we are now finding the Laplace transform of 3s+5
(s−1)2+40

1
s+1 .

The first term of this can be rewritten as 3(s−1)+8
(s−1)2+4 .

The transform ends up being 3et cos 2t+ 4et sin 2t− e−t.

1.4 Solving Initial Value Problems

Method of Laplace Transforms

To solve initial value problems:

� Take the Laplace transforms of both sides of the equation

� Use the properties of the Laplace transform and the initial conditions to obtain an equation for the
Laplace transform of the solution and then solve this equation for the transform

� Determine the inverse Laplace transform of the solution by looking it up in a table or by using a suitable
method (such as partial fractions) in combination with the table.

Example

Solve the initial value problem

y′′ − 2y′ + 5y = −8e−t y(0) = 2, y′(0) = 12

This is equal to L{y′′} − 2L{y′}+ 5L{y} = −8L{e−t}.

This ends up being s2L{y} − sy(0)− y′(0)− 2[sL{y} − y(0)] + 5L{y} = −8 1
s+1 .

We know that L{y} = Y (s).

So Y (s)[s2 − 2s+ 5]− 2s− 12 + 4 = −8
s+1 .

This is Y (s)(s2 − 2s+ 5) = 2s+ 8− 8
s+1 .

This ends up being Y (s) = 2s
s2−2s+5 + 8

s2−2s+5 − 8
(s+1)(s2−2s+5) .

Simplifying ends up getting 2s2+10s
(s+1)(s2−2s+5) .

Doing partial fraction decomposition gives 3s+5
s2−2s+5 + −1

s+1 = 3(s−1)+8
(s−1)2+4 + −1

s+1 .

The Inverse Laplace of this is 3et cos 2t+ 4et sin 2t− e−t.

Exercise Solve the initial value problem

y′′ + 4y′ − 5y = tet y(0) = 1 y′(0) = 0
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Example

Solve the initial value proiblem

w′′(t)− 2w′(t) + 5w(t) = −8eπ−t w(π) = 2 w′(π) = 12

Let’s introduce a new function y(t) = w(t+ π).

Replace t with t+ π in this equation and we get w′′(t+ π)− 2w′(t+ π) + 5w(t+ π) = −8eπ−(t+π).

Substituting the derivatives gives y′′(t)− 2y′(t) + 5y(t) = −8e−t.

This basically comes out to y = 3et cos 2t+ 4et sin 2t− e−t.

Replacing everything with t− π gives 3et−π cos 2(t− π) + 4et−π sin 2(t− π)− e−(t−π) = y(t− π).

This gives w(t) = 3et−π cos 2t+ 4et−π sin 2t− e−(t−π).

1.5 Transforms of Discontinuous Functions

Definition

The unit step function u(t) is defined to by

u(t) :=

{
0, t < 0,

1, 0 < t

Example

Graph u(t), u(t− a), and Mu(t− a).

The graph of u(t) is just as given above.

The graph of u(t− a) is just a horizontal shift.

The graph of Mu(t− a) will just have the one with 1 multiplied by M

Definition

The rectangular window function
∏

a,b(t) is defined by

∏
a,b

(t) := u(t− a)− u(t− b) =


0, t < a

1, a < t < b

0, b < t

Example

Write the function

f(t) =


3 t < 2

1 2 < t < 5

t 5 < t < 8

t2/10 8 < t

In terms of window and step functions.

This is 3
∏

0,2(t) + 1
∏

2,5(t) + t
∏

5,8(t) +
t2

10u(t− 8).
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Also this can be written as 3u(t)− 2u(t− 2) + (t− 1)u(t− 5) + ( t
2

10 − t)u(t− 8).

L{u(t− a)}(s) = e−as

s

Theorem 1.8

Let F (s) = L{f}(s) exist for s > α ≥ 0. If a is a positive constant, then

L{f(t− a)u(t− a)}(s) = e−αsF (s)

and, conversely, an inverse Laplace transform of e−asF (s) is given by

L−1{e−asF (s)}(t) = f(t− a)u(t− a)

L{g(t)u(t− a)}(s) = e−asL{g(t+ a)}(s)

Example

Determine the Laplace transform of t2u(t− 1).

a = from here, and g(t) = t2.

We take L{g(t)u(t− 1)} = e−s · L{g(t+ 1)}.

Replacing g(t) gives that t2 + 2t+ 1 for the inside, so the Answer ends up being e−s · [ 2!s3 + 2
s2 + 1

s ].

Example

Determine L{(cos t)u(t− π)}.

This has a = π. So we can see that We are doing e−πsL{g(t+ π)}.

g(t) = cos t, so g(t+ π) = cos(t+ π) = cos t cosπ − sin t sinπ = − cos t.

So the Laplace is e−πs · −1 · s
s2+1 .

Exercise Determine L−1
{

e−2s

s2

}
and sketch its graph.
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Example

The current I in an LC series circuit is governed by the initial value problem

I ′′ + 4I(t) = g(t) I(0) = 0 I ′(0) = 0

where

g(t) =


1 0 < t < 1

−1 1 < t < 2

0 2 < t

Determine the current as a function of time t.

g(t) = 1
∏

0,1 + − 1
∏

1,2 = 1[u(t − 0) − u(t − 1)] − 1[u(t − 1) − u(t − 2)]. This is equal to g(t) =
1u(t− 0)− 2u(t− 1) + u(t− 2).

This simplifies to 1− 2u(t− 1) + u(t− 2)

The Laplace of the initial value problem is s2L{I}−sI(0)−I ′(0)+4L{I} = L{1−2u(t−1)+u(t−2)}

We end up getting (s2 + 4)L{I} = 1
s − 2e−s

s + e−2s

s .



CHAPTER 1. LAPLACE TRANSFORMS 12

We get that L{I} = 1
s(s2+4) − 2e−s

[
1

s(s2+4)

]
+ e−2s

[
1

s(s2+4)

]
.

Using partial fraction decomposition of 1
s(s2+4) gives 1

4 · 1
s +− 1

4 · s
s2+4 .

If we call what we got above to be F (s), we get F (s)− 2e−sF (s) + e−2sF (s).

The inverse of what we have is I = L−1{F (s)} − 2L−1{e−sF (s)}+ L−1{e−2sF (s)}.

Doing Laplace stuff gives I = 1
4−

1
4 cos 2t−2

[
1
4 − 1

4 cos 2(t− 1)
]
u(t−1)+

[
1
4 − 1

4 cos 2(t− 2)
]
u(t−2).

1.6 Transforms of Periodic and Power Functions

Definition

A function f(t) is said to be periodic of period T ( ̸= 0) if

f(t+ T ) = f(t)

for all t in the domain of f .

To specificy a periodic function, it is sufficient to give its values over one period.

The square wave function can be epxressed as

f(t) =

{
1, 0 < t < 1

−1, 1 < t < 2

and f(t) has period 2.

For convenience, we introduce a notation for a “windowed” version of a periodic function (using a rectangular
window whose width is the period T )

fT (t) := f(T )
∏
0,T

(t) = f(t)[u(t)− u(t− T )] =

{
f(t), 0 < t < T

0, otherwise
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Theorem 1.9

If f has period T and is piecewise continuous on [0, T ], then the Laplace transform F (s) =
�∞
0

e−stf(t)dt

and FT (s) =
� T

0
e−stf(t)dt are related by

FT (s) = F (s)[1− e−sT ]

or

F (s) =
FT (s)

1− e−st

Example

Determine L{f}, where f is the square wave function.

The function of the step function gives

fT (t) = 1
∏
0,1

+− 1
∏
1,2

= u(t)− 2u(t− 1) + u(t− 2)

The Laplace of this gives e0

s − 2e−s

s + e−2s

s = 1−2e−s+e−2s

s

F (s) is just FT (s)
1−e−2s = 1−e−s

s(1+e−s) .

1.7 Convolution

Definition

Let f(t) and g(t) be piecewise continuous on [0,∞). The convolution of f(t) and g(t), denoted f ∗ g,
is defined by

(f ∗ g)(t) :=
� t

0

f(t− v)g(v)dv

Example

Find the convolution of t and t2.

Let f(t) = t and g(t) = t2

t ∗ t2 =
� t

0
(t− v) · v2dv

So let’s integrate. We get tv3

3 − v4

4 . Putting in the bounds gives t4

12 .

Theorem 1.10

Let f(t), g(t), and h(t) be piecewise continuous on [0,∞). Then

� f ∗ g = g ∗ f

� f ∗ (g + h) = (f ∗ g) + (f ∗ h)

� (f ∗ g) ∗ h = f ∗ (g ∗ h)

� f ∗ 0 = 0
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Theorem 1.11

Let f(t) and g(t) be piecewise continuous on [0,∞) and of exponential order α and set F (s) = {f}(s)
and G(s) = L{g}(s). Then

L{f ∗ g}(s) = F (s)G(s)

or, equivalently,
L−1{F (s)G(s)}(t) = (f ∗ g)(t)

Example

Use the convolution theorem to solve the initial value problem

y′′ + y = g(t) y(0) = 0 y′(0) = 0

where g(t) is piecewise continuous on [0,∞) and of exponential order.

We can get that L{y′′}+ L{y} = G(s) from the problem.

Doing the Laplace transform gives s2Y (s)− sy(0)− y′(0) + Y (s) = G(s).

This simplifies to (s2 + 1)Y (s) = G(s).

So Y (s) = 1
s2+1 ·G(s).

Taking the Laplace transform of both sides gives us y(t) = L{ 1
s2+1G(s)}.

The right side is just sin t ∗ g(t).

We know that y(t) =
� t

0
sin(t− v)g(v)dv from this.

Example

Use the convolution theorem to find L−1
{

1
(s2+1)2

}
.

From the Convolution Theorem, we find that L{F (s)G(s)} = f(t) ∗ g(t).

From that definition, the laplace is sin t ∗ sin t.

This is
� t

0
sin(t− v) · sin vdv.

Note that sinA sinB = 1
2 [cos(A−B)− cos(A+B)].

So applying this, we get that 1
2

� t

0
cos[t− v − v]− cos[t− v + v]dv.

This is equal to 1
2

�
cos[−(2v − t)]− cos tdv.

Remember that cos(−A) = cosA.

So we end up getting 1
2

�
cos(2v − t)− cos tdv.

Integrating gives 1
2 [

1
2 sin(2v − t)− v cos t] from 0 to t.

Simplifying this gives you sin t−t cos t
2

Example

Solve the integro-differential equation

y′(t) = 1−
� t

0

y(t− v)e−2vdv y(0) = 1

The integral in the expression is just a convolution.
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The integral is y ∗ e−2t.

The Laplace transform of both sides results in L{y′(t)} = L{1} − L{y(t) ∗ e−2t}.

So this is sY (s)− y(0) = 1
s − L{y(t)} · L{e−2t}.

This is sY (s)− 1 = 1
s − Y (s) · 1

s+2 .

(s+ 1
s+2 )Y (s) = 1 + 1

s .

We end up getting s2+2s+1
s+2 Y (s) = 1 + 1

s .

Factoring and solving for Y (s) gives s+2
(s+1)2 · s+1

s .

This gives us s+2
s(s+1) .

Doing the partial fraction decomposition gives us 2 = A and 1 = −B.

So we end up getting 2
s − 1

s+1 . Taking the inverse laplace transform of both sides gives us 2− e−t.

1.8 Impulses and the Dirac Delta Function

Definition

The Dirac delta function δ(t) is characterized by the following two properties:

δ(t) =
{
0, t ̸= 0, “infinite′′ t = 0

and � ∞

−∞
f(t)δ(t)dt = f(0)

for any function f(t) that is continuous on an open interval containing t = 0.

By shifting the argument of δ(t), we have δ(t− a) = 0.t ̸= a, and

� ∞

−∞
f(T )δ(t− a)dt = f(a)

for any function f(t) that is continuous on an interval containing t = a.

When t0 = 0, we derive from the limiting properties of the Fn’s of a “function” δ that satisfies the first
equation of this topic and the integral condition

� ∞

−∞
δ(t)dt = 1

The Laplace transform of the Dirac Delta function can be equickly derived from the property given above
from shifting the argeumtn. Since δ(t− a) = 0 for t ̸= a, then setting f(t) = e−st in that function, we find
for a ≥ 0 � ∞

0

δ(t− a)dt =

� ∞

−∞
e−stδ(t− a)dt = e−as

Thus, for a ≥ 0,
L{δ(t− a)}(s) = e−as

Example

Use the Laplace transform to solve the initial value-value problem

y′ + y = δ(t− 1), y(0) = 2
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Taking the Laplace of both sides gives sY (s)− y(0) + Y (s) = e−s.

Now we see that Y (s) = 1
s+1e

−s + 2
s+1 .

This becomes e−(t−1)u(t− 1) + 2e−t.

To write this as a piecewise function we can write this as y(t) =

{
2e−t 0 < t < 1

e−t−1 + 2e−t t > 1
.

Example

A mass attached to a spring is released from rest 1 m below the equilibrium position for the mass-spring
system and begins to vibrate. After π seconds, the mass is struck by a hammer exerting an impulse on
the mass. The system is governed by the symbolic initial value problem

d2x

dt2
+ 9x = 3δ(t− π); x(0) = 1,

dx

dt
(0) = 0

where x(t) denotes the displacement from equilibrium at time t. Determine x(t).

Doing the Laplace of the problem gives s2x(s)− s+ 9x(s) = 3e−πs.

So we have x(s) = s
s2+9 + 3

s2+9e
−πs.

From this the inverse Laplace is cos(3t) +− sin(3t)u(t− π).

1.9 Solving Linear Systems with Laplace Transforms

Example

Solve the initial value problem

x′(t)− 2y(t) = 4t x(0) = 4

y′(t) + 2y(t)− 4x(t) = −4t− 2 y(0) = −5

Doing the Laplace of everything gives sX(s)− x(0)− 2Y (s) = 4 · 1
s2 for the top equation and sY (s)−

y(0) + 2Y (s)− 4X(s) = −4 · 1
s2 − 2 · 1

s for the second equation.

After substituting we get

sX(s)− 2Y (S) =
4

s2
+ 4

−4X(s)(s+ 2)Y (s) = − 4

s2
− 2

s
− 5

By eliminating y, we get X(s) = 4s−2
(s2+2s−8) =

4s−2
(s+4)(s−2) .

This is equivalent to 3
s+4 + 1

s−2 .

This gives us x(t) = 3e−4t + e2t.

We know from the problem that y(t) = x′(t)−4t
2 .

So substituting values gives us y(t) = 1
2 [−12e−4t + 2e2t]− 2t = −6e−4t + e2t − 2t.

Example
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Solve the initial value problem

x′′
1 + 10x1 − 4x2 = 0

−4x1 + x′′
2 + 4x2 = 0

subject to x1(0) = 0, x′
1(0) = 1, x2(0) = 0, x′

2(0) = −1.

The top equation’s laplace transformation is s2x1(s)− sx1(0)− x′
1(0) + 10x1(s)− 4x2(s) = 0.

The bottom equation becomes −4x1(s) + s2x2(s)− sx2(0)− x′
2(0) + 4x2(s) = 0.

Solving the system of equations for x2(s) gives us
−s2−6

(s2+12)(s2+2) =
−2/5
s2+2 + −3/5

s2+12 .

The Laplace gives x2(t) = −
√
2
5 sin(

√
2t)−

√
3

10 sin(2
√
3t).

Doing the derivatives gives us x1 = −
√
2

10 sin(
√
2t) +

√
3
5 sin(2

√
3t).
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