
1 Series Solutions of Differential Equa-
tions

1.1 Introduction: The Taylor Polynomial Approximation

The best tool for numerically approximating a function f(x) near a particular point x0 is the Taylor polynomial.

The formula for the Taylor polynomial of degree n centered at x0, approximating a function f(x) possessing
n derivatives x0 is given by

pn(x) = f(x0)+f ′(x0)(x−x0)+
f ′′(x0)

2!
(x−x0)

2+
f ′′′(x0)

3!
(x−x0)

3+· · ·+f (n)(x0)

n!
(x−x0)

n =

n∑
j=0

f (j)(x0)

j!
(x−x0)

j

Example

Find the first four Taylor polynomials for ex, expanded around x0 = 0.

pn(x) is written as f(0) + f ′(0)(x− 0) + f ′′(0)
2! (x− 0)2 + f ′′′(0)

3! (x− 0)3.

Since we know the derivatives of f(x) = ex is just e(x), f (j)(0) = 1 for all of them.

This simplifies to 1 + x+ 1
2x

2 + 1
6x

3.

The Taylor polynomial pn is just the (n+ 1)st partial sum of the Taylor series

∞∑
j=0

f (j)(x0)

j!
(x− x0)

j

Example

Determine the fourth-degree Taylor polynomials matching the function cosx at x0 = 2

So using what was previously given we have f(2) + f ′(2)(x − 2) = f ′′(2)
2! (x − 2)2 + f ′′′(2)

3! (x − 2)3 +
f(4)

4! (x− 2)4.

Filling in the f (j) values gives us p4(x) = cos 2−sin 2(x−2)− cos 2
2 (x−2)2+ sin 2

6 (x−2)3+ cos 2
24 (x−2)4

Example

Find the first few Taylor polynomials approximating the solution around x0 = 0 of the initiai value
problem

y′′ = 3y′ + x7/2y y(0) = 10 y′(0) = 5

In general, this is just y(0) + y′(0)x+ y′′(0)
2! x2 + · · ·+ y(n)(0)

n! xn.

Since we are given the problem, we know that y′′(0) = 3y′(0) + 0 = 15.

As we continue taking derivatives with respect to x, we get y′′′ = 3y′′ + 7
3x

7/3y+ x7/3y′, and plugging
in the numbrs gives us y′′′(0) = 45.

Calculating the 4th derivative gives us 135.
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The fifth derivative is no longer defined.

Example

Determine the Taylor polynomial of degree 3 for the solution to the initial value problem

y′ =
1

x+ y + 1
y(0) = 0

Finding y′(0) gives us 1, and finding y′′(0) gives us −2, and y′′′(0) = 10.

We can estimate the accuracy to which a Taylor polynomial pn(x) approximates its target function f(x) for
x near x0. The error ϵn(x) measures the accuracy of the approximation,

ϵn(x) = f(x)− pn(x)

and can be estimated by ϵn(x) =
f(n+1)(ℵ)
(n+1)! (x− x0)

n+1, where ℵ is guaranteed to lie between x0 and x if the

(n+ 1)st derivative of f exists and is continuous on an interval containing x0 and x.

1.2 Power Series and Analytic Functions

A power series about the point x0 is an expression of the form

∞∑
n=0

an(x− x0)
n = a0 + a1(x− x0) + a2(x− x0)

2 + . . .

where x is a variable and the an’s are constants.

A power series is convergent at a specified value of x if its sequence of partial sums {SN (x)} converges, that
is

lim
N→∞

SN (x) = lim
N→∞

N∑
n=0

an(x− x0)
n

If the limit does not exist at x, then the series is said to be divergent.

Every power series has an interval of convergence. The interval of convergence is the set of all real numbers
x for which the series converges. The center of the interval of convergence is the center x0 of the series.
Within its interval of convergence a power series converges absolutely. In other words, if x is in the interval
of convergence and is not an endpoint of the interval, then the series of absolute values

∞∑
n=0

|an(x− x0)
n|

converges.

Theorem 1.1

For each power series, there is a number ρ (0 ≤ ρ < ∞), called the radius of convergence of the power
series, such that the series converges absolutely for |x − x0| < ρ and diverges for |x − x0| > ρ. If the
series converges for all values of x, then ρ = ∞. WHen the series converges only at x0, then ρ = 0.
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Theorem 1.2

If, for n large, the coefficients an are nonzero and satisfy

lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣ = L (0 ≤ L ≤ ∞)

then the radius of convergence of the power series
∑∞

n=0 an(x− x0)
n is ρ = L.

Example

Determine the interval and radius of convergence of

∞∑
n=0

(−2)n

n+ 1
(x− 3)n

From the ratio test, the radius of convergence is ρ = 1
2 .

The interval of convergence is |x− 3| < 1
2 .

So the interval is −5/2 < x < 7/2.

For 7/2, it converges, so −5/2 < x ≤ 7/2.

Theorem 1.3

If
∑∞

n=0 an(x− x0)
n = 0 for all x in some open interval, then each coefficient an equals zero.

Theorem 1.4

If the series f(x) =
∑∞

n=0 an(x− x0)
n has a positive radius of convergence ρ, then f is differentiable

in the interval |x− x0| < ρ and termwise differentiation gives the power series for the derivative:

f ′(x) =

∞∑
n=1

nan(x− x0)
n−1 for |x− x0| < ρ

Furthermore, termwise integration gives the power series for the integral of f :

�
f(x)dx =

∞∑
n=0

an
n+ 1

(x− x0)
n+1 + C for |x− x0| < ρ

Example

Starting with the geometric series for 1
1−x = 1 + x+ x2 + x3 + x4 + · · · =

∑∞
n=0 x

n − 1 < x < 1
find a power series for each of the following functions.

(a) 1
1+x2

Replace x with −x2 and we get the power series equal to

1− x2 + x4 − x6 + x8 + · · · =
∑∞

n=0(−1)nx2n − 1 < x < 1.

(b) 1
(1−x)2

This becomes 1 + 2x+ 3x2 + · · · =
∑∞

n=1 nx
n−1

(c) arctanx This becomes x− x3

3 + x5

5 − x7

7 + · · · =
∑∞

n=0
(−1)n

2n+1 x
2n+1
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Example

Express the series
∑∞

n=2 n(n− 1)anx
n−2 as a series where the generic term is xk instead of xn−2.

Let k = n− 2, so n = k + 2.

Plugging this in gives us
∑∞

k=0(k + 2)(k + 1)ak+2x
k.

Example

Show that x3
∑∞

n=0 n
2(n− 2)anx

n =
∑∞

n=3(n− 3)2(n− 5)an−3x
n.

Let k = n+ 3, so n = k − 3.

Doing stuff gives you the answer of
∑∞

n=3(n− 3)2(n− 5)an−3x
n.

Exercise Show that the identity
∑∞

n=1 nan−1x
n−1 +

∑∞
n=2 bnx

n+1 = 0 implies that a0 = a1 = a2 = 0 and

an = − bn−1

(n+1) for n ≥ 3.

Definition

A function f is said to be analytic at x0 if, in an open interval about x0, this function is the sum of a
power series

∑∞
n=0 an(x− x0)

n that has a positive radius of convergence.

A polynomial is analytic at every x0. A rational function P (x)/Q(x) where P (x) and Q(x) are polynomials
without a common factor, is analytic except at those x0 for which Q(x0) = 0. The elementary functions
ex, sinx, cosx are analytic for all x while lnx is analytic for x > 0. Familiar representations are

ex = 1 + x+
x2

2!
+

x3

3!
+ · · · =

∞∑
n=0

xn

n!

sinx = x− x3

3!
+

x5

5!
+ · · · =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1

cosx = 1− x2

2!
+

x4

4!
+ · · · =

∞∑
n=0

(−1)n

(2n)!
x2n

lnx = (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − · · · =

∞∑
n=1

(−1)n−1

n
(x− 1)n

where the first three are valid for all x, whereas the last is valid for x in (0, 2].

1.3 Power Series Solutions to Linear Differential Equations

Definition

A point x0 is called an ordinary point if both p = a1/a2 and q = a0/a2 are analytic at x0. If x0 is not
an ordinary point, it is called a singular point of the equation.
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Example

Determine all the singular points of

xy′′ + x(1− x)−1y′ + (sinx)y = 0

The form of this is y′′ + 1
1−xy

′ + sin x
x y = 0.

p(x) = 1
1−x can be represented as a power series as well as q(x) = sin x

x .
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The only singular point is at x = 1.

Example

Find a power series solution about x = 0 to

y′ + 2xy = 0

We are substituting around y =
∑∞

n=0 anx
n. The derivative is y′ =

∑∞
n=1 n · anxn−1.

Substituting this in gives
∑∞

n=1 nanx
n−1 + 2x

∑∑
n=0 anx

n = 0.

When we are trying to get x1 in the summations, we get a1+
∑

n=2 na+nxn−1+
∑

n=0 2anx
n+1 = 0.

Simplifying this gives us a1 +
∑

k=1[(k + 1)ak+1 + 2ak−1]x
k = 0.

We have ak+1 = −2ak−1

k+1 .

From the expanded form of y we have a0x0 + a1x+ a2x
2 + a3x

3 + a4x
4 + . . . .

We already know a1 = 0.

We can keep finding the formulas, a2 = −2
2 a0, a4 = −2

4 · −2
2 a0 and a6 = −2

6 · −2
4 · −2

2 a0, and the odd
k will result in 0.

We have y = a0 +
−2
2 a0x

2 + (−2)2

4·2 a0x
4 + (−2)3

6·4·2 a0x
6 + · · ·+ (−3)n

2·n! x2n.

We can also write this as y = a0
∑

n=0
(−1)n

n! x2n, which ends up being a0e
−x2

.

Example

Find a general solution to
2y′′ + xy′ + y = 0

in the form of a power series about the ordinary point x = 0.

We have y′′ + x
2 y

′ + 1
2y = 0.

There are no singular points here, so all points are ordinary.

We will find this with y =
∑∞

n=0 anx
n and y′ =

∑
n=1 annx

n−1 and y′′ =
∑

n=2 ann(n− 1)xn−2.

Plugging this in gives 2
∑

n=2 ann(n− 1)xn−2 + x
∑

n=1 annx
n−1 +

∑
n=0 anx

n = 0.

This will simplify to 4a2 + a0 +
∑

k=1[2ak+2(k + 2)(k + 1) + (k + 1)ak]x
k = 0.

The recurrence formula ends up being ak+2 = −ak

2(k+2) .

Let’s look at k = 1, k = 2, k = 3, k = 4 until we find a pattern.

We also know a2 = − 1
4a0.

We have that a3 = −a1

2·3 , a4 = − a2

2·4 , a5 = − a3

2·5 , a6 = − a4

2·6 .

We can write a4 in terms of a0 as − 1
2·4 · − 1

4a0 and a6 = − 2·6
· − 1

2·4 · − 1
4a0.

With these patterns we can write this as a2n+1 = (−1)n

2n[(2n+1)·...1] .

Ok we know y = a0 + a1x+ a2x
2 + a3x

3 + a4x4 + a5x5 + . . . .

So we get this is equal to a0 + a1x− 1
4a0x

2 − 1
6a1x

3 + 1
32a0x

4 + 1
60a1x

5.

This is a linear combination of a0 and a1.

Example
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Find the first few terms in a power series expansion about x = 0 for a general solution to

(1 + x2)y′′ − y′ + y = 0

Yea, a lot of stuff happen.

If you do previous steps of changing the indices and writing out the power series, we get

[2a2 − a1 + a0] + [6a3 − 2a2 + a1]x+
∑

k=2[(k+2)(k+1)ak+2 +(k+1)ak+1 +(k2 − k+1)ak]x
k = 0

And then we can find ak+2 = −(k+1)ak+1−(k2−k+1)ak

(k+2)(k+1) .

We also know a2 = 1
2 (a1 − a0) and a3 = 1

6 (2a2 − a1) =
frac−a06.

Doing many many steps gives you y = a0 + − 1
2a0x

2 − 1
6a0x

3 + 1
12a0x

4 + 3
40a0x

5 − 17
720a0x

6 for the
case of when a1 = 0.

When a0 = 0, then the equation just becomes a1[x+ 1
2x

2 − 1
8x

4 − 1
40x

5 + 1
20x

6 + . . . ].

1.4 Equations with Analytic Coefficients

We start by stating a basic existence theorem for the equation

y′′(x) + p(x)y′(x) + q(x)y(x) = 0

Theorem 1.5

Suppose x0 is an ordinary point for the equation. THen this equation has two linearly independent
analytic solutions of the form

y(x) =

∞∑
n=0

an(x− x0)
n

Moreover, the radius of convergence of any power series solution of the form given by the above is
at least as large as the distance from x0 to the nearest singular point (real or complex-valued) of the
original equation.

Example

Find a minimum value for the radius of convergence of a power series solution about x = 0 to

2y′′ + xy′ + y = 0

So we have y′′ + x
2 y

′ + 1
2y = 0.

There are no singular points, so the radius of convergence is ρ = ∞
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Example

Find a minimum value for the radius of convergence of a power series solution about x = 0 to

(1 + x2)y′′ − y′ + y = 0

This is y′′ − 1
1+x2 y

′ + 1
1+x2 y = 0.

The singular points are ±i.

The distance from 0 is 1, so ρ = 1.

Example

Find the first few terms in a power series expansion about x = 1 for a general solution to

2y′′ + xy′ + y = 0

Also determine the radius of convergence of the series.

We can let t = x− 1, and x = 1 and t = 0.

So we can get y(x) =
∑∞

n=0 an(x− 1)n, so Y (t) = y(x) = y(t+ 1).

We have 2d2Y
dt2 + (t+ 1)dYdt + Y = 0.

Substituting some of this stuff in gives 2
∑∞

n=2 n(n−1)ant
n−2+(t+1)

∑∞
n=1 nant

n−1+
∑∞

n=0 ant
n = 0.

We need to break off some stuff, to simplify the sums.

We get (4a2+a1+a0)t
0+

∑
k=1 2(k+2)(k+1)ak+2t

k+
∑

k=1 kakt
k+

∑
k=1(k+1)ak+1t

k+
∑

k=1 akt
k.

We can get ak+2 = −ak−ak+1

2(k+2) .

We know of course that Y (t) = a0 + a1t+ a2t
2 + a3t

3 + . . . .

We also know it’s a linear combination, so Y (t) = a0(1− 1
4 t

2 + 1
24 t

3 + . . . ) + a1(t− 1
4 t

2 − 1
8 t

3 + . . . )

And just substitute t = x− 1 into the above to solve it.

1.5 Method of Frobenius

Definition

A singular point x0 of
y′′(x) + p(x)y′(x) + q(x)y(x) = 0

is said to be a regular singular point if both (x−x0)p(x) and (x−x0)
2q(x) are analytic at x0. Otherwise

x0 is called an irregular singular point.

Example

Classify the singular points of the equation

(x2 − 1)2y′′(x) + (x+ 1)y′(x)− y(X) = 0

Rewriting this gives you y′′ + (x+1)
(x+1)2(x−1)2 y

′ − 1
(x+1)2(x−1)2 y = 0.

The singular points are x = 1 and x = −1.

x = 1 is an irregular singular point because it is not analytic for both p(x) and q(x). −1 is a regular
singular point.
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Definition

If x0 is a regular singular point of y′′ + py′ + qy = 0, then the indical equation for this point is

r(r − 1) + p0r + q0 = 0

where
p0 := lim

x→x0

(x− x0)p(x), q0 := lim
x→x0

(x− x0)
2q(x)

The roots of the indicial equation are called the exponents (indices) of the singularity x0.

Example

Find the indical equation and the exponents of the singularity x = −1 of

(x2 − 1)2y′′(x) + (x+ 1)y′(x)− y(x) = 0

In standard form we have y′′ + (x+1)
(x+1)2(x−1)2 y

′ − 1
(x+1)2(x−1)2 y = 0.

We have (x+ 1)p(x) = 1
(x−1)2 and (x+ 1)2q(x) = −1

(x−1)2 .

The limits are 1/4 and −1/4 respectively from this.

So the indical equation becomes r(r− 1) + p0r+ q0 = 0 or r(r− 1) + 1
4r−

1
4 = 0 or r2 − 3

4r−
1
4 = 0

Factoring gives (4r + 1)(r − 1), and the indical roots are r = −1/4 and r = 1.

Example

Find a series expansion about the regular singular point x = 0 for a solution to

(x+ 2)x2y′′(x)− xy′(x) + (1 + x)y(x) = 0, x > 0

Finding the indical roots gives us p0 = −1/2, and q0 = 1/2.

The indicial equation is 2r2 − 3r + 1 = 0, so the indicial roots are r = 1/2 and r = 1.

Now expand about r = 1.

We get (x+ 2)x2
∑

an(n+ 1)nxn−1 − x
∑

an(n+ 1)xn + (1 + x)
∑

anx
n+1 = 0.

Do some simplification to get
∑

n = 0an(n + 1)nxn+2 +
∑

n=1 2an(n + 1)nxn+1 −
∑

n=1 an(n +
1)xn+1

∑
n=0 anx

n+2.

Writing them to start all at the same index and combining gives you
∑

k=2[ak−2(k − 1)(k − 2) +
2ak−1k(k − 1)− ak−1(k − 1) + ak−2]x

k = 0.

Finding the recurrence formula gives ak−1 = −(k2−3k+3)
(2k−1)(k−1)ak−2.

Putting k values into the formula gives you y = x− 1
3x

2 + 1
10x

3 − 1
30x

4 + . . . .

Theorem 1.6

If x0 is a regular singular point, then there exists at least one series solution, where r = r1 is the
larger root of the associated indicial equation. Moreoever, this series converges for all x such that
0 < x− x0 < R, where R is the distance from x0 to the nearest other singular point (real or complex).

Example
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Find as eries solution about the regular singular point x = 0 of

x2y′′(x)− xy′(x) + (1− x)y(x) = 0, x > 0

We have x = 0 is a regular singular point from writing this in general form.

Writing the indicial equation gives us r = 1.

Writing the summations gives you
∑

n=0 an(n+ 1)nxn+1 −
∑

n=0 an(n+ 1)xn+1 +
∑

n=0 anx
n+1 −∑

n=0 anx
n+2 = 0.

Simplify this to get ak−1 = ak−2

(k=1)2 .

You end up getting y = x+ x2 + 1
4x

3 + 1
36x

4 + . . . .
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