
1 Matrix Methods for Linear Systems

1.1 Introduction to Matrix Methods

The product of a matrix and a column vector is defined to be the collection of dot products of the rows of
the matrix with the vector, arranged as a column vector:

row # 1
row # 2

...
row # 3

 [
v
]
=


row # 1 · v
row # 2 · v

...
row # 3 · v


where the vector v has n components; the dot product of two n-dimensional vectors is computed in the
obvious way:

[a1 a2 · · · an] · [x1 x2 · · · xn] = a1x1 + a2x2 + · · ·+ anxn

Example

Express the system as a matrix equation.

x′
1 = 2x1 + t2x2 + (4t+ et)x4

x′
2 = (sin t)x2 + (cos t)x3

x′
3 = x1 + x2 + x3 + x4

x′
4 = 0

This is simply written as 
x′
1

x′
2

x′
3

x′
4

 =


2 t2 0 (4t+ et)
0 sin t cos t 0
1 1 1 1
0 0 0 0



x1

x2

x3

x4


In general, if a system or differential equation is expresses as

x′
1 = a11(t)x1 + a12(t)x2 + · · ·+ a1n(t)xn

x′
2 = a21(t)x1 + a22(t)x2 + · · ·+ a2n(t)xn

...

x′
n = an1(t)x1 + an2(t)x2 + · · ·+ ann(t)xn

it is said to be a linear homogeneous system in normal form. The matrix form of such a system is

X′ = AX

where A is the coefficient matrix

A = A(t) =


a11(t) a12(t) . . . a1n(t)
a21(t) a22(t) . . . a2n(t)

...
...

...
an1(t) an2(t) . . . ann(t)


and X is the solution vector

x =


x1

x2

...
xn


1
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Example

Express the differential equation for the undamped, unforced mass-spring oscillator

my′′ + ky = 0

as an equivalent system of first-order equations in normal form, expressed in matrix notation.

We have that y′ = v and v′ = − k
my.

So we can write this as

[
y
v

]′
=

[
0 1

−k/m 0

] [
y
v

]
.

We can write this as anx
′
n + an−1xn + · · ·+ a1x2 + a0x1 = 0.

Which can be rewritten as x′
n = − a0

an
x1 − a1

an
x2 − · · · − an−1

an
xn.

Using this can make it easy to get to matrix notation

Example

A coupled mass-spring oscillator is governed by the system

2
d2x

dt2
+ 6x− 2y = 0

d2y

dt2
+ 2y − 2x = 0

Let x1 = x, x2 = x′, x3 = y, x4 = y′.

This gives us x′
1 = x2, x

′
2 = −3x1 + x3, x

′
3 = x4, x

′
4 = x1 − 2x3.

So the matrix form can be easily answered from that.

1.2 Review 1: Linear Algebraic Equations

A set of equations of the form

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

an1x1 + an2x2 + · · ·+ annxn = bn

(where the aij ’s and bi’s are given constants) is called a linear system of n algebraic equations in the n
unknowns x1, x2, . . . xn.

The Gauss-Jordan elimination algorithm uses elimination to uncouple the system making the values of the
unknowns apparent.

Example

Solve the system

2x1 + 6x2 + 8x3 = 16

4x1 + 15x2 + 19x3 = 38

2x1 + 3x3 = 6

Solving the coefficient matrix gives you (0, 0, 2) = (x1, x2, x3).
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Exercise Solve the system

x1 + 2x2 + 4x3 + x4 = 0

−x1 − 2x2 − 2x3 = 1

−2x1 − 4x2 − 8x3 + 2x4 = 4

x1 + 4x2 + 2x3 = −3

Example

Solve the system

2x1 + 4x2 + x3 = 8

2x1 + 4x2 = 6

−4x1 − 8x2 + x3 = −10

We will end up getting x1 + 2x2 = 3 and x3 = 2, and x2 has infinite solutions, and is called a free
variable.

So x2 = t, x1 = −2t+ 3, and x3 = 2.

Exercise Solve the system

x1 − x2 + 2x3 + 2x4 = 0

2x1 − 2x2 + 4x3 + 3x4 = 1

3x1 − 3x2 + 6x3 + 9x4 = −3

4x1 − 4x2 + 8x3 + 8x4 = 0

1.3 Review 2: Matrices and Vectors

A matrix is a rectangular array of numbers arranged in rows and columns. An m×n matrix, that is, a matrix
with m rows and n columns is usually denoted by

A :=


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
...

...
... . . .

...
am1 am2 am3 . . . amn


Where the element in the ith row and jth column is aij . The notation [aij ] is used to designate A.

A square matrix has the same number of rows and columns. A diagonal matrix is a square matrix with only
zero entries off the main diagonal. A column matrix, or vector, is an n× 1 matrix. An m× n matrix whose
entries are all zero is called a zero matrix. Matrices are denoted by boldfaces capital letters and vectors by
boldfaced lower case letters.

The sum of two m× n matrices is given by

A+ B = [aij ] + [bij ] = [aij + bij ]

To multiply a matrix by a scalar (number), multiply each element in the matrix by that number:

rA = r[aij ] = [raij ]

The notation −A stands for (−1)A.

Properties of Matrix Addition and Scalar Multiplication

� A+ (B+ C) = (A+ B) + C
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� A+ B = B+ A

� A+ 0 = A

� A+ (−A) = 0

� r(A+ B) = rA+ rB

� (r + s)A = rA+ sA

� r(sA) = (rs)A = s(rA)

Exercise Perform the indicated operation:

[
1 2 3
4 5 6

]
+

[
1 1 1
1 1 1

]
Exercise Perform the indicated operation: 3

[
1 2 3
4 5 6

]
The product of a matrix A and a column vector x is the column vector composed of dot products of the
rows of A with x. AB is only defined when the number of columns of A matches the number of rows of B.

Exercise Perform the indicated operation:

[
1 2 3
4 5 6

]10
2


Exercise Perform the indicated operation:

[
1 0 1
3 −1 2

] 1 2 x
−1 −1 y
4 1 z


Properties of Matrix Multiplication

� (AB)C = A(BC)

� (A+ B)C = AC+ BC

� A(B+ C) = AB+ AC

� (rA)B = r(A[B]) = A(rB)

Let A be an m× n matrix and let x and y be n× 1 vectors. Then Ax is an m× 1 vector so we can think of
multiplication by A as defining an operator that maps n× 1 vectors into m× 1 vectors. Multiplication by A
defines a linear operator since A(x+ y) = Ax+ Ay and A(rx) = rAx.

Examples of linear operations are:

1. Stretching or contracting the components of a vector by constant factors

2. rotating a vector through some angle about a fixed axis

3. reflecting a vector in a plane mirror

We express the linear system

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

an1x1 + an2x2 + · · ·+ annxn = bn

In matrix notation as Ax = b where A is the coefficient matrix, x is the vector of unknowns, and B is the
vector of constants occurring on the right-hand side:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann

 x =


x1

x2

...
xn

 b =


b1
b2
...
bn


If b = 0, the system Ax = b is said to be homogeneous.
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The matrix obtained from A by interchaing its rows and columns is called the transpose of A and is denoted
by AT .

Exercise Find AT if A =

[
1 2 6
−1 2 −1

]
.

There is a multiplicative identity in matrix algebra, namely, a square diagonal matrix I with ones down the
main diagonal. Multiplying I on the right or left by any other matrix (with compatible dimensions) reproduces
the latter matrix.

Exercise Demonstrate the identity property for A =

[
1 2 6
−1 2 −1

]
Some square matrices A can be paired with other square matrices B having the property that BA = I. When
this happens,

1. B is the unique matrix satisfying BA = I and

2. B also satisfies AB = I.

In such a case, B is the inverse of A and write B = A−1. A matrix that has no inverse is said to be singular.

When an inverse for the coefficient matrix A in a system of linear equations Ax = b, the solution can be
calculated directly by x = A−1b.

If A =

[
a b
c d

]
, then A−1 = 1

ad−bc

[
d −b
−c a

]
. The matrix A is invertible if and only if ad − bc ̸= 0. If

ad− bc = 0, then A does not have a multiplicative inverse.

Exercise If A =

[
2 4
1 1

]
, solve Ax = b where b =

[
1
2

]
Finding the Inverse of a Matrix. Row operations include

� Interchanging two rows of the matrix

� Multiplying a row of the matrix by a nonzero scalar

� Adding a scalar multiple of one row of the matrix to another row

If the n× n matrix A has an inverse, A−1 can be found by performing row operations on the n× 2n matrix
[A|I] obtained by writing A and I side by side. If the procedure produces a new matrix in the form [I|B], then
A−1 = B.

Exercise Find the inverse of A =

1 2 1
1 3 2
1 0 1


For a 2× 2 matrix A, the determinant of A, denoted by detA or |A|, is defined by

detA :=

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21

The determinant of a 3× 3 matrix A can be defined in terms of its cofactor expansion about the first row

detA :=

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22
a31 a32

∣∣∣∣
Exercise Find the determinant

∣∣∣∣2 4
1 1

∣∣∣∣
Exercise Find the determinant

∣∣∣∣∣∣
1 2 1
0 3 5
2 1 −1

∣∣∣∣∣∣
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Theorem 1.1

Let A be an n× n matrix. The following statements are equivalent:
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� A is singular (does not have an inverse).

� The determinant of A is zero.

� Ax = 0 has nontrivial solutions (x ̸= 0)

� The columns (rows) of A form a linearly dependent set.

The columns of A are linearly dependent means there exist scalars c1, . . . , cn not all zero, such that

c1a1 + c2a2 + · · ·+ cnan = 0

where aj is the vector forming the jth column of A.

If A is a singular square matrix (detA = 0) then Ax = 0 has infinitely many solutions.

If A is singular, Ax = b either has no solutions or it has infinitely many of the form

x = xp + xh

where xp is a particular solution to Ax = b and xh is any of the infinite solutions to Ax = 0, the homogeneous
system.

Exercise In a previous section, we saw the system 2 4 1
2 4 0
−4 −8 1

x1

x2

x3

 =

 8
6

−10


has solutions x1 = 3− 2s, x2 = s, x3 = 2 where −∞ < s < ∞.

1. Write the solution in matrix notation and identify xp and xh.

2. Verify detA = 0

3. Give the identity that exhibits the linear dependence of the columns of A.

If A is a nonsingular square matrix (i.e., A has an inverse and detA ̸= 0), then Ax = 0 has x = 0 as its only
solution and the unique solution to Ax = b is x = A−1b.

If the entries aij(t) in a matrix A(t) are functions of the variable t, then A(t) is a matrix function of t.
Similarly, if the entries xi(t) of a vector x(t) are functions of t, then x(t) is a vector function of t.

A matrix A(t) is said to be continuous at t0 if each entry aij(t) is continuous at t0. A(t) is differentiable at
t0 if each entry aij(t) is differentiable at t0.

dA

dt
(t0) = A′(t0) := [a′ij(t0)]

� b

a

A(t)dt :=

[� b

a

aij(t)dt

]

Exercise Let A(t) =

[
t2 + 1 cos t
et 1

]
1. Find: A′(t)

2. Find:
� 1

0
A(t)dt

Differentiation Formulas for Matrix Functions:

�
d
dt (CA) = CdA

dt (C a constant matrix)

�
d
dt (A+ B) = dA

dt + dB
dt

�
d
dt (AB) = AdB

dt + dA
dt B

Exercise Show that x(t) =

[
cosωt
sinωt

]
is a solution of the matrix differential equation x′ = Ax where A =[

0 −ω
ω 0

]
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1.4 Linear Systems in Normal Form

A system of n linear differential equations is in normal form if it is expressed as

x′(t) = A(t)x(t) + f(t)

where x(t) =

x1(t)
...

xn(t)

, f(t) =
f1(t)

...
xn(t)

 and A(t) =
[
aij(t)

]
is an n× n matrix.

A system is called homogeneous when f(t) = 0; otherwise it is called nonhomogeneous. When the elements
of A are all constants, the system is said to have constant coefficients.

The initial value problem for the normal system is the problem of finding a differentiable vector function x(t)
that satisfies the system on an interval I and also satisfies the initial condition x(t0) = x0 where t0 is a given
point of I and x0 is a given vector.

Theorem 1.2

Suppose A(t) and f(t) are continuous on an open interval I that contains the point t0. Then, for any
choice of the initial vector x0, there exists a unique solution x(t) on the whole interval I to the initial
value problem

x′(t) = A(t)x(t) + f(t), x(t0) = x0

Definition

The m vector functions x1, . . . , xn are said to be linearly dependent on an interval I if there exist
constants c1, . . . , cn, not all zero, such that

c1x1(t) + · · ·+ cnxn(t) = 0

for all t in I. If the vectors are not linearly dependent, they are said to be linearly independent on I.

Example

Show that the vector functions x1(t) =

et0
et

 , x2(t) =

3et0
3et

, and x3 =

t1
0

 are linearly dependent on

(−∞,∞).

They are dependent because let c1 = −3, c2 = 1, c3 = 0 to get

00
0

.
Example

Show that the vector functions x1(t) =

e2t0
e2t

 , x2(t) =

 e2t

e2t

−e2t

, and x3(t) =

 et

2et

et

 are linearly

independent on (−∞,∞).

The only way we can get

00
0

 is if the three constants are 0.

A set of vector functions x1(t), x2(t), . . . , xn(t) each having n components is linearly independent on an
interval I if we can find one point t0 in I where the determinant det

[
x1(t0) . . . xn(t0)

]
is not zero. We

call this detemrinant the Wronksian. (This was previously defined)
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Theorem 1.3

Let x1, . . . , xn be n linearly independent solutions to the homogeneous system

x′(t) = A(t)x(t)

on the interval I, where A(t) is an n× n matrix function continuous on I. Then every solution to the
above on I can be expressed in the form

x(t) = c1x1(t) + · · ·+ cnxn(t)

A set of solutions {x1, . . . xn} that are linearly independent on I is called a fundamental solution set for the
homogeneous system on I. The linear combination written with arbitrary constants, is referred to as the
general solution to the homogeneous system.

If we take the vectors in a fundamental solution set and let them form the columns of a matrix X(t).

X(t) =
[
x1(t) x2(t) . . . xn(t)

]
=


x1,1(t) x1,2(t) . . . x1,n(t)
x2,1(t) x2,2(t) . . . x2,n(t)

...
...

...
xn,1(t) xn,2(t) . . . xn,n(t)


Then the matrix X(t) is called a fundamental matrix for the homogeneous system.

Example

Verify that the set S =


e2te2t

e2t

 ,

−e−t

0
e−t

 ,

 0
e−t

−e−t

 is a fundamental solution set for the system

x′(t) =

0 1 1
1 0 1
1 1 0


textbfx(t) on the interval (−∞,∞) and find a fundamental matrix for the system. Determine a general
solution for the system.

Testing the three matrices in the system gives the correct resulting vector, and finding the Wronksian
shows us that the columns are linearly independent, so the general solution is

x = c1

e2te2t

e2t

+ c2

−e−t

0
e−t

+ c3

 0
e−t

−e−t



Theorem 1.4

Let xp be a particular solution to the nonhomogeneous system

x′(t) = A(t) + f(t)

on the interval I, and let {x1, . . . , xn} be a fundamental solution set on I for the corresponding ho-
mogeneous system x(t) = A(t)x(t). Then every solution to the nonhomogeneous system on I can be
expressed in the form

x(t) = xp(t) + c1x1(t) + · · ·+ cnxn(t)

where c1, . . . , cn are constants.

Approach to Solving Normal Systems:

1. To determine a general solution to the n× n homogeneous system x′ = Ax:

� Find a fundamental solution set {x1, . . . , xn} that consists of n linearly independent solutions to
the homogeneous system.
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� Form the linear combination
x = Xc = c1x1 + · · ·+ cnxn

where c = col(c1, . . . , cn) is any constant vector and X =
[
x1 . . . xn

]
is the fundamental

matrix, to obtain a general solution.

2. To determine a general solution to the nonhomogeneous system x′(t) = Ax+ f:

� Find a particular solution xp to the nonhomogeneous system.

� Form the sum of the particular solution and the general solution Xc = c1x1 + · · · + cnxn to the
corresponding homogeneous system in part 1,

x = xp + Xc = xp + c1x1 + · · ·+ cnxn

to obtain a general solution to the given system.

1.5 Homogeneous Linear Systems with Constant Coefficients

We now define a procedure for obtaining a general solution for the homogeneous system

x′(t) = Ax(t)

Definition

Let A =
[
aij

]
be an n× n constant matrix. The eigenvalues of A are those (real or complex) numbers

r for which (A − rI) = 0 has at least one nontrivla solution u. The corresponding nontrivial solutions
u are called the eigenvectors of A associated with r.

Finding eigenvalues of a matrix A is equivalent to finding the zeroes of the polynomial p(r) = det(A−rI). The
equation det(A− rI) = 0 is called the characteristic equation of A and p(r) is the characteristic polynomial
of A.

Example

Find the eigenvalues and eigenvectors of the matrix A =

[
2 −3
1 −2

]
First find the characteristic equation, this is the determinant of

[
2− r −3
1 −2− r

]
. So the characteristic

equation is r2 − 1 and the eigenvalues are r = −1 and r = 1.

Now doing the procedure above, we find that for r = −1, the eigenvector is u =

[
1
1

]
and for r = 1, the

eigenvector is

[
3
1

]
.

The collection of all eigenvectors associated with an eigenvalue forms a subspace when the zero vector is
adjoined. These subspaces are called eigenspaces.

Exercise Find the eigenvalues and eigenvectors of the matrix

A =

1 2 −1
1 0 1
4 −4 5



Theorem 1.5

Suppose the n× n constant matrix A has n linearly independent eigenvectors u1,u2, . . . ,un. Let ri be
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the eigenvalue corresponding to ui. Then

{er1tu1, er2tu2, . . . , erntun}

is a fundamental solution set (and X(t) =
[
er1tu1 er2tu2 . . . erntun

]
is a fundamental matrix) on

(−∞,∞) for the homogeneous system x′ = Ax. Consequently, a general solution of x′ = Ax is

x(t) = c1e
r1tu1 + c2e

r2tu2 + · · ·+ cne
rntun

where c1, . . . , cn are arbitrary constants.

Example

Find a general solution of x′(t) = Ax(t), where A =

[
2 −3
1 −2

]
We get the eigenvalues as ±1 from this. Therefore, when we find the the general solution, we can see
that this is

x(t) = c1

[
3
1

]
et + c2

[
1
1

]
e−t

, and this can be written in different ways, but this is a way to write the general solution.

Theorem 1.6

If r1, . . . , rm are distinct eigenvalues for the matrix A and ui is an eigenvector associated with ri, then
u1, . . . ,um are linearly independent.

Corollary 1.7

If the n×n constant matrix A has n distinct eigenvalues r1, . . . , rn and ui is an eigenvector associated
with ri, then

{er1tu1, . . . , erntun}

is a fundamental solution set for the homogeneous system x′ = Ax.

Exercise Solve the initial value problem x′(T ) =

1 2 −1
1 0 1
4 −4 5

 x(t) where x(0) =

−1
0
0

.
Definition

A real symmetric matrix A is a matrix with real entries that satisfies AT = A.

If A is an n× n real symmetric matrix, there always exist n linearly independent eigenvectors.

Example

Find a general solution of x′(t) = Ax(t), where A =

 1 −2 2
−2 1 2
2 2 1

.
From this, we can find the eigenvalues are r = 3 and r = −3.

The eigenvectos for r = 3 are

−1
1
0

 and

10
1

 and for c3 it is

−1
−1
1

, and the general solution can be

found from this.
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Second Solution:

Suppose r1 is an eigenvalue of multiplicity two and that there is only one eigenvector associated with this
value. A second solution can be found of the form

x2 = Kter1t + Per1t

where K =

k1...
kn

 and P =

p1...
pn

 satisfy (A− r1I)K = 0 and (A− r1I)P = K.

Example

Find the general solution of x′(t) = Ax(t), where A =

[
3 −18
2 −9

]
.

The eigenvalue for this is r = −3 with multiplicity 2.

If we find the first eigenvector we get

[
3
1

]
, and we can set this equal to k.

Then we can use this to find the second eigenvector by doing

[
6 −18
2 −6

] [
p1
p2

]
=

[
3
1

]
, and finding this

eigenvector as

[
1/2
0

]
.

This shows that x2 =

[
3
1

]
te−3t +

[
1/2
0

]
e−3t.

Therefore the general solution is x = c1

[
3
1

]
e−3t added on to c2 times what x2 is.

When the coefficient matrix A has only one eigenvalue associated with an eigenvalue r1 of multiplicity three,
we can find a second solution of the form

x2 = Kter1t + Per1t

and a third solution of the form

x3 = K
t2

2
er1t + Pter1t +Qer1t

where K =

k1...
kn

 ,P =

p1...
pn

, and Q =

q1...
qn

 satfisfy

(A− r1I)K = 0

(A− r1I)P = K

(A− r1I)Q = P

Exercise Find the general solution x′(t) = Ax(t), where A =

2 1 6
0 2 5
0 0 2

.
1.6 Complex Eigenvalues

If the real matrix A has complex conjugate eigenvalues α± iβ with corresponding eigenvectors a± ib, then
two linearly independent real vector solutions to x′(t) = Ax(t) are

eαt cosβta− eαt sinβtb

eαt sinβta+ eαt cosβtb
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Example

Find a general solution of x′(t) =

[
−1 2
−1 −3

]
x(t).

The eigenvalue for this is −2± i.

The first vector gives you e−2t[

[
1
−1

]
cos t−

[
1
0

]
sin t] and the other gives e−2t[

[
1
−1

]
sin t+

[
1
0

]
cos t].

1.7 Nonhomogeneous Linear Systems

The Method of Undetermined Coefficients can be used to find a particular solution to the nonhomogeneous
linear system

x′(t) = Ax(t) + f(t)

where A is an n× n constant matrix and the entries of f(t) are polynomials, exponential functions, sines and
cosines, or finite sums and products of these functions.

Example

Find a general solution of x′(t) =

 1 −2 2
−2 1 2
2 2 1

x(t) + t

 −9
0

−18

.
The particular solution is xp =

At+B
Ct+D
Et+ F

.
Solve the homogeneous equation now and it is xh = c1e

3t

10
1

+ c2e
3t

−1
1
0

+ c3e
−3t

−1
−1
1

.
We also can see now that

AC
E

 =

 1 −2 2
−2 1 2
2 2 1

At+B
Ct+D
Et+ F

+

 −9t
0

−18t

.
Multiplying the matrices gives

AC
E

 =

 At+B − 2Ct− 2D + 2Et+ 2F − 9t
−2At− 2B + Ct+D + 2Et+ 2F

2At+ 2B + 2Ct+ 2D + Et+ F − 18t

.
We see that A = t[A− 2C + 2E − 9] + [B − 2D + 2F ]

We have also C = t[−2A+ C + 2E] + [−2B +D + 2F ].

We can also see E = t[2A+ 2C + e− 18] + [2B + 2D + F ].

From these, we can write 6 equations to get the following matrix.
1 0 −2 0 2 0 9
−1 1 0 −2 0 2 0
−2 0 1 0 2 0 0
0 −2 −1 1 0 2 0
2 0 2 0 1 0 18
0 2 0 2 −1 1 0



Putting this in our calculator gives us the particular solution xp =

5t+ 1
2t

4t+ 2

.
If x1, x2, . . . , xn is a fundamental set of solutions of the homogeneous system x′(t) = Ax(t) on an interval
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I, then it sgeneral solution on the interval is the linear combination x = c1x1 + c2x2 + · · ·+ cnxn or

X = c1


x11

x21

...
xn1

+ c2


x12

x22

...
xn2

+ · · ·+ cn


x1n

x2n

...
xnn

 =


c1x11 + c2x12 + · · ·+ cnx1n

c1x21 + c2x22 + · · ·+ cnx2n

...
c1xn1 + c2xn2 + · · ·+ cnxnn


The solution can be written as x(t) = X(t)C where C is an n × 1 column vector of arbitrary constants
c1, c2, . . . , cn and

X(t) =
[
x1(t) x2(t) . . . xn(t)

]
=


x1,1(t) x1,2(t) . . . x1,n(t)
x2,1(t) x2,2(t) . . . x2,n(t)

...
...

...
xn,1(t) xn,2(t) . . . xn,n(t)


is the fundamental matrix of the system on ther interval.

Because a general solution to x′(t) = A(t)x(t) is given by x(t) = X(t)C we seek a particular solution to the

nonhomogeneous system x′(t) = A(t)x(t) + f(t) of the form xp(t) = X(t)v(t) where v(t) =

v1(t)...
vn(t)

 can be

found by

v(t) =

�
X−1(t)f(t)dt

and

xp(t) = X(t)v(t) = X(t)

�
X−1(t)f(t)dt

Combining with the solution to the nonhomogeneous system gives the general solution

x(t) = X(t)C + X(t)

�
X−1(t)f(t)dt

Example

Find the solution to the initial value problem

x′(t) =

[
2 −3
1 −2

]
x(t) +

[
e2t

1

]
, x(0) =

[
−1
0

]

Previously we found the homogeneous solution is c1

[
3
1

]
et + c2

[
1
1

]
e−3t.

Now to find v(t), remember we need to find X(t)v(t) and v(t) =
�
X−1(t)f(t)dt.

The inverse of x(t) is X−1 =

[
1
2e

−t − 1
2e

−t

− 1
2e

t 3
2e

t

]
.

So v(t) =
� [

1
2e

−t − 1
2e

−t

− 1
2e

t 3
2e

t

] [
e2t

1

]
dt.

Integrating this out gives v(t) =

[
1
2e

t + 1
2e

−t

− 1
2e

3t + 3
2e

t

]
.

Now multiply this with X−1(t) to get

[
4
3e

2t + 3
1
3e

2t + 2

]
for xp.

The general solution is x = c1

[
3
1

]
et + c2

[
1
1

]
e−t +

[
4
3
1
3

]
e2t +

[
3
2

]
.

Now plugging in the initial conditions gives c1 = − 3
2 and c2 = − 5

6 .
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Plugging in everything gives x =

[
− 9

2e
t − 5

6e
−t + 4

3e
2t + 3

− 3
2e

t − 5
6e

−t + 1
3e

2t + 2

]
.
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