1 Matrix Methods for Linear Systems

1.1 Introduction to Matrix Methods

The product of a matrix and a column vector is defined to be the collection of dot products of the rows of
the matrix with the vector, arranged as a column vector:

row # 1 row # 1-v
row # 2 row # 2-v
. vl = .
row # 3 row # 3-v

where the vector v has n components; the dot product of two n-dimensional vectors is computed in the
obvious way:
[ar az -+ ap]-lvr w2 - xR =@z a2+t apT,

Example
Express the system as a matrix equation.

xh =2y + 220 4+ (4t + €e')zy
xh = (sint)wy + (cost)xs
Th =121+ X9+ X3+ X4

) =0

This is simply written as

) 2 2 0  (4t+e)] [x
xzh| |0 sint cost 0 T2
| |1 1 1 1 T3
1 o 0o 0 0 4

In general, if a system or differential equation is expresses as

) = an )z + ar2(t)xe + - + a1 (t)zn
1/2 = agl(t)iljl —+ agg(t)CCQ —+ -+ agn(t)l‘n

2 = ap1(t)T1 + an2(t)xa + - - + app (),

it is said to be a linear homogeneous system in normal form. The matrix form of such a system is

X' = AX
where A is the coefficient matrix
au(t) ai2 (t) N aln(t)
agl(t> a2 (t) N agn (t)
A=A() = ) . .
an1(t)  ana(t) ... apn(t)
and X is the solution vector
€
T2
X =
Tn
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Example
Express the differential equation for the undamped, unforced mass-spring oscillator
my” +ky=0

as an equivalent system of first-order equations in normal form, expressed in matrix notation.

We have that ¢/ = v and v/ = f%y.

/
L yl _| 0 1]y
So we can write this as L}} = [—k/m 0} L}]

We can write this as anz), + an_12y + -+ - + @122 + agz1 = 0.

An—1

Tp,.
an, T

Which can be rewritten as o), = —20p) — H gy — ... —
Qn QAn

Using this can make it easy to get to matrix notation

Example

A coupled mass-spring oscillator is governed by the system

A2z
2@ +6x—2y=0
d?y
@ +2y— 20 =0
letz; =z, 20 =2', 23=9y, 14 = ¥ .
This gives us @} = xo, b = =321 + 3, x4 = x4, ) = ¥ — 223.

So the matrix form can be easily answered from that.

1.2 Review 1: Linear Algebraic Equations

A set of equations of the form

1171 + a1222 + -+ - + a1y = b1

(21T + G22T2 + -+ - + A2pTp = b2

Ap121 + Ap2Z2 + - + AppTn = bn

(where the a;;'s and b;'s are given constants) is called a linear system of n algebraic equations in the n
unknowns x1, o, ... Ty,.

The Gauss-Jordan elimination algorithm uses elimination to uncouple the system making the values of the
unknowns apparent.

Example

Solve the system

2x1 + 6x9 + 8x3 = 16
4x1 + 1529 + 1923 = 38
2171 + 3$3 =6

Solving the coefficient matrix gives you (0,0,2) = (x1,x2, z3).
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Exercise Solve the system

1+ 209 +4x3+ 24 =0

—T1 —2$2—2.’L‘3 =1
—2x1 —4xo — 83 + 224 =4
T + 4o + 223 =-3

Example
Solve the system

211+4$2+CE3 :8
2x1 + 4o =6
—4xy — 8xy + 13 = —10

We will end up getting 1 + 222 = 3 and x3 = 2, and 2 has infinite solutions, and is called a free

variable.

So xo =t,x1 = —2t+ 3, and x3 = 2.

Exercise Solve the system

Ty — To + 2x3 +2x4 =0
2x1 — 2x0 +4x3+ 314 =1
3z, — 3x9 + 623 + 924 = —3
41 — 4o + 8x3 + 8x4 =0

1.3 Review 2: Matrices and Vectors

A matrix is a rectangular array of numbers arranged in rows and columns. An m X n matrix, that is, a matrix
with m rows and n columns is usually denoted by

aip  ai2 a3 A1n

a21 G222 A23 A2n
A= ]

Am1 Am2 Am3 cee Amn

Where the element in the ith row and jth column is a;;. The notation [a;;] is used to designate A.

A square matrix has the same number of rows and columns. A diagonal matrix is a square matrix with only
zero entries off the main diagonal. A column matrix, or vector, is an n x 1 matrix. An m X n matrix whose
entries are all zero is called a zero matrix. Matrices are denoted by boldfaces capital letters and vectors by
boldfaced lower case letters.

The sum of two m X n matrices is given by
A + B = [ag;] + [bi;] = [ai; + bij]
To multiply a matrix by a scalar (number), multiply each element in the matrix by that number:
rA = rlai;] = [ra]
The notation —A stands for (—1)A.

Properties of Matrix Addition and Scalar Multiplication
e A+t(B+C)=(A+B)+C
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e A+tB=B+A

e A+0=A
A+(-A)=0
r(A+B)=rA+rB
(r+s)A=rA+sA
r(sA) = (rs)A = s(rA)

. - . 1 2 3 1 1 1
Exercise Perform the indicated operation: [4 5 6]4—[1 1 J

Exercise Perform the indicated operation: 3 [le ; 2}

The product of a matrix A and a column vector x is the column vector composed of dot products of the
rows of A with z. AB is only defined when the number of columns of A matches the number of rows of B.

1
Exercise Perform the indicated operation: 123 0
4 5 6 9
1o 1|t 2®
Exercise Perform the indicated operation: -1 -1 y
3 -1 2 4 1

Properties of Matrix Multiplication
e (AB)C =A(BC)
e (A+B)C=AC+BC
e AB+C)=AB+AC
e (rA)B =r(A[B]) = A(rB)

Let A be an m X n matrix and let = and y be n x 1 vectors. Then Az is an m X 1 vector so we can think of
multiplication by A as defining an operator that maps n x 1 vectors into m x 1 vectors. Multiplication by A
defines a linear operator since A(x +y) = Ax + Ay and A(rx) = rAx.

Examples of linear operations are:
1. Stretching or contracting the components of a vector by constant factors
2. rotating a vector through some angle about a fixed axis
3. reflecting a vector in a plane mirror

We express the linear system

1121 + 1222 + - -+ A1p T = by

211 + a22%2 + - - + G2p Ty = bo

Ap1T1 + Apa®2 + -+ QppTn = bn

In matrix notation as Ax = b where A is the coefficient matrix, x is the vector of unknowns, and B is the
vector of constants occurring on the right-hand side:

a1 a2 ... Qin Z1 b1

a21 a2 ... Q2p €2 by
A= X = b=

ap1 An2 ... Qpp Tn bn,

If b =0, the system Az = b is said to be homogeneous.
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The matrix obtained from A by interchaing its rows and columns is called the transpose of A and is denoted
by AT

. . . 1 2 6

T _

Exercise Find A* if A = [_1 9 _J.
There is a multiplicative identity in matrix algebra, namely, a square diagonal matrix | with ones down the
main diagonal. Multiplying | on the right or left by any other matrix (with compatible dimensions) reproduces
the latter matrix.

Exercise Demonstrate the identity property for A = [_11 g _6J
Some square matrices A can be paired with other square matrices B having the property that BA = 1. When

this happens,
1. B is the unique matrix satisfying BA =1 and
2. B also satisfies AB = I.
In such a case, B is the inverse of A and write B = A~'. A matrix that has no inverse is said to be singular.

When an inverse for the coefficient matrix A in a system of linear equations Ax = b, the solution can be
calculated directly by x = A~ 'b.

A= Dl then a1t = 1| @

dl’ ad=be |_¢ _ab} The matrix A is invertible if and only if ad — bc # 0. If

ad — bc = 0, then A does not have a multiplicative inverse.

2 4 1
1 J , solve Ax = b where b = {2]

Exercise If A = {
Finding the Inverse of a Matrix. Row operations include

e Interchanging two rows of the matrix

e Multiplying a row of the matrix by a nonzero scalar

e Adding a scalar multiple of one row of the matrix to another row

If the n x n matrix A has an inverse, A~" can be found by performing row operations on the n x 2n matrix
[A[l] obtained by writing A and | side by side. If the procedure produces a new matrix in the form [I|B], then
A" =B.

S W N
— N =

1
Exercise Find the inverse of A = |1
1

For a 2 x 2 matrix A, the determinant of A, denoted by det A or |A|, is defined by
detA:= "1 M20 — 41 a5y — argasl
21 Qag2

The determinant of a 3 X 3 matrix A can be defined in terms of its cofactor expansion about the first row

a1 a2 ais

Q21 Q22
det A := a21 Q29 Q23| = aj1

az1p as2

a1 a3
asi ass

az2 Aa23

+ a3
agz2 ass

— 12

az1 asz2 ass

Exercise Find the determinant ? le’
1 2 1

Exercise Find the determinant |0 3 5
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Theorem 1.1

Let A be an n x n matrix. The following statements are equivalent:
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A is singular (does not have an inverse).

e The determinant of A is zero.

Ax = 0 has nontrivial solutions (x # 0)

The columns (rows) of A form a linearly dependent set.

The columns of A are linearly dependent means there exist scalars ¢y, ..., ¢, not all zero, such that
cia1 + coag + - -+ cpa, =0
where a; is the vector forming the jth column of A.
If A is a singular square matrix (det A = 0) then Ax = 0 has infinitely many solutions.
If A is singular, Ax = b either has no solutions or it has infinitely many of the form
T =2xp+xp

where x,, is a particular solution to Ax = b and zy, is any of the infinite solutions to Ax = 0, the homogeneous
system.

Exercise In a previous section, we saw the system

2 4 1| |z 8
2 4 0] [z2| =| 6
-4 -8 1| |=z3 —10

has solutions 1 = 3 — 25,29 = 5,23 = 2 where —oco0 < s < 00.
1. Write the solution in matrix notation and identify =, and .
2. Verify det A =0
3. Give the identity that exhibits the linear dependence of the columns of A.

If A is a nonsingular square matrix (i.e., A has an inverse and det A # 0), then Ax = 0 has x = 0 as its only
solution and the unique solution to Ax = b is x = A™'b.

If the entries a;;(t) in a matrix A(¢) are functions of the variable ¢, then A(t) is a matrix function of t.
Similarly, if the entries x;(t) of a vector x(¢) are functions of ¢, then x(¢) is a vector function of t.

A matrix A(t) is said to be continuous at ¢ if each entry a;;(t) is continuous at to. A(t) is differentiable at
to if each entry a;;(t) is differentiable at .

dA
dt

/ab At i [ /j az,.(t)dt]

(to) = A'(to) = [ag;(to)]

2
Exercise Let A(t) = {t ;— 1 cols t}

1. Find: A'(t)
2. Find: [} A(t)dt
Differentiation Formulas for Matrix Functions:
o L(CA)=cCd} (C a constant matrix)
. %(A +B)= % + %‘?
* §i(AB)=AG + B

cos wt

Exercise Show that x(t) = [Sinwt

s ]

] is a solution of the matrix differential equation x’ = Ax where A =
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1.4 Linear Systems in Normal Form

A system of n linear differential equations is in normal form if it is expressed as

w1 (t) fi(t)
where z(t) = | @ |, f(t)=| : | and A(t) = [a;;(t)] is an n x n matrix.
.%‘n(t) xn(t)

A system is called homogeneous when f(t) = 0; otherwise it is called nonhomogeneous. When the elements
of A are all constants, the system is said to have constant coefficients.

The initial value problem for the normal system is the problem of finding a differentiable vector function x(t)
that satisfies the system on an interval I and also satisfies the initial condition x(tg) = xo where ¢, is a given
point of I and xq is a given vector.

Theorem 1.2

Suppose A(t) and f(t) are continuous on an open interval I that contains the point ¢y. Then, for any
choice of the initial vector xg, there exists a unique solution x(t) on the whole interval I to the initial

value problem
x'(t) = A(t)x(t) + f(t), x(to) = %o

Definition
The m vector functions x1,...,X, are said to be linearly dependent on an interval I if there exist
constants cy,...,c,, not all zero, such that

clxl(t) + -4 Can(t) =0

for all ¢ in I. If the vectors are not linearly dependent, they are said to be linearly independent on 1.

Example
et 3et t
Show that the vector functions z1(t) = | 0| ,a2(t) = | 0 |, and 3 = |1| are linearly dependent on
et 3et 0
(—00, 00).
0
They are dependent because let ¢; = —3,¢c0 = 1,c3 =0 to get |0].
0
Example
62t 62t t
Show that the vector functions x1(t) = | 0 | ,m2(t) = | €2' |, and z3(t) = |2¢'| are linearly
o2t o2t ot
independent on (—o0, 00).
0
The only way we can get | 0] is if the three constants are 0.
0
A set of vector functions x1(t),z2(t),...,x,(t) each having n components is linearly independent on an
interval I if we can find one point £y in I where the determinant det [xl(to) mn(to)] is not zero. We

call this detemrinant the Wronksian. (This was previously defined)
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Theorem 1.3

Let xq,...,X, be n linearly independent solutions to the homogeneous system

on the interval I, where A(t) is an n x n matrix function continuous on I. Then every solution to the
above on I can be expressed in the form

x(t) = e1x1(t) + -+ 4 cnxp(t)

A set of solutions {x1,...x,} that are linearly independent on I is called a fundamental solution set for the
homogeneous system on I. The linear combination written with arbitrary constants, is referred to as the
general solution to the homogeneous system.

If we take the vectors in a fundamental solution set and let them form the columns of a matrix X(t).

17171%1? Il,ggtg e Il’ngtg

X211 t x2.2 t N T2.n t

X()=pa@) x@) .. ox@]=|"10 |
Tp1(t) xpo(t) ... zpa(t)

Then the matrix X(t) is called a fundamental matrix for the homogeneous system.

Example
et —e~t 0
Verify that the set S = e, 0 |,] et is a fundamental solution set for the system
2t ot et
0 1 1
X(t)=11 0 1
110

~—

textbfx(t) on the interval (—oo, 00) and find a fundamental matrix for the system. Determine a general
solution for the system.

Testing the three matrices in the system gives the correct resulting vector, and finding the Wronksian
shows us that the columns are linearly independent, so the general solution is

e?t —e7t 0
x=c1 || 4+ | 0 | +¢c3| et
o2t o=t et

Theorem 1.4

Let x,, be a particular solution to the nonhomogeneous system
x'(t) = A(t) + f(t)

on the interval I, and let {x1,...,x,} be a fundamental solution set on I for the corresponding ho-
mogeneous system x(¢) = A(¢)x(t). Then every solution to the nonhomogeneous system on I can be
expressed in the form

X(t) = xp(t) + e1x1(t) + - - + cnxn(t)

where ¢q,...,c, are constants.

Approach to Solving Normal Systems:
1. To determine a general solution to the n x n homogeneous system x’ = Ax:

e Find a fundamental solution set {xy,...,x,} that consists of n linearly independent solutions to
the homogeneous system.
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e Form the linear combination
x=Xc=cixy+ -+ cpXy,

where ¢ = col(cy,...,c,) is any constant vector and X = [x; ... Xy] is the fundamental
matrix, to obtain a general solution.

2. To determine a general solution to the nonhomogeneous system x/(t) = Ax + f:
e Find a particular solution x, to the nonhomogeneous system.

e Form the sum of the particular solution and the general solution Xc = ¢1x; + -+ 4+ ¢, X, to the
corresponding homogeneous system in part 1,

X =Xp + XC=Xp +C1X1 + -+ CpXp

to obtain a general solution to the given system.

1.5 Homogeneous Linear Systems with Constant Coefficients

We now define a procedure for obtaining a general solution for the homogeneous system

x'(t) = Ax(t)

Definition

Let A = I:aij] be an n X n constant matrix. The eigenvalues of A are those (real or complex) numbers
r for which (A — rl) = 0 has at least one nontrivla solution u. The corresponding nontrivial solutions
u are called the eigenvectors of A associated with 7.

Finding eigenvalues of a matrix A is equivalent to finding the zeroes of the polynomial p(r) = det(A—rI). The
equation det(A — rI) = 0 is called the characteristic equation of A and p(r) is the characteristic polynomial

of A.
Example

Find the eigenvalues and eigenvectors of the matrix A = E _;’}

2—r -3

First find the characteristic equation, this is the determinant of { 1 9 r} . So the characteristic

equation is 72 — 1 and the eigenvalues are r = —1 and r = 1.

Now doing the procedure above, we find that for » = —1, the eigenvector is u = [ﬂ and for r = 1, the

eigenvector is [ﬂ .

The collection of all eigenvectors associated with an eigenvalue forms a subspace when the zero vector is
adjoined. These subspaces are called eigenspaces.

Exercise Find the eigenvalues and eigenvectors of the matrix

1 2 -1
A=1(1 0 1
4 —4 5

Theorem 1.5

Suppose the n X n constant matrix A has n linearly independent eigenvectors uy,us, ..., u,. Let 7; be
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the eigenvalue corresponding to u;. Then
rit rot Tt
{"ug, e "uy, ... e u,}

is a fundamental solution set (and X(t) = [e”tul etuy ... er"tun] is a fundamental matrix) on
(—00, 00) for the homogeneous system x’ = Ax. Consequently, a general solution of x’ = Ax is

x(t) = cre™uy + c2e'ug + -+ cpe’Muy,

where c1,...,c, are arbitrary constants.

Example

. . , 2 3]
Find a general solution of x'(t) = Ax(t), where A = 1 9

We get the eigenvalues as 1 from this. Therefore, when we find the the general solution, we can see
that this is

z(t) =1 E’] el + co E et

, and this can be written in different ways, but this is a way to write the general solution.

Theorem 1.6
If r1,..., 7y are distinct eigenvalues for the matrix A and u; is an eigenvector associated with r;, then
uj,...,U,, are linearly independent.

Corollary 1.7
If the n X n constant matrix A has n distinct eigenvalues r1,...,7, and u; is an eigenvector associated

with r;, then
{e"uy, ..., e, }

is a fundamental solution set for the homogeneous system x’ = Ax.

1 2 -1 -1
Exercise Solve the initial value problem x'(T) = [1 0 1 | x(¢) where x(0) = | 0
4 —4 5 0

Definition
A real symmetric matrix A is a matrix with real entries that satisfies AT = A.

If Ais an n x n real symmetric matrix, there always exist n linearly independent eigenvectors.

Example
1 -2 2
Find a general solution of x'(t) = Ax(¢), where A= |—-2 1 2].
2 2 1
From this, we can find the eigenvalues are r = 3 and r = —3.
-1 1 -1
The eigenvectos for r =3 are | 1 | and [0| and for ¢z itis |—1]|, and the general solution can be
0 1 1

found from this.
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Second Solution:

Suppose 71 is an eigenvalue of multiplicity two and that there is only one eigenvector associated with this
value. A second solution can be found of the form

xo = Kte™?t 4+ Pe™!

k1 p1
where K= | ! | and P = | | satisfy (A—rI)K =0and (A—nrI)P =K.
kn Pn
Example

3 —18
2 =9

Find the general solution of x'(t) = Ax(t), where A = [
The eigenvalue for this is » = —3 with multiplicity 2.

If we find the first eigenvector we get {3] and we can set this equal to k.

1
3

1

, and finding thi
6| |ps }an inding this

Then we can use this to find the second eigenvector by doing B _18] [pl} = {

. {1/2}
eigenvector as 0l

This shows that x5 = [ﬂ te 3t + [1(/)2] e3¢,

Therefore the general solution is x = ¢; L} e~ 3" added on to ¢ times what 5 is.

When the coefficient matrix A has only one eigenvalue associated with an eigenvalue r; of multiplicity three,
we can find a second solution of the form

o9 = Kte™?t 4+ Pe™tt

and a third solution of the form )

t
T3 = KEe”t + Pte™t + Qe™!

3} p1 Qn
where K= | 1 [ ,P=|:|,and Q = | ! | satfisfy
kn Pn Gn
(A-rmI)K =0
(A—r P =K
(A-rmDHQ=P

Exercise Find the general solution x'(t) = Ax(t), where A =

O O N
(el Ol
N Ot O

1.6 Complex Eigenvalues

If the real matrix A has complex conjugate eigenvalues o & i3 with corresponding eigenvectors a =+ ib, then
two linearly independent real vector solutions to x’(t) = Ax(t) are

e cos Bta — e* sin Gtb

e sin Bta + " cos Stb
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Example

Find a general solution of x'(t) = [:1 _3} x(t).
The eigenvalue for this is —2 + 3.

The first vector gives you e_zt[{ll} cost — [(1)] sint] and the other gives e_%[{ll} sint + [(1)} cos t].

1.7 Nonhomogeneous Linear Systems

The Method of Undetermined Coefficients can be used to find a particular solution to the nonhomogeneous
linear system
x'(t) = Ax(t) + f(t)

where A is an n X n constant matrix and the entries of f(¢) are polynomials, exponential functions, sines and
cosines, or finite sums and products of these functions.

Example
1 -2 2 -9
Find a general solution of 2/(t) = [-2 1 2| z(t)+¢| 0 |.
2 2 1 —18
At+ B
The particular solution is x, = [Ct+ D|.
Et+ F
1 -1 -1
Solve the homogeneous equation now and it is z;, = c1e3 |0 +coe® | 1 | +c3e™3 | —1].
1 0 1
A 1 -2 2| |At+ B -9t
We also can see now that [C'| = -2 1 2| |Ct+D|+| 0
E 2 2 1| |Et+ F —18t
A At+ B —-2Ct—-2D +2Et+2F — 9t
Multiplying the matrices gives [C'| = —2At —-2B+ Ct+ D + 2FEt + 2F
E 2At+2B+2Ct+2D + Et+ F — 18t

We see that A =t[A — 2C' +2E — 9] + [B — 2D + 2F]
We have also C' = t[-2A + C + 2E] + [-2B + D + 2F].
We can also see E = t[2A +2C + e — 18]+ [2B + 2D + F).

From these, we can write 6 equations to get the following matrix.

1 0o -2 0 2 0 9
-1 1 0 -2 0 2 0
-2 0 1 0 2 0 0
0o -2 -1 1 0 2 0
2 0 2 0 1 0 18
0 2 0 2 -1 1 0
ot +1
Putting this in our calculator gives us the particular solution z,, = 2t
4t + 2

If x1,29,...,2, is a fundamental set of solutions of the homogeneous system x'(t) = Ax(t) on an interval
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I, then it sgeneral solution on the interval is the linear combination x = c1x1 + coxs + -+ - + cp Ty, OF

11 12 Tin C1Z11 + C2%12 + -+ + CpZ1n

T21 T2 Tan C1X21 + C2%22 + -+ - + CpTap
X=ci| |4l |+ veal| =

Tnl Tn2 Tnn C1Tn1 + CoTn2 + -+ CnTnn

The solution can be written as x(t) = X(¢)C where C is an n x 1 column vector of arbitrary constants
c1,C2,...,Cp and

$171Et§ xl,ggtg N J)Lngt;
T2 1 t €22 t . T2,n t
X(t) = [xi(t) x(t) ... xu(®)] =]

Tn1(t) xpo(t) ... zpa(t)

is the fundamental matrix of the system on ther interval.

Because a general solution to x'(¢) = A(t)x(¢) is given by x(t) = X(¢)C we seek a particular solution to the

v1(t)
nonhomogeneous system x'(t) = A(t)x(t) + f(t) of the form x,(t) = X(t)v(t) where v(t) = : can be
Un (1)
found by
v(t) :/x*l(t)f(t)dt
and

Combining with the solution to the nonhomogeneous system gives the general solution

X(t) = X(H)C + X(2) / X~ (#)f()dt

Example

Find the solution to the initial value problem
12 =3 et |1
28 (t) - |:1 2:| X(t) + |: 1 ’ X(O) - 0

. . 1
Previously we found the homogeneous solution is ¢; [ﬂ et + ¢y [J e 3t

Now to find v(t), remember we need to find X (t)v(t) and v(t) = [ X ~1(¢) f(t)dt.

1t
The inverse of x(t) is X! = {2 1 3. ]
2

—t

Sov(t) = [ Eﬁ . ‘%‘”] [eﬂ dt.

t
€ e
1ot
I i hi i = 3 2 .
ntegrating this out gives v(t) {eﬁ 3 get}
t
t

4
Now multiply this with X ~1(#) to get [% 2
3

4

The general solution is x = ¢; [ﬂ et + ¢y [ﬂ e t+ [%] et + B} _
3

G

Now plugging in the initial conditions gives ¢; = —% and cp = —3.
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9t
Plugging in everything gives x = %it
se

15
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