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1 Introduction to Differential Equations

1.1 Background

In a variety of subject areas, mathematical models are developed to aid in understanding. These models often
yield an equation that contains derivatives of an unknown function. Such an equation is called a differential
equation.

One example is free fall of a body. An object is released from a certain height above the ground and falls
under the force of gravity. Newton’s second law states that an object’s mass times its acceleration equals the
total force acting on it.

m
d2h

dt2
= −mg

We have h(t) as position, dh
dt as velocity and d2h

dt as acceleration. The independent variable is t and the
dependent variable is h.

md2h
dt2 = −mg is a differential equation and h(t) is the unknown function that we are trying to find.

From this we have d2h
dt2 = −g and the integral of this is dh

dt = −gt+C1. To find h we integrate again and we

get h(t) = − gt2

2 + C1t+ C2.

Another example is the decay of a radioactive substance. The rate of decay is proportional to the amount of
radioactive substance present.

dA

dt
= −kA, k > 0

where A is the unknown amount of radioactive substance present at time t and k Is the proportionality
constant.

We are looking for A(t) that satisfies this equation. We can solve this from 1
AdA = kdt and integrating both

sides we get that ln |A|+ C1 = −kt+ C2. We can rewrite this as ln |A| = −kt+ C. So, e−kt+C = A.

So A(t) = e−kt + eC , so A(t) = Ce−kt. Remember A is the dependent variable and t is the independent
variable.

Notice that the solution of a differential equation is a function, not merely a number.

When a mathematical model involves the rate of change of one variable with respect to another, a differential
equation is apt to appear.

Terminology

If an equation involves the derivative of one variable with respect to another, then the former is called a
dependent variable and the latter an independent variable.

In dh
dt , h is dependent and t is independent.

A differential equation involving only ordinary derivatives with respect to a single independent variable is
called an ordinary differential equation. A differential equation involving partial derivatives with respect to
more than one independent variable is a partial differential equation.

For example we have z = f(x, y) = 4x2 + 5xy, so ∂z
∂x = 8x+ 5y and that is partial differentiation.

The order of a differential equation is the order of the highest-order derivatives present in the equation.

For example, d2h
dt2 = −g has a order of 2.

3



CHAPTER 1. INTRODUCTION TO DIFFERENTIAL EQUATIONS 4

A linear differential equation is one in which the dependent variable y and its derivatives appear in additive
combinations of their first powers. A differential equation is linear if it has the format.

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = F (x)

2x+ 3y = 7 is linear, 2x2 + 5xy + 7y + 8y = 1 is second-degree. Nothing can have a second degree for this
to be linear.

You are just looking at the dependent variable and the derivatives and adding their powers.

If an ordinary differential equation is not linear, we call it nonlinear.

Example

For each differential equation, classify as ODE or PDE, linear or nonlinear, and indicate the depen-
dent/independent variables and order.

(a) d2x
dt2 + adx

dt + kx = 0

Dependent is x, independent is t and the order is 2. This is an ODE and linear.

(b) ∂u
∂x − ∂u

∂y = x− 2y

The dependent variable is u and the independent variables are x, y, so this is a PDE. The order is 1.

(c) d2y
dx2 + y3 = 0

The dependent variable is y, the independent variable is x, the order is 2 and this is an ODE and this
is nonlinear.

(d) t3 dx
dt = t3 + x

Dependent is x, independent is t, order is 1, this is an ODE. We can rewrite this as t3 dx
dt − 1x = t3,

and this matches the form of the linear equation so this is linear.

(e) d2y
dx2 − y dy

dx = cosx

The dependent is y, the independent is x, the order is 2 and this is an ODE and this is nonlinear because
of y dy

dx .

1.2 Solutions and Initial Value Problems

An nth-order ordinary differential equation is an equality relating the independent variable to the nth derivative
(and usually lower-order derivatives as well) of the dependent variable.

Example

Identify the order, independent and dependent variable.

(a) x2 d2y
dx2 + xdy

dx + y = x3. Independent: x, dependent: y, order: 2

(b)

√
1−

(
d2y
dt2

)
− y = 0. Independent: t, dependent: y, order: 2

(c) d4x
dt4 = xt. Independent: t, dependent: x, order: 4. (This is also linear.)

A general form for an nth-order equation with x independent, y dependent can be expressed as

F (x, y,
dy

dx
, . . . ,

dny

dxn
) = 0

where F is a function that depends on x, y, and the derivatives of y up to order n. We assume the equations
holds for all x in an open interval I. In many cases, we can isolate the highest-order term and write the
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previous equation as
dny

dxn
= f

(
x, y,

dy

dx
, . . . ,

dn−1y

dxn−1

)
This is called the normal form.

A function ϕ(x) that when substituted for y in either the previous two equations satisfies the equation for all
x in the interval I is called an explicit solution to the equation on I.

Example

Show that ϕ(x) = x2 − x−1 is an explicit solution to the linear equation d2y
dx2 − frac2x2y = 0 but

ψ(x) = x3 is not.

So we have y = x2 − x−1. The first derivative of this is 2x + 1x−2. The second derivative is
y′′ = 2− 2x−3. If we plug in the values we end up getting from the derivatives, we get that 2− 2x−3−
2x+ 2x−3 = 0, so this is satisfied.

For the second part, the first derivative is 3x2 and the second derivative is 6x. Plugging this in, we get
4x which is not 0, so ψ(x) is not a solution.

Example

Show that for any choice of the constants c1 and c2, the function ϕ(x) = c1e
−x + c2e

2x is an explicit
solution to the linear equation y′′ − y′ − 2y = 0.

We have that the first derivative is −c1e−x+2c2e
2x and the second derivative is c1e

−x+4c2e
2x. When

we plug this in, we find that this does satisfy the solution for the differential equation.

Methods for solving differential equations do not always yield an explicit solution for the equation. A solution
may be defined implicitly.

Example

Show that the relation y2 − x3 +8 = 0 implicitly defines a solution to the nonlinear equation dy
dx = 3x2

2y

on the interval (2,∞).

We have from the given that y = ±
√
x3 − 8. The derivative (of the positive version) of this is 3x2

2
√
x3−8

.

This is the same and defined on the interval.

A relation G(x, y) = 0 is said to be an implicit solution to the previous equation on the interval I if it defines
one or more explicit solutions on I.

Example

Show that x+y+exy = 0 is an implicit solution to the nonlinear equation (1+xexy)dydx +1+yexy = 0.

Taking the derivative of both sides gets us that 1 + dy
dx + exy d

dx (xy) = 0. This does simplify to what
was given in the problem.

Example

Verify that for every constant C the relation 4x2 − y2 = C is an implicit solution to y dy
dx − 4x = 0.

Graph the solution curves for C = 0,±1,±4.

The derivative of what is given is 8x − 2y dy
dx = 0. This simplifies to what is given, so it is clearly an

implicit solution.

For C = 0, the solution curves for this is 2x = y and −2x = y.
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For C = ±4, the solution curves is given by a hyperbola x2

−
y2

4 = 1.

The collection of all solutions in the previous example is called a one-parameter family of solutions.

In general, the methods for solving nth-order differential equations evoke n arbitrary constants. We often can
evalute these constants if we are given n initial values y(x0), y

′(x0), . . . , y
(n−1)(x0).

Definition

By an initial value problem for an nth-order differential equation

F (x, y,
dy

dx
, . . . ,

dny

dx2
) = 0

we mean: Find a solution so the differential equation on an interval I that satisfies at x0 the n initial
conditions

y(x0) = y0,
dy

dx
(x0) = y1 · · ·

dn−1y

dxn−1
(x0) = yn−1

where x0 ∈ I and y0, y1, . . . , yn−1 are constants.

Example

Show that ϕ(x) = sinx− cosx is a solution to the initial value problem

d2y

dx2
+ y = 0; y(0) = −1

dy

dx
(0) = 1

We have y = sinx− cosx, y′ = cosx+ sinx, and y′′ = − sinx+ cosx. These satisfy the conditions.

Theorem 1.1: Existence and Uniqueness of Solution

Consider the initial value problem

dy

dx
= f(x, y), y(x0) = y0

If f and ∂f/∂y are continuous functions in some rectangle

R = {(x, y) : a < x < b, c < y < d}

that contains the point (x0, y0), then the initial value problem has a unique solution ϕ(x) in some
interval x0 − δ < x < x0δ, where δ is a positive number.

Example

Does the theorem above imply the existence for this problem.

3dy
dx = x2 − xy3, y(1) = 6

The derivative exists for all (x, y) and is continuous in all intervals containing x = 1 and all rectangular
regions containing (1, 6).

When we consider the partial derivatives, ∂f/∂y = −xy2, and this exists and is continuous for all
rectangular regions in the xy plane.
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1.3 Direction Fields

One technique useful in visualizing (graphing) the solutions to a first-order differential equation is to sketch
the direction field for the equation. A first-order equation

dy

dx
= f(x, y)

specifies a slope at each point in the xy-plane where f is defined.

Definition

A plot of short line segments drawn at various points in the xy-plane showing the slope of the solution
curve htere is called a direction field for the differential equation.

For example, consider the equation dy
dx = x2 − y. When we plug in the point (1, 0), the slope is 1. When the

point is (0, 1) the slope is −1. Notice the further right we get, the steeper the graph goes. When we look
at this function, f(x, y) = x2 − y, so taking the partial of y results in −1 which is continuous so there is a
solution curve at any point.

Note that we are basically just drawing slope fields from AP Calculus BC.

When we consider an equation dy
dx = − y

x , we have a unique solution when x ̸= 0 because f(x, y) is continuous

if x ̸= 0 and ∂f
∂y = − 1

x , so if x ̸= 0, then there is a unique solution.

Example

Consider the direction field for dy
dx = 3y2/3. Is there a unique solution passing through (2, 0)?

∂f
∂y = 2

3
√
y is not continuous when y = 0.

Example

The logistic equation of the population p (in thousands) at time t of a certain species is given by
dp
dt = p(2− p). Use its direction field to answer the following questions.

(a) If the initial population is 3000[p(0) = 3], what can you say about the limiting population limt→∞ p(t)?

We start at the point (0, 3) and as the field approaches p = 2, the rate of change becomes 0 so the
limit is equal to 2.

(b) Can a population of 1000 ever decline to 500?

No

(c) Can a population of 1000 ever increase to 3000.

No

A differential equation dy
dt = f(t, y) is autonomous if the independent variable t does not appear explicitly:

dy
dt = f(y). An autonomous equation has the following properties

� The slopes in the direction field are all identical among horizontal lines

� New solutions can be generated from old ones by time shifting [i.e., replacing y(t) with y(t− t0)]

The constant, or equilibrium, solutions y(t) = c for autonomous equations are of particular interest. The
equilibrium y = c is called a stable equilibrium, or sink, if neighboring solutions are attracted to it as t→ ∞.
Equilibria that repel neighboring solutions, are known as sources; all other equilibria are called nodes. Sources
and nodes are unstable equilibria. (Nodes are sometimes called semi stable).

A phase line indicates the zeros and signs of f(y) to describe the nature of the equilibrium solutions for an
autonomous equation.
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Example

SKetch the phase line for y′ = −(y − 1)(y − 3)(y − 5)2 and state the nature of its equilibria.

We have y′ = 0 and y = 1, 3, 5. When y = 0, then y′ < 0 that means that it is decreasing for values
below 1. When we let y = 2 then y′ > 0, so any value between 1 and 3 is increasing. When we put
y = 4, then y′ < 0 so any values between 3 and 5 are decreasing. When y = 6 then y′ < 0 so it is
decreasing.

At y = 5, above it is is attracting but repeling below, so it is semi-stable or a node. At y = 3, it is
stable or an attractor because it is approaching on both sides. At y = 1, it is a repeller.

Hand sketching the direction field for a differential equation is often tedious. Fortunately, several software
programs are available for this task. When hand sketching is necessary, the method of isoclines can be helpful
reducing the work.

A isocline for the differential equation
y′ = f(x, y)

is a set of points in the xy-plane where all the solutions have the same slope dy
dx ; thus, it is a level curve for

the function f(x, y).

Example

Find isocline curves of y′ = f(x, y) = x+ y for a few select values of c. Use the isoclines to draw hash
marks with slope c along the isocline f(x, y) = c.

When c = 0, y′ = 0, x + y = 0 and y = −x. When c = 1, y′ = 1, x + y = 1 and y = −x + 1. When
c = 2, y′ = 2, x+ y = 2 and y = −x+ 2.

1.4 The Approximation Method of Euler

Euler’s method (or the tangent-line method) is a procedure for constructing approximate solutions to an initial
value problem for a first-order differential equation

y′ = f(x, y), y(x0) = y0

Euler’s method can be summarized by the recursive formulas xn+1 = xn + h and yn+1 = yn + hf(xn, yn),
where n = 0, 1, 2, . . . .

h is the step size, y′ is the m of the tangent line. Remember that y − y0 = m(x − x0) and that y − y0 is
just f(x0, y0)(x− x0) so y = y0 + f(x0, y0) · h.

Example

Use Euler’s method with step size h = 0.1 to approximate the solution to the initial value problem

y′ = x
√
y, y(1) = 4

at the points x = 1.1, 1.2, 1.3, 1.4 and 1.5.

We know the x points so we can find the y values from yn = yn−1 + f(xn−1, yn−1)(0.1).

We have (1, 4) then (1.1, 4.2) and continuing the calculations, we get (1.2, 4.43), (1.3, 4.68), (1.4, 4.96)
and (1.5, 5.27).

Example
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Use Euler’s method to find approximations to the solution of the initial value problem

y′ = y, y(0) = 1

at x = 1, taking 1, 2, 4, 8 and 16 steps.

Let y = ex and a point (0, 1). The recursion formula is yn = yn−1 + f(xn−1 + yn−1)h.

If we use a step size of 1, then y(1) = 2.

If we use a step size of 0.5 then y(1) = 2.25

If we use a step size of 0.25 then y(1) = 2.44

Using technology we can see with a step size of 0.125 that y(1) = 2.57 and with a step size of 0.0625,
y(1) = 2.64.



2 First-Order Differential Equations

2.1 Separable Equations

Definition

If the right-hand side of the equation
dy

dx
= f(x, y)

can be expressed as a function g(x) that depends only on x times a function p(y) that depends only on
y, then the differential equation is called separable.

To solve the equation
dy

dx
= g(x)p(y)

multiply by dx and by h(y) = 1/p(y) to obtain

h(y)dy = g(x)dx

Then integrate both sides and you end up getting H(y) = G(x)+C, where we have merged the two constants
of integration into a single symbol C. The last equation gives an implicit solution to the differential equation.

Example

Solve the nonlinear equation
dy

dx
=
x− 5

y2

This can be rewritten as y2dy = (x− 5)dx. Integrating both sides results in y3

3 = x2

2 − 5x+ C.

To get the explicit form just solve for y, which is trivial.

Example

Solve the initial value problem
dy

dx
=
y − 1

x+ 3
y(−1) = 0

Doing Calc BC stuff gives us y = 1− 1
2 (x+ 3).

Be careful because you can be losing solutions. Ok bye!

2.2 Linear Equations

Remember a linear first-order equation is an equation that can be expressed in the form

a1(x)
dy

dx
+ a0y = b(x)

where a1(x), a0(x), and b(x) depend only on the independent variable x, not on y.

Method for solving linear equation:

10
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� Write the equation in the standard form

dy

dx
+ P (x)y = Q(x)

� Calculate the integrating factor µ(x) by the formula

µ(x) = exp

[�
P (x)dx

]

� Multiply the equation in standard form by µ(x) and, recalling that the left-hand side is just d
dx [µ(x)y],

obtain

µ(x)
dy

dx
+ P (x)µ(x)y = µ(x)Q(x)

d

dx
[µ(x)y] = µ(x)Q(x)

� Integrate the last equation and solve for y by dividing by µ(x) to obtain.

Example

Find the general solution to
1

x
dydx− 2y

x2
= x cosx x > 0

We have dy
dx − 2

xy = x2 cosx.

The integrating factor µ(x) = e
�
P (x)dx which in this case is e−2

�
1
xdx and this is equivalent to 1

x2 .

Using this we can multiply through in standard form then we have 1
x2

dy
dx − 2

x3 y = cosx.

The left side is just d
dx

(
1
x2 ·

)
= cosx.

Integrating and solving for y we get that y = x2 sinx+ Cx2.

Example

For the initial value problem

y′ + y =
√
1 + cos2 x y(1) = 4

find the value of y(2).

Our P (x) is 1 here, so µ = ex.

So the equation after multiplying through by it gives us that µy′+µy = µ
√
1 + cos2 x, or exy′+ exy =

ex
√
1 + cos2 x.

This is equivalent to basically d
dx (e

xy) = ex
√
1 + cos2 x.

This is exy =
�
ex
√
1 + cos2 xdx.

Using a calculator y(2) = 2.127.

Theorem 2.1: Existence and Uniqueness of Solution

Suppose P (x) and Q(x) are continuous on an interval (a, b) that contains the point x0. Then for any
choice of initial value y0, there exists a unique solution y(x) on (a, b) to the initial value problem

dy

dx
+ P (x)y = Qx y(x0) = y0

In fact the solution is given for a suitable value of C.



CHAPTER 2. FIRST-ORDER DIFFERENTIAL EQUATIONS 12

2.3 Exact Equations

Definition: Exact Differential Form

The differential form M(x, y)dx+N(x, y)dy is said to be exact in a rectangle R is there is a function
F (x, y) such that

∂F

∂x
(x, y) =M(x, y) and

∂F

∂y
(x, y) = N(x, y)

for all (x, y) in R. That is, the total differential of F (x, y) satisfies

dF (x, y) =M(x, y)dx+N(x, y)dy

If M(x, y)dx+N(x, y)dy is an exact differential form, then the equation

M(x, y)dx+N(x, y)dy = 0

is called an exact equation.

Theorem 2.2: Test for Exactness

Suppose the first partial derivatives of M(x, y) and N(x, y) are continuous in a rectangle R. Then

M(x, y)dx+N(x, y)dy = 0

is an exact equation in R if and only if the compatibility condition

∂M

∂y
(x, y) =

∂N

∂x
(x, y)

holds for all (x, y) in R.

Example

Solve the differential equation
dy

dx
= −2xy2 + 1

2x2y

Ok so this is not separable or linear, so we use exactness.

dy

dx
+

2xy2 + 1

2x2y
= 0

dy +
2xy2 + 1

2x2y
dx = 0

2xy2 + 1

2x2y
dx+ 1dy = 0

This is the same form we want.

Another form we can get is (2xy2 + 1)dx+ 2x2ydy = 0.

Another form we can get is 1dx+ 2x2y
2xy2+1dy = 0.

We are now looking for a F (x, y) = c and we know this is true when ∂m
∂y = ∂n

∂x .

So the second one of these is probably the best, so we now have m = 2xy2 + 1 and n = 2x2y.
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Doing the partial of m with respect to y we get 4xy and the partial of n with respect to x is 4xy and
these are the same.

Let F (x, y) = x2y2 + x = C. The partial of this function with respect to x is 2xy2 + 1 and the partial
of this function with respect to y is 2x2y and this is the same as previous.

Method for Solving Exact Equations:

� If Mdx+Ndy = 0 is exact, then ∂F/∂x =M . Integrate this last equation with respect to x to get

F (x, y) =

�
M(x, y)dx+ g(y)

� To determine g(y), take the partial derivative with respect to y of both sides of the aboev equation and
substitute N for ∂F/∂y. We can now solve for g′(y).

� Integrate g′(y) to obtain g(y) up to a numerical constant. Substituting g(y) into the equation from
step 1 gives F (x, y)

� The solution to Mdx+Ndy = 0 is given implicitly by

F (x, y) = C

(Alternatively, starting with ∂F/∂y = N , the implicit solution can be foudn by first integrating with respect
to y.)

Example

Solve
(2xy − sec2 x)dx+ (x2 + 2y)dy = 0

Let m be the first term and n be the second term, and the partial derivatives of these are the same, so
they are exact.

Let F (x, y) =
�
2xy− sec2 xdx. When we integrate this, we get yx2− tanx. In this case, the constant

is anything with y, so the integral is equivalent to yx2 − tanx+ g(y).

Now we take the ∂F
∂y = x2 − 0 + g′(y). These two are n so x2 + 2y = x2 + g′(y), so solving for g(y)

we get that this is equal to y2 + C.

So F (x, y) = xy2 − tanx+ y2 = C.

Exercise Solve (1 + exy + xexy)dx+ (xex + 2)dy = 0.

Solution: x+ xyex + 2y = C.

Example

Solve
(x+ 3x3 sin y)dx+ (x4 cos y)dy = 0

Doing the partials originally makes them not equal to each other.

We can get this to exact form by multiplying through by x−1. When we do this we get (1+3x2 sin y)dx+
x3 cos ydy = 0 and the partials of these are the same.

x−1 is called an integrating factor.

Integrating m with respect to x, we get that F (x, y) =
�
1 + 3x2 sin ydx = x+ sin y · x3 + g(y).

Doing the partial of F with respect to y, we get ∂F
∂y = x3 cos y = 0 + x3 cos y + g′(y), and this gets

that g(y) = C.

So the answer is x+ x3 sin y = C.
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2.4 Special Integrating Factors

Definition

If the equation
M(x, y)dx+N(x, y)dy = 0

is not exact, but the equation

µ(x, y)M(x, y)dx+ µ(x, y)N(x, y)dy = 0

which results from multiplying the first equation by the function µ(x, y), is exact, then µ(x, y) is called
an integrating factor of the first equation.

Theorem 2.3: Special Integrating Factors

If (∂M/∂y − ∂N/∂x)/N is continuous and depends only on x, then

µ(x) = exp

[� (
∂M/∂y − ∂N/∂x

N

)
dx

]
is an integrating factor for an equation. If (∂N/∂x − ∂M/∂y)/M is continuous and depends only on
y, then

µ(y) = exp

[� (
∂M/∂x− ∂N/∂y

M

)
dy

]
is an integrating factor for the same equation.

Method for Finding Special Integrating Factors:

If Mdx+Ndy = 0 is neither separable nor linear, compute ∂M/∂y and ∂N/∂x. If ∂M/∂y = ∂N/∂x, then
the equation is exact. If it is not exact, consider

∂M/∂y − ∂N/∂x

N

If this is a function of just x, then an integrating factor is given by the formula above of µ(x). If not consider

∂N/∂x− ∂M/∂y

M

If this is a function of just y¡ then an integrating factor is given by above of µ(y).

Example

Solve (2x2 + y)dx+ (x2y − x)dy = 0

When we do the partials, we get that 1 ̸= 2xy − 1.

So lets look at ∂m/∂y−∂n/∂x
N , which is 1−(2xy−1)

x2y−x = −2
x which is just a function of x. So we have that

µ = e
�
− 2

xdx, so we don’t have to look at the one in terms of y.

Doing the integral of all this gives us that e−2 ln x = x−2. So when we multiply through by x−2, we get
that (2 + x−2y)dx+ (y − x−1)dy = 0.

The partials are equal to each other, so this equation is now exact.

Now we find F (x, y) by integrating m, so
�
(2 + x−2y)dx = 2x+−x−1y + g(y) = F (x)

Now we differentiation with respect to y so ∂F
∂y = y − x−1 = −x−1 + g′(y), so g(y) = y2

2

The solution is therefore 2x− x−1y + y2

2 = C.
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2.5 Substitutions and Transformations

Substitution Procedure:

� Identify the type of equation and determine the appropriate substitution or transformation

� Rewrite the original equation in terms of new variables

� Solve the transformed equation

� Express the solution in terms of the original variables

Definition: Homogeneous Equation

If the right-hand side of the equation
dy

dx
= f(x, y)

can be expressed as a function of the ratio y/x alone, then we say the equation is homogeneous.

To solve a homogeneous equation, use the substitution v = y
x ;

dy
dx = v + x dv

dx to transform the equation into
a separable equation.

Example

Solve (xy + y2 + x2)dx− x2dy = 0.

Solving for dy
dx we get that this is equal to −x2−y2−xy

−x2 and this simplifies to 1 +
(
y
x

)2
+ y

x .

This is equivalent to v + x dv
dx = 1 + v2 + v. We end up getting that dv

dx = v2+1
x and this can be done

by separation. The solution is y = x tan(ln |x|+ C) after solving.

To solve an equation of the form dy
dx = G(ax+by), use the substitution z = ax+by to transform the equation

into a separable equation.

Example

Solve dy
dx = y − x− 1 + (x− y + 2)−1

First we have dy
dx = −(x− y)− 1 + (x− y + 2)−1

So substituting with z = x − y, we have that dz
= 1 − dz

dx . Knowing this, the equation is equal to

1− dz
dx = −z − 1 + (z + 2)−1. From this this simplifies to dz

dx = z + 2− (z + 2)−1.

So now we write this into a separable equation with (z+2)dz
(z+2)2−1 = dx.

Separating by parts and substituting gives (x− y + 2)2 = ce2x + 1

Definition: Bernoulli Equation

A first-order equation that can be written in the form

dy

dx
+ P (x)y = Q(x)yn

where P (x) and Q(x) are continuous on the interval (a, b) and n is a real number, is called a Bernoulli
equation.

To solve a Bernoulli equation use the substitution v = y1−n to transform the equation into a linear equation.
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Example

Solve dy
dx − 5y = − 5

2xy
3.

From above, we have v = y−2 and dv
dx = −2y−3 du

dx and − 1
2
dv
dx = y−3 dy

dx .

So multiplying through by y−3 and substituting, we get that − 1
2
dv
dx − 5v = − 5

2x.

This is equal to dv
dx +10v = 5x. The integrating factor here is µ = e

�
P (x)dx, which is e10x in this case.

Multiplying through by µ, we get that e10x dv
dx + 10ve10x = 5xe10x and the LHS should be equal to

d
dx (e

10xv) = 5xe10x.

Using elementary integration techniques the answer is y−2 = x
2 − 1

20 + Ce−10x.



3 Mathematical Models and Numeri-
cal Methods Involving First-Order Equa-
tions

3.1 Compartmental Analysis

We assume that the growth rate is proportional to the population present. A mathematical model called the
Malthusian, or exponential law of population growth, model is given by

dp

dt
= kp, p(0) = p0

where k > 0 is the proportionality constant of the growth rate and p0 is the population at time t = 0.

Example

In 1790, the population of the United States was 3.93 million, and in 1890 it was 62.98 million. Assuming
the Mathusian model, estimate the U.S. population as a function of time.

Let t = 0 be year 1790. Using separation of variables and integration from dp
dt = kp, we get that

lnP = kt+ C. Solving for P we get that elnP = P = ekt+C , so this is equal to P = Cekt.

At P (0) = 3.93, and using this we can find k. 3.93 = Ce0, so C = 3.93. So we have P (t) = P0e
kt. We

can now find k by plugging in P (100) = 62.98 from this, and solving for k, we get that k ≈ 0.027742.

So P (t) = 3.93e.027742t

The Malthusian model considered only death by natural casues. Other factors such as premature deaths due
to malnutrition, inadequate medical supplies, communicable diseases, violent crimes, etc involve a competition
within the population. The logistic model is given by

dp

dt
= −Ap(p− p1), p(0) = p0

Note that this equilibrium has two equilibrium solutions p(t) = p1 and p(t) = 0.

Example

Taking the population of 3.93 million as the initial population and given the 1840 and 1890 populations
of 17.07 and 62.98 million respectively, use the logistic model to estimate the population at time t.

We have P (50) = 17.07 and P (100) = 62.98. Using a previously derived formula, p(t) = p0p1

p0+(p1−p0)e−Ap1t ,

we get 17.07 = 3.93p1

3.93+(p1−3.93)e−50Ap1
and 62.98 = 3.93p1

3.93+(p1−3.93)e−100Ap1
.

The answers are that p1 ≈ 251.78 and A ≈ 0.0001210, so the logistic equation ended up being
p(t) = 989.5

3.93+247.85e−0.030463t .

Example

Suppose a student carrying a flu virus returns to an isolated college campus of 1000 students. If it is
assumed that the rate at which the virus spreads is proportional not only to the number x of infected
students but also to the number of students not infected, determine the number of infected students
after 6 days if it is further observed that after 4 days, x(4) = 50.

17
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We are solving the initial value problem dx
dt = kx(1000 − x), x(0) = 1. Doing some stuff we get that

ln x
1000−x = 1000kt+ C.

After doing some more things we get that x = 1000Ce1000kt

1+Ce1000kt and from this we can get that C = 1
999 .

So the function is now x(t) =
1000
999 e1000kt

1+ 1
999 e

1000kt , so simplifying we get that x(t) = 1000
999e−1000kt+1

.

Doing some plugging in stuff we get that k ≈ −.9906, so after 6 days approximately 276 students are
infected.

3.2 Numerical Methods: A Closer Look At Euler’s Algorithm

The numerical method defined by the formula

yn+1 = yn + h
f(xn, yn) + f(xn+1, y

∗
n+1)

2

where
y∗n+1 = yn + hf(xn, yn)

is known as the improved Euler’s method.

The improved Euler’s method is an example of a predictor-corrector method.

It is recommended you use technology to find the answer.

3.3 Higher-Order Numerical Methods: Taylor and Runge-Kutta

We wish to obtain a numerical approximation of the solution ϕ(x) to the initial value problem

y′ = f(x, y), y(x0) = y0

To derive the Tayler methods, let ϕn(x) be the exact solution to the initial value problem

ϕ′n(x) = f(x, ϕn), ϕn(problemxn) = yn

The Taylor series for ϕn(x) about the point xn is

ϕn(x) = ϕn(xn) + hϕ′n(xn) +
h

2!
ϕ′′n(xn) + . . .

where h = x− xn. Since ϕn satisfies the initial value, we can write this series in the form

ϕn(x) = yn + hf(xn, yn) +
h2

2!
ϕ′′n(xn) + . . .

Example

Determine the recursive formula for the Taylor method of order 2 for the initial value

y′ = sin(xy), y(0) = π

We know that ϕ′′n(xn) =
∂f
∂x (xn, yn) +

∂f
∂y (xn, yn) ·

dy
dx .

So ∂f
∂x = cos(xy) · y and ∂f

∂y = cos(xy) · x.

Putting this all together we get that ϕn(x) = yn+1 = yn + h sin(xnyn) +
h2

2 [y cos(xy) + x cos(xy) ·
sin(xy)].

Doing some magic, xn+1 = xn + h and yn+1 = yn + h sin(xnyn) +
h2

2 [yn cos(xnyn) +
xn

2 sin(2xnyn)].



4 Linear Second-Order Equations

4.1 Introduction: The Mass-Spring Oscillator

A damped mass-spring oscillator consists of a mass m attached to a spring fixed at one end. Devise a
differential equation that governs the motion of this oscillator, taking into account the forces acting on it due
to the spring elasticity, damping friction, and possible external influences.

Newton’s second law - force equals mass times acceleration (F = ma) - is the most commonly encountered
differential equation. It is an ordinary differential equation of the second order since acceleration is the second
derivative of position (y) with respect to time (a = d2y/dt2).

If the spring is unstretched and the inertial mass m is still, the system is at equilibrium. We stretch the
coordinate y of the mass by its displacement from the equilibrium position.

When the mass m is displaced from equilibrium, the spring is stretched or compressed and it exerts a force
that resists the displacement. For most springs this force is directly proportional to the displacement y and is
given by Hooke’s law.

Fspring = −ky
where the positive constant k is known as the stiffness (spring constant) and the negative sign reflects the
opposing nature of the force. Hooke’s law is only valid for sufficiently small displacements.

Usually all mechanical systems also experience friction. For vibrational motion this force is usually modeled
accurately by a term proportional to velocity:

Ffriction = −bdy
dt

= −by′

where b ≥ 0 is the damping coefficient and the negative sign reflects the opposing nature of the force.

The other forces on the oscillator are usually regarded as external to the system. Although they may be
gravitational, electrical, or magnetic, commonly the most important external forces are transmitted to the
mass by shaking the supports holding the system. For now we refer to the combined external forces by a
single known function Fext(t). Newton’s law provides the differential equation for the mass-spring oscillator:

my′′ = −ky − by′ + Fext(t)

or
my′′ + by′ + ky = Fext(t)

Example

Verify that if b = 0 and Fext = 0, that the above equation has a solution of the form y(t) = cos(ωt)
and the angular frequency ω increases with k and decreases with m.

The differential equation is my′′ + by′ + ky = Fext and that my′′ + ky = 0.

Since we are given what y(t) is, taking the derivative of the differential equation gives that−mω2 cos(ωt)+

k cos(ωt) = 0, and solving for ω, we get that ω =
√

k
m .

If k increases, ω increases, and if m increases, ω decreases.

Example

Verify that the exponentially damped sinusoid given by y(t) = e−3t cos 4t is a solution to the above
differential equation if Fext = 0,m = 1, k = 25, and b = 6.

From the differential equationmy′′+by′+ky = Fext, we can plug in stuff and we get that y′′+by′+25y =

19
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0.

Since we are given y(t) we can find the derivatives and substitute. What we are given is quite long, but
essentially it cancels out to 0 = 0, which means it is a solution to the system.

Exercise Verify that the simple exponential function y(t) = e−5t is a solution to the above differential equation
if Fext = 0, m = 1, k = 25, and b = 10.

Sometimes the external force will make the system look somewhat erratic. There are many real world examples
where the external force must defintely be taken into account.

4.2 Homogeneous Linear Equations: The General Solution

A second-order constant-coefficient differential equation has the form

ay′′ + by′ + cy = f(t) (a ̸= 0)

A homogeneous second-order constant-coefficient differential equation is the special case with f(t) = 0.

ay′′ + by′ + cy = 0 (a ̸= 0)

A solution of this equation has the form y = ert. The resulting equation ar2 + br + c = 0 is called the
auxiliary equation (or characteristic equation) associated with the homogeneous equation.

Example

Find a pair of solutions to
y′′ + 5y′ − 6y = 0

Plugging in y = ert, we get that ert(r2+5r−6) after substituting. Solving the quadratic r2+5r−6 = 0,
we get that r = −6 and r = 1, which is y = e−6t and y = et.

Note that the zero function, y(t) = 0 is always a solution to an equation above (figure this out later). In
addition when we have a pair of solutions y1(t) and y2(t), we can construct an infinite number of other
solutions by forming linear combinations:

y(t) = c1y1(t) + c2y2(t)

for any choice of the constants c1 and c2. This is a two-paramter solution form since there are two unknown
constants. To find a specific solution, two initial conditions are needed.

Example

Solve the initial value problem

y′′ + 2y′ − y = 0 y(0) = 0, y′(0) = −1

Doing the default substitution, our auxiliary equation is r2 + 2r − 1 = 0.

The solutions from this are r = −1 +
√
2 and r = −1 −

√
2. Remember y = ert. Using the initial

conditions, we get that c1 = −
√
2
4 and c2 =

√
2
4 .

Theorem 4.1

For any real numbers a( ̸= 0), b, c, t0, Y0, and Y1, there exists a unique soultion to the initial value
problem.

ay′′ + by′ + cy = 0 y(t0) = Y0 y′(t0) = y1

The solution is valid for all t in (−∞,∞)
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Definition

A pair of functions y1(t) and y2(t) is said to be linearly independent on the interval t if and only if
neither of them is a constant multiple of the other on all of t. We say that y1 and y2 are linearly
dependent on t if one of them is a constant multiple of the other on all of t.

Theorem 4.2

If y1(t) and y2(t) are any two solutions to the differential equation that are linearly independent on
(−∞,∞), then unique constants c1 and c2 can always be found so that c1y1(t) + c2y2(t) satisfies the
initial value problem on (−∞,∞).

Definition: Wronksian

Suppose each of the functions f1(x), f2(x), . . . fn(x) possess at least n− 1 derivatives.

The determinant

W (f1, f2, . . . , fn) =

∣∣∣∣∣∣∣∣∣
f1 f2 . . . fn
f ′1 f ′2 . . . f ′n
...

...
. . .

...

f
(n−1)
1 f

(n−1)
2 . . . f

(n−1)
n

∣∣∣∣∣∣∣∣∣
is called the Wronksian of the functions.

Theorem 4.3

Let y1, y2, . . . , yn be n solutions of the homogeneous linear nth-order differential equation on an interval
I. Then the set of solutions is linearly independent on I if and only if W (y1, y2, . . . , yn) ̸= 0 for every
x in the interval.

Distinct real roots: If the auxiliary equation has distinct real roots r1 and r2, then both y1(t) = ert and
y2(t) = ert are solutions to the above differential equation and y(t) = e1e

rt + e2e
rt is a general solution.

Repeated root: if the auxiliary equation has a repeated root r, then both y1(t) = ert and y2(t) = tert are
solutions to the differential equation and y(t) = e1e

rt + e2te
rt is a general solution.

A homogeneous linear nth-order equation has a general solution of the form

y(t) = c1y1(t) + c2y2(t) + · · ·+ cnyn(t)

where the individual solutions yi(t) are linearly independent, i.e. no yi(t) is expressible as a linear combination
of the others.

4.3 Auxiliary Equations with Complex Roots

The simple harmonic equation y′′ + y = 0 so called because of its relation to the fundamental vibration of a
musical tone, has as solutions y1(t) = cos t and y2(t) = sin t.

When b2 − 4ac < 0, the roots of the auxiliary equation ar2 + br + c = 0 associated with the homogeneous
equation ay′′+by′+cy = 0 are the complex conjugate numbers r1 = α+ iβ and r2 = α− iβ where α = − b

2a

and β =
√
4ac−b2

2a

Combing the solutions er1t and er2t with Euler’s formula eiθ = cos θ+i sin θ, yields complex function solutions

e(α+iβ)t = eat(cosβt+ i sinβt) and e(α−iβ)t = eat(cosβt− i sinβt)
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Example

Solve the initial value problem y′′ + 2y′ + 2y = 0 given y(0) = 0 and y′(0) = 2.

Using the auxiliary form of the equation we have r2+2r+2 = 0. From the quadratic formula, r = −1±i,
the two roots are r1 = −1 + i and r2 = −1− i.

The solution is therefore y1 = e(−1+i)t and y2 = e(−1−i)t

From the form given from euler’s formula earlier, y1 = e−t(cos t+ i sin t) and y2 = e−t(cos t− i sin t),
so our general solution is y = c1e

−t(cos t+ i sin t) + c2e
−t(cos t− i sin t).

Plugging the initial conditions, we get that 0 = c1 + c2.

The derivative of the general solution is y′ = c1e
−t(− sin t + i cos t) + (cos t + i sin t) · c1(−1)e−t +

c2e
−t(− sin t − i cos t) + (cos t − i sin t) · c2(−1)e−t. Plugging in the initial conditions gives 2 =

c1i− c1 − c2i− c2.

Factoring we get 2 = c1(i− 1) + c2(−i− 1). Using some substitution c2 = i and c1 = −i. Plug this in
the general solution to solve.

If the auxiliary equation has complex conjugate roots a ± iβ, then two linearly independent solutions to the
equation are

eαt cosβt and eαt sinβt

and a general solution is
y(t) = c1e

αt cosβt+ c2e
αt sinβt

where c1 and c2 are arbitrary constants.

Example

Find a general solution to y′′ + 2y′ + 4y = 0.

Using the auxiliary equation the roots are −1±
√
3i. Using what was given above, the general solution

is y = c1e
−t cos(

√
3t) + c2e

−t sin(
√
3t).

Example

Newton’s second law implies the position y(t) of the mass m is governed by the second-order differential
equation my′′(t) + by′(t) + ky(t) = 0 where the terms are physically identified as my being interial, by
is damping and ky is stiffness. Determine the equation of motion for a spring system when m = 36 kg,
b = 12 kg/sec (which is equivalent to 12 N - sec/m), k = 37 kg/sec2, y(0) = 0.7 m and y′(0) = 0.1
m/sec. Also find y(10), the displacement after 10 sec.

The differential equation is 36y′′ + 12y′ + 37, so the roots are − 1
6 ± i.

Doing the methods explained above, the solution is y = .7e−t/6 cos t+ 13
60e

−t/6 sin t, and y(10) ≈ −.13
m.

Exercise Interpret the equation y′′ + 5y′ − 6y = 0 in terms of the mass-spring system.

4.4 Nonhomogeneous Equations: the Method of Undetermined Co-
efficients

The method of Undetermined Coefficients is the technique used to guess a solution’s form based on the form of
the nonhomogeneous function f(t) in a linear equation with constant coefficients such as ay′′+by′+cy = f(t).

For example the particular solution to ay′′ + by′ + cy = Ctm is of the form yp(t) = Amt
m + · · ·+A1t+A0.
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Example

Find a particular solution to y′′ + 3y′ + 2y = 10e3t.

Our guess based on the form of f(t) = 10e3t is that y = Ae3t is the guess form of the particular
solution, so we know that y′ = 3A33t and y′′ = 9Ae3t.

Substituting this in gives us 9Ae3t + 3(3Ae3t) + 2(Ae3t) = 10e3t. Simplifying this gives us 20Ae3t =
10e3t so A = 1/2.

So our particular solution is 1
2e

3t.

Example

Find a particular solution to y′′ + 3y′ + 2y = sin t.

Let y = A sin t+B cos t as the form of the particualr solution.

Substituting and solving should result in A = 1/10 and B = −3/10.

This example suggests an equation of the form ay′′ + by′ + cy = C sinβt (or C cosβt) will have a particular
solution of the form yp(t) = A cosβt+B sinβt.

Example

Find a particular solution to y′′ + 4y = 5t2et.

Let y = At2et+Btet+Cet = et(At2+Bt+C). The result should be A = 1, B = −4/5, C = −2/25.

To find a particular soultion to the differential equation

ay′′ + by′ + cy = Ctmert

where m is a nonnegative integer, use the form

yp(t) = ts(Amt
m + · · ·+A1t+A0)e

rt

with

1. s = 0 if r is not a root of the associated auxiliary equation;

2. s = 1 if r is a simple root of the associated auxiliary equation;

3. s = 2 if r is a double root of the associated auxiliary equation.

To find a solution to the differential equation ay′′ + by′ + cy = Ctmeαt cosβt or equal to Ctmeαt sinβt for
β ̸= 0, use the form yp(t) = ts(Amt

m + . . . A1t+A0)e
αt cosβt+ ts(Bmt

m + · · ·+B1t+B0)e
αt sinβt, with

1. s = 0 if α+ iβ is not a root of the associated auxiliary equation; and

2. s = 1 if α+ iβ is a root of the associated auxiliary equation

4.5 The Superposition Principle and Undetermined Coefficients Re-
visited

Theorem 4.4: Superposition Principle

Let y1 be a solution to the differential equation

ay′′ + by′ + cy = f1(t)

and y2 is a solution to
ay′′ + by′ + cy = f2(t)
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then for any constants k1 and k2, the function k1y1 + k2y2 is a solution to the differential equation

ay′′ + by′ + cy = k1f1(t) + k2f2(t)

Example

Find a particular solution to
y′′ + 3y′ + 2y = 3t+ 10e3t

The solution for equal to 3t is y = 3t
2 − 9

4 and for 10e3t is y = e3t

2 so the solution is y = 3t
2 − 9

4 + e3t

2 .

Exercise Find a particualr solution to y′′ + 3y′ + 2y = −9t+ 20e3t.

General solution for Nonhomogeneous Differential Equations: Let yp be a particular solution to

ay′′ + by′ + cy = f(t)

and c1y1 + c2y2 be the general solution to the homogeneous equation

ay′′ + by′ + cy = 0

Then the general solution to the nonhomogeneous equation is given by

y(t) = yp(t) + c1y1(t) + c2y2(t)

Theorem 4.5

For any real numbers a(̸= 0), b, c, t0, Y0, and Y1, suppose yp(t) is a particular solution to above in an
interval I containing t0 and that y1(t) and y2(t) are linearly independent solutions to the associated
homogeneous equation in I. Then there exists a unique solution in I to the initial value problem.

ay′′ + by′ + cy = f(t) y(t0) = Y0 y′(t0) = Y1

Example

Given that yp(t) = t2 is a particular solution to

y′′ − y = 2− t2

Find a general solution and a solution satisfying y(0) = 1, y′(0) = 0.

Our general solution using the auxiliary equation is y = c1e
t + c2e

−t.

Our particular solution will be in At2 +By + C.

So y = t2 + c1e
t + c2e

−t. Solving for c1 and c2 by finding the derivative of this and using the initial
conditions, the specific solution is y = t2 + 1

2e
t + 1

2e
−t.

Example

A mass-spring system is driven by a sinusodial external force 5 sin t + 5 cos t. The mass equals 1, the
spring constant equals 2, and the damping coefficient equals 2 (in appropriate units), so the motion is
governed by the differential equation

y′′ + 2y′ + y = 5 sin t+ 5 cos t

If the mass is initially located at y(0) = 1, with a velocity y′(0) = 2, find its equation of motion.

Finding the general solution to this we get that y = c1e
−t cos t+ c2e

−t sin t.
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From yp = A sin t+B cos t, we should solve that

y = 3 sin t− cos t+ 2e−t cos t+ e−t sin t

Example

Find a particular solution to
y′′ − y = 8tet + 2et

The general solution for this is y = c1e
t + c2e

−t. yp is equal to (At + B)et. Doing some calculations
should result in yp = (2t2 − t)et.

Method of Undetermined Coefficients (Revisited)

To find a particular solution to the differential equation

ay′′ + by′ + cy = Pm(t)ert

where Pm(t) is a polynomial of degree m, use the form

yp(t) = ts(Amt
m + · · ·+A1t+A0)e

rt

if r is not a root of the associated auxiliary equation, take s = 0; ir r is a simple root of the associated
auxiliary equation, take s = 1; and if r is a double root of the associated auxiliary equation, take s = 2.

To find a particular solution to the differential equation

ay′′ + by′ + cy = Pm(t)eαt cosβt+Qn(t)e
αt sinβt, β ̸= 0

where Pm(t) is a polynomial of degree m and Qn(t) is a polynomial of degree n, use the form yp(t) =
ts(Akt

k + · · ·+A1t+A0)e
αt cosβt+ ts(Bkt

k + · · ·+B1t+B0)e
αt sinβt, where k is the larger of m and n.

If α + iβ is not a root of the associated auxiliary equation, take s = 0; if α + iβ is a root of the associated
auxiliary equation, take s = 1.

Exercise Write down the form of a particular solution to the equation y′′+2y′+2y = 5e−t sin t+5t3e−t cos t.

Exercise Write down the form of a particular solution to the equation y′′′+2y′′+ y′ = 5e−t sin t+3+7te−t.

4.6 Variation of Parameters

The Method of Undetermined Coefficients is a procedure for determining a particular solution when the
equation has constant coefficients and the nonhomogeneous term is of a special type.

Variation of Paramters is a more general method for finding a particular solution.

Consider a linear second-order equation

a2(x)y
′′ + a1(x)y

′ + a0(x)y = g(x)

in the standard form
y′′ + P (x)y′ +Q(x)y = f(x)

Obtain the solution to the associated homogeneous equation

y = c1y1(x) + c2y2(x)

And replace the constants with functions

y = u1y1(x) + u2y2(x)

Substituting into the DE yields the system:

y1u
′
1 + y2u

′
2 = 0

y′1u
′
1 + y′2u

′
2 = f(x)



CHAPTER 4. LINEAR SECOND-ORDER EQUATIONS 26

By Cramer’s Rule, the solution can be expressed in terms of determinants-

u′1 =
W1

W
=

−y2f(x)
W

u′2 =
W2

W
=
y1f(x)

W

The functions u1 and u2 are found by integrating.

A particular solution is yp = u1y1 + u2y2.

Example

Find a general solution on (−π
2 ,

π
2 ) to

d2y
dt2 + y = tan t.

The standard form is y′′ + y = tan t.

The solutions to the homogeneous equation is r = ±i, so α = 0 and β = 1, so y1 = cos t and y2 = sin t.

Using what was previously introduced, we end up with y = c1 cos t+ c2 sin t− cos t ln | sec t+ tan t|

Exercise Find a general solution on (−π
2 ,

π
2 ) to

d2y
dt2 + y = tan t+ 3t− 1.

4.7 Variable-Coefficient Equations

We now consider equations with variable coefficients of the form

a2(t)y
′′ + a1(t)y

′ + a0(t)y = f(t)

Typically, the equation is divided by the nonzero coefficient a2(t) and is expressed in standard form

y′′(t) + p(t)y′ + q(t)y(t) = g(t)

Theorem 4.6

Suppose p(t), q(t), and g(t) are continuous on an interval (a, b) that contains the point t0. The, for
any choice of the initial values Y0 and Y1, there exists a unique solution y(t) on the same interval (a, b)
to the initial value problem

y′′(t) + p(t)y′(t) + q(t)y(t) = g(t), y(t0) = Y0, y′(t0) = Y1

Example

Determine the largest interval for which the above theorem ensures the existence and uniqueness of a
solution to the initial value problem

(t− 3)y′′ + y′ +
√
ty = ln t y(1) = 3, y′(1) = −5

First, let’s put this into standard form. y′′ + 1
t−3y

′ +
√
t

t−3y = ln t
t−3 .

From this we can see that this is only continuous from (0, 3).

Definition

A linear second-order equation that can be expressed in the form

at2y′′(t) + bty′(t) + cy = f(t)

where a, b, and c are constants, is called a Cauchy-Euler, or equidimensional, equation.
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To solve a Cauchy-Euler equation, for t > 0 look for solutions of the form

y = tr

and substitute into the homogeneous form

at2y′′(t) + bty′(t) + cy = 0

the resulting equation ar2 + (b− a)r + c = 0 is called the associated characteristic equation.

Example

Find two linearly independent solutions to the equation

3t2y′′ + 11ty′ − 3y = 0 t > 0

The solutions are y = tr and plugging this into the equation results in 3r2 + 8r − 3, which factors to
r = 1

3 and r = −3.

The solutions are y = t1/3 and y = t−3.

If the roots of the associated characteristic equation r are equal, then independent solutions of the Cauchy-
Euler equation on (0,∞) are given by

y1 = tr and y2 = tr ln t

IF the roots are complex, r = α± βi, then the independent solutions are given by

y1 = ta cos(β ln t) and y2 = tα sin(β ln t)

Example

Find a pair of linearly independent solutions to the Cauchy-Euler equations for t > 0.

t2y′′ + 5ty′ + 5y = 0

Answer: y1 = t−2 cos(ln t), y2 = t−2 sin(ln t)

Exercise Do the same thing for t2y′′ + ty′ = 0.

Lemma 4.7

If y1(t) and y2(t) are any two solutions to the homogeneous differential equation

y′′(t) + p(t)y′(t) + q(t)y(t) = 0

on an interval I where the functions p(t) and q(t) are continuous and if the Wronksian is zero at any
point t of I, then y1 and y2 are linearly dependent on I.

Theorem 4.8

If y1(t) and y2(t) are any two solutions to the homogeneous differential equation that are linearly
independent on an interval I containing t0, then unique constants c1 and c2 can always be found so
that c1y1(t) + c2y2(t) satisfies the initial conditions y(t0) = Y0, y

′(t0) = Y1 for any Y0 and Y1.

yh = c1y1 + c2y2 is called a general solution to the homogeneous differential equation y′′(t) + p(t)y′(t) +
q(t)y(t) = 0 if y1 and y2 are linearly independent solutions on I.

For the nonhomogeneous equation y′′(t) + p(t)y′(t) + q(t)y(t) = g(t) a general solution on I is given by
y = yp + yh where yh = c1y1 + c2y2 is a general solution to the corresponding homogeneous equation on I
and yp is a particular solution on I.
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If linearly independent solutions to the homogeneous equation are known, yp can be determined by the
variation of parameters method.

Theorem 4.9

If y1 and y2 are two linearly independent solutions to the homogeneous equation on an interval I where
p(t), q(t), and g(t) are continuous, then a particular solution is given by yp = u1y1 + u2y2, where u1
and u2 are determined up to a constant by the pair of equations, y1v

′
1 + y2v

′
2 = 0, y′1v

′
1 + y′2v

′
2 = g,

which have the solutions

v1(t) =

�
−g(t)y2(t)
W (y1, y2)(t)

dt

and

v2(t) =

�
g(t)y1(t)

W (y1, y2)(t)
dt

Note that the formulation above presumes that the differential equation has been put into standard
form (that is divided by a2(t)).

Theorem 4.10

Let y1(t) be a solution, not identically zero, to the homogeneous equation in an interval I. Then

y2(t) = y1(t)

�
e−

�
p(t)dt

y1(t)2
dt

is a second, linearly independent solution.

Example

Given that y1(t) = t is a solution to

y′′ − 1

t
y′ +

1

t2
y = 0

use the Reduction of Order formula to determine a second linearly independent solution for t > 0.

y2 is equal to t
�

eln t

t2 dt = t ln t from the formula, so the general solution is y = c1t+ c2t ln t.

Exercise The following equation arises in the mathematical modeling of reverse osmosis.

(sin t)y′′ − 2(cos t)y′ − (sin t)y = 0, 0 < t < π

Find a general solution.



5 Introduction to Systems

Apologies for no examples since I have really bad allergies as of writing this.

5.1 Differential Operators and the Elimination Method for Systems

y′(t) = dy
dt = d

dty is used to emphasize that the derivative of a function y is the result of operation on the

function y with the differentiation operator d
dt . Similarly y′′(t) = d2y

dt2 = d
dt

d
dty. Commonly the symbol D is

used instead of d
dt .

y′′ + 4y′ + 3y = 0 is represented by (D2 + 4D + 3)[y] = 0.

We use the convention that the operator “product” is a composition when it operates on functions. Exercise
Show that the operator (D + 1)(D + 3) is the same as D2 + 4D + 3.

Exercise Show that (D + 3t)D is not the same as D(D + 3t).

Because the “algebra” of differential operators follows the same rules as the algebra of polynomials, we can
adapt the elimination method used to solve algebraic operations to solve any system of linear differential
equations with constant coefficients.

Example

Solve the system

x′(t) = 3x(t)− 4y(t) + 1

y′(t) = 4x(t)− 7y(t) + 10t

First we can solve this by writing this in differential operator form:

(D − 3)x+ 4y = 1

−4x+ (D + 7)y = 10t

By eliminating this using algebra, we get that (D2+4D−5)y = 14−30t (this is essentially y′′+4y−5y =
14− 30t).

The first step to solving this nonhomogeneous equation is to solve the homogeneous equation.

The homogeneous equation results in giving us that yh = c1e
−5t + c2e

t.

We can guess the particular solution as yp = At + B, so y′p = A and y′′p = 0. So we have that
0 + 4A − 5(At + B) = 14 − 30t. From this, we have 4A − 5B = 14 and −5A = −30, so A = 6 and
B = 2.

So the general solution for y is y = C1e
−5t + C2e

t + 6t+ 2.

Now we need to find the function x.

We can find x from elimination once again.

Using the same methods above, we have x = k1e
−5t + k2e

t + 8t+ 5.

We should only end up with two constants, so we need to find the relationship between the constants
of y and x.

So using the derivative of x we get −5k1e
−5t + k2e

t + 8 = 3k1e
−5t + 3k2e

t + 24t + 15 − 4C1e
−5t −

4C2e
t − 24t− 8 + 1.

29
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Simplifying we get −5k1e
−5t − k2e

t = (3k1 − 4C1)e
−5t + (3k2 − 4C2)e

t. So we have that −5k1 =
3k1 − 4C1 and k2 = 3k2 − 4C2, so C1 = 2k1 and C2 = 1

2k2.

To find a general solution for the system

L1[x] + L2[y] = f1

L3[x] + L4[y] = f2

where L1, L2, L3, and L4 are polynomials in D = d/dt.

� Make sure that the system is written in operator form.

� Eliminate one of the variables, say, y, and solve the resulting equation for x(t). If the system is
degenerate, stop! A separate analysis is required to determine whether or not there are solutions.

� (Shortcut) If possible, use the system to derive an equation that involves y(t) but not its derivatives
(Otherwise go to the next step). Substitute the found expression for x(t) into this equation to get a
formula for y(t). The expressions for x(t), y(t) give the desired general solution.

� Eliminate x from the system and solve for y(t). Solving for y(t) gives more constants - in fact, twice
as many as needed.

� Remove the extra constants by substituting the expressions for x(t) and y(t) into one or both of the
equations in the system. Write the expressions for x(t) and y(t) in terms of the remaining constants.

Example

Find a general solution to

x′′(t) + y′(t)− x(t) + y(t) = −1

x′(t) + y′(t)− x(t) = t2

Subtracting the two, we get that x′′ − x′ + y = −1− t2.

We will now solve for x. In differential operator form we have (D2 − 1)x + (D + 1)y = −1 and
(D − 1)x+Dy = t2.

Eliminating for x gives the xh = C1e
t + C2te

t + C3e
−t.

The particular solution will be in the form At2 + Bt + C. The first derivative of this is 2At + B and
the second derivative is 2A.

Plugging this in gives us that (D2−2D+1)(D+1)x = −2t−t2. This is equal to (D3−D2−D+1)x =
−2t− t2.

This is 2−2A−2At−B+At2+Bt+C = −2t− t2. From this we see that A = −1, B = −4, C = −6.

The particular solution xp = −t2 − 4t− 6.

Now since we have x = c1e
t + C2te

t + C3e
−t − t2 − 4t− 6, we can solve this for the y.

Plugging the general solution in gives us y = −c1et − c2e
t − c2e

t − c2te
t − c1e

−t + 2 + c1e
t + c2e

t +
c2te

t − c3e
−t − 2t− 4− 1− t2.

Simplifying this gives y = −c2et − 2c3e
−t − t2 − 2t− 3.

5.2 Solving Systems and Higher-Order Equations Numerically

If equations have variable coefficients, the solution process is limited. The solutions can be expressed as
infinite series which can be very laborious (with the exception of the Cauchy-Euler equation). Fortunately all
cases, constant and variable coefficient, nonlinear and higher order equations and systems can be addressed
numerically.

We will express differential equations as a system in normal form and used the basic Euler method for computer
solution that can be “vectorized” to apply to such systems.
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A system of m differential equations in the m unknown functions x1(t), x2(t), . . . , xm(t) expressed as

x′1(t) = f1(t, x1, x2, . . . , xm)

x′2(t) = f2(t, x1, x2, . . . , xm)

...

x′m(t) = fm(t, x1, x2, . . . , xm)

is said to be in normal form. It can be expressed in vector form as x′ = t(t, x).

A single higher-order equation can always be converted to an equivalent system of first-order equations. To
convert an mth-order differential equation

y(m)(t) = f(t, y, y′, . . . , y(m−1))

into a first-order system, introduce additional unknowns, the sequence of derivatives of y:

x1(t) = y(t), x2(t) = y′(t), . . . , xm(t) = y(m−1)(t)

We obtain this system

x′1(t) = y′(t) = x2(t)

x′2(t) = y′′(t) = x3(t)

...

x′m−1(t) = y(m−1)(t) = xm(t)

x′m(t) = y(m)(t) = f(t, x1, x2, . . . , xm)

Example

Convert the initial value problem

y′′(t) + 3ty′(t) + y(t)2 = sin t y(0) = 1, y′(0) = 5

into an initial value problem for a system in normal form.

We have x1 = y, x′1 = y′, x2 = y′ and x′2 = y′′.

In normal form, we would have y′′ = sin t− 3ty′ + y2 which is what x′2 and y′′ are equal to. Note that
this ia function of f(t, y, y′).

We also have x′1 = y′ = x2 and we also know that sin t− 3tx2 + x21 = x′2.

We now have a system where x′1 = x2, x
′
2 = sin t−3tx2+x

2
1 where we know x1(0) = 1 and x2(0) = 5.



6 Theory of Higher-Order Linear Dif-
ferential Equations

6.1 Basic Theory of Linear Differential Equations

A linear differential equation of order n is an equation that can be written in the form

an(x)y
(n)(x) + an−1(x)y

(n−1)(x) + · · ·+ a0(x)y(x) = b(x)

where a0(x), a1(x), . . . , an(x) and b(x) depend on on x, not y. When a0, a1, . . . , an are all constants, we
say this equation has constant coefficients; otherwise it has variable coefficients. If b(x) = 0, this equation is
called homogeneous; otherwwise it is nonhomogeneous.

We assume a0(x), a1(x), . . . , an(x) and b(x) are all continuous on an interval I and an(x) ̸= 0 on I.

We can rewrite the equation in standard form

y(n)(x) + p1(x)y
(n−1)(x) + · · ·+ pn(x)y(x) = g(x)

where the functions p1(x), . . . , pn(x), and g(x) are continuous on I.

Theorem 6.1

Suppose p1(x) . . . pn(x) and g(x) are continuous on an interval (a, b) that contains the point x0. Then,
for any choice of the initial values, γ0, γ1, . . . , γn−1, there exists a unique solution y(x) on the whole
interval (a, b) to the initial value problem

y(n) + p1(x)y
(n−1)(x) + · · ·+ pn(x)y(x) = g(x)

y(x0) = γ0, y
′(x0) = γ1 . . . y

(n−1)(x0) = γn−1

Example

For the initial value problem

x(x− 1)y′′′ − 3xy′′ + 6x2y′ − (cosx)y =
√
x+ 5

y(x0) = 1, y′(x0) = 0, y′′(x0) = 7

determine the values of x0 and the intervals (a, b) containing x0 for which the above theorem guarantees
the existence of a unique solution on (a, b).

We know that x ̸= 0, 1 from x(x− 1).

In standard form this becomes y′′′ − 3x
x(x−1)y

′′ + 6x2

x(x−1)y
′ − cos x

x(x−1)y =
√
x+5

x(x−1) .

These functions will be continuous when x ̸= 0 and x ̸= 1. We also know that x ≥ −5 from the last
term.

The intervals are (−5, 0), (0, 1) and (1,∞) in which all the x0 can have an element from.

If we let the left-hand side of equation in the standard form define the differential operator L,

L[y] =
dny

dxn
+ p1

dn−1y

dxn−1
+ · · ·+ pny = (Dn + p1D

n−1 + · · ·+ pn)[y]

32
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then the standard form equation can be expressed in the operator form

L[y](x) = g(x)

Keep in mind that L is a linear operator - that is, it satisfies

L[y1 + y2 + · · ·+ ym] = L[y1] + L[y2] + · · ·+ L[ym]

L[cy] = cL[y]

where c is any constant.

Definition: Wronksian

Let f1, . . . , fn be any n functions that are (n− 1) times differentiable.

The function

W [f1, f2, . . . , fn] =

∣∣∣∣∣∣∣∣∣
f1 f2 . . . fn
f ′1 f ′2 . . . f ′n
...

...
. . .

...

f
(n−1)
1 f

(n−1)
2 . . . f

(n−1)
n

∣∣∣∣∣∣∣∣∣
is called the Wronksian of f1, . . . fn.

Theorem 6.2

Let y1, . . . yn be n solutions on (a, b) of

y(n)(x) + p1(x)y
(n−1)(x) + · · ·+ pn(x)y(x) = 0

where p1, . . . , pn are continuous on (a, b). If at some point x0 in (a, b) these solutions satisfy

W [y1, . . . , yn](x0) ̸= 0

then every solution of the above equation on (a, b) can be expressed in the form

y(x) = C1y1(x) + · · ·+ Cnyn(x)

where C1, . . . , Cn are constants.

Definition: Linear Dependence of Functions

TheM functions f1, f2, . . . , fm are said to be linearly dependent on an interval I if at least one of them
can be expressed as a linear combination of the others on I; equivalently, they are linearly dependent if
there exist constants c1, c2, . . . , cm, not all zero, such that

c1f1(x) + c2f2(x) + · · ·+ cmfm(x) = 0

for all x in I. Otherwise, they are said to be linearly independent on I.

Example

Show that the functions f1(x) = ex, f2(x) = e−2x, and f3(x) = 3ex − 2e−2x are linearly dependent on
(−∞,∞).

We can see that f3 = 3f1− 2f2. We can see that f3 is a linear combination of the other two functions.

We have a set of constants, not all zero that c1f1 + c2f2 + c3f3 = 0 from 3f1 − 2f2 − 1f3, so the set
of {f1, f2, f3} is linearly dependent.

If you do the Wronksian of the functions: W [f1, f2, f3], we get 0 which eans that it is linearly dependent.
The process of writing the Wronksian takes a lot of paper, so it is easier likely to do the c1f1 + c2f2 +
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· · ·+ cnfn = 0 method.

To prove that functions f1, f2, . . . , fm are linearly independent, a convenient approach is to assume the
equation defined in the linear dependence definition holds and show that this forces c1 = c2 = · · · = cm = 0.

Example

Show that the functions f1(x) = x, f2(x) = x2, and f3(x) = 1 − 2x2 are linearly independent on
(−∞,∞).

Assume c1f1 + c2f2 + c3f3 = 0. If we can show this, then we can show its independence.

From this we will get c1x+ c2x
2 + c3(1− 2x2) = 0.

If we let x = 0, we get c3 = 0.

If we let x = 1, we get c1 + c2 − c3 = 0 and if we let x = −1, we get −c1 + c2 − c3 = 0.

From this we see that c1 + c2 = 0 and −c1 + c2 = 0.

The functions are linearly independent when c1, c2 and c3 are equal to 0, so x, x2, and 1 − 2x2 are
linearly independent.

There are other ways to do this as well.

Theorem 6.3

If y1, y2, . . . , yn are n solutions to y(n)+p1y
(n−1)+· · ·+pny = 0 on the interval (a, b), with p1, p2, . . . , pn

continuous on (a, b), then the following statements are equivalent

1. y1, y2, . . . , yn are linearly dependent on (a, b).

2. The Wronksian W [y1, y2, . . . , yn](x0) is zero at some point x0 in (a, b).

3. The Wronksian W [y1, y2, . . . , yn](x) is identically zero on (a, b).

The contrapositives of these statements are also equivalent:

1. y1, y2, . . . , yn are linearly independent on (a, b).

2. The Wronksian W [y1, y2, . . . , yn](x0) is nonzero at some point x0 in (a, b).

3. The Wronksian W [y1, y2, . . . , yn](x) is never zero on (a, b)

Whenever the last 3 are met, {y1, y2, . . . , yn} is called a fundamental solution set for linear independence
theorem on (a, b).

It is useful to keep in mind the following sets consist of functions that are linearly independencet on every
open interval (a, b):

{1, x, x2, . . . , xn}

{1, cosx, sinx, cos 2x, sin 2x, . . . , cosnx, sinnx}

{eα1x, eα2x, . . . , eαnx}

where αi are distinct constants.
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Theorem 6.4

Let yp(x) be a particular solution to the nonhomogeneous equation

y(n)(x) + p1(x)y
(n−1)(x) + · · ·+ pn(x)y(x) = g(x)

on the interval (a, b) with p1, p2, . . . , pn continuous on (a, b), and let {y1, . . . , yn} be a fundamental
solution set for the corresponding homogeneous equation

y(n)(x) + p1(x)y
(n−1)(x) + · · ·+ pn(x)y(x) = 0
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Then every solution of the original nonhomogeneous equation on the interval (a, b) can be expressed in
the form

y(x) = yp(x) + C1y1(x) + · · ·+ Cnyn(x)

Example

Find a general solution on the interval (−∞,∞) to

L[y] = y′′′ − 2y′′ − y′ + 2y = 2x2 − 2x− 4− 24e−2x

given that yp1
(x) = x2 is a particular solution to L[y] = 2x2 − 2x − 4, yp2

(x) = e−2x is a particular
solution to L[y] = −12e−12x, and that y1(x) = e−x, y2(x) = ex, and y3(x) = e2x are solutions to the
corresponding homogeneous equation.

We know that {e−x, ex, e2x} is a fundamental solution set for homogeneous equations so we have
C1e

−x + C2e
x + C3e

2x.

We know that L[x2] = 2x2 − 2x− 4 and L[e−2x] = −12e−2x. From the former, we have L[2e−2x] =
−24e−2x.

We know that Lyp = 2x2 − 2x− 4− 24e−2x. We also know that L[x2 − 2e−2x] = L[x2]− 2L[e−2x] =
2x2 − 2x− 4− 24e−2x.

The solution of the nonhomogeneous equation is x2 − 2e−2x.

The general solution is therefore y(x) = x2 − 2x−2x + C1e
−2x + C2e

x + C3e
2x.

6.2 Homogeneous Linear Equations with Constant Coefficients

Consider the homogeneous linear nth-order differential equation with constant coefficients

any
(n)(x) + an−1y

(n−1)(x) + · · ·+ a1y
′(x) + a0y(x) = 0

erx is a solution to the equation, provided r is a root of the auxiliary (or characteristic equation)

P (r) = anr
n + an−1r

n−1 + · · ·+ a0 = 0

Distinct real roots: If the roots r1, r2, . . . , rn of the auxiliary equation are real and distinct, then the n
solutions to the first equation defined are

y1(x) = er1x, y2(x) = er2x , . . . , , yn(x) = ernx

Example

Find a general solution to
y′′′ − 2y′′ − 5y′ + 6y = 0

Using the auxiliary equation we get r3 − 2r2 − 5r + 6 = 0 from this.

From algebra, we know that the possible roots are ±1,±2,±3,±6.

Let’s assume r = 1 is a solution. From synthetic division, we see that r = 1 is a root. Now we can see
that (r − 1)(r2 − r − 6) is a solution.

Factoring this gives (r − 1)(r − 3)(r + 2).

The general solution is y = C1e
x + C2e

3x + C3e
−2x.

Looking at complex roots: If α + iβ(α, β real) is a complex root of the auxiliary equation, then so is its
complex conjugate α − iβ. If we accept complex-valued functions as solutions, then both e(α+iβ)x and
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e(α−iβ)x are solutions to the original homogeneous linear equation. The real-valued functions (which are
linearly independent) corresponding to the complex roots α± iβ are

eαx cos(βx), eαx sin(βx)

Example

Find a general solution to
y′′′ + y′′ + 3y′ − 5y = 0

The auxiliary equation is r3 + r2 + 3r − 5.

The possible roots are ±1,±5.

We know that 1 works from synthetic division and we get (r − 1)(r2 + 2r + 5).

From r2 + 2r + 5, we get that −1± 2i are the roots of this.

We get c1e
x + c2e

−x cos 2x+ c3e
−x sin 2x.

If r1 is a root of multiplicity m, then the m linearly independent solutions are

er1x, xer1x, x2er1x, . . . , xm−1er1x

If α+ iβ is a repeated complex root of multiplicity m, then the 2m linearly independent real-valued solutions
are

eαx cos(βx), xeαx cos(βx), . . . , xm−1eαx cos(βx)

eαx sin(βx), xeαx sin(βx), . . . , xm−1eαx sin(βx)

Example

Find a general solution to
y(4) − y(3) − 3y′′ + 5y′ − 2y = 0

The auxiliary equation is r4 − r3 − 3r2 + 5r − 2 = 0.

The possible roots are ±1,±2.

We know that r = 1 works from plugging in. Using synthetic division, we get (r − 1)(r3 − 3r + 2).

From the r3 − 3r + 2 term, we can factor this to (r − 1)(r2 + r − 2).

The auxiliary equation ends up being (r − 1)3(r + 2).

The general solution ends up being c1e
x + C2xe

x + C3x
2ex + C4e

−2x.
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Example

Find a general solution to
y(4) − 8y(3) + 26y′′ − 40y′ + 25y = 9

The auxiliary equation is r4 − 8r3 + 26r2 − 40r + 25 = 0.

Let’s assume we are told that r1 = 2 + i and r2 = 2− i.

This means that (r − (2 + i))(r − (2− i)) = r2 − 4r + 5 is a factor.

Dividing r4 − 8r3 + 26r2 − 40r + 25 from this gives us r2 − 4r + 5.

We know the roots are 2 + i, 2− i, 2 + i, 2− i.

Since 2 + i and 2 − i have multiplicity of two, then the solution is y = C1e
2x cosx + C2e

2x sinx +
C3xe

2x cosx+ C4xe
2x sinx.

6.3 Undetermined Coefficients and the Annihilator Method

Previously we used the Method of Undetermined Coefficients to find a particular solution to a nonhomogeneous
linear second-order constant coefficient equation

L[y] = (aD2 + bD + c)[y] = f(x)

when f(x) had a particular form (a product of a polynomial, an exponential, and a sinusoid) by observing
a solution form yp must resemble f . We also had to make accomodations when yp was a solution to the
homogeneous equation L[y] = 0.

The annihilator method uses the observation that suitable types of nonhomogeneities f(x) are themselves
solutions to homogeneous differential equations with constant coefficients.

1. Any nonhomogeneous term of the form f(x) = erx satisfies (D − r)[f ] = 0

2. Any nonhomogeneous term of the form f(x) = xkerx satisfies (D−r)m[f ] = 0 for k = 0, 1, . . . ,m−1.

3. Any nonhomogeneous term of the form f(x) = cosβx or sinβx satisfies (D2 + β2)[f ] = 0

4. Any nonhomogeneous term of the form f(x) = xkeαx cosβx or xkeαx sinβx satisfies [(D − α)2 +
β2]m[f ] = 0 for k = 0, 1, . . . ,m− 1.

We have that Dn annihilates polynomial of degree n− r.

We have that D − r annihilates erx.

We have that (D − r)k annihilates xk−1erx

We have that D2 − 2αD + (α2 + β2) annihilates eαx cosβx, eαx sinβx.

If have a power of xk−1 to the above, then raise the above to the power of k to annihilate this. If we just
have cosβx or sinβx, then the operator becomes D2 + β2.

Definition

A linear differential operator A is said to annihilate a function f if

A[f ](x) = 0

for all x. That is, A annihilates f if f is a solution to the homogeneous linear differential equation
above on (−∞,∞).

Example
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Find a differential operator that annihilates

6xe−4x + 5ex sin 2x

We know that (D + 4)2 will annihilate 6xe−4x.

We saw that the form that annihilates the other part of the equation is D2 − 2αD + (α2 + β2).

We know that α = 1 and β = 2.

The operator that will annihilate that term is D2 − 2D + 5, so this term annihilates 5ex sin 2x.

The sum will be annihilated by multiplying (D + 4)2 and (D2 − 2D + 5).

Example

Find a general solution to
y′′ − y = xex + sinx

Method 1: Undetermined Coefficients

The homogeneous equation ism2−1, so the solution to the homogeneous equation is yc = c1e
x+c2e

−x

The form of the particular solution looks like yp = (Ax+B)ex + C sinx+D cosx.

Let’s find the form of xex first.

We have that yp = (Ax+B)ex, then the derivative is Aex + (Ax+B)ex = Axex + (A+B)ex. The
second derivative is Aex +Axex + (A+B)ex = Axex + (2A+B)ex.

Plugging this in gives Axex + (2A+B)ex − (Ax+B)ex = xex. We end up getting 2Aex = xex.

Because of the overlap with the homogeneous equation, the particular solution is actually yp = x(Ax+
B)ex = (Ax2 +Bx)ex.

The first derivative of this is (2Ax+B)ex + (Ax2 +Bx)ex = [Ax2 + (2A+B)x+B]ex. The second
derivative is (2Ax+ 2A+B)ex + [Ax2 + (2A+B)x+B]ex = [Ax2 + (4A+B)x+ (2A+ 2B)]ex.

Plugging this in gives [Ax2 + (4A+B)x+ (2A+ 2B)]ex − (Ax2 +Bx)ex = xex.

Simplifying this gives 4A = 1 and 2A+ 2B = 0. From this we get A = 1/4 and B = −1/4.

The solution for yp = (1/4x2 − 1/4x)ex = x( 14x− 1
4 )e

x.

Now we need to solve the other part of yp.

Doing derivatives and plugging in stuff we get C = −1/2 and D = 0, so yp = x( 14x− 1
4 )e

x − 1
2 sinx.

Therefore y = c1e
x + c2e

−x + x(− 1
4x− 1

4 )e
x − 1

2 sinx

Method 2: Annihilator Method We know that (D − 1)2 annihilates xex.

We know that for sinx the form is D2 − 2αD + (α2 + β2).

So D2 + 1 annihilates sinx.

(D − 1)2(D2 + 1) annihilates xex + sinx.

Rewrite the equation using differential operator notation. We end up getting (D2 − 1)y = xex + sinx.

This gives (D + 1)(D − 1)y = xex + sinx. Applying (D − 1)2(D2 + 1) to both sides, we get (D +
1)(D − 1)3(D2 + 1)y = (D − 1)2(D + 1)[xex + sinx].

We get that (D + 1)(D − 1)3(D2 + 1)y = 0.

We would have y = c1e
−x + c2e

x + c3xe
x + c4x

2ex + c5 sinx+ c6 cosx as the general solution to the
homogeneous equation.

The particular solution is exactly what we got in the same form using the annihilator method.
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Belpw for me later Exercise Find a general solution to y′′′ − 3y′′ + 4y = xe2x pls later anastasia come back

6.4 Method Of Variation of Parameters

The method of undetermined coefficients and the annihilator method work only for linear equations with
constant coefficients and when the nonhomogeneous term is a solution to some homogeneous linear equation
with constant coefficients. The method of variation of parameters discussed in chapter 4 generalizes to
higher-order linear equations with variable coefficients.

Our goal is to find a solution to the standard form equation

L[y](x) = g(x)

where L[y] = y(n)+p1y
(n−1)+· · ·+pny and the coefficient functions p1, p2, . . . , pn as well as g are continuous

on (a, b).

A general solution to L[y](x) = 0 is yh(x) = C1y1(x) + · · ·+ Cnyn(x).

In the method of variation of parameters, there exists a particular solution to the standard form equation of
the form

yp(x) = v1(x)y1(x) + · · ·+ vn(x)yn(x)

The functions v′1, v
′
2, . . . , v

′
n must satisfy the system

y1v
′
1 + · · ·+ ynv

′
n = 0

...
...

...
...

...

y
(n−2)
1 v′1 + · · ·+ y(n−2)

n v′n = 0

y
(n−1)
1 v′1 + · · ·+ y(n−1)

n v′n = g

Solving the system using Cramer’s Rule, we find that v′k(x) =
g(x)Wk(x)

W [y1,...,yn](x)
where k = 1, . . . , n. and where

Wk(x) is the determinant of a matrix obtained from the Wronksian W [y1, . . . , yn](x) by replacing the kth
column by Col[0, . . . , 0, 1].

Example

Find a general solution to the Cauchy-Euler equation

x3y′′′ + x2y′′ − 2xy′ + 2y = x3 sinx, x > 0

From Cauchy Euler, we see that y = xr, y′ = rxr−1, y′′ = r(r − 1)xr−2, y′′′ = r(r − 1)(r − 2)xr−3.

Plugging this in the homogeneous equation gives x3 ·r(r−1)(r−2)xr−3+x2r(r−1)xr−2−2xrxr−1+
2xr = 0.

This gives xr[r3 − 3r2 + 2r] + xr[r2 − r]− 2xr[r] + 2xr = 0. Factoring this gives xr[r3 − 3r2 + 2r +
r2 − r − 2r + 2] = 0.

Assuming x ̸= 0, we get r3 − 2r2 − r + 2 = 0. Factoring this gives (r − 2)(r − 1)(r + 1) = 0.

The general solution to the homogeneous equation is y = c1x
2 + c2x

−1 + c3x.

From above we see that y1 = x2, y2x
−1, y3 = x.

The particular solution will be of the form yp = v1x
2 + v2x

−1 + v3x.

Starting with the Wronksian of x2, x−1, x.

Before, we get g(x) = x3 sin x
x3 = sinx. This comes from dividing the x3 sinx by the leading coefficient.

The next determinant for v1 is the same as the original Wronksian above, but the first column has
0, 0, sinx instead of x2, 2x, 2.
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The determinant for v2 is the same as the original, but the second column is replaced by 0, 0, sinx
instead of x−1,−x−2, 2x−3.

The determinant for v3 is the same as the original, but the third column is replaced by 0, 0 sinx instea
dof x, 1, 0.

For the original Wronksian, we get x(4x−2 + 2x−2)− 1(2x−1 − 2x−1) = 6x−1 =W .

For the Wronksian of v1, we get sinx(x−1 + x−1) = 2x−1 sinx.

For the Wronksian of v2, we get − sinx(x2 − 2x2) = x2 sinx.

For the Wronksian of v3, we get sinx(−1− 2) = −3 sinx.

So we get v′1 = W1

W = 2x−1 sin x
6x−1 = 1

3 sinx

We get v′2 = W 2

W = x2 sin x
6x−1 = 1

6x
3 sinx

We get v′3 = W 3

W = −3 sin x
6x−1 = − 1

2x sinx.

Integrating, we get v1 = − 1
3 cosx.

For v3, we have − 1
2

�
x sinxdx. Let u = x and dv = sinx. From this, v = − cosx and du = 1.

Integrating by parts should give v3 = 1
2x cosx− 1

2 sinx.

For v2, we get u = x3 then 3x2, 6x, 6, 0. and for dv we get sinx,− cosx, sinx,− cosx, sinx.

This is tabular integration by parts. We get v2 = 1
6 [−x

3 cosx+ 3x2 sinx+ 6x cosx− 6 sinx].

Simplifying this gives v2 = − 1
6x

3 cosx+ 1
2x

2 sinx+ x cosx− sinx.

We can now get yp.

Yea, so yp is simply yp = [− 1
3 cosx]x

2 + [− 1
6x

3 cosx + 1
2x

2 sinx + x cosx − sinx]x−1 + [12x cosx −
1
2 sinx]x.

Simplifying this gives cosx− x−1 sinx.

So the general solution is y = cosx− x−1 sinx+ c1x
2 + c2x

−1 + c3x.



7 Laplace Transforms

7.1 Definition of the Laplace Transform

Definition

Let f(t) be a function on [0,∞). The Laplace transform of f is the function F defined by the integral

F (s) =

� ∞

0

e−stf(t)dt

The domain of F (s) is all the values of s for which the integral above exists. The Laplace transform of
f is denoted by both F and L{f}.

Example

Determine the Laplace transform of the constant function f(t) = 1, t ≥ 0.

Let F (s) =
�∞
0
e−st1dt =

�∞
0
e−stdt. This is equal to − 1

se
−st with bounds ∞ and 0.

Remember this is an improper integral where we have limb→∞ − 1
se

−st from 0 to b.

This gives − 1
se

−sb − 1
se

0 on the inside of the limit, so we get limb→∞
[
− 1

se
−sb + 1

s

]
.

The above equals limb→∞
[
− 1

s · 1
erb

+ 1
s

]
.

The restriction is s > 0 because 1
esb

has to be greater than 0.

Our result ends up being 1
s .

L{1} = 1
s .

Example

Determine the Laplace transform of f(t) = t.

We have L{t} =
�∞
0
e−sttdt = limb→∞

[� b

0
e−sttdt

]
.

Integrating by parts gives the inside equal to − 1
s · t · 1

est −
1
s2 e

−st with bounds 0 to b.

Plugging this in gives limb→∞ − 1
s · b

esb
− 1

s · 1
esb

+ 1
s2 .

We see that b
esb

is indeterminate, so using L’Hopital’s Rule, the derivative is 1
sesb

and the limit as b
approaches ∞ gives this as 0.

We are left with 1
s2 .

L{t} = 1
s2 .

We will see that L{tn} = n!
sn+1 .

Example

Determine the Laplace transform of f(t) = eat, where a is a constant.

The integral is
�∞
0
e−st · eatdt =

�∞
0
e−(s−a)tdt.

42
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Integrating this gives − 1
s−ae

−(s−a)t evaluated from 0 to ∞.

As t goes to infinity, we get 0 and then we get 0− −1
s−ae

0 = 1
s−a .

So L{eat} = 1
s−a .

If we were to find the Laplace of e5t, from the above example it would be 1
s−5 .

Example

Find L{sin bt}, where b is a nonzero constant.

The integral this time is
�∞
0
e−st · sin btdt.

Integrating gives − 1
s sin bte

−st + b
s

[
− 1

s cos bte
−st −

�
− 1

se
−st(−b) sin btdt

]
.

(Do this example later)

Involves factoring Laplace stuff.

L{sin bt} = b
s2+b2 .

Example

Determine the Laplace transform of

f(t) =


2 0 < t < 5

0 5 < t < 10

e4t t > 10

To do this, you just do
�∞
0
e−stf(t)dt =

� 5

0
e−st · 2dt+

� 10

5
e−st · 0dt+

�
1
0∞e−st · e4tdt.

Evaluating this gives the laplace as − 2
se

−5s + 2
s + 1

s−4e
−(s−4)10

An important property of the Laplace transform is its linearity. That is, the Laplace transform L is a linear
operator.

Theorem 7.1

Let f , f1, and f2 be functions whose Laplace transforms exist for s > α and let c be a constant. Then,
for s > α,

L{f1 + f2} = L{f1}+ L{f2}

L{cf} = cL{f}

Exercise Determine L{11 + 5e4t − 6 sin 2t}.

A function f(t) on [a, b] is said to have a jump discontinuity at t0 ∈ (a, b) if f(t) is discontinuous at t0, but
the one-sided limits

lim
t→t−0

f(t) and lim
t→t+0

f(t)

exist as finite numbers.

Definition

A function f(t) is said to be piecewise continuous on a finite interval [a, b] if f(t) is continuous at every
point in [a, b], except possibly for a finite number of points at which f(t) has a jump discontinuity.

A function f(t) is said to be piecewise continuous on [0,∞) if f(t) is piecewise continuous on [0, N ]
for all N > 0.
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In contrast, the function f(t) = 1/t is not piecewise continuous on any interval containing the origin, since it
has an “infinite jump” at the origin.

A function that is piecewise continuous on a finite interval is not necessarily integrable over that interval.
However, piecewise continuity on [0,∞) is not enough to guarantee the existence (as a finite number) of the
improper integral over [0,∞); we also need to consider the growth of the integrand for large t. The Laplace
transform of a piecewise continuous function exists, provided the function does not grow “faster than an
exponential”.

Definition

A function f(t) is said to be of exponential order α if there exist positive constants T and M such that

|f(T )| ≤Meαt

for all t ≥ T .

Theorem 7.2

If f(t) is piecewise continuous on [0,∞) and of exponential order α, then L{f}(s) exists for s > a.

Here are common Laplace transforms:

� L{1} = 1
s

� L{t} = 1
s2

� L{tn} = n!
sn+1

� L{eat} = 1
s−a

� L{sin bt} = b
s2+b2

� L{cos bt} = s
s2+b2

7.2 Properties of the Laplace Transform

Theorem 7.3

If the Laplace transform L{f}(s) = F (s) exists for s > α, then

L{eαtf(t)}(s) = F (s− a)

for s > α+ a

Example

Determine the Laplace transform of eαt sin bt

We know the Laplace of sin bt is equal to b
s2+b2 .

Multiplying by eαt just shifts it F (s− α) = b
(s−α)2+b2

Theorem 7.4

Let f(t) be continuous on [0,∞) and f ′(t) be piecewise continuous on [0,∞), with both of exponential
order α. Then for s > α,

L{f ′}(s) = sL{f}(s)− f(0)
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Theorem 7.5

Let f(t), f ′(t), . . . , f (n−1)(t) be continuous on [0,∞) and let f (n)(t) be piecewise continuous on [0,∞),
with all these functions of exponential order α. Then, for s > α,

L{f (n)}(s) = snL{f}(s)− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0)

Example

Using the above theorems and the fact that L{sin bt}(s) = b
s2+b2 , determine L{cos bt}

We know that f ′(t) = b cos bt from this. So L{b cos bt} = sL{sin bt} − f(0).

We know that bL{cos bt} = sL{sin bt}, since f(0) = 0.

So simplifying gives the Laplace transform as s
s2+b2

Example

Prove the following identity for continous functions f(t) (assuming the transforms exist):

L
{� t

0

f(τ)dτ

}
(s) =

1

s
L{f(t)}(s)

We know g(t) =
� t

0
f(τ)dτ . From this we know g′(t) = f(t).

We get that L{g′(t)} = sL{g(t)} − g(0). and that L{f(t)} = sL{
� t

0
f(τ)dτ}.

We also know g(0) = 0.

So the Laplace of the function is equal to 1
sL{f(t)}.

Theorem 7.6

Let F (s) = L{f}(s) and assume f(t) is piecewise continuous on [0,∞) and of exponential order α.
Then, for s > α,

L{tnf(t)}(s) = (−1)n
dnF

dsn
(s)

Example

Determine L{t sin bt}.

We know f(t) = sin bt and that n = 1.

This is equal to (−1)1 d
dsL{sin bt}.

We end up getting − d
ds

(
b

s2+b2

)
.

We end up getting 2bs
(s2+b2)2 .

Here are some basic properties of Laplace Transforms

� L{f + g} = L{f}+ L{g}.

� L{cf} = cL{f} for any constant c.

� L{eatf(t)}(s) = L{f}(s− a)

� L{f ′}(s) = sL{f}(s)− f(0)
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� L{f ′′(s)} = s2L{f}(s)− sf(0)− f ′(0)

� L{f (n)}(s) = snL{f}(s)− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0)

� L{tnf(t)}(s) = (−1)n dn

dsn (L{f}(s))

7.3 Inverse Laplace Transform

Example

Solve the initial value problem

y′′ − y = −t y(0) = 0, y′(0) = 1

We can say that L{y′′ − y} = L{−t}.

Using properties we know that L{y′′} − L{y} = −L{t}

This is equal to s2L{y} − sy(0)− y′(0) = L{y} = − 1
s2 .

Now plugging in L{y(t)} = Y (s), we get s2Y (s)1− Y (s) = − 1
s2

Simplifying gives Y (s)(s2 − 1) = s2−1
s2 .

We see that Y (s) = 1
s2 . This is the Laplace of t, so y(t) = t.

Definition

Given a function F (s), if there is a function f(t) that is cintinuous on [0,∞) and satisfies

L{f} = F

then we say that f(t) is the inverse Laplace transform of F (s) and employ the notation f = L−1{F}.

Example

Determine L{F} for F (s) = 2
s2 .

The Inverse Laplace transform of this is t2.

Determine it for F (s) = 3
s2+9 .

This is sin 3t from the definition.

Determine it for s−1
s2−2s+5 .

This simplifies to s−1
(s−1)2+4 = F (s−1). This is the same as cos 2t but shifted by 1. The Inverse Laplace

transform ends up being et cos 2t.

Theorem 7.7

Assume that L−1{F},L−1{F1}, and L−1{F2} exist and are continuous on [0,∞) and let c be any
constant. Then

L−1{F1 + F2} = L−1{F1}+ L−1{F2}

L−1{cF} = cL−1{F}
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Example

Determine L−1
{

5
s−6 − 6s

s2+9 + 3
2s2+8s+10

}
.
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The first two terms of this gives 5e6t− 6 cos 3t.

For the last term, We see that 1
2(s2+4s+5) lets us put 3

2 in the front and we can complete the square for

this for the denominator to give 1
(s+2)2+1 .

The last term ends up being 3
2e

−2t sin t.

Exercise Determine L−1{ 5
s+2

4}

Exercise Determine L−1{ 3s+2
s2+2s+10}.

Method of Partial Fractions - A rational function of the form P (s)
Q(s) , where P (s) and Q(s) are polynomials

with the degree of P less than the degree of Q has a partial fraction expansion whose form is based on the
linear and quadratic factors of Q(s). We consider the three cases:

1. Nonrepeated linear factors

2. Repeated linear factors

3. Quadratic factors

Nonrepeated Linear Factors - If Q(s) can be factored into a product of distinct linear factors, Q(s) =
(s− r1)(s− r2) . . . (s− rn), where the ri’s are all distinct real numbers, then the partial fraction expansion
has the form

P (s)

Q(s)
=

A1

s− r1
+

A2

s− r2
+ · · ·+ An

s− rn

where the Ai’s are real numbers.

Example

Determine L−1{F}, where F (s) = 7s−1
(s+1)(s+2)(s−3) .

The decomposition is equal to A
s+1 + B

s+2 + C
s−3 .

Solving for A,B,C gives 2,−3, 1 respectively.

We end up getting 2
s+1 + −3

s+2 + 1
s−3 . This gives us 2e

−t − 3e−2t + e3t.

Repeated Linear Factors - Let s− r be a factor of Q(s) and suppose (s− r)m is the highest power of s− r
that divides Q(s). Then the portion of the partial fraction expansion of P (s)/Q(s) that corresponds to the
term (s− r)m is

A1

s− r
+

A2

(s− r2)
+ · · ·+ Am

(s− r)m

where the Ai’s are real numbers.

Example

Determine L
{

s2+9s+2
(s−1)2(s+3)

}
.

We end up getting A
s−1 + B

(s−1)2 + C
s+3 .

Solving for A,B,C gives 2, 3,−1 respectively.

This gives 2et + 3ttt− e−3t.

Quadratic Factors - Let (s− α)2 + β2 be a quadratic factor of Q(s) that cannot be reduced to linear factors
with real coefficients. Suppose m is the highest power of (s− α)2 + β2 that divides Q(s). THen the portion
of the partial fraction expansion that corresponds to (s− α)2 + β2 is

C1s+D1

(s− α)2 + β2
+

C2s+D2

[(s− α)2 + β2]2
+ · · ·+ Cms+Dm

[(s− α)2 + β2]m
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When looking up Laplace transforms, the following equivalent form is more convenient

A1(s− α) + βB1

(s− α)2 + β2
+

A2(s− α)βB2

[(s− α)2 + β2]2
+ · · ·+ Am(s− α) + βBm

[(s− α)2 + β2]m

Example

Determine L−1
{

2s2+10s
(s2−2s+5)(s+1)

}
.

The partial fraction is As+B
(s2−2s+5) +

C
s+1 .

Solving the system gives A,B,C = 3, 5,−1.

So we are now finding the Laplace transform of 3s+5
(s−1)2+40

1
s+1 .

The first term of this can be rewritten as 3(s−1)+8
(s−1)2+4 .

The transform ends up being 3et cos 2t+ 4et sin 2t− e−t.

7.4 Solving Initial Value Problems

Method of Laplace Transforms

To solve initial value problems:

� Take the Laplace transforms of both sides of the equation

� Use the properties of the Laplace transform and the initial conditions to obtain an equation for the
Laplace transform of the solution and then solve this equation for the transform

� Determine the inverse Laplace transform of the solution by looking it up in a table or by using a suitable
method (such as partial fractions) in combination with the table.

Example

Solve the initial value problem

y′′ − 2y′ + 5y = −8e−t y(0) = 2, y′(0) = 12

This is equal to L{y′′} − 2L{y′}+ 5L{y} = −8L{e−t}.

This ends up being s2L{y} − sy(0)− y′(0)− 2[sL{y} − y(0)] + 5L{y} = −8 1
s+1 .

We know that L{y} = Y (s).

So Y (s)[s2 − 2s+ 5]− 2s− 12 + 4 = −8
s+1 .

This is Y (s)(s2 − 2s+ 5) = 2s+ 8− 8
s+1 .

This ends up being Y (s) = 2s
s2−2s+5 + 8

s2−2s+5 − 8
(s+1)(s2−2s+5) .

Simplifying ends up getting 2s2+10s
(s+1)(s2−2s+5) .

Doing partial fraction decomposition gives 3s+5
s2−2s+5 + −1

s+1 = 3(s−1)+8
(s−1)2+4 + −1

s+1 .

The Inverse Laplace of this is 3et cos 2t+ 4et sin 2t− e−t.

Exercise Solve the initial value problem

y′′ + 4y′ − 5y = tet y(0) = 1 y′(0) = 0
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Example

Solve the initial value proiblem

w′′(t)− 2w′(t) + 5w(t) = −8eπ−t w(π) = 2 w′(π) = 12

Let’s introduce a new function y(t) = w(t+ π).

Replace t with t+ π in this equation and we get w′′(t+ π)− 2w′(t+ π) + 5w(t+ π) = −8eπ−(t+π).

Substituting the derivatives gives y′′(t)− 2y′(t) + 5y(t) = −8e−t.

This basically comes out to y = 3et cos 2t+ 4et sin 2t− e−t.

Replacing everything with t− π gives 3et−π cos 2(t− π) + 4et−π sin 2(t− π)− e−(t−π) = y(t− π).

This gives w(t) = 3et−π cos 2t+ 4et−π sin 2t− e−(t−π).

7.5 Transforms of Discontinuous Functions

Definition

The unit step function u(t) is defined to by

u(t) :=

{
0, t < 0,

1, 0 < t

Example

Graph u(t), u(t− a), and Mu(t− a).

The graph of u(t) is just as given above.

The graph of u(t− a) is just a horizontal shift.

The graph of Mu(t− a) will just have the one with 1 multiplied by M

Definition

The rectangular window function
∏

a,b(t) is defined by

∏
a,b

(t) := u(t− a)− u(t− b) =


0, t < a

1, a < t < b

0, b < t

Example

Write the function

f(t) =


3 t < 2

1 2 < t < 5

t 5 < t < 8

t2/10 8 < t

In terms of window and step functions.

This is 3
∏

0,2(t) + 1
∏

2,5(t) + t
∏

5,8(t) +
t2

10u(t− 8).
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Also this can be written as 3u(t)− 2u(t− 2) + (t− 1)u(t− 5) + ( t
2

10 − t)u(t− 8).

L{u(t− a)}(s) = e−as

s

Theorem 7.8

Let F (s) = L{f}(s) exist for s > α ≥ 0. If a is a positive constant, then

L{f(t− a)u(t− a)}(s) = e−αsF (s)

and, conversely, an inverse Laplace transform of e−asF (s) is given by

L−1{e−asF (s)}(t) = f(t− a)u(t− a)

L{g(t)u(t− a)}(s) = e−asL{g(t+ a)}(s)

Example

Determine the Laplace transform of t2u(t− 1).

a = from here, and g(t) = t2.

We take L{g(t)u(t− 1)} = e−s · L{g(t+ 1)}.

Replacing g(t) gives that t2 + 2t+ 1 for the inside, so the Answer ends up being e−s · [ 2!s3 + 2
s2 + 1

s ].

Example

Determine L{(cos t)u(t− π)}.

This has a = π. So we can see that We are doing e−πsL{g(t+ π)}.

g(t) = cos t, so g(t+ π) = cos(t+ π) = cos t cosπ − sin t sinπ = − cos t.

So the Laplace is e−πs · −1 · s
s2+1 .

Exercise Determine L−1
{

e−2s

s2

}
and sketch its graph.
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Example

The current I in an LC series circuit is governed by the initial value problem

I ′′ + 4I(t) = g(t) I(0) = 0 I ′(0) = 0

where

g(t) =


1 0 < t < 1

−1 1 < t < 2

0 2 < t

Determine the current as a function of time t.

g(t) = 1
∏

0,1 + − 1
∏

1,2 = 1[u(t − 0) − u(t − 1)] − 1[u(t − 1) − u(t − 2)]. This is equal to g(t) =
1u(t− 0)− 2u(t− 1) + u(t− 2).

This simplifies to 1− 2u(t− 1) + u(t− 2)

The Laplace of the initial value problem is s2L{I}−sI(0)−I ′(0)+4L{I} = L{1−2u(t−1)+u(t−2)}

We end up getting (s2 + 4)L{I} = 1
s − 2e−s

s + e−2s

s .
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We get that L{I} = 1
s(s2+4) − 2e−s

[
1

s(s2+4)

]
+ e−2s

[
1

s(s2+4)

]
.

Using partial fraction decomposition of 1
s(s2+4) gives 1

4 · 1
s +− 1

4 · s
s2+4 .

If we call what we got above to be F (s), we get F (s)− 2e−sF (s) + e−2sF (s).

The inverse of what we have is I = L−1{F (s)} − 2L−1{e−sF (s)}+ L−1{e−2sF (s)}.

Doing Laplace stuff gives I = 1
4−

1
4 cos 2t−2

[
1
4 − 1

4 cos 2(t− 1)
]
u(t−1)+

[
1
4 − 1

4 cos 2(t− 2)
]
u(t−2).

7.6 Transforms of Periodic and Power Functions

Definition

A function f(t) is said to be periodic of period T ( ̸= 0) if

f(t+ T ) = f(t)

for all t in the domain of f .

To specificy a periodic function, it is sufficient to give its values over one period.

The square wave function can be epxressed as

f(t) =

{
1, 0 < t < 1

−1, 1 < t < 2

and f(t) has period 2.

For convenience, we introduce a notation for a “windowed” version of a periodic function (using a rectangular
window whose width is the period T )

fT (t) := f(T )
∏
0,T

(t) = f(t)[u(t)− u(t− T )] =

{
f(t), 0 < t < T

0, otherwise
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Theorem 7.9

If f has period T and is piecewise continuous on [0, T ], then the Laplace transform F (s) =
�∞
0
e−stf(t)dt

and FT (s) =
� T

0
e−stf(t)dt are related by

FT (s) = F (s)[1− e−sT ]

or

F (s) =
FT (s)

1− e−st

Example

Determine L{f}, where f is the square wave function.

The function of the step function gives

fT (t) = 1
∏
0,1

+− 1
∏
1,2

= u(t)− 2u(t− 1) + u(t− 2)

The Laplace of this gives e0

s − 2e−s

s + e−2s

s = 1−2e−s+e−2s

s

F (s) is just FT (s)
1−e−2s = 1−e−s

s(1+e−s) .

7.7 Convolution

Definition

Let f(t) and g(t) be piecewise continuous on [0,∞). The convolution of f(t) and g(t), denoted f ∗ g,
is defined by

(f ∗ g)(t) :=
� t

0

f(t− v)g(v)dv

Example

Find the convolution of t and t2.

Let f(t) = t and g(t) = t2

t ∗ t2 =
� t

0
(t− v) · v2dv

So let’s integrate. We get tv3

3 − v4

4 . Putting in the bounds gives t4

12 .

Theorem 7.10

Let f(t), g(t), and h(t) be piecewise continuous on [0,∞). Then

� f ∗ g = g ∗ f

� f ∗ (g + h) = (f ∗ g) + (f ∗ h)

� (f ∗ g) ∗ h = f ∗ (g ∗ h)

� f ∗ 0 = 0



CHAPTER 7. LAPLACE TRANSFORMS 55

Theorem 7.11

Let f(t) and g(t) be piecewise continuous on [0,∞) and of exponential order α and set F (s) = {f}(s)
and G(s) = L{g}(s). Then

L{f ∗ g}(s) = F (s)G(s)

or, equivalently,
L−1{F (s)G(s)}(t) = (f ∗ g)(t)

Example

Use the convolution theorem to solve the initial value problem

y′′ + y = g(t) y(0) = 0 y′(0) = 0

where g(t) is piecewise continuous on [0,∞) and of exponential order.

We can get that L{y′′}+ L{y} = G(s) from the problem.

Doing the Laplace transform gives s2Y (s)− sy(0)− y′(0) + Y (s) = G(s).

This simplifies to (s2 + 1)Y (s) = G(s).

So Y (s) = 1
s2+1 ·G(s).

Taking the Laplace transform of both sides gives us y(t) = L{ 1
s2+1G(s)}.

The right side is just sin t ∗ g(t).

We know that y(t) =
� t

0
sin(t− v)g(v)dv from this.

Example

Use the convolution theorem to find L−1
{

1
(s2+1)2

}
.

From the Convolution Theorem, we find that L{F (s)G(s)} = f(t) ∗ g(t).

From that definition, the laplace is sin t ∗ sin t.

This is
� t

0
sin(t− v) · sin vdv.

Note that sinA sinB = 1
2 [cos(A−B)− cos(A+B)].

So applying this, we get that 1
2

� t

0
cos[t− v − v]− cos[t− v + v]dv.

This is equal to 1
2

�
cos[−(2v − t)]− cos tdv.

Remember that cos(−A) = cosA.

So we end up getting 1
2

�
cos(2v − t)− cos tdv.

Integrating gives 1
2 [

1
2 sin(2v − t)− v cos t] from 0 to t.

Simplifying this gives you sin t−t cos t
2

Example

Solve the integro-differential equation

y′(t) = 1−
� t

0

y(t− v)e−2vdv y(0) = 1

The integral in the expression is just a convolution.
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The integral is y ∗ e−2t.

The Laplace transform of both sides results in L{y′(t)} = L{1} − L{y(t) ∗ e−2t}.

So this is sY (s)− y(0) = 1
s − L{y(t)} · L{e−2t}.

This is sY (s)− 1 = 1
s − Y (s) · 1

s+2 .

(s+ 1
s+2 )Y (s) = 1 + 1

s .

We end up getting s2+2s+1
s+2 Y (s) = 1 + 1

s .

Factoring and solving for Y (s) gives s+2
(s+1)2 · s+1

s .

This gives us s+2
s(s+1) .

Doing the partial fraction decomposition gives us 2 = A and 1 = −B.

So we end up getting 2
s − 1

s+1 . Taking the inverse laplace transform of both sides gives us 2− e−t.

7.8 Impulses and the Dirac Delta Function

Definition

The Dirac delta function δ(t) is characterized by the following two properties:

δ(t) =
{
0, t ̸= 0, “infinite′′ t = 0

and � ∞

−∞
f(t)δ(t)dt = f(0)

for any function f(t) that is continuous on an open interval containing t = 0.

By shifting the argument of δ(t), we have δ(t− a) = 0.t ̸= a, and

� ∞

−∞
f(T )δ(t− a)dt = f(a)

for any function f(t) that is continuous on an interval containing t = a.

When t0 = 0, we derive from the limiting properties of the Fn’s of a “function” δ that satisfies the first
equation of this topic and the integral condition

� ∞

−∞
δ(t)dt = 1

The Laplace transform of the Dirac Delta function can be equickly derived from the property given above
from shifting the argeumtn. Since δ(t− a) = 0 for t ̸= a, then setting f(t) = e−st in that function, we find
for a ≥ 0 � ∞

0

δ(t− a)dt =

� ∞

−∞
e−stδ(t− a)dt = e−as

Thus, for a ≥ 0,
L{δ(t− a)}(s) = e−as

Example

Use the Laplace transform to solve the initial value-value problem

y′ + y = δ(t− 1), y(0) = 2
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Taking the Laplace of both sides gives sY (s)− y(0) + Y (s) = e−s.

Now we see that Y (s) = 1
s+1e

−s + 2
s+1 .

This becomes e−(t−1)u(t− 1) + 2e−t.

To write this as a piecewise function we can write this as y(t) =

{
2e−t 0 < t < 1

e−t−1 + 2e−t t > 1
.

Example

A mass attached to a spring is released from rest 1 m below the equilibrium position for the mass-spring
system and begins to vibrate. After π seconds, the mass is struck by a hammer exerting an impulse on
the mass. The system is governed by the symbolic initial value problem

d2x

dt2
+ 9x = 3δ(t− π); x(0) = 1,

dx

dt
(0) = 0

where x(t) denotes the displacement from equilibrium at time t. Determine x(t).

Doing the Laplace of the problem gives s2x(s)− s+ 9x(s) = 3e−πs.

So we have x(s) = s
s2+9 + 3

s2+9e
−πs.

From this the inverse Laplace is cos(3t) +− sin(3t)u(t− π).

7.9 Solving Linear Systems with Laplace Transforms

Example

Solve the initial value problem

x′(t)− 2y(t) = 4t x(0) = 4

y′(t) + 2y(t)− 4x(t) = −4t− 2 y(0) = −5

Doing the Laplace of everything gives sX(s)− x(0)− 2Y (s) = 4 · 1
s2 for the top equation and sY (s)−

y(0) + 2Y (s)− 4X(s) = −4 · 1
s2 − 2 · 1

s for the second equation.

After substituting we get

sX(s)− 2Y (S) =
4

s2
+ 4

−4X(s)(s+ 2)Y (s) = − 4

s2
− 2

s
− 5

By eliminating y, we get X(s) = 4s−2
(s2+2s−8) =

4s−2
(s+4)(s−2) .

This is equivalent to 3
s+4 + 1

s−2 .

This gives us x(t) = 3e−4t + e2t.

We know from the problem that y(t) = x′(t)−4t
2 .

So substituting values gives us y(t) = 1
2 [−12e−4t + 2e2t]− 2t = −6e−4t + e2t − 2t.

Example
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Solve the initial value problem

x′′1 + 10x1 − 4x2 = 0

−4x1 + x′′2 + 4x2 = 0

subject to x1(0) = 0, x′1(0) = 1, x2(0) = 0, x′2(0) = −1.

The top equation’s laplace transformation is s2x1(s)− sx1(0)− x′1(0) + 10x1(s)− 4x2(s) = 0.

The bottom equation becomes −4x1(s) + s2x2(s)− sx2(0)− x′2(0) + 4x2(s) = 0.

Solving the system of equations for x2(s) gives us
−s2−6

(s2+12)(s2+2) =
−2/5
s2+2 + −3/5

s2+12 .

The Laplace gives x2(t) = −
√
2
5 sin(

√
2t)−

√
3

10 sin(2
√
3t).

Doing the derivatives gives us x1 = −
√
2

10 sin(
√
2t) +

√
3
5 sin(2

√
3t).



8 Series Solutions of Differential Equa-
tions

8.1 Introduction: The Taylor Polynomial Approximation

The best tool for numerically approximating a function f(x) near a particular point x0 is the Taylor polynomial.

The formula for the Taylor polynomial of degree n centered at x0, approximating a function f(x) possessing
n derivatives x0 is given by

pn(x) = f(x0)+f
′(x0)(x−x0)+

f ′′(x0)

2!
(x−x0)2+

f ′′′(x0)

3!
(x−x0)3+· · ·+f

(n)(x0)

n!
(x−x0)n =

n∑
j=0

f (j)(x0)

j!
(x−x0)j

Example

Find the first four Taylor polynomials for ex, expanded around x0 = 0.

pn(x) is written as f(0) + f ′(0)(x− 0) + f ′′(0)
2! (x− 0)2 + f ′′′(0)

3! (x− 0)3.

Since we know the derivatives of f(x) = ex is just e(x), f (j)(0) = 1 for all of them.

This simplifies to 1 + x+ 1
2x

2 + 1
6x

3.

The Taylor polynomial pn is just the (n+ 1)st partial sum of the Taylor series

∞∑
j=0

f (j)(x0)

j!
(x− x0)

j

Example

Determine the fourth-degree Taylor polynomials matching the function cosx at x0 = 2

So using what was previously given we have f(2) + f ′(2)(x − 2) = f ′′(2)
2! (x − 2)2 + f ′′′(2)

3! (x − 2)3 +
f(4)

4! (x− 2)4.

Filling in the f (j) values gives us p4(x) = cos 2−sin 2(x−2)− cos 2
2 (x−2)2+ sin 2

6 (x−2)3+ cos 2
24 (x−2)4

Example

Find the first few Taylor polynomials approximating the solution around x0 = 0 of the initiai value
problem

y′′ = 3y′ + x7/2y y(0) = 10 y′(0) = 5

In general, this is just y(0) + y′(0)x+ y′′(0)
2! x2 + · · ·+ y(n)(0)

n! xn.

Since we are given the problem, we know that y′′(0) = 3y′(0) + 0 = 15.

As we continue taking derivatives with respect to x, we get y′′′ = 3y′′ + 7
3x

7/3y+ x7/3y′, and plugging
in the numbrs gives us y′′′(0) = 45.

Calculating the 4th derivative gives us 135.

59
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The fifth derivative is no longer defined.

Example

Determine the Taylor polynomial of degree 3 for the solution to the initial value problem

y′ =
1

x+ y + 1
y(0) = 0

Finding y′(0) gives us 1, and finding y′′(0) gives us −2, and y′′′(0) = 10.

We can estimate the accuracy to which a Taylor polynomial pn(x) approximates its target function f(x) for
x near x0. The error ϵn(x) measures the accuracy of the approximation,

ϵn(x) = f(x)− pn(x)

and can be estimated by ϵn(x) =
f(n+1)(ℵ)
(n+1)! (x− x0)

n+1, where ℵ is guaranteed to lie between x0 and x if the

(n+ 1)st derivative of f exists and is continuous on an interval containing x0 and x.

8.2 Power Series and Analytic Functions

A power series about the point x0 is an expression of the form

∞∑
n=0

an(x− x0)
n = a0 + a1(x− x0) + a2(x− x0)

2 + . . .

where x is a variable and the an’s are constants.

A power series is convergent at a specified value of x if its sequence of partial sums {SN (x)} converges, that
is

lim
N→∞

SN (x) = lim
N→∞

N∑
n=0

an(x− x0)
n

If the limit does not exist at x, then the series is said to be divergent.

Every power series has an interval of convergence. The interval of convergence is the set of all real numbers
x for which the series converges. The center of the interval of convergence is the center x0 of the series.
Within its interval of convergence a power series converges absolutely. In other words, if x is in the interval
of convergence and is not an endpoint of the interval, then the series of absolute values

∞∑
n=0

|an(x− x0)
n|

converges.

Theorem 8.1

For each power series, there is a number ρ (0 ≤ ρ <∞), called the radius of convergence of the power
series, such that the series converges absolutely for |x − x0| < ρ and diverges for |x − x0| > ρ. If the
series converges for all values of x, then ρ = ∞. WHen the series converges only at x0, then ρ = 0.
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Theorem 8.2

If, for n large, the coefficients an are nonzero and satisfy

lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣ = L (0 ≤ L ≤ ∞)

then the radius of convergence of the power series
∑∞

n=0 an(x− x0)
n is ρ = L.

Example

Determine the interval and radius of convergence of

∞∑
n=0

(−2)n

n+ 1
(x− 3)n

From the ratio test, the radius of convergence is ρ = 1
2 .

The interval of convergence is |x− 3| < 1
2 .

So the interval is −5/2 < x < 7/2.

For 7/2, it converges, so −5/2 < x ≤ 7/2.

Theorem 8.3

If
∑∞

n=0 an(x− x0)
n = 0 for all x in some open interval, then each coefficient an equals zero.

Theorem 8.4

If the series f(x) =
∑∞

n=0 an(x− x0)
n has a positive radius of convergence ρ, then f is differentiable

in the interval |x− x0| < ρ and termwise differentiation gives the power series for the derivative:

f ′(x) =

∞∑
n=1

nan(x− x0)
n−1 for |x− x0| < ρ

Furthermore, termwise integration gives the power series for the integral of f :

�
f(x)dx =

∞∑
n=0

an
n+ 1

(x− x0)
n+1 + C for |x− x0| < ρ

Example

Starting with the geometric series for 1
1−x = 1 + x+ x2 + x3 + x4 + · · · =

∑∞
n=0 x

n − 1 < x < 1
find a power series for each of the following functions.

(a) 1
1+x2

Replace x with −x2 and we get the power series equal to

1− x2 + x4 − x6 + x8 + · · · =
∑∞

n=0(−1)nx2n − 1 < x < 1.

(b) 1
(1−x)2

This becomes 1 + 2x+ 3x2 + · · · =
∑∞

n=1 nx
n−1

(c) arctanx This becomes x− x3

3 + x5

5 − x7

7 + · · · =
∑∞

n=0
(−1)n

2n+1 x
2n+1
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Example

Express the series
∑∞

n=2 n(n− 1)anx
n−2 as a series where the generic term is xk instead of xn−2.

Let k = n− 2, so n = k + 2.

Plugging this in gives us
∑∞

k=0(k + 2)(k + 1)ak+2x
k.

Example

Show that x3
∑∞

n=0 n
2(n− 2)anx

n =
∑∞

n=3(n− 3)2(n− 5)an−3x
n.

Let k = n+ 3, so n = k − 3.

Doing stuff gives you the answer of
∑∞

n=3(n− 3)2(n− 5)an−3x
n.

Exercise Show that the identity
∑∞

n=1 nan−1x
n−1 +

∑∞
n=2 bnx

n+1 = 0 implies that a0 = a1 = a2 = 0 and

an = − bn−1

(n+1) for n ≥ 3.

Definition

A function f is said to be analytic at x0 if, in an open interval about x0, this function is the sum of a
power series

∑∞
n=0 an(x− x0)

n that has a positive radius of convergence.

A polynomial is analytic at every x0. A rational function P (x)/Q(x) where P (x) and Q(x) are polynomials
without a common factor, is analytic except at those x0 for which Q(x0) = 0. The elementary functions
ex, sinx, cosx are analytic for all x while lnx is analytic for x > 0. Familiar representations are

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · =

∞∑
n=0

xn

n!

sinx = x− x3

3!
+
x5

5!
+ · · · =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1

cosx = 1− x2

2!
+
x4

4!
+ · · · =

∞∑
n=0

(−1)n

(2n)!
x2n

lnx = (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − · · · =

∞∑
n=1

(−1)n−1

n
(x− 1)n

where the first three are valid for all x, whereas the last is valid for x in (0, 2].

8.3 Power Series Solutions to Linear Differential Equations

Definition

A point x0 is called an ordinary point if both p = a1/a2 and q = a0/a2 are analytic at x0. If x0 is not
an ordinary point, it is called a singular point of the equation.
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Example

Determine all the singular points of

xy′′ + x(1− x)−1y′ + (sinx)y = 0

The form of this is y′′ + 1
1−xy

′ + sin x
x y = 0.

p(x) = 1
1−x can be represented as a power series as well as q(x) = sin x

x .



CHAPTER 8. SERIES SOLUTIONS OF DIFFERENTIAL EQUATIONS 64

The only singular point is at x = 1.

Example

Find a power series solution about x = 0 to

y′ + 2xy = 0

We are substituting around y =
∑∞

n=0 anx
n. The derivative is y′ =

∑∞
n=1 n · anxn−1.

Substituting this in gives
∑∞

n=1 nanx
n−1 + 2x

∑∑
n=0 anx

n = 0.

When we are trying to get x1 in the summations, we get a1+
∑

n=2 na+nx
n−1+

∑
n=0 2anx

n+1 = 0.

Simplifying this gives us a1 +
∑

k=1[(k + 1)ak+1 + 2ak−1]x
k = 0.

We have ak+1 = −2ak−1

k+1 .

From the expanded form of y we have a0x0 + a1x+ a2x
2 + a3x

3 + a4x
4 + . . . .

We already know a1 = 0.

We can keep finding the formulas, a2 = −2
2 a0, a4 = −2

4 · −2
2 a0 and a6 = −2

6 · −2
4 · −2

2 a0, and the odd
k will result in 0.

We have y = a0 +
−2
2 a0x

2 + (−2)2

4·2 a0x
4 + (−2)3

6·4·2 a0x
6 + · · ·+ (−3)n

2·n! x
2n.

We can also write this as y = a0
∑

n=0
(−1)n

n! x2n, which ends up being a0e
−x2

.

Example

Find a general solution to
2y′′ + xy′ + y = 0

in the form of a power series about the ordinary point x = 0.

We have y′′ + x
2 y

′ + 1
2y = 0.

There are no singular points here, so all points are ordinary.

We will find this with y =
∑∞

n=0 anx
n and y′ =

∑
n=1 annx

n−1 and y′′ =
∑

n=2 ann(n− 1)xn−2.

Plugging this in gives 2
∑

n=2 ann(n− 1)xn−2 + x
∑

n=1 annx
n−1 +

∑
n=0 anx

n = 0.

This will simplify to 4a2 + a0 +
∑

k=1[2ak+2(k + 2)(k + 1) + (k + 1)ak]x
k = 0.

The recurrence formula ends up being ak+2 = −ak

2(k+2) .

Let’s look at k = 1, k = 2, k = 3, k = 4 until we find a pattern.

We also know a2 = − 1
4a0.

We have that a3 = −a1

2·3 , a4 = − a2

2·4 , a5 = − a3

2·5 , a6 = − a4

2·6 .

We can write a4 in terms of a0 as − 1
2·4 · − 1

4a0 and a6 = − 2·6
· − 1

2·4 · − 1
4a0.

With these patterns we can write this as a2n+1 = (−1)n

2n[(2n+1)·...1] .

Ok we know y = a0 + a1x+ a2x
2 + a3x

3 + a4x4 + a5x5 + . . . .

So we get this is equal to a0 + a1x− 1
4a0x

2 − 1
6a1x

3 + 1
32a0x

4 + 1
60a1x

5.

This is a linear combination of a0 and a1.

Example
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Find the first few terms in a power series expansion about x = 0 for a general solution to

(1 + x2)y′′ − y′ + y = 0

Yea, a lot of stuff happen.

If you do previous steps of changing the indices and writing out the power series, we get

[2a2 − a1 + a0] + [6a3 − 2a2 + a1]x+
∑

k=2[(k+2)(k+1)ak+2 +(k+1)ak+1 +(k2 − k+1)ak]x
k = 0

And then we can find ak+2 = −(k+1)ak+1−(k2−k+1)ak

(k+2)(k+1) .

We also know a2 = 1
2 (a1 − a0) and a3 = 1

6 (2a2 − a1) =
frac−a06.

Doing many many steps gives you y = a0 + − 1
2a0x

2 − 1
6a0x

3 + 1
12a0x

4 + 3
40a0x

5 − 17
720a0x

6 for the
case of when a1 = 0.

When a0 = 0, then the equation just becomes a1[x+ 1
2x

2 − 1
8x

4 − 1
40x

5 + 1
20x

6 + . . . ].

8.4 Equations with Analytic Coefficients

We start by stating a basic existence theorem for the equation

y′′(x) + p(x)y′(x) + q(x)y(x) = 0

Theorem 8.5

Suppose x0 is an ordinary point for the equation. THen this equation has two linearly independent
analytic solutions of the form

y(x) =

∞∑
n=0

an(x− x0)
n

Moreover, the radius of convergence of any power series solution of the form given by the above is
at least as large as the distance from x0 to the nearest singular point (real or complex-valued) of the
original equation.

Example

Find a minimum value for the radius of convergence of a power series solution about x = 0 to

2y′′ + xy′ + y = 0

So we have y′′ + x
2 y

′ + 1
2y = 0.

There are no singular points, so the radius of convergence is ρ = ∞
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Example

Find a minimum value for the radius of convergence of a power series solution about x = 0 to

(1 + x2)y′′ − y′ + y = 0

This is y′′ − 1
1+x2 y

′ + 1
1+x2 y = 0.

The singular points are ±i.

The distance from 0 is 1, so ρ = 1.

Example

Find the first few terms in a power series expansion about x = 1 for a general solution to

2y′′ + xy′ + y = 0

Also determine the radius of convergence of the series.

We can let t = x− 1, and x = 1 and t = 0.

So we can get y(x) =
∑∞

n=0 an(x− 1)n, so Y (t) = y(x) = y(t+ 1).

We have 2d2Y
dt2 + (t+ 1)dYdt + Y = 0.

Substituting some of this stuff in gives 2
∑∞

n=2 n(n−1)ant
n−2+(t+1)

∑∞
n=1 nant

n−1+
∑∞

n=0 ant
n = 0.

We need to break off some stuff, to simplify the sums.

We get (4a2+a1+a0)t
0+

∑
k=1 2(k+2)(k+1)ak+2t

k+
∑

k=1 kakt
k+

∑
k=1(k+1)ak+1t

k+
∑

k=1 akt
k.

We can get ak+2 = −ak−ak+1

2(k+2) .

We know of course that Y (t) = a0 + a1t+ a2t
2 + a3t

3 + . . . .

We also know it’s a linear combination, so Y (t) = a0(1− 1
4 t

2 + 1
24 t

3 + . . . ) + a1(t− 1
4 t

2 − 1
8 t

3 + . . . )

And just substitute t = x− 1 into the above to solve it.

8.5 Method of Frobenius

Definition

A singular point x0 of
y′′(x) + p(x)y′(x) + q(x)y(x) = 0

is said to be a regular singular point if both (x−x0)p(x) and (x−x0)2q(x) are analytic at x0. Otherwise
x0 is called an irregular singular point.

Example

Classify the singular points of the equation

(x2 − 1)2y′′(x) + (x+ 1)y′(x)− y(X) = 0

Rewriting this gives you y′′ + (x+1)
(x+1)2(x−1)2 y

′ − 1
(x+1)2(x−1)2 y = 0.

The singular points are x = 1 and x = −1.

x = 1 is an irregular singular point because it is not analytic for both p(x) and q(x). −1 is a regular
singular point.
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Definition

If x0 is a regular singular point of y′′ + py′ + qy = 0, then the indical equation for this point is

r(r − 1) + p0r + q0 = 0

where
p0 := lim

x→x0

(x− x0)p(x), q0 := lim
x→x0

(x− x0)
2q(x)

The roots of the indicial equation are called the exponents (indices) of the singularity x0.

Example

Find the indical equation and the exponents of the singularity x = −1 of

(x2 − 1)2y′′(x) + (x+ 1)y′(x)− y(x) = 0

In standard form we have y′′ + (x+1)
(x+1)2(x−1)2 y

′ − 1
(x+1)2(x−1)2 y = 0.

We have (x+ 1)p(x) = 1
(x−1)2 and (x+ 1)2q(x) = −1

(x−1)2 .

The limits are 1/4 and −1/4 respectively from this.

So the indical equation becomes r(r− 1) + p0r+ q0 = 0 or r(r− 1) + 1
4r−

1
4 = 0 or r2 − 3

4r−
1
4 = 0

Factoring gives (4r + 1)(r − 1), and the indical roots are r = −1/4 and r = 1.

Example

Find a series expansion about the regular singular point x = 0 for a solution to

(x+ 2)x2y′′(x)− xy′(x) + (1 + x)y(x) = 0, x > 0

Finding the indical roots gives us p0 = −1/2, and q0 = 1/2.

The indicial equation is 2r2 − 3r + 1 = 0, so the indicial roots are r = 1/2 and r = 1.

Now expand about r = 1.

We get (x+ 2)x2
∑
an(n+ 1)nxn−1 − x

∑
an(n+ 1)xn + (1 + x)

∑
anx

n+1 = 0.

Do some simplification to get
∑
n = 0an(n + 1)nxn+2 +

∑
n=1 2an(n + 1)nxn+1 −

∑
n=1 an(n +

1)xn+1
∑

n=0 anx
n+2.

Writing them to start all at the same index and combining gives you
∑

k=2[ak−2(k − 1)(k − 2) +
2ak−1k(k − 1)− ak−1(k − 1) + ak−2]x

k = 0.

Finding the recurrence formula gives ak−1 = −(k2−3k+3)
(2k−1)(k−1)ak−2.

Putting k values into the formula gives you y = x− 1
3x

2 + 1
10x

3 − 1
30x

4 + . . . .

Theorem 8.6

If x0 is a regular singular point, then there exists at least one series solution, where r = r1 is the
larger root of the associated indicial equation. Moreoever, this series converges for all x such that
0 < x− x0 < R, where R is the distance from x0 to the nearest other singular point (real or complex).

Example
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Find as eries solution about the regular singular point x = 0 of

x2y′′(x)− xy′(x) + (1− x)y(x) = 0, x > 0

We have x = 0 is a regular singular point from writing this in general form.

Writing the indicial equation gives us r = 1.

Writing the summations gives you
∑

n=0 an(n+ 1)nxn+1 −
∑

n=0 an(n+ 1)xn+1 +
∑

n=0 anx
n+1 −∑

n=0 anx
n+2 = 0.

Simplify this to get ak−1 = ak−2

(k=1)2 .

You end up getting y = x+ x2 + 1
4x

3 + 1
36x

4 + . . . .



9 Matrix Methods for Linear Systems

9.1 Introduction to Matrix Methods

The product of a matrix and a column vector is defined to be the collection of dot products of the rows of
the matrix with the vector, arranged as a column vector:

row # 1
row # 2

...
row # 3

 [
v
]
=


row # 1 · v
row # 2 · v

...
row # 3 · v


where the vector v has n components; the dot product of two n-dimensional vectors is computed in the
obvious way:

[a1 a2 · · · an] · [x1 x2 · · · xn] = a1x1 + a2x2 + · · ·+ anxn

Example

Express the system as a matrix equation.

x′1 = 2x1 + t2x2 + (4t+ et)x4

x′2 = (sin t)x2 + (cos t)x3

x′3 = x1 + x2 + x3 + x4

x′4 = 0

This is simply written as 
x′1
x′2
x′3
x′4

 =


2 t2 0 (4t+ et)
0 sin t cos t 0
1 1 1 1
0 0 0 0



x1
x2
x3
x4


In general, if a system or differential equation is expresses as

x′1 = a11(t)x1 + a12(t)x2 + · · ·+ a1n(t)xn

x′2 = a21(t)x1 + a22(t)x2 + · · ·+ a2n(t)xn

...

x′n = an1(t)x1 + an2(t)x2 + · · ·+ ann(t)xn

it is said to be a linear homogeneous system in normal form. The matrix form of such a system is

X′ = AX

where A is the coefficient matrix

A = A(t) =


a11(t) a12(t) . . . a1n(t)
a21(t) a22(t) . . . a2n(t)

...
...

...
an1(t) an2(t) . . . ann(t)


and X is the solution vector

x =


x1
x2
...
xn


69
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Example

Express the differential equation for the undamped, unforced mass-spring oscillator

my′′ + ky = 0

as an equivalent system of first-order equations in normal form, expressed in matrix notation.

We have that y′ = v and v′ = − k
my.

So we can write this as

[
y
v

]′
=

[
0 1

−k/m 0

] [
y
v

]
.

We can write this as anx
′
n + an−1xn + · · ·+ a1x2 + a0x1 = 0.

Which can be rewritten as x′n = − a0

an
x1 − a1

an
x2 − · · · − an−1

an
xn.

Using this can make it easy to get to matrix notation

Example

A coupled mass-spring oscillator is governed by the system

2
d2x

dt2
+ 6x− 2y = 0

d2y

dt2
+ 2y − 2x = 0

Let x1 = x, x2 = x′, x3 = y, x4 = y′.

This gives us x′1 = x2, x
′
2 = −3x1 + x3, x

′
3 = x4, x

′
4 = x1 − 2x3.

So the matrix form can be easily answered from that.

9.2 Review 1: Linear Algebraic Equations

A set of equations of the form

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

an1x1 + an2x2 + · · ·+ annxn = bn

(where the aij ’s and bi’s are given constants) is called a linear system of n algebraic equations in the n
unknowns x1, x2, . . . xn.

The Gauss-Jordan elimination algorithm uses elimination to uncouple the system making the values of the
unknowns apparent.

Example

Solve the system

2x1 + 6x2 + 8x3 = 16

4x1 + 15x2 + 19x3 = 38

2x1 + 3x3 = 6

Solving the coefficient matrix gives you (0, 0, 2) = (x1, x2, x3).
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Exercise Solve the system

x1 + 2x2 + 4x3 + x4 = 0

−x1 − 2x2 − 2x3 = 1

−2x1 − 4x2 − 8x3 + 2x4 = 4

x1 + 4x2 + 2x3 = −3

Example

Solve the system

2x1 + 4x2 + x3 = 8

2x1 + 4x2 = 6

−4x1 − 8x2 + x3 = −10

We will end up getting x1 + 2x2 = 3 and x3 = 2, and x2 has infinite solutions, and is called a free
variable.

So x2 = t, x1 = −2t+ 3, and x3 = 2.

Exercise Solve the system

x1 − x2 + 2x3 + 2x4 = 0

2x1 − 2x2 + 4x3 + 3x4 = 1

3x1 − 3x2 + 6x3 + 9x4 = −3

4x1 − 4x2 + 8x3 + 8x4 = 0

9.3 Review 2: Matrices and Vectors

A matrix is a rectangular array of numbers arranged in rows and columns. An m×n matrix, that is, a matrix
with m rows and n columns is usually denoted by

A :=


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
...

...
... . . .

...
am1 am2 am3 . . . amn


Where the element in the ith row and jth column is aij . The notation [aij ] is used to designate A.

A square matrix has the same number of rows and columns. A diagonal matrix is a square matrix with only
zero entries off the main diagonal. A column matrix, or vector, is an n× 1 matrix. An m× n matrix whose
entries are all zero is called a zero matrix. Matrices are denoted by boldfaces capital letters and vectors by
boldfaced lower case letters.

The sum of two m× n matrices is given by

A+ B = [aij ] + [bij ] = [aij + bij ]

To multiply a matrix by a scalar (number), multiply each element in the matrix by that number:

rA = r[aij ] = [raij ]

The notation −A stands for (−1)A.

Properties of Matrix Addition and Scalar Multiplication

� A+ (B+ C) = (A+ B) + C
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� A+ B = B+ A

� A+ 0 = A

� A+ (−A) = 0

� r(A+ B) = rA+ rB

� (r + s)A = rA+ sA

� r(sA) = (rs)A = s(rA)

Exercise Perform the indicated operation:

[
1 2 3
4 5 6

]
+

[
1 1 1
1 1 1

]
Exercise Perform the indicated operation: 3

[
1 2 3
4 5 6

]
The product of a matrix A and a column vector x is the column vector composed of dot products of the
rows of A with x. AB is only defined when the number of columns of A matches the number of rows of B.

Exercise Perform the indicated operation:

[
1 2 3
4 5 6

]10
2


Exercise Perform the indicated operation:

[
1 0 1
3 −1 2

] 1 2 x
−1 −1 y
4 1 z


Properties of Matrix Multiplication

� (AB)C = A(BC)

� (A+ B)C = AC+ BC

� A(B+ C) = AB+ AC

� (rA)B = r(A[B]) = A(rB)

Let A be an m× n matrix and let x and y be n× 1 vectors. Then Ax is an m× 1 vector so we can think of
multiplication by A as defining an operator that maps n× 1 vectors into m× 1 vectors. Multiplication by A
defines a linear operator since A(x+ y) = Ax+ Ay and A(rx) = rAx.

Examples of linear operations are:

1. Stretching or contracting the components of a vector by constant factors

2. rotating a vector through some angle about a fixed axis

3. reflecting a vector in a plane mirror

We express the linear system

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

an1x1 + an2x2 + · · ·+ annxn = bn

In matrix notation as Ax = b where A is the coefficient matrix, x is the vector of unknowns, and B is the
vector of constants occurring on the right-hand side:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann

 x =


x1
x2
...
xn

 b =


b1
b2
...
bn


If b = 0, the system Ax = b is said to be homogeneous.
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The matrix obtained from A by interchaing its rows and columns is called the transpose of A and is denoted
by AT .

Exercise Find AT if A =

[
1 2 6
−1 2 −1

]
.

There is a multiplicative identity in matrix algebra, namely, a square diagonal matrix I with ones down the
main diagonal. Multiplying I on the right or left by any other matrix (with compatible dimensions) reproduces
the latter matrix.

Exercise Demonstrate the identity property for A =

[
1 2 6
−1 2 −1

]
Some square matrices A can be paired with other square matrices B having the property that BA = I. When
this happens,

1. B is the unique matrix satisfying BA = I and

2. B also satisfies AB = I.

In such a case, B is the inverse of A and write B = A−1. A matrix that has no inverse is said to be singular.

When an inverse for the coefficient matrix A in a system of linear equations Ax = b, the solution can be
calculated directly by x = A−1b.

If A =

[
a b
c d

]
, then A−1 = 1

ad−bc

[
d −b
−c a

]
. The matrix A is invertible if and only if ad − bc ̸= 0. If

ad− bc = 0, then A does not have a multiplicative inverse.

Exercise If A =

[
2 4
1 1

]
, solve Ax = b where b =

[
1
2

]
Finding the Inverse of a Matrix. Row operations include

� Interchanging two rows of the matrix

� Multiplying a row of the matrix by a nonzero scalar

� Adding a scalar multiple of one row of the matrix to another row

If the n× n matrix A has an inverse, A−1 can be found by performing row operations on the n× 2n matrix
[A|I] obtained by writing A and I side by side. If the procedure produces a new matrix in the form [I|B], then
A−1 = B.

Exercise Find the inverse of A =

1 2 1
1 3 2
1 0 1


For a 2× 2 matrix A, the determinant of A, denoted by detA or |A|, is defined by

detA :=

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21

The determinant of a 3× 3 matrix A can be defined in terms of its cofactor expansion about the first row

detA :=

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22
a31 a32

∣∣∣∣
Exercise Find the determinant

∣∣∣∣2 4
1 1

∣∣∣∣
Exercise Find the determinant

∣∣∣∣∣∣
1 2 1
0 3 5
2 1 −1

∣∣∣∣∣∣
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Theorem 9.1

Let A be an n× n matrix. The following statements are equivalent:
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� A is singular (does not have an inverse).

� The determinant of A is zero.

� Ax = 0 has nontrivial solutions (x ̸= 0)

� The columns (rows) of A form a linearly dependent set.

The columns of A are linearly dependent means there exist scalars c1, . . . , cn not all zero, such that

c1a1 + c2a2 + · · ·+ cnan = 0

where aj is the vector forming the jth column of A.

If A is a singular square matrix (detA = 0) then Ax = 0 has infinitely many solutions.

If A is singular, Ax = b either has no solutions or it has infinitely many of the form

x = xp + xh

where xp is a particular solution to Ax = b and xh is any of the infinite solutions to Ax = 0, the homogeneous
system.

Exercise In a previous section, we saw the system 2 4 1
2 4 0
−4 −8 1

x1x2
x3

 =

 8
6

−10


has solutions x1 = 3− 2s, x2 = s, x3 = 2 where −∞ < s <∞.

1. Write the solution in matrix notation and identify xp and xh.

2. Verify detA = 0

3. Give the identity that exhibits the linear dependence of the columns of A.

If A is a nonsingular square matrix (i.e., A has an inverse and detA ̸= 0), then Ax = 0 has x = 0 as its only
solution and the unique solution to Ax = b is x = A−1b.

If the entries aij(t) in a matrix A(t) are functions of the variable t, then A(t) is a matrix function of t.
Similarly, if the entries xi(t) of a vector x(t) are functions of t, then x(t) is a vector function of t.

A matrix A(t) is said to be continuous at t0 if each entry aij(t) is continuous at t0. A(t) is differentiable at
t0 if each entry aij(t) is differentiable at t0.

dA

dt
(t0) = A′(t0) := [a′ij(t0)]

� b

a

A(t)dt :=

[� b

a

aij(t)dt

]

Exercise Let A(t) =

[
t2 + 1 cos t
et 1

]
1. Find: A′(t)

2. Find:
� 1

0
A(t)dt

Differentiation Formulas for Matrix Functions:

�
d
dt (CA) = CdA

dt (C a constant matrix)

�
d
dt (A+ B) = dA

dt + dB
dt

�
d
dt (AB) = AdB

dt + dA
dt B

Exercise Show that x(t) =

[
cosωt
sinωt

]
is a solution of the matrix differential equation x′ = Ax where A =[

0 −ω
ω 0

]
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9.4 Linear Systems in Normal Form

A system of n linear differential equations is in normal form if it is expressed as

x′(t) = A(t)x(t) + f(t)

where x(t) =

x1(t)...
xn(t)

, f(t) =
f1(t)...
xn(t)

 and A(t) =
[
aij(t)

]
is an n× n matrix.

A system is called homogeneous when f(t) = 0; otherwise it is called nonhomogeneous. When the elements
of A are all constants, the system is said to have constant coefficients.

The initial value problem for the normal system is the problem of finding a differentiable vector function x(t)
that satisfies the system on an interval I and also satisfies the initial condition x(t0) = x0 where t0 is a given
point of I and x0 is a given vector.

Theorem 9.2

Suppose A(t) and f(t) are continuous on an open interval I that contains the point t0. Then, for any
choice of the initial vector x0, there exists a unique solution x(t) on the whole interval I to the initial
value problem

x′(t) = A(t)x(t) + f(t), x(t0) = x0

Definition

The m vector functions x1, . . . , xn are said to be linearly dependent on an interval I if there exist
constants c1, . . . , cn, not all zero, such that

c1x1(t) + · · ·+ cnxn(t) = 0

for all t in I. If the vectors are not linearly dependent, they are said to be linearly independent on I.

Example

Show that the vector functions x1(t) =

et0
et

 , x2(t) =
3et0
3et

, and x3 =

t1
0

 are linearly dependent on

(−∞,∞).

They are dependent because let c1 = −3, c2 = 1, c3 = 0 to get

00
0

.
Example

Show that the vector functions x1(t) =

e2t0
e2t

 , x2(t) =

 e2t

e2t

−e2t

, and x3(t) =

 et2et

et

 are linearly

independent on (−∞,∞).

The only way we can get

00
0

 is if the three constants are 0.

A set of vector functions x1(t), x2(t), . . . , xn(t) each having n components is linearly independent on an
interval I if we can find one point t0 in I where the determinant det

[
x1(t0) . . . xn(t0)

]
is not zero. We

call this detemrinant the Wronksian. (This was previously defined)
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Theorem 9.3

Let x1, . . . , xn be n linearly independent solutions to the homogeneous system

x′(t) = A(t)x(t)

on the interval I, where A(t) is an n× n matrix function continuous on I. Then every solution to the
above on I can be expressed in the form

x(t) = c1x1(t) + · · ·+ cnxn(t)

A set of solutions {x1, . . . xn} that are linearly independent on I is called a fundamental solution set for the
homogeneous system on I. The linear combination written with arbitrary constants, is referred to as the
general solution to the homogeneous system.

If we take the vectors in a fundamental solution set and let them form the columns of a matrix X(t).

X(t) =
[
x1(t) x2(t) . . . xn(t)

]
=


x1,1(t) x1,2(t) . . . x1,n(t)
x2,1(t) x2,2(t) . . . x2,n(t)

...
...

...
xn,1(t) xn,2(t) . . . xn,n(t)


Then the matrix X(t) is called a fundamental matrix for the homogeneous system.

Example

Verify that the set S =


e2te2t
e2t

 ,
−e−t

0
e−t

 ,
 0
e−t

−e−t

 is a fundamental solution set for the system

x′(t) =

0 1 1
1 0 1
1 1 0


textbfx(t) on the interval (−∞,∞) and find a fundamental matrix for the system. Determine a general
solution for the system.

Testing the three matrices in the system gives the correct resulting vector, and finding the Wronksian
shows us that the columns are linearly independent, so the general solution is

x = c1

e2te2t
e2t

+ c2

−e−t

0
e−t

+ c3

 0
e−t

−e−t



Theorem 9.4

Let xp be a particular solution to the nonhomogeneous system

x′(t) = A(t) + f(t)

on the interval I, and let {x1, . . . , xn} be a fundamental solution set on I for the corresponding ho-
mogeneous system x(t) = A(t)x(t). Then every solution to the nonhomogeneous system on I can be
expressed in the form

x(t) = xp(t) + c1x1(t) + · · ·+ cnxn(t)

where c1, . . . , cn are constants.

Approach to Solving Normal Systems:

1. To determine a general solution to the n× n homogeneous system x′ = Ax:

� Find a fundamental solution set {x1, . . . , xn} that consists of n linearly independent solutions to
the homogeneous system.
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� Form the linear combination
x = Xc = c1x1 + · · ·+ cnxn

where c = col(c1, . . . , cn) is any constant vector and X =
[
x1 . . . xn

]
is the fundamental

matrix, to obtain a general solution.

2. To determine a general solution to the nonhomogeneous system x′(t) = Ax+ f:

� Find a particular solution xp to the nonhomogeneous system.

� Form the sum of the particular solution and the general solution Xc = c1x1 + · · · + cnxn to the
corresponding homogeneous system in part 1,

x = xp + Xc = xp + c1x1 + · · ·+ cnxn

to obtain a general solution to the given system.

9.5 Homogeneous Linear Systems with Constant Coefficients

We now define a procedure for obtaining a general solution for the homogeneous system

x′(t) = Ax(t)

Definition

Let A =
[
aij

]
be an n× n constant matrix. The eigenvalues of A are those (real or complex) numbers

r for which (A − rI) = 0 has at least one nontrivla solution u. The corresponding nontrivial solutions
u are called the eigenvectors of A associated with r.

Finding eigenvalues of a matrix A is equivalent to finding the zeroes of the polynomial p(r) = det(A−rI). The
equation det(A− rI) = 0 is called the characteristic equation of A and p(r) is the characteristic polynomial
of A.

Example

Find the eigenvalues and eigenvectors of the matrix A =

[
2 −3
1 −2

]
First find the characteristic equation, this is the determinant of

[
2− r −3
1 −2− r

]
. So the characteristic

equation is r2 − 1 and the eigenvalues are r = −1 and r = 1.

Now doing the procedure above, we find that for r = −1, the eigenvector is u =

[
1
1

]
and for r = 1, the

eigenvector is

[
3
1

]
.

The collection of all eigenvectors associated with an eigenvalue forms a subspace when the zero vector is
adjoined. These subspaces are called eigenspaces.

Exercise Find the eigenvalues and eigenvectors of the matrix

A =

1 2 −1
1 0 1
4 −4 5



Theorem 9.5

Suppose the n× n constant matrix A has n linearly independent eigenvectors u1,u2, . . . ,un. Let ri be
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the eigenvalue corresponding to ui. Then

{er1tu1, er2tu2, . . . , erntun}

is a fundamental solution set (and X(t) =
[
er1tu1 er2tu2 . . . erntun

]
is a fundamental matrix) on

(−∞,∞) for the homogeneous system x′ = Ax. Consequently, a general solution of x′ = Ax is

x(t) = c1e
r1tu1 + c2e

r2tu2 + · · ·+ cne
rntun

where c1, . . . , cn are arbitrary constants.

Example

Find a general solution of x′(t) = Ax(t), where A =

[
2 −3
1 −2

]
We get the eigenvalues as ±1 from this. Therefore, when we find the the general solution, we can see
that this is

x(t) = c1

[
3
1

]
et + c2

[
1
1

]
e−t

, and this can be written in different ways, but this is a way to write the general solution.

Theorem 9.6

If r1, . . . , rm are distinct eigenvalues for the matrix A and ui is an eigenvector associated with ri, then
u1, . . . ,um are linearly independent.

Corollary 9.7

If the n×n constant matrix A has n distinct eigenvalues r1, . . . , rn and ui is an eigenvector associated
with ri, then

{er1tu1, . . . , erntun}

is a fundamental solution set for the homogeneous system x′ = Ax.

Exercise Solve the initial value problem x′(T ) =

1 2 −1
1 0 1
4 −4 5

 x(t) where x(0) =

−1
0
0

.
Definition

A real symmetric matrix A is a matrix with real entries that satisfies AT = A.

If A is an n× n real symmetric matrix, there always exist n linearly independent eigenvectors.

Example

Find a general solution of x′(t) = Ax(t), where A =

 1 −2 2
−2 1 2
2 2 1

.
From this, we can find the eigenvalues are r = 3 and r = −3.

The eigenvectos for r = 3 are

−1
1
0

 and

10
1

 and for c3 it is

−1
−1
1

, and the general solution can be

found from this.
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Second Solution:

Suppose r1 is an eigenvalue of multiplicity two and that there is only one eigenvector associated with this
value. A second solution can be found of the form

x2 = Kter1t + Per1t

where K =

k1...
kn

 and P =

p1...
pn

 satisfy (A− r1I)K = 0 and (A− r1I)P = K.

Example

Find the general solution of x′(t) = Ax(t), where A =

[
3 −18
2 −9

]
.

The eigenvalue for this is r = −3 with multiplicity 2.

If we find the first eigenvector we get

[
3
1

]
, and we can set this equal to k.

Then we can use this to find the second eigenvector by doing

[
6 −18
2 −6

] [
p1
p2

]
=

[
3
1

]
, and finding this

eigenvector as

[
1/2
0

]
.

This shows that x2 =

[
3
1

]
te−3t +

[
1/2
0

]
e−3t.

Therefore the general solution is x = c1

[
3
1

]
e−3t added on to c2 times what x2 is.

When the coefficient matrix A has only one eigenvalue associated with an eigenvalue r1 of multiplicity three,
we can find a second solution of the form

x2 = Kter1t + Per1t

and a third solution of the form

x3 = K
t2

2
er1t + Pter1t +Qer1t

where K =

k1...
kn

 ,P =

p1...
pn

, and Q =

q1...
qn

 satfisfy

(A− r1I)K = 0

(A− r1I)P = K

(A− r1I)Q = P

Exercise Find the general solution x′(t) = Ax(t), where A =

2 1 6
0 2 5
0 0 2

.
9.6 Complex Eigenvalues

If the real matrix A has complex conjugate eigenvalues α± iβ with corresponding eigenvectors a± ib, then
two linearly independent real vector solutions to x′(t) = Ax(t) are

eαt cosβta− eαt sinβtb

eαt sinβta+ eαt cosβtb
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Example

Find a general solution of x′(t) =

[
−1 2
−1 −3

]
x(t).

The eigenvalue for this is −2± i.

The first vector gives you e−2t[

[
1
−1

]
cos t−

[
1
0

]
sin t] and the other gives e−2t[

[
1
−1

]
sin t+

[
1
0

]
cos t].

9.7 Nonhomogeneous Linear Systems

The Method of Undetermined Coefficients can be used to find a particular solution to the nonhomogeneous
linear system

x′(t) = Ax(t) + f(t)

where A is an n× n constant matrix and the entries of f(t) are polynomials, exponential functions, sines and
cosines, or finite sums and products of these functions.

Example

Find a general solution of x′(t) =

 1 −2 2
−2 1 2
2 2 1

x(t) + t

 −9
0

−18

.
The particular solution is xp =

At+B
Ct+D
Et+ F

.
Solve the homogeneous equation now and it is xh = c1e

3t

10
1

+ c2e
3t

−1
1
0

+ c3e
−3t

−1
−1
1

.
We also can see now that

AC
E

 =

 1 −2 2
−2 1 2
2 2 1

At+B
Ct+D
Et+ F

+

 −9t
0

−18t

.
Multiplying the matrices gives

AC
E

 =

 At+B − 2Ct− 2D + 2Et+ 2F − 9t
−2At− 2B + Ct+D + 2Et+ 2F

2At+ 2B + 2Ct+ 2D + Et+ F − 18t

.
We see that A = t[A− 2C + 2E − 9] + [B − 2D + 2F ]

We have also C = t[−2A+ C + 2E] + [−2B +D + 2F ].

We can also see E = t[2A+ 2C + e− 18] + [2B + 2D + F ].

From these, we can write 6 equations to get the following matrix.
1 0 −2 0 2 0 9
−1 1 0 −2 0 2 0
−2 0 1 0 2 0 0
0 −2 −1 1 0 2 0
2 0 2 0 1 0 18
0 2 0 2 −1 1 0



Putting this in our calculator gives us the particular solution xp =

5t+ 1
2t

4t+ 2

.
If x1, x2, . . . , xn is a fundamental set of solutions of the homogeneous system x′(t) = Ax(t) on an interval
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I, then it sgeneral solution on the interval is the linear combination x = c1x1 + c2x2 + · · ·+ cnxn or

X = c1


x11
x21
...
xn1

+ c2


x12
x22
...
xn2

+ · · ·+ cn


x1n
x2n
...

xnn

 =


c1x11 + c2x12 + · · ·+ cnx1n
c1x21 + c2x22 + · · ·+ cnx2n

...
c1xn1 + c2xn2 + · · ·+ cnxnn


The solution can be written as x(t) = X(t)C where C is an n × 1 column vector of arbitrary constants
c1, c2, . . . , cn and

X(t) =
[
x1(t) x2(t) . . . xn(t)

]
=


x1,1(t) x1,2(t) . . . x1,n(t)
x2,1(t) x2,2(t) . . . x2,n(t)

...
...

...
xn,1(t) xn,2(t) . . . xn,n(t)


is the fundamental matrix of the system on ther interval.

Because a general solution to x′(t) = A(t)x(t) is given by x(t) = X(t)C we seek a particular solution to the

nonhomogeneous system x′(t) = A(t)x(t) + f(t) of the form xp(t) = X(t)v(t) where v(t) =

v1(t)...
vn(t)

 can be

found by

v(t) =

�
X−1(t)f(t)dt

and

xp(t) = X(t)v(t) = X(t)

�
X−1(t)f(t)dt

Combining with the solution to the nonhomogeneous system gives the general solution

x(t) = X(t)C + X(t)

�
X−1(t)f(t)dt

Example

Find the solution to the initial value problem

x′(t) =

[
2 −3
1 −2

]
x(t) +

[
e2t

1

]
, x(0) =

[
−1
0

]

Previously we found the homogeneous solution is c1

[
3
1

]
et + c2

[
1
1

]
e−3t.

Now to find v(t), remember we need to find X(t)v(t) and v(t) =
�
X−1(t)f(t)dt.

The inverse of x(t) is X−1 =

[
1
2e

−t − 1
2e

−t

− 1
2e

t 3
2e

t

]
.

So v(t) =
� [

1
2e

−t − 1
2e

−t

− 1
2e

t 3
2e

t

] [
e2t

1

]
dt.

Integrating this out gives v(t) =

[
1
2e

t + 1
2e

−t

− 1
2e

3t + 3
2e

t

]
.

Now multiply this with X−1(t) to get

[
4
3e

2t + 3
1
3e

2t + 2

]
for xp.

The general solution is x = c1

[
3
1

]
et + c2

[
1
1

]
e−t +

[
4
3
1
3

]
e2t +

[
3
2

]
.

Now plugging in the initial conditions gives c1 = − 3
2 and c2 = − 5

6 .
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Plugging in everything gives x =

[
− 9

2e
t − 5

6e
−t + 4

3e
2t + 3

− 3
2e

t − 5
6e

−t + 1
3e

2t + 2

]
.
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