
1 Number Theory and Cryptography

1.1 Divisibility and Modular Arithmetic

Definition

If a and b are integers with a ̸= 0, we say that a divides b if there is an integer c such that b = ac (or
equivalently, if b

a is an integer). When a divides b we say that a is a factor or divisor of b, and that b is
a multiple of a. The notation a | b denotes that a divides b. We write a ∤ b when a does not divide b.

We can express a | b using quantifiers as ∃c(ac = b).

There are some basic properties of divisibility of integers:

� If a | b and a | c, then a | (b+ c)

� If a | b, then a | bc for all integers c

� If a | b and b | c, then a | c

Corollary 1.1

If a, b, and c are integers, where a ̸= 0, such that a | b and a | c, then a | mb+ nc whenever m and n
are integers.

When an integer is divided by a positive integer, there is a quotient and a remainder, as the division algorithm
shows.

Theorem 1.2: The Division Algorithm

Let a be an integer and d a positive integer. Then there are unique integers q and r, with 0 ≤ r < d,
such that a = dq + r.

In the equality given in the division algorithm, d is called the divisor, a is called the divided, q is called the
quotient, and r is called the remainder. The notation q = a div d is used to denote quotient, and r = a
mod d is used to notate the remainder.

When a is an integer and d is a positive integer, a div d = ⌊a/d⌋ and a mod d = a− d.

Definition

If a and b are integers and m is a positive integer, then a is congruent to b modulo m if m divides a− b.
We use the notation a ≡ b (mod m) to indicate that a is congruent to b modulo m. We say that a ≡ b
(mod m) is a congruence and that m is its modulus. If a and b are not congruent modulo m, we write
a ̸≡ b (mod m).

Theorem 1.3

Let a and b be integers, and let m be a positive integer. Then a ≡ b (mod m) if and only if a
mod m = b mod m.

Theorem 1.4

1
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Let m be a positive integer. The integers a and b are congruent modulo m if and only if there is an
integer k such that a = b+ km.

Theorem 1.5

Let m be a positive integer. If a ≡ b (mod m) and c ≡ d (mod m), then

a+ c ≡ b+ d (mod m)

and
ac ≡ bd (mod m)

Corollary 1.6

Let m be a positive integer and let a and b be integers. Then:

(a+ b) mod m = ((a mod m) + (b mod m)) mod m

and
ab mod m = ((a mod m)(b mod m)) mod m

We can define arithmetic operations on Zm, the set of nonnegative integers less than m, that is, the set
0, 1, . . . ,m− 1. We definte the the addition of these integers as:

a+m b = (a+ b) mod m

We can define the multiplication of these integers as

a ·m b = (a · b) mod m

Here are some properties of these:

� Closure - If a and b belong to Zm, then a+m b and a ·m b belong to zm.

� Associativity - If a, b, and c, belong to Zm, then (a+m b) +m c = a+m (b+m c) and (a ·m b) ·m c =
a ·m (b·m)c.

� Commutativity - If a and b belong to Zm, then a+m b = b+m a and a ·m b = b ·m a.

� Identity elements - The elements 0 and 1 are identity elements for addition and multiplication modulo
m, respectively.

� Additive Inverses - If a ̸= 0 belongs to Zm, then m− a is an additive inverse of a modulo m and 0 is
its own additive inverse. That is, a+m (m− a) = 0 and 0 +m 0 = 0.

� Distributivity - If a, b, and c belong to Zm, then a ·m (b+m c) = (a ·mn)+m (a ·m c) and (a+m b) ·m c =
(a ·m c) +m (b ·m c)

1.2 Integer Representation and Algorithms

Theorem 1.7

Let b be an integer greater than 1. Then if n is a positive integer, it can be expressed uniquely in the
form:

n = akb
k + ak−1b

k−1 + · · ·+ a1b+ a0

where k is a nonnegative integer, a0, a1,. . . , ak are nonnegative integers less than b, and ak ̸= 0.

Choosing 2 as the base gives binary expansions of integers. In binary notation each digit is either a 0 or a 1.
In other words, the binary expansion of an integer is a just a bit string.
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Base 8 expansions are called octal expansions and base 16 expansions are hexadecimal expansions.

We can describe an algorithm for constructing the base b expansion of an integer n.

First divide n by b to obtain a quotient and remainder:

n = bq0 + a0

assuming a0 is positive and less than b.

The remainder, a0, is the rightmost digit in the base b expansion of n. Next, divide q0 by b to obtain:

q0 = bq1 + a1 0 ≤ a1 < b

Continue this process, successively dividing the quotients by b, obtaining additional base b digits as the
remainders.

The algorithms for performing operations with integers using their binary expansions is important.

Throughout the following, lets suppose that the binary expansions of a and b are:

a = (an−1an−2 . . . a1a0)2, b = (bn−1bn−2 · · · b1b0)2

so that a and b each have n bits.

Let’s first consider the adding two integers in binary notation. The procedure is as follows:

First add their rightmost bits:
a0 + b0 = c0 · 2 + s0

where s0 is the rightmost bit in the binary expansion of a+ b and c0 is the carry, either a 0 or 1.

Continue this:
a1 + b1 + c0 = c1 · 2 + s1

This procedure produces the binary expansion of the sum:

a+ b = (snsn−1sn−2 . . . s1s0)2

Now we consider multiplication. Using the distributive law it is easy to see that

ab = a(b02
0 + b12

1 + · · ·+ bn−12
n−1)

= a(b02
0) + a(b12

1) + · · ·+ a(bn−12
n−1)

There is an algorithm for div and mod as well. Given integers a and d, where d > 0, we can find q = adivd
and r = a mod d using the algorithm below.

We can show that this algorithm uses O(q log a) bit operations when a > d.

Given a as an integer, and d as a positive integer, we can make q equal to 0 and r = |a|.

While r ≥ d, r gets assigned to r − d and q gets assigned q + 1.

If a < 0 and r > 0 then r gets assigned d− r and q gets assigned −(q + 1).

We return the quotient as q and the remainder as r.

When a is divided by b, we need O(n2) bit operations to find the quotient and remainder.

In cryptography it is important to be able to find bn mod m efficiencly without using an excessive amount
of memory.

First observe that we can avoid using a large amount of memory if we compute bn mod m by successively
computing bk mod m for k = 1, 2, . . . , n using that fact that bk+1 mod m = b(bk mod m) mod m.

To motivate the fast modular exponentiation algorithm, we can first explain how to use the binary expansion
of n.
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Say that n = (ak−1 . . . a1a0)2 to compute bn. Firstly, note that:

bn = bak+1·2k−1+···+a1·2+a0 = bak=1·2k−1

· · · ba1·2 · ba0

This shows that to compute bn we only have to compute b, b2, b4, . . . , b2
k

.

Note that (b2
n

)2 = b2
n+1

when n is a nonnegative integer.

The algorithm successively finds b mod m, b2 mod m, b4 mod m, dots, b2
k−1

mod m and multiplies to-
gether those terms b2

i

mod m where aj = 1, finding the remainder of the product when divided by m after
each multiplication. We only need to perform O(log2(n)) multiplications.

We can also show the most efficient algorithm as seen:

Let b be an integer and n = (ak−1ak−2 . . . a1a0)2 and m be positive integers.

Let x be 1 and power be b mod m.

For all values 0 to k − 1, if ai = 1, then x becomes (x · power) mod m and power becomes power·power
mod m.

The return value for this algorithm is x, which is bn mod m.

This algorithm only uses O((logm)2 log n) bit operations to find bn mod m.

1.3 Primes and Greatest Common Divisors

Positive integers that have exactly two different positive integer factors are called prime.

Definition

An integer p greater than 1 is called prime if the only positive factors of p are 1 and p. A positive
integer that is greater than 1 and is not prime is called composite.

Remember that 1 is not prime, and that an integer n is composite if and only if there exists an integer a such
that a | n and 1 < a < n.

Theorem 1.8: The Fundamental Theorem of Arithmetic

Every integer greater than 1 can be written uniquely as a prime or as the product of two or more primes,
where the prime factors are written in order of nondecreasing size.

Theorem 1.9

If n is a composite number, then n has a prime divisor less than or equal to
√
n.

From this theorem above, it follows that an integer is prime if it is not divisible by any prime less than or
equal to its square root. This leads to the brute-force algorithm known as trial division. To use trial division,
we divide n by all primes not exceeding

√
n and conclude that n is prime if it is not divisible by any of these

primes.

Because every integer has a prime factorization, it would be useful to have a procedure for finding the prime
factorization. Start with the theorem above, and find if there is a prime factor not exceeding

√
n. If there is

none found, then continue by factoring n/p. Note that n/p will have no prime factors less than p. If n/q has
a prime factor q, then continue by factoring n/(pq). There are infinitely many primes.

Theorem 1.10: The Prime Number Theorem

The ratio of π(x), the number of primes not exceeding x, and x/ lnx approaches 1 as x grows without
bound.
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Every odd integer is in one of the two arithmetic progressions 4k + 1 or 4k + 3, where k = 1, 2, · · · .

The largest integer that divides two integers is called the greatest common divisor of these integers.

Definition

Let a and b be integers, not both zero. The largest integer d such that d | a and d | b is called the
greatest common divisor of a and b. The greatest common divisor of a and b is denoted by gcd(a, b).

Definition

The integers a and b are relatively prime if their greatest common divisor is 1.

Definition

THe integers a1, a2,. . . , an are pairwise relatively prime if gcd(ai, ak) = 1 whenever 1 ≤ i < j ≤ n.

Prime factorizations can be used to find the least common multiple of the integers.

Definition

THe least common multiple of the positive integers a and b is the smallest positive integer that is
divisible by both a and b. The least common multiple of a and b is denoted by lcm(a, b).

Theorem 1.11

Let a and b be positive integers. Then

ab = gcd(a, b) · lcm(a, b)

There is a more efficient way of finding the greatest common divisor using the Euclidean algorithm.

Lemma 1.12

Let a = bq + r, where a, b, q, and r are integers. Then gcd(a, b) = gcd(b, r).

Proof. If we can show that the common divisors of a and b are the same as the common divisors of b
and r, we will have shown that gcd(a, b) = gcd(b, r), because both pairs must have the same greatest
common divisors.

So suppose that d divides both a and b. Then it follows that d also divides a − bq = r. Hence, any
common divisor of a and b is also a common divisor of b and r.

Likewise, suppose that d divides both b and r. Then d also divides bq + r = a. Hence, any common
divisor of b and r is also a common divisor of a and b.

Consequently, gcd(a, b) = gcd(b, r). □

An important result is that the greatest common divisor of two integers a and b can be expressed in the form:

sa+ tb

where s and t are integers. In other words, gcd(a, b) can be expressed as a linear combination with integer
coefficients of a and b.

Theorem 1.13: Bezout’s Theorem
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If a and b are positive integers, then there exist integers s and t such that gcd(a, b) = sa+ tb.

Lemma 1.14

If a, b, and c are positive integers such that gcd(a, b) = 1 and a | bc, then a | c.

Lemma 1.15

If p is a prime and p | a1a2 · · · an, where each ai is an integer, then p | ai for some i.

Theorem 1.16

Let m be a positive integer and let a, b, and c be integers. If ac ≡ bc (mod m) and gcd(c,m) = 1,
then a ≡ b (mod m).

1.4 Solving Congruences

A congruence of the form
ax ≡ b (mod m)

where m is a positive integer, a and b are integers, and x is a variable, is called a linear congruence.

Our goal is to solve th linear congruence ax ≡ b (mod m).

One method is to use an integer a such that aa ≡ 1 (mod m), if such an integer exists. Such an integer a
is to be an inverse of a modulo m.

Theorem 1.17

If a and m are relatively prime integers and m > 1, then an inverse of a modulo m exists. Furthermore,
this inverse is unique modulo m. (That is there is a unique positive integer a less than m that is an
inverse of a modulo m and every other inverse of a modulo m is congruent to a modulo m.)

We can design a more efficient algorithm than brute force to find an inverse of a modulo m when gcd(a, b) = 1
using the steps of the Euclidean algorithm.

Once we have an inverse a of a modulo m, we can solve the congruence ax ≡ b (mod m) by multiplying
both sides of the linear congruence by a.

The Chinese remainder theory states that when the moduli of a system of linear congruences are pairwise
relatively prime, there is a unique solution of the system modulo of the product of the moduli.

Theorem 1.18: The Chinese Remainder Theorem

Let m1, m2,. . . , mn be pairwise relatively prime positive integers greater than one and a1, a2,. . . ,an
arbitrary integers. Then the system

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

. . .

x ≡ an (mod mn)

has a unique solution modulo m = m1m2 · · ·mn. (That is, there is a solution x with 0 ≤ x < m, and
all other solutions are congruent modulo m to this solution.)
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Suppose that m1, m2,. . . , mn are pairwise relatively prime moduli and let m be their product. By the Chinese
remainder theorem, we can show that an integer a with 0 ≤ a < m can be uniquely represented by the n-tuple
consisting of its remainders upon division by mi, i = 1, 2, . . . , n. That is, we can uniquely represent a by

(a mod m1, a mod m2, . . . , a mod mn)

Theorem 1.19: Fermat’s Little Theorem

If p is prime and a is an integer not divisible by p, then

ap−1 ≡ 1 (mod p)

Furthermore, for every integer a we have

ap ≡ a (mod p)

Fermat’s little theorem tells us that if a ∈ Zp, then ap−1 = 1 in Zp.

Definition

Let b be a positive integer. If n is a composite positive integer, and bn−1 ≡ 1 (mod n), then n is called
a pseudoprime to the base b.

Definition

A composite integer n that satisfies the congruence bn−1 ≡ 1 (mod n) for all positive integers b with
gcd(b, n) = 1 is called a Carmichael number.

In the set of positive real numbers, if b > 1 and x = by, we say that y is the logarithm of x to the base b.
Here, we will show that we can also define the concept of logarithms modulo p of positive integers, where p
is a prime.

Definition

A primitive root modulo of prime p is an integer r in Zp such that every nonzero element of Zp is a
power of r.

An important fact in number theory is that there is a primitive root modulo p for every prime p.

Suppose that p is prime and r is a primitive root modulo p. If a is an integer between 1 and p − 1, that
is, a nonzero element of Zp, we know that there is a unique exponent e such that re = a in Zp, that is, r

e

mod p = a.

Definition

Suppose that p is a prime, r is a primitive root modulo p, and a is an integer between 1 and p − 1
inclusive. If re mod p = a and 0 ≤ e ≤ p − 1, we say that e is the discrete logarithm of a modulo p
to the base r and we write logra = e (where the prime p is understood).
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