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1 Logic and Proofs

1.1 Propositional Logic

A proposition is a declarative statement that is either true or false, but not both. We use letters to denote
propositional variables. The conventional letters for propositional variables are p, q, r, s. True is notated as T
and false is notated as F. An atomic proposition is a proposition that cannot be expressed in terms of simpler
propositions.

Definition

Let p be a proposition. The negation of p, denoted by ¬p (or p̄) means ”It is not the case that p”.

The proposition ¬p is read as ”not p”. The truth value of the negation of p, ¬p is the opposite of the
truth value of p.

The negation of a proposition can also be considered the result of the operation of the negation operator on
a proposition.

The next operator is a connective and it is used to form new propositions from two or more existing proposi-
tions.

Definition

Let p and q be propositions. The conjunction of p and q, denoted by p∧ q, is the proposition of ”p and
q”. The conjunction p ∧ q is true when both are true, and false when both are false.

Definition

Let p and q be propositions. The disjunction of p and q, denoted by p ∨ q, is the proposition ”p or q”.
The disjunction p ∨ q is false when both p and q are false, otherwise it is true.

Definition

Let p and q be propositions. The exclusive or of p and q, denoted by p ⊕ q is the proposition that is
true when exactly one of p and q is true and is false otherwise.

There are other ways propositions can be combined.

Definition

Let p and q be propositions. The conditional statement p → q, is the proposition, ”if p, then q”. The
conditional statement p → q is false when p is true and q is false, and true otherwise. p is called the
hypothesis and q is called the conclusion.

A conditional statement is also called an implication.

With p → q, we can form three related conditional statements.

The first is the proposition q → p, which is the converse of p → q.

The contrapositive of p → q is ¬q → ¬p.

The inverse of p → q is ¬p → ¬q.

2



CHAPTER 1. LOGIC AND PROOFS 3

The contrapositive of a conditional statement is equal to it. We all two compound propositions equivalent
when they always have the same truth values. The converse and inverse of a conditional statement are
equivalent as well.

There is another way to combine propositions that expresses that two propositions have the same truth
value.

Definition

Let p and q be propositions. The biconditional statement p ↔ q is the proposition ”p if and only q”.
This statement is true if p and q have the same truth values, and is false otherwise.

The negation operator is applied before all logical operators. Another general rule is that the conjunction oper-
ator takes precendence over the disjunction operator. It is an accepted rule that conditional and biconditional
operators have lower precendence than the conjuction and disjunction operators.

A bit is a symbol with two values, 0 and 1. 1 is true, and 0 is false.

1.2 Propositional Equivalences

Definition

A compound proposition that is always true, no matter what the truth values of the propositional
values that occur in it, is called a tautology. A compound proposition that is always false is called a
contradiction. If it is neither a tautology or a contradiction, it is called a contingency.

Compound propositions that have the same truth values in all possible cases are called logically equiva-
lent.

Definition

The compound propositions p and q are called logically equivalent if p ↔ q is a tautology. The notation
p ≡ q denotes that p and q are logically equivalent.

We can establish logical equivalence of more than two compound propositions. Generally 2n rows are required
if a compound proposition involves n propositional variables.
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Credit: Rosen’s Discrete Mathematics 8e

When using De Morgan’s Laws, remember to change the logical connective after you negate.

De Morgan’s Laws tell us how to negate conjunctions and how to negate disjunctions. The equivalence
¬(p∨ q) ≡ ¬p∧¬q tells us that the negation of a disjunction is formed from the conjunction of the negations
of the component propositions. The negation of a conjunction also gives you the disjunction of the negations
of component propositions.

A compound proposition is satisfiable if there is an assignment of truth values to its variables that make it
true. If no such assignments exist, then it is unsatisfiable.

1.3 Predicates and Quantifiers

We will introduce predicate logic now. For example in the statement x is greater than 3, the variable is x
and the predicate is ”is greater than 3”.

In general a statement involving n variables x1, x2, · · · , xn can be denoted as P (x1, x2, · · · , xn).

Definition

The universal quantification of P (x) is the statement:

”P (x) for all values of x in the domain.”

The notation ∀xP (x) denotes the universal quantification of P (x). Here ∀ is called the universal
quantifier. An element for which P (x) is false is called a counterexample to ∀xP (x).

Definition

The existential quantification of P (x) is the proposition:
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”There exists an element in x in the domain such that P (x)”

We use the notation ∃xP (x) for the existential quantification of P (x).

Remember the truth value for both ∀xP (x) and ∃xP (x) depends on the domain.

Credit: Rosen’s Discrete Mathematics 8e

1.4 Nested Quantifiers

A nested quantifier is when one quantifier is in the scope of another.

Here is table that summarizes different quantifications involving two variables.

1.5 Rules of Inference

Rules of inference are our basic tools for establishing the truth of statements.

An argument in propositional logic is a sequence of propositions. All but the final proposition in the argument
are called premises and the final proposition is called the conclusion. An argument is valid if the truth of all
its premises implies the conclusion is true.

An argument form in propositional logic is a sequence of compound propositions involving propositional vari-
ables. An argument form is valid if no matter what particular propositions are substituted for the propositional
variables in the premises, the conclusion is true if the premises are all true.

The tautology (p∧(p → q)) → q is the basis of the rule of inference modus ponens, or the law of detachment,
basically: if p and p → q ∴ q.

Yet again another chart I took from Rosen.
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Fallacies resemble rules of inference, the difference lies in that they are based in contingencies rather than
tautologies.

There are also some rules of inference for statements involving quantifiers. This is what Rosen summarized:

Because universal instantiation and modus ponens are so often used together, the combination of rules is
called universal modus ponens. This rule tells us if ∀x(P (x) → Q(x)) is true, and if P (a) is true for a
particular element a in the domain of the universal quantifier, then Q(a) must also be true. Note that by
universal instantiation P (a) → Q(a) is true. By modus ponens, Q(a) must also be true.

This is how it is described:
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There is also universal modus tollens:

1.6 Introduction to Proofs

A proof is a valid argument that establishes the truth of a mathematical statement.

A theorem is a statement that can be shown to be true. We show the truth using a proof.

A less important theorem that is helpful in the proof of other results is called a lemma.

A corollary is a theorem that can be established directly from a theorem that has been proved.

A conjecture is a statement that is being proposed to be a true statement.

A direct proof of a conditional statement p → q is constructed with the assumption that p is true with the
goal for the combination of p being true and q being false to never happen.

Definition

The integer n is even if there exists an integer k such that n = 2k, and n is odd if there exists an
integer k such that n = 2k + 1. Two integers have the same parity when both are even or both are
odd; they have opposite parity when one is even and the other is odd.

An indirect proof is a type of proof that is not direct. One example is proof by contraposition. P roofs by
contraposition use the fact that p → q is equal to ¬q → ¬p. We have to show ¬q → ¬p is true to show that
p → q is true as well.

We can prove that p → q is true if p is false as well. This is called a vacuous proof.

If we show that q is true in p → q this is called a trivial proof.

Definition

The real number r is rational if there exist integers p and q with q ̸= 0 such that r = p/q. A real
number that is not rational is irrational.

Suppose we want to prove a statement p is true. Suppose that we can find a contradiction q such that
¬p → q is true. Because q is false, but ¬p → q is true, we can conclude ¬p is false, meaning p is true.

To find a contradiction q that might help us find that p is true, we can show that ¬p → (r ∧ ¬r) is true for
some proposition r. This is called a proof by contradiction.

To prove a theorem in the form p ↔ q, we show that both p → q and q → p are both true.

Many incorrect arguments are based on a fallacy called begging the question or circular reasoning. This fallacy
occurs when one or more steps of a proof are based on the truth of the statement being proved.

1.7 Proof Methods and Strategy

Suppose we have a conditional (p1∨p2∨· · ·∨pn) → q. We can separate the proof into different cases, called
proof by cases by proving each of the n conditional statements.
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Some theorems can be proved by examining a relatively small number of examples. This is called proof by
exhaustion.

The phrase ”without loss of generality” (WLOG) means that we assert by proving one case of a theorem, no
additional argument is required to prove other specified cases.

Many theorems are assertions that objects of a particular type exist. A theorem of this type is a proposition
in the form ∃xP (x), where P is a predicate. A proof of a proposition in this form is called an existence
proof. Sometimes an existence proof can be given by finding an element a, called a witness, such that P (a)
is true. This existence proof is called constructive. If we prove ∃xP (x) is true in another way it can be
nonconstructive.

For a uniqueness proof, we need two parts:

� Existence: We show that an element x with the desired property exists.

� Uniqueness: We show that if x and y both have the desired property, x = y

Forward reasoning is a proof when you start with your premises. You construct a proof with steps leading to
the conclusion. It may sometimes be helpful to use backwards reasoning, we find a statement p that we can
prove p → q.



2 Sets, Functions, Sequences, Sums,
and Matrices

2.1 Sets

Sets are used to group objects together.

A set is an unordered collection of objects, called elements or members of the set. A set contains its elements.
We write a ∈ A to denote a is in an element of set A. The notation a /∈ A denotes a is not an element of
set A.

Here are some sets to remember:

� N is the set of all natural numbers

� Z is the set of all integers

� Z+ is the set of all positive integers

� Q is the set of all rational numbers

� R is the set of all real numbers

� R+ is the set all positive real numbers

� C is the set of all complex numbers

Two sets are equal only if they contain the same elements.

An empty set is notated as Ø.

A set with one element is a singleton set.

Set A is a subset of set B and set B is the superset of set A if every element of A is also an element of B.
To indicate A is a subset of B we write A ⊆ B. For the equivalent superset, we write B ⊇ A.

For every nonempty set S, there is a guarantee to have at least two subsets, the empty set and the set S
itself.

When we want to say that A is a subset of B, but A ̸= B, we can write A ⊂ B.

If there are n distinct elements in a set S, then the set is finite and n is the cardinality of S. The cardinality
of S is denoted as |S|.

Otherwise, the set is infinite if it is not finite.

Definition

Given a set S, the power set of S is the set of all subsets of the set S. The power set of S is defined
as P(S).

The power set of a set has 2n elements. Because sets are unordered, we need to represent ordered collections
using ordered n-tuples.

Definition

The ordered n-tuple (a1, a2, · · · , an) is the ordered collection that has a1 as its first element,

9
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2.2 Set Operations

If we let A and B be sets, the union of the sets, A∪B, is the set that contains those elements that are either
in A or B, or in both.

The intersection of the sets, A ∩B, is the set containing those elements in both A and B.

Two sets are called disjoint if the intersection of the sets is an empty set.

The difference of sets A and B, or A−B is the set containing those elements that are in A but not in B. It
is also called the complement of B with respect to A.

Definition

Let U be the universal set. The complement of set A denoted as A is the complement of A with respect
to U . Therefore the complement of the set A is U −A.

Much like the last chapter, there are some set identities and properties

Credits to Rosen again.

The union of a collection of sets is the set that contains those elements that are members of at least one set
in the collection.

The intersection of a collection of sets is the set that contains those elements that are members of all sets in
the collection.

2.3 Functions

Definition
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Let A and B be empty sets. A function f from A to B is an assignment of exactly one element of B
to each element of A. We write f(a) = b if b is the unique element of B assigned by the function f to
the element a of A. If f is a function from A to B, we write f : A → B.

If f is a function from A to B, we say A is the domain of f and B is the codomain of f . Also if f(a) = b, we
can say b is the image of a and a is a preimage of b. The range, or image, is the set of all images of elements
of A. Also, if f is a function from A to B, we say that f maps from A to B.

A function is called real-valued if its codomain is the set of real numbers and integer-valued if the codomain
is the set of integers.

Some functions never assign the same value to two different domain elements. These are called one-to-one
functions, or injective functions.

A function is called surjective or onto when the range and codomain are equal.

If a function is both surjective and injective, then it is bijective.

Only a one-to-one function can be invertible because the inverse of a one-to-one function exists.

2.4 Sequences and Summations

Sequences are ordered lists of elements. The terms of a sequence can be specified by providing a formula for
each term of the sequence.

A sequence is used to represent an ordered list. We use the notation an to denote the image of the integer
n. We call an a term of the sequence.

A geometric progression is a sequence in the following form:

a, ar, ar2, · · · , arn, · · ·

where the initian term a and common ratio r are real numbers.

An arithmetic progression is a seuqnece in the form:

a, a+ d, a+ 2d, · · · , a+ nd, · · ·

where the initial term a and the common difference d are real numbers.

A recurrence relation for the sequence an is an equation that expresses an in terms of one or more of the
previous terms in the sequence.

A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

Definition

The Fibonacci sequence, f0, f1, f2, · · · , is defined by the initial conditions f0 = 0, f1 = 1, and the
recurrence relation:

fn = fn−1 + fn−2

for n = 2, 3, 4, · · · .

Now we introduce the summation notation.

We use the notation
∑n

j=m aj to represent am + am+1 + · · ·+ an.

Here j is the index of summation and is abitrary.

Sums of terms of geometric progressions commonly arise.

n∑
j=0

arj =
arn+1 − a

r − 1

when r ̸= 1 and (n+ 1)a when r = 1.
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Here is some formulae for commonly occurring sums:

Credits to Rosen again.



3 Algorithms

An algorithm is a finite sequence of precise instructions for performing a computation or for solving a problem.

There are many properties of algorithms to keep in mind:

� Input - input values from a specified set

� Output - from each set of input values an algorithm produces output values

� Definiteness - the steps of an algorithm must be defined precisely

� Correctness - an algorithm should produce correct output values for each set of input values

� Finiteness - an algorithm should produce the desired output after a finite number of steps for any input

� Effectiveness - it must be possible to perform each step of an algorithm exactly and in a finite amount
of time

� Generality - the procedure should be applicable for all problems of the desired form

The first algorithm to present is the linear search, or sequential search. This search begins by comparing a x
and a1 and continues with each an until a match is found.

The binary search works when the list is sorted. We first split the list into two smaller sublists of the same
size, and keep splitting it up based on the comparison to the term to be found the middle term.

The bubble sort is one of the simplest sorting algorithms. It puts a list into increasing order by successively
comparing adjacent elements.

The insertion sort begins with the second element and compares it with the the first element. Then the third
element is compared with the first and then the second if it is larger than the first.

Many algorithms are designed to solve optimization problems. This means they want to maximize or minimize
some parameter. Algorithms that make what seems to be the ”best” choice at each step are called greedy
algorithms.

An example would be the cashier’s algorithm which makes changes using the fewest coins possible when
change is made from quarters, dimes, nickels, and pennies.

The halting problem is a interesting problem. It asks whether there is a procedure that can input a computer
program and determine whether the program will eventually stop.

The reason there isn’t one is because you do not know if it will never halt or you haven’t waited long enough
for it to terminate.

13



4 Number Theory and Cryptography

4.1 Divisibility and Modular Arithmetic

Definition

If a and b are integers with a ̸= 0, we say that a divides b if there is an integer c such that b = ac (or
equivalently, if b

a is an integer). When a divides b we say that a is a factor or divisor of b, and that b is
a multiple of a. The notation a | b denotes that a divides b. We write a ∤ b when a does not divide b.

We can express a | b using quantifiers as ∃c(ac = b).

There are some basic properties of divisibility of integers:

� If a | b and a | c, then a | (b+ c)

� If a | b, then a | bc for all integers c

� If a | b and b | c, then a | c

Corollary 4.1

If a, b, and c are integers, where a ̸= 0, such that a | b and a | c, then a | mb+ nc whenever m and n
are integers.

When an integer is divided by a positive integer, there is a quotient and a remainder, as the division algorithm
shows.

Theorem 4.2: The Division Algorithm

Let a be an integer and d a positive integer. Then there are unique integers q and r, with 0 ≤ r < d,
such that a = dq + r.

In the equality given in the division algorithm, d is called the divisor, a is called the divided, q is called the
quotient, and r is called the remainder. The notation q = a div d is used to denote quotient, and r = a
mod d is used to notate the remainder.

When a is an integer and d is a positive integer, a div d = ⌊a/d⌋ and a mod d = a− d.

Definition

If a and b are integers and m is a positive integer, then a is congruent to b modulo m if m divides a− b.
We use the notation a ≡ b (mod m) to indicate that a is congruent to b modulo m. We say that a ≡ b
(mod m) is a congruence and that m is its modulus. If a and b are not congruent modulo m, we write
a ̸≡ b (mod m).

Theorem 4.3

Let a and b be integers, and let m be a positive integer. Then a ≡ b (mod m) if and only if a
mod m = b mod m.

Theorem 4.4

14
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Let m be a positive integer. The integers a and b are congruent modulo m if and only if there is an
integer k such that a = b+ km.

Theorem 4.5

Let m be a positive integer. If a ≡ b (mod m) and c ≡ d (mod m), then

a+ c ≡ b+ d (mod m)

and
ac ≡ bd (mod m)

Corollary 4.6

Let m be a positive integer and let a and b be integers. Then:

(a+ b) mod m = ((a mod m) + (b mod m)) mod m

and
ab mod m = ((a mod m)(b mod m)) mod m

We can define arithmetic operations on Zm, the set of nonnegative integers less than m, that is, the set
0, 1, . . . ,m− 1. We definte the the addition of these integers as:

a+m b = (a+ b) mod m

We can define the multiplication of these integers as

a ·m b = (a · b) mod m

Here are some properties of these:

� Closure - If a and b belong to Zm, then a+m b and a ·m b belong to zm.

� Associativity - If a, b, and c, belong to Zm, then (a+m b) +m c = a+m (b+m c) and (a ·m b) ·m c =
a ·m (b·m)c.

� Commutativity - If a and b belong to Zm, then a+m b = b+m a and a ·m b = b ·m a.

� Identity elements - The elements 0 and 1 are identity elements for addition and multiplication modulo
m, respectively.

� Additive Inverses - If a ̸= 0 belongs to Zm, then m− a is an additive inverse of a modulo m and 0 is
its own additive inverse. That is, a+m (m− a) = 0 and 0 +m 0 = 0.

� Distributivity - If a, b, and c belong to Zm, then a ·m (b+m c) = (a ·mn)+m (a ·m c) and (a+m b) ·m c =
(a ·m c) +m (b ·m c)

4.2 Integer Representation and Algorithms

Theorem 4.7

Let b be an integer greater than 1. Then if n is a positive integer, it can be expressed uniquely in the
form:

n = akb
k + ak−1b

k−1 + · · ·+ a1b+ a0

where k is a nonnegative integer, a0, a1,. . . , ak are nonnegative integers less than b, and ak ̸= 0.

Choosing 2 as the base gives binary expansions of integers. In binary notation each digit is either a 0 or a 1.
In other words, the binary expansion of an integer is a just a bit string.
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Base 8 expansions are called octal expansions and base 16 expansions are hexadecimal expansions.

We can describe an algorithm for constructing the base b expansion of an integer n.

First divide n by b to obtain a quotient and remainder:

n = bq0 + a0

assuming a0 is positive and less than b.

The remainder, a0, is the rightmost digit in the base b expansion of n. Next, divide q0 by b to obtain:

q0 = bq1 + a1 0 ≤ a1 < b

Continue this process, successively dividing the quotients by b, obtaining additional base b digits as the
remainders.

The algorithms for performing operations with integers using their binary expansions is important.

Throughout the following, lets suppose that the binary expansions of a and b are:

a = (an−1an−2 . . . a1a0)2, b = (bn−1bn−2 · · · b1b0)2

so that a and b each have n bits.

Let’s first consider the adding two integers in binary notation. The procedure is as follows:

First add their rightmost bits:
a0 + b0 = c0 · 2 + s0

where s0 is the rightmost bit in the binary expansion of a+ b and c0 is the carry, either a 0 or 1.

Continue this:
a1 + b1 + c0 = c1 · 2 + s1

This procedure produces the binary expansion of the sum:

a+ b = (snsn−1sn−2 . . . s1s0)2

Now we consider multiplication. Using the distributive law it is easy to see that

ab = a(b02
0 + b12

1 + · · ·+ bn−12
n−1)

= a(b02
0) + a(b12

1) + · · ·+ a(bn−12
n−1)

There is an algorithm for div and mod as well. Given integers a and d, where d > 0, we can find q = adivd
and r = a mod d using the algorithm below.

We can show that this algorithm uses O(q log a) bit operations when a > d.

Given a as an integer, and d as a positive integer, we can make q equal to 0 and r = |a|.

While r ≥ d, r gets assigned to r − d and q gets assigned q + 1.

If a < 0 and r > 0 then r gets assigned d− r and q gets assigned −(q + 1).

We return the quotient as q and the remainder as r.

When a is divided by b, we need O(n2) bit operations to find the quotient and remainder.

In cryptography it is important to be able to find bn mod m efficiencly without using an excessive amount
of memory.

First observe that we can avoid using a large amount of memory if we compute bn mod m by successively
computing bk mod m for k = 1, 2, . . . , n using that fact that bk+1 mod m = b(bk mod m) mod m.

To motivate the fast modular exponentiation algorithm, we can first explain how to use the binary expansion
of n.
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Say that n = (ak−1 . . . a1a0)2 to compute bn. Firstly, note that:

bn = bak+1·2k−1+···+a1·2+a0 = bak=1·2k−1

· · · ba1·2 · ba0

This shows that to compute bn we only have to compute b, b2, b4, . . . , b2
k

.

Note that (b2
n

)2 = b2
n+1

when n is a nonnegative integer.

The algorithm successively finds b mod m, b2 mod m, b4 mod m, dots, b2
k−1

mod m and multiplies to-
gether those terms b2

i

mod m where aj = 1, finding the remainder of the product when divided by m after
each multiplication. We only need to perform O(log2(n)) multiplications.

We can also show the most efficient algorithm as seen:

Let b be an integer and n = (ak−1ak−2 . . . a1a0)2 and m be positive integers.

Let x be 1 and power be b mod m.

For all values 0 to k − 1, if ai = 1, then x becomes (x · power) mod m and power becomes power·power
mod m.

The return value for this algorithm is x, which is bn mod m.

This algorithm only uses O((logm)2 log n) bit operations to find bn mod m.

4.3 Primes and Greatest Common Divisors

Positive integers that have exactly two different positive integer factors are called prime.

Definition

An integer p greater than 1 is called prime if the only positive factors of p are 1 and p. A positive
integer that is greater than 1 and is not prime is called composite.

Remember that 1 is not prime, and that an integer n is composite if and only if there exists an integer a such
that a | n and 1 < a < n.

Theorem 4.8: The Fundamental Theorem of Arithmetic

Every integer greater than 1 can be written uniquely as a prime or as the product of two or more primes,
where the prime factors are written in order of nondecreasing size.

Theorem 4.9

If n is a composite number, then n has a prime divisor less than or equal to
√
n.

From this theorem above, it follows that an integer is prime if it is not divisible by any prime less than or
equal to its square root. This leads to the brute-force algorithm known as trial division. To use trial division,
we divide n by all primes not exceeding

√
n and conclude that n is prime if it is not divisible by any of these

primes.

Because every integer has a prime factorization, it would be useful to have a procedure for finding the prime
factorization. Start with the theorem above, and find if there is a prime factor not exceeding

√
n. If there is

none found, then continue by factoring n/p. Note that n/p will have no prime factors less than p. If n/q has
a prime factor q, then continue by factoring n/(pq). There are infinitely many primes.

Theorem 4.10: The Prime Number Theorem

The ratio of π(x), the number of primes not exceeding x, and x/ lnx approaches 1 as x grows without
bound.
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Every odd integer is in one of the two arithmetic progressions 4k + 1 or 4k + 3, where k = 1, 2, · · · .

The largest integer that divides two integers is called the greatest common divisor of these integers.

Definition

Let a and b be integers, not both zero. The largest integer d such that d | a and d | b is called the
greatest common divisor of a and b. The greatest common divisor of a and b is denoted by gcd(a, b).

Definition

The integers a and b are relatively prime if their greatest common divisor is 1.

Definition

THe integers a1, a2,. . . , an are pairwise relatively prime if gcd(ai, ak) = 1 whenever 1 ≤ i < j ≤ n.

Prime factorizations can be used to find the least common multiple of the integers.

Definition

THe least common multiple of the positive integers a and b is the smallest positive integer that is
divisible by both a and b. The least common multiple of a and b is denoted by lcm(a, b).

Theorem 4.11

Let a and b be positive integers. Then

ab = gcd(a, b) · lcm(a, b)

There is a more efficient way of finding the greatest common divisor using the Euclidean algorithm.

Lemma 4.12

Let a = bq + r, where a, b, q, and r are integers. Then gcd(a, b) = gcd(b, r).

Proof. If we can show that the common divisors of a and b are the same as the common divisors of b
and r, we will have shown that gcd(a, b) = gcd(b, r), because both pairs must have the same greatest
common divisors.

So suppose that d divides both a and b. Then it follows that d also divides a − bq = r. Hence, any
common divisor of a and b is also a common divisor of b and r.

Likewise, suppose that d divides both b and r. Then d also divides bq + r = a. Hence, any common
divisor of b and r is also a common divisor of a and b.

Consequently, gcd(a, b) = gcd(b, r). □

An important result is that the greatest common divisor of two integers a and b can be expressed in the form:

sa+ tb

where s and t are integers. In other words, gcd(a, b) can be expressed as a linear combination with integer
coefficients of a and b.

Theorem 4.13: Bezout’s Theorem
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If a and b are positive integers, then there exist integers s and t such that gcd(a, b) = sa+ tb.

Lemma 4.14

If a, b, and c are positive integers such that gcd(a, b) = 1 and a | bc, then a | c.

Lemma 4.15

If p is a prime and p | a1a2 · · · an, where each ai is an integer, then p | ai for some i.

Theorem 4.16

Let m be a positive integer and let a, b, and c be integers. If ac ≡ bc (mod m) and gcd(c,m) = 1,
then a ≡ b (mod m).

4.4 Solving Congruences

A congruence of the form
ax ≡ b (mod m)

where m is a positive integer, a and b are integers, and x is a variable, is called a linear congruence.

Our goal is to solve th linear congruence ax ≡ b (mod m).

One method is to use an integer a such that aa ≡ 1 (mod m), if such an integer exists. Such an integer a
is to be an inverse of a modulo m.

Theorem 4.17

If a and m are relatively prime integers and m > 1, then an inverse of a modulo m exists. Furthermore,
this inverse is unique modulo m. (That is there is a unique positive integer a less than m that is an
inverse of a modulo m and every other inverse of a modulo m is congruent to a modulo m.)

We can design a more efficient algorithm than brute force to find an inverse of a modulo m when gcd(a, b) = 1
using the steps of the Euclidean algorithm.

Once we have an inverse a of a modulo m, we can solve the congruence ax ≡ b (mod m) by multiplying
both sides of the linear congruence by a.

The Chinese remainder theory states that when the moduli of a system of linear congruences are pairwise
relatively prime, there is a unique solution of the system modulo of the product of the moduli.

Theorem 4.18: The Chinese Remainder Theorem

Let m1, m2,. . . , mn be pairwise relatively prime positive integers greater than one and a1, a2,. . . ,an
arbitrary integers. Then the system

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

. . .

x ≡ an (mod mn)

has a unique solution modulo m = m1m2 · · ·mn. (That is, there is a solution x with 0 ≤ x < m, and
all other solutions are congruent modulo m to this solution.)
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Suppose that m1, m2,. . . , mn are pairwise relatively prime moduli and let m be their product. By the Chinese
remainder theorem, we can show that an integer a with 0 ≤ a < m can be uniquely represented by the n-tuple
consisting of its remainders upon division by mi, i = 1, 2, . . . , n. That is, we can uniquely represent a by

(a mod m1, a mod m2, . . . , a mod mn)

Theorem 4.19: Fermat’s Little Theorem

If p is prime and a is an integer not divisible by p, then

ap−1 ≡ 1 (mod p)

Furthermore, for every integer a we have

ap ≡ a (mod p)

Fermat’s little theorem tells us that if a ∈ Zp, then ap−1 = 1 in Zp.

Definition

Let b be a positive integer. If n is a composite positive integer, and bn−1 ≡ 1 (mod n), then n is called
a pseudoprime to the base b.

Definition

A composite integer n that satisfies the congruence bn−1 ≡ 1 (mod n) for all positive integers b with
gcd(b, n) = 1 is called a Carmichael number.

In the set of positive real numbers, if b > 1 and x = by, we say that y is the logarithm of x to the base b.
Here, we will show that we can also define the concept of logarithms modulo p of positive integers, where p
is a prime.

Definition

A primitive root modulo of prime p is an integer r in Zp such that every nonzero element of Zp is a
power of r.

An important fact in number theory is that there is a primitive root modulo p for every prime p.

Suppose that p is prime and r is a primitive root modulo p. If a is an integer between 1 and p − 1, that
is, a nonzero element of Zp, we know that there is a unique exponent e such that re = a in Zp, that is, r

e

mod p = a.

Definition

Suppose that p is a prime, r is a primitive root modulo p, and a is an integer between 1 and p − 1
inclusive. If re mod p = a and 0 ≤ e ≤ p − 1, we say that e is the discrete logarithm of a modulo p
to the base r and we write logra = e (where the prime p is understood).



5 Induction and Recursion

5.1 Mathematical Induction

To prove P (n) is true for all integers n, where P (n) is a propositional function, we complete two steps:

1. We verify that P (1) is true.

2. We show that the conditional statement P (k) → P (k + 1) is true for all positive integers k.

To complete the inductive step of a proof using the principle of mathematical induction, we assume that
P (k) is true for an arbitrary positive integer k and show that under this assumption, P (k + 1) must also be
true. The assumption that P (k) is true is called the inductive hypothesis. One we complete both steps in a
proof by mathematical induction, we have shown that P (n) is true for all positive integers n, that is, we have
shown that ∀nP (n) is true where the quantification is over the set of positive integers. In the inductive set,
we show that ∀k(P (k) → P (k + 1)) is true, where again, the domain is set of all positive integers.

Written as a rule of inference this can be written as:

(P (1) ∧ ∀k(P (k) → P (k + 1))) → ∀nP (n)

where the domain is the set of positive integers.

The first thing we do to prove that P (n) is true for all positive integers n is to show that P (1) is true. This
amounts to showing that the particular statement obtained when n is replaced by 1 in P (n) is true. Then
we must show that P (k) → P (k + 1) is true for every positive integer k. To prove that this conditional
statement is true for every positive integer k, we need to show that P (k + 1) cannot be false when P (k) is
true. This can be accomplished by assuming P (k) is true and showing that under this hypothesis P (k + 1)
must also be true.

A guideline for proofs by mathematical induction:

1. Express the statement that is to be proved in the form “for all n ≥ b, P (n)” for a fixed integer b. For
statements of the form “P (n) for all positive integers n”, let b = 1, and for all statements of the form
“P (n) for all nonnegative integers n”, let b = 0.

2. Show that P (b) is true, taking care that the correct value of b is used.

3. Identify the inductive hypothesis, in the form “Assume P (k) is true for an arbitrary fixed integer k ≥ b.”

4. State what needs to be proved under the assumption that the inductive hypothesis is true. That is,
write out what P (k + 1) says.

5. Prove the statement P (k + 1) making use of the assumption P (k).

6. Clearly identify the conclusion of the inductive step.

7. State the conclusion.

5.2 Strong Induction and Well-Ordering

The basis step of a proof by strong induction is the same as a proof of the same result using mathematical
induction. That is, in a strong induction proof P (n) is true for all positive integers n, the basis step shows
that P (1) is true. However, the inductive steps in these two proof methods are different. In a proof by strong
induction, the inductive step shows that P (j) is true for all positive integers j not exceeding k, then P (k+1)
is true. That is, for the inductive hypothesis we assume P (j) is true for j = 1, 2, . . . , k.

Let’s state this principle:

21
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To prove that P (n) is true for all positive integers n, where P (n) is a propositional function, we complete
two steps:

Basis Step:

We verify that the proposition P (1) is true.

Inductive Step:

We show that the conditional statement [P (1)∧P (2)∧· · ·∧P (k)] → P (k+1) is true for all positive integers
k.

Note that when we use strong induction to prove P (n) is true for all positive integers n, our inductive
hypothesis is the assumption that P (j) is true for j = 1, 2, . . . , k. That is, the inductive hypothesis includes
all k statements P (1), P (2),. . . , P (k) to prove P (k + 1), rather than just the statement P (k) as in a proof
by mathematical induction, strong induction is a more flexible proof technique.

Strong induction is sometimes called the second principle of mathematical induction of complete induction.

Let b be a fixed integer and j a fixed positive integer. The form of a strong induction we need tells us that
P (n) is true for all integers n with n ≥ b if we can complete these two steps.

1. Basis Step: We verify that the propositions P (b), P (b+ 1),. . . ,P (b+ j) are true.

2. Inductive Step: We show that [P (b) ∧ P (b + 1) ∧ · · · ∧ P (k)] → P (k + 1) is true for every integer
k ≥ b+ j.

Strong induction can also work in computational geometry.

A polygon is a closed geometric figure consisting of a sequence of line segments s1, s2, . . . , sn, called sides.
Each pair of consecutive sides, si and si+1, i = 1, 2, . . . , n − 1, as well as the last side sn and the first
side s1, of the polygon meet at a common endpoint, called a vertex. A polygon is called simple if no two
nonconsecutive sides intersect. Each simple polygon divides the plane into two regions: its interior, consisting
of the points inside the curve, and its exterior, consisting of the points outside the curve.

A polygon is called convex if every line segment connecting, two points in the interior of the polygon lies
entirely inside the polygon. A diagonal of a simple polygon is a line segment connecting two nonconsecutive
vertices of the polygon, and a diagonal is called an interior diagonal if it lies entirely inside the polygon, except
for its endpoints.

One of the most basic operations of computational geometry involves dividing a simple polygon into triangles
by adding nonintersecting diagonals. This process is called triangulation.

Theorem 5.1

A simple polygon with n sides, where n is an integer with n ≥ 3, can be triangulated into n−2 triangles.

The validity of both the principle of mathematical induction and strong induction follows from a fundamental
axiom of the set of integers, the well-ordering property. The well-ordering property states that every nonempty
set of nonnegative integers has a least element.

5.3 Recursive Definitions and Structural Induction

We can prove results about recursively defined sets using structural induction.

We can use two steps to define a function with the set of nonnegative integers as its domain:

Basis Step: Specify the value of the function at zero.

Recursive Step: Give a rule for finding its value at an integer from its values at smaller integers.

Such a definition is called a recursive or inductive definition. note that a function f(n) from the set of
nonnegative integers to the set of a real numbers is the same as a sequence a0, a1,. . . , where ai is a real
number for every nonnegative integer i¿
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Recursively defined functions are well-defined. That is, for every positive integer, the value of the function at
this integer is determined in an unambiguous way.

We can show that the Euclidean algorithm uses O(log b) divisions to find the greatest common divisor of the
positive integers a and b, where a ≥ b.

Theorem 5.2

Lame’s Theorem.

Let a and b be positive integers with a ≥ b. Then the number of divisions used by the Euclidean
algorithm to find gcd(a, b) is less than or equal to five times the number of decimal digits in b.

Just as in recursive definition of the functions, recursive definitions of sets have two parts, a basis step and a
recursive step. In the basis step, an initial collection of elements is specified. In the recursive step, rules for
forming new elements in the set from those already known to be in the set are provided. Recursive definitions
may also include an exclusion rule, which specifies that a recursively defined set contains nothing other than
those elements specified in the basis step or generated by applications of the recursive step.

We can define
∑∗, the set of strings over

∑
recursively.

Definition

The set
∑∗ of strings over the alphabet

∑
is defined recursively by

Basis Step: λ ∈
∑∗ (where λ is the empty string containing no symbols).

Recursive Step: If w ∈
∑∗ and x ∈

∑
, then wx ∈

∑∗.

Definition

Two strings can be combined via the operation of concatenation. Let
∑

be a set of symbols and
∑∗

the set of strings formed from symbols in
∑

. We can define the concatenation of two strings, denoted
by ·, recurisvely as follows.

Basis Step: If w ∈
∑∗, then w · λ = w, where λ is the empty string.

Recursive Step: If w1 ∈
∑∗ and w2 ∈

∑∗ and x ∈
∑

, then w1 · (w2x) = (w1 · w2)x.

Definition

The set of rooted trees, where a rooted tree consists of a set of vertices containing a distinguished vertex
called the root, and edges connecting these vertices, can be defined recurisvely by these steps:

Basis Step: A single vertex r is a rooted tree.

Recursive Step: Suppose that T1, T2,. . . ,Tn are disjoint rooted trees with roots r1, r2,. . . ,rn, respec-
tively. Then the graph formed by starting with a root r, which is not in any of the rooted tress T1,
T2,. . . ,Tn, and adding an edge from r to each of the vertices r1,r2,. . . ,rn is also a rooted tree.

Definition

The set of extended binary trees can be defined recursively by these steps:

Basis Step: The empty set is an extended binary tree.

Recursive Step: If T1 and T2 are disjoint extended binary trees, there is an extended binary tree, denoted
by T1 · T2, consisting of a root r together with edges connecting the root to each of the roots of the
left subtree T1 and the right subtree T2 when these trees are nonempty.
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Definition

The set of full binary trees can be defined recursively by these steps:

Basis Step: There is a full binary tree consisting only of a single vertex r.

Recursive Step: If T1 and T2 are disjoint full binary trees, there is a full binary tree, denoted by T1 · T2,
consisting of a root r together with edges connecting the root to each of the roots of the left subtree
T1 and the right subtree T2.

Instead of using mathematical induction to directly prove results about recurisvely defined sets, we can use a
more convenient form of induction known as structural induction.

Basis Step: Show that the results holds for all elements specified in the basis step of the recursive definition
to be in the set.

Recursive Step: Show that if the statement is true for each of the elements used to construct new elements
in the recursive step of the definition, the results holds for these new elements.

The validity of structural induction follows from the principle of mathematical induction for nonnegative
integers. To see this, let P (n) state that the claim is true for all elements of the set that are generated by n
or fewer applications of the rules in the recursive step of a recursive definition. We will have established that
the principle of mathematical induction implies the principle of structural induction if we can show that P (n)
is true whenever n is a positive integer. In the basis step of a proof by structural induction we show that P (0)
is true. That is, we show that the result is true of all elements specified to be in the set in the basis step of the
definition. A consequence of the recursive step is that if we assume P (k) is true, it follows that P (k + 1) is
true. When we have completed a proof using structural induction, we have shown that P (0) is true and that
P (k) implies P (k+1). By mathematical induction it follows that P (n) is true for all nonnegative integers n.
This also shows that the result is true for all elements generated by the recursive definition, and shows that
structural induction is a valid proof technique.

Definition

We define the height h(T ) of a full binary tree T recursively.

Basis Step: The height of the full binary tree T consisting of only a root r is h(T ) = 0.

Recursive Step: If T1 and T2 are full binary trees, then the full binary tree T = T1 · T2 has height
h(T ) = 1 +max(h(T1), h(T2)).

Theorem 5.3

If T is a full binary tree T , then n(T ) ≤ 2h(T )+1 − 1.

5.4 Recursive Algorithms

Sometimes we can reduce the solution to a problem with a particular set of input values to the solution of
the same problem with smaller input values.

When such a reduction can be done, the solution to the original problem can be found with a sequence
of reductions, until the problem has been reduced to some initial case for which the solution is known. For
instance, for finding the greatest common divisor, the reduction continues until the smaller of the two numbers
of zero, because gcd(a, 0) = a when a > 0.

Definition

An algorithm is called recursive if it solves a problem by reducing it to an instance of the same problem
with smaller input.
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A recursive defintion expresses the value of a function at a positive integer in terms of the values of the
function at smaller integers. This means that we can devise a recursive algorithm to evaluate a recursively
defined function at a positive integer. Instead of successively reducing the computation to the evaluation of
the function at smaller integers, we can start with the value of the function at one or more integers, the base
cases, and successively apply the recursive definition to find the values of the function at successive larger
integers. Such a procedure is called iterative. Often an iterative approach for the evaluation of a recursively
defined sequence requires much less computation than a procedure using recursion.

Lemma 5.4

Two sorted lists with m elements and n elements can be merged into a sorted list using no more than
m+ n− 1 comparisons.

Theorem 5.5

The number of comparisons needed to merge sort a list with n elements is O(n log n).



6 Counting

6.1 The Basics of Counting

Definition

The Product Rule: Suppose that a procedure can be broken down into a sequence of two tasks. If there
are n1 ways to do the first task and for each of these ways of doing the first task, there are n2 ways to
do the second task, then there are n1n2 ways to do the procedure.

Definition

The Sum Rule: If a task can be done either in one of n1 ways or in one of n2 ways, where none of the
set of n1 ways is the same as any of the set of n2 ways, then there are n1 + n2 ways to do the task.

Definition

The Subtraction Rule: If a task can be done in either n1 ways or n2 ways, then the number of ways to
do the task if n1 + n2 minus the number of ways to do the task that are common to the two different
ways.

Definition

The Division Rule: There are n/d ways to do a task if it can be done using a procedure that can be
carried out in n ways, and for every way w, exactly d of the n ways correspond to way w.

6.2 The Pigeonhole Principle

Theorem 6.1

The Pigeonhole Principle: If k is a positive integer and k + 1 or more objects are placed into k boxes,
then there is at least one box containing two or more of the objects.

Corollary 6.2

A function f from a set with k + 1 or more elements to a set with k elements is not one-to-one.

Theorem 6.3

The Generalized Pigeonhole Principle: If N objects are placed into k boxes, then there is at least one
box containing at least ⌈N/k⌉ objects.

Theorem 6.4

Every sequence of n2 + 1 distinct real numbers contains a subsequence of length n + 1 that is either
strictly increasing or strictly decreasing.

26
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6.3 Permuations and Combinations

Theorem 6.5

If n is a positive integer and r is an integer with 1 ≤ r ≤ n, then there are

P (n, r) = n(n− 1)(n− 2) · · · (n− r + 1)

r-permutations of a set with n distinct elements.

Corollary 6.6

If n and r are integers with 0 ≤ r ≤ n, then P (n, r) = n!
(n−r)! .

Theorem 6.7

The number of r-combinations of a set with n elements, where n is a nonnegative integer and r is an
integer with 0 ≤ r ≤ n, equals

C(n, r) =
n!

r!(n− r)!

Corollary 6.8

Let n and r be nonnegative integers with r ≤ n. Then C(n, r) = C(n, n− r).

Definition

A combinatorial proof of an identity is a proof that uses counting arguments to prove that both sides of
the identity count the same objects but in different ways or a proof that is based on showing that there
is a bijection between the sets of objects counted by the two sides of the identity. These two types of
proofs are called double counting proofs and bijective proofs, respectively.

6.4 Binomial Coefficients and Identities

The number of r-combinations from a set with n elements is often denoted by
(
n
r

)
. This number is also called

a binomial coefficient because these numbers occur as coefficients in the expansion of powers of binomial
expressions such as (a+ b)n.

The binomial theorem gives the coefficients of the expansion of powers of binomial expressions. A binomial
expression is simply the sum of two terms, such as x+ y.

Theorem 6.9

Let x and y be variables, and let n be a nonnegative integer. Then

(x+ y)n =

n∑
j=0

(
n

j

)
xn−jyj =

(
n

0

)
xn +

(
n

1

)
xn−1y + · · ·+

(
n

n− 1

)
xyn−1 +

(
n

n

)
yn

We can prove some useful identities from this.

Corollary 6.10
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Let n be a nonnegative integer. Then
n∑

k=0

(
n

k

)
= 2n

Corollary 6.11

Let n be a positve integer. Then
n∑

k=0

(−k)k
(
n

k

)
= 0

Corollary 6.12

Let n be a nonnegative integer. Then
n∑

k=0

2k
(
n

k

)
= 3n

The binomial coefficients satisfy many different identities. We introduce one of the most important of these
now.

Theorem 6.13

Let n and k be positive integers with n ≥ k. Then(
n+ 1

k

)
=

(
n

k − 1

)
+

(
n

k

)

Theorem 6.14

Let m, n, and r be nonnegative integers with r not exceeding either m or n. Then(
m+ n

r

)
=

r∑
k=0

(
m

r − k

)(
n

k

)

Corollary 6.15

If n is a nonnegative integer, then (
2n

n

)
=

n∑
k=0

(
n

k

)2

Theorem 6.16

Let n and r be nonnegative integers with r ≤ n. Then(
n+ 1

r + 1

)
=

n∑
j=r

(
j

r

)

6.5 Generalized Permuations and Combinations
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Theorem 6.17

The number of r-permutations of a set of n objects with repetition allowed is nr.

Theorem 6.18

There are C(n + r − 1, r) = C(n + r − 1, n − 1) r-combinations from a set with n elements when
repetition of elements is allowed.

Theorem 6.19

The number of different permutations of n objects, where there are n1 indistinguishable objects of type
1, n2 indistinguishable objects of type 2, . . . , and nk indistinguishable objects of type k, is

n!

n1!n2! · · ·nk!

Theorem 6.20

The number of ways to distribute n distinguishable objects into k distinguishable boxes so that ni

objects are placed into box i, i = 1, 2, . . . , k equals

n!

n1!n2! · · ·nk!

There are C(n+ r − 1, n− 1) ways to place r indistinguishable objects into n distinguishable boxes.



7 Discrete Probability

An experiment is a procedure that yields one of a given set of possible outcomes. The sample space of the
experiment is the set of possible outcomes. An event is a subset of the sample space. Laplace’s definition of
the probability of an event with finitely many possible outcomes will now be stated.

Definition

If S is a finite nonempty sample space of equally likely outcomes, and E is an event, that is, a subset

of S, then the probability of E is p(E) = |E|
|S| .

The probability of an event can never be negative or more than one!

We can use counting techniques to find the probability of events derived from other events.

Theorem 7.1

Let E be an event in a sample space of S. The probability of the event E = S−E, the complementary
event of E, is given by

p(E) = 1− p(E)

We can also find the probability of the union of two events.

Theorem 7.2

Let E1 and E2 be events in the sample space S. Then

p(E1 ∪ E2) = p(E1) + p(E2)− p(E1 ∩ E2)
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8 Advanced Counting Techniques

8.1 Applications of Recurrence Relations

Ok so theres a lot of examples for recurrence relations yknow.

Algorithm 1: Dynamic Programming Algorithm for Scheduling Talks

procedure Maximum Attendees (s1, s2, . . . , sn: start times of talks;
e1, e2, . . . , en: and times of talks; w1, w2, . . . , wn: number of attendees to talks)
sort talks by end time and relabel so that e1 ≤ e2 ≤ · · · ≤ en
for j := 1 to n
if no job i with i < j is compatible with job j
p(j) = 0
else p(j) := maxi− i < j and job i is compatible with job j
T (0) := 0
for j := 1 to n
T (j) := max(wj + T (p(j)), T (j − 1))
return T (n) T (n) is the maximum number of attendees

This algorithm determiens the maximum number of attendees that can be achieved by a schedule of talks,
but we do not find a schedule that achieves this maximum. To find talks we need to schedule, we use the
fact htat talk j belongs to an optimal solution for the first j talks if and only if wj + T (p(j)) ≥ T (j − 1).

8.2 Inclusion-Exclusion

How many elements are in the union of two finite sets? We showed previously that

| A ∪B |=| A | + | B | − | A ∩B |

In the union of three sets we can say that

| A ∪B ∪ C |=| A | + | B | + | C | − | A∩ | − | A ∩ C | + | A ∩B ∩ C |

Using this we can define and prove the inclusion-exclusion principle for n sets, where n is a positive integer.
This principle tells us that we can count the elements in a union of n sets by adding the number of elements
in the sets, then subtracting the sum of the number of elements in all intersections of two of these sets, then
adding the number of elements in all intersections of three of these sets, and so on, until we reach the number
of elements in the intersection of all the sets. It is added when there is an odd number of sets and added
when there is an even number of sets.

Theorem 8.1: The Principle of Inclusion-Exclusion

Let A1, A2, . . . , An be finite sets. Then

|A1 ∪A2 ∪ · · ·An| =
∑

1≤i≤n

|Ai| −
∑

1≤i<j≤n

|Ai ∩Aj |

+
∑

1≤i<j<k≤n

|Ai ∩Aj ∩Ak| − · · ·+ (−1)n+1|A1 ∩A2 ∩ · · · ∩An|

The inclusion-exclusion principle gives a formula for the number of elements in the union of n sets for every
positive integer n. There are terms in this formula for the number of elements in the intersection of every
nonempty set of the collection of the n sets. Hence, there are 2n − 1 terms in this formula.

31



9 Relations

The most direct way to express a relationship between elements of two sets is to use ordered pairs made up
of two related elements. For this reason, sets of ordered pairs are called binary relations.

Definition

Let A and B be sets. A binary relation from A to B is a subset of A×B.

In other words, a binary relation from A to B is a set R of ordered pairs, where the first element of each
ordered pair comes from A and the second element comes from B. We use the notation a R b to denote
that (a, b) ∈ R and a a�R b to denote that (a, b) ̸∈ R. Moreover, when (a, b) belongs to R, a is said to be
related to b by R.

Binary relations represent relationships between the elements of two sets. We will introduce n-ary relations,
which express relationships among elements of more than two sets.

Definition

A relation on a set A is a relation from A to A.

In other words, a relation on a set A is a subset of A×A.

Definition

A relation R on a set A is called reflexive if (a, a) ∈ R for every element a ∈ A.

Definition

A relation R is called symmetric if (b, a) ∈ R whenever (a, b) ∈ R, for all a, b ∈ A. A relation R on a
set A such that for all a, b ∈ A, if (a, b) ∈ R and (b, a) ∈ R, then a = b is called antisymmetric.

Definition

A relation R on a set A is called transitive if whenever (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R, for
all a, b, c ∈ A.

Definition

Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R
and S is the relation consisting of ordered pairs (a, c), where a ∈ A, c ∈ C, and for which there exists
an element b ∈ B such that (a, b) ∈ R and (b, c) ∈ S. We denote the composite of R and S by S ◦R.

Definition

Let R be a relation on the set A. The powers Rn.n = 1, 2, 3, . . . , are defined recursively by

R1 = R and Rn+1 = Rn ◦R
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Theorem 9.1

The relation R on a set A is transitive if and only if

Rn ⊆ R for n = 1, 2, 3, . . .



10 Graphs

10.1 Graphs and Graph Models

Definition

A graph G = (V,E) consists of V , a nonempty set of vertices (or nodes) and E, a set of edges. Each
edge has either one or two vertices associated with it, called its endpoints. An edge is said to connect
its endpoints.

The set of vertices V of a graph G may be infinite. A graph with an infinite vertex set or an infinite number
of edges is called an infinite graph, and in comparison, a graph with a finite vertex set and a finite edge set
is called a finite graph.

A graph in which each edges connects two different vertices and where no two edges connect the same pair
of vertices is called a simple graph.

Graphs that have multiple edges connecting the same vertices are called multigraphs.

Definition

A directed graph (or digraph) (V,E) consists of a nonempty set of vertices V and a set of directed
edges (or arcs) E. Each directed edge is associated with an ordered pair of vertices. The directed edge
associated with the ordered pair (u, v) is said to start at u and end at v.

10.2 Graph Terminology and Special Types of Graphs

Definition

Two vertices u and v in an undirected graph G are adjacent (or neighbors) in G if u and v are endpoints
of an edge e of G. Such an edge e is called incident with the vertices of u and v and e is said to connect
u and v.

Definition

The set of all neighbors of a vertex v of G = (V,E), denoted by N(v), is called the neighborhood of v.
If A is a subset of V , we denote by N(A) the set of all vertices in G that are adjacent to at least one
vertex in A. So, N(A) = ∪v∈AN(v).

Definition

The degree of a vertex in an undirected graph is the number of edges incident with it, except that a
loop at a vertex contributes twice to the degree of that vertex. The degree of the vertex v is denoted
by deg(v).

A vertex of degree zero is called isolated. It follows that an isolated vertex is not adjacent to any vertex.

A vertex is pendant if and only if it has degree one. Consequently, a pendant vertex is adjacent to exactly
one vertex.
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Theorem 10.1: The Handshaking Theorem

Let G = (V,E) be an undirected graph with m edges. Then

2m =
∑
v∈V

deg(v)

(Note that this applies even if multiple edges and loops are present.)

Theorem 10.2

An undirected graph has an even number of vertices of odd degree.

Definition

When (u, v) is an edge of the graph G with directed edges, u is said to be adjacent to v and v is said
to be adjacent from u. The vertex u is called the initial vertex of (u, v), and v is called the terminal or
end vertex of (u, v). The initial vertex and terminal vertex of a loop are the same.

Definition

In a graph with directed edges the in-degree of a vertex v, denoted by deg−(v), is the number of edges
with v as their terminal vertex. The out-degree of v, denoted by deg+(v), is the number of edges with
v as their initial vertex.

(Note that a loop at a vertex contributes 1 to both the in-degree and the out-degree of this vertex.)

Theorem 10.3

Let G = (V,E) be a graph with directed edges. Then∑
v∈V

deg−(v) =
∑
v∈V

deg+(v) = |E|

Definition

A simple graph G is called bipartite if its vertex set V can be partitioned into two disjoin sets V1 and
V2 such that every edge in the graph connects a vertex in V1 and a vertex in V2 (so that no edge in G
connects either two vertices in V1 or two vertices in V2). When this condition holds, we call the pair
(V1, V2) a bipartition of the vertex set V of G.

Definition

A simple graph is bipartite if and only if it is possible to assign one of two different colors to each vertex
of the graph so that no two adjacent vertices are assigned the same color.

Theorem 10.4: Hall’s Marriage Theorem

The bipartite graph G = (V,E) with bipartition (V1, V2) has a complete matching from V1 to V2 if and
only if |N(A)| ≥ |A| for all subsets A of V1.
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Definition

A subgraph of a graph G = (V,E) is a graph H = (W,F ), where W ⊆ V and F ⊆ E. A graph H of
G is a proper subsgraph of G if H ̸= G.

Definition

Let G = (V,E) be a simple graph. The subgraph induced by a subset W of the vertex set V is the
graph (W,F ), where the edge set F contains an edge in E if and only if both endpoints of this edge
are in W .

Definition

The union of two simple graphs G1 = (V1, E1) and G2 = (V2, E2) is the simple graph with vertex set
V1 ∪ V2 and edge set E1 ∪ E2. The union of G1 and G1 is denoted by G1 ∪G2.



11 Trees

Definition

A tree is a connected undirected graph with no simple circuits.

Because any tree cannot have a simple circuit, a tree cannot contain multiple edges or loops. Therefore any
tree must be a simple graph.

Graphs containing no simple circuits that are not necessarily connected are called forests and have the property
that each of their connected components is a tree.

Theorem 11.1

An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

In many applications of trees, a particular vertex of a tree is designated as a root.

Definition

A rooted tree is a tree in which one vertex has been designated as the root and every edge is directed
away from the root.

If v is a vertex in T other than the root, the parent of v is the unique vertex u such that there is a directed
edge from u to v. When u is the parent of v, v is called a child of u. Vertices with the same parent are
called siblings. The ancestors of a vertex other than the root are the vertices in the path from the root to
this vertex, excluding the vertex itself anf including the root. The descendants of vertex v are those vertices
that have v as an ancestor. A vertex of a rooted tree is called a leaf if it has no children. Vertices that have
children are called internal vertices. The root is an internal vertex unless it is the only vertex in the graph, in
which case it is a leaf.

If a is a vertex in a tree, the subtreet with a as its root is the subgraph of the tree consisting of a and its
descendants and edges incident to these descendants.

Definition

A rooted tree is called an m-ary tree if every internal vertex has no more than m children. The tree is
called a full m-ary tree if every internal vertex has exactly m children. An m-ary tree with m = 2 is
called a binary tree.

An ordered rooted tree is a rooted tree where the children of each internval vertex are ordered.

Theorem 11.2

A tree with n vertices has n− 1 edges.

Theorem 11.3

A full m-ary tree with i internal vertices contains n = mi+ 1 vertices.

Theorem 11.4

37
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A full m-ary tree with

� n vertices has i = (n− 1)/m internal vertices and l = [(m− 1)n+ 1]/m leaves

� i internal vertices has n = mi+ 1 vertices and l = (m− 1)i+ 1 leaves,

� l leaves has n = (ml − 1)/(m− 1) vertices and i = (l − 1)/(m− 1) internal vertices.

Theorem 11.5

There are at most mh leaves in an m-ary tree of height h.

Corollary 11.6

If an m-ary tree of height h has l leaves, then h ≥ ⌈logm l⌉. If the m-ary tree is full and balanced, then
h = ⌈logm l⌉.
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