
1 Linear Equations in Linear Algebra

1.1 Systems of Linear Equations

A linear equation in the variables x1, x2, . . . , xn is an equation that can be written in the form a1x1+a2x2+
· · ·+ anxn = b where b and the coefficients a1, a2, . . . , an are real or complex numbers.

Example: 4x1 − 5x2 + 2 = x1, x2 = 2(61/2 − x1) + x3 are both linear. Not linear examples are 4x1 − 5x2 =

x1x2, x2 = 2(x
1/2
1 )− 6, and 2x−1

1 + sinx2 = 0.

Systems of Linear Equations: an (m × n) system of linear equations is a system of m linear equations with
n unknowns.

Example: the 2× 3 system of equations below has a solution x1 = 5, x2 = 6.5, and x3 = 3:

2x1 − x2 + 1.5x3 = 8

x1 − 4x3 = −7

Two linear systems are called equivalent if they have the same solution set.

A system of linear equations can have: infinitely many solutions, no solution, or a unique solution. Coincident
lines have infinitely many solutions, parallel lines have no solution, and intersecting lines have a unique solution.

Matrix Notation:

Let’s say we have x1 − 2x2 + x3 = 0, 2x2 − 8x3 = 8, and 5x1 − 5x3 = 10.

The coefficient matrix is

1 −2 1
0 2 −8
5 0 −5

 and the augmented matrix is

1 −2 1 0
0 2 −8 8
5 0 −5 10

. The augmented

matrix is 3× 4 (3 rows, 4 columns).

To solve a linear system: if one of the following elementary operations is applied to a system of linear equations,
the resulting system is equivalent, that is the resulting system has the same set of solutions as the original:

1. interchange two equations

2. multiply an equation by a non-zero scalar

3. add a constant multiple of one equation to another

Let’s use the system

x1 − 2x2 + x3 = 0

2x2 − 8x3 = 8

5x1 − 5x3 = 10

So using row operations and rearranging the rows, we can do R1 ↔ R2 to swap the first and second row.
Now we can multiply the second line by 1/2 so 1/2R2. The next step is to do R2 +R1.

The matrix that results from this is

1 −2 1 0
0 2 −8 8
5 0 −5 10


Doing the operations R3− 5R1, R3− 5R2, and 1/2R2 and 1/30R3, we end up getting

1 −2 1 0
0 1 −4 4
0 0 1 −1

,

1
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so from this we have the equations

x1 − 2x2 + x3 = 0

x2 − 4x3 = 4

x3 = −1

, so the solution set is (1, 0,−1). Since a solution exists, the system is consistent.

Let’s see if this one is consistent.

x2 − 4x3 = 8

2x1 − 3x2 + 2x3 = 1

4x1 − 8x2 + 12x3 = 1

Doing the row operations R1 ↔ R2, R3 − 2R1, R3 + 2R2 we get that 0 = 15, so this is inconsistent.

This last example has infinitely many solutions:

x1 − 2x2 − x3 = −2

2x1 + x2 + 3x3 = 1

−3x1 + x2 − 2x3 = 1

Doing the row operationsR2−2R1 andR+3+3R1, thenR3+R2 and then 1/5R2 results in

1 −2 1 −2
0 1 1 1
0 0 0 0


Solving this, we have x3 with no restrictions, it is a “free parameter” and x2 = 1− x3 and x1 = −x3 so x1

and x2 are parameterized by x3.

1.2 Row Reduction and Echelon Forms

Leading entry of a row: the first (counting from left to right) non-zero entry (in a nonzero row)

Echelon Form: upper right-hand stair-case, triangle

1. all rows that consist entirely of zeros are grouped together at the bottom of the matrix

2. the first (counting from left to right) non-zero entry in the (i + 1)st row must appear in a column to
the right of the first non-zero entry in the ith row.

3. all entries in a column below a leading entry are zeros

Reduced Echelon Form: an echelon Form matrix that also has the following properties:

1. the leading entry in each nonzero row is 1

2. each leading one is the only nonzero entry in its column

A pivot point: a location in a matrix A that corresponds to a leading 1 in a reduced echelon form of A. A
pivot column is a column of A that contains a pivot position.

Steps to solving a system of linear equations:

1. begin with the leftmost nonzero column. This is the pivot column, the pivot position is at the top.

2. select a non zero entry in the pivot column as a pivot. If necessary, interchange rows to move this entry
into the pivot position.

3. Use row replacement operations to create zeros in all positions below the pivot.

4. Cover (or ignore) the row containing the pivot position and cover all rows (if any) above it. Apply
previous steps to the sub matrix that remains. Repeat until there are no more nonzero rows to modify.

5. Beginning with the rightomst pivot, create zeros above each pivot. Make each pivot equal to 1 by
scaling.
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Example

Determine the existence and uniqueness of the solution to

3x2 − 6x3 + 6x4 + 4x5 = −5

3x1 − 7x2 + 8x3 − 5x4 + 8x5 = 9

3x1 − 9x2 + 12x3 − 9x4 + 6x5 = 15

We can find that x5 = 4 , and x3, x4 are of infinite number of solutions.

Example

Find the general solution of the linear system whose augmented matrix has been reduced to

1 6 2 −5 −2 −4
0 0 2 −8 −1 3
0 0 0 0 1 7


We have that x5 = 7, x3 = 1/2(3 + 8x4 + 7) and x1 = −4− 6x2 − 2(1/2)(3 + 8x4 + 7) + 14

Theorem 1.1: Existence and Uniqueness

A linear system is consistent if and only if the right most column of the augmented matrix is not a
pivot column, that is if and only if an echelon form of the augmented matrix has no row of the form
[0, . . . , 0b] with b nonzero. If the system if consistent in the solution contains either a unique solution
when there are no free variables or infinitely many solutions when there is at least one free variable.

1.3 Vector Equations

Vectors in R2: a matrix with only 1 column is called a vector. The set of all vectors with 2 entries is R2

u⃗ =

[
3
−1

]
for example.

The vectors are odered pairs of real numbers:

u⃗1 =

[
3
−1

]
= (3,−1) ̸= (−1, 3) =

[
−1
3

]
Vector addition: (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

Geometric interpretation: parallelogram law.

(2, 4) + (3, 1) = (2 + 3, 4 + 1) = (5, 5). We can create a parallelogram (google for review).

Let’s say we subtract, −a has the same magnitude as a but points in the opposite direction in this case.
(1, 3) − (2, 1) = (−1, 2). Drawing the line from the origin to the tip of the vectors give you what you get
algebraically.

Vector multiplication: scalar multiplication: a(x, y) = (ax, ay) where a is a scalar.

Geometric interpretation: a(x, y, z) points in the same direction as (x, y, z) but is scaled by a factor of a.

Example

Let u⃗ =

[
1
−2

]
and v⃗ =

[
2
−5

]
Find 4u⃗, −3v⃗ and 4u⃗+ (−3)v⃗/

4u⃗ = (4,−8), −3v⃗ = (−6, 15) and 4u⃗+ (−3)v⃗ = (−2, 7)



CHAPTER 1. LINEAR EQUATIONS IN LINEAR ALGEBRA 4

Vectors start at the origin and have magnitude and direction.

Representing vectors in R3. We add the z-axis.

Vectors in Rn we have that u⃗ =


u1

u2

...
un

 = (u1, u2, . . . , un) where u1, u2, · · · ∈ R.

The 0⃗ =


0
0
...
0

 is the zero vector.

Algebratic Properties of Rn: for all u, v,w in Rn and all scalars c and d:

� u+ v = v+ u

� (u+ v) +w = u+ (v+w)

� u+ 0 = 0 + u = u

� u+ (−u) = 0

� c(u+ v) = cu+ cv

� (c+ d)u = cu+ du

� c(du) = (cd)u

� 1u = u

Linear Combinations: given vectors v1, v2, . . . , vp in Rn and scalars c1, c2, . . . , cp, the vector y = c1v1 +
c2v2 + · · ·+ cpvp is called a linear combination of v1, v2, . . . vp with weights c1, c2, . . . , cp.

For example, if we have 31/2v1 + v2 this can be written as y⃗ =
√
3v⃗1 + v⃗2 with c1 =

√
3 and c2 = 1.

Example

If a⃗1 = (1,−2,−5), a⃗2 = (2, 5, 6), and a⃗3 = (7, 4,−3) then determine if b⃗ can be written as a linear

combination of a⃗1 and a⃗2. That is determine if there exists weights x1, x2 such that x1a⃗1 + x2a⃗2 = b⃗.

Using elementary row operations, we can determine that x1 = 3, x2 = 2 which is the linear combination
of a⃗1 and a⃗2.

A vector equation x1a1+x2a2+ . . . xnxn = b has the same solution set as the linear system with augmented
matrix [a1a2 . . . anb]. In particular b can be generated by a linear combination of a1, a2, . . . an if and only if
there exists a solution to the linear system corresponding to the matrix [a1a2 . . . anb]

Span: if v1, v2, . . . vp are in R
n then the set of all linear combinations of v1, v2, . . . , vp is denoted Span{v1, v2 . . . vp}

and is called the subset of Rn spanned by v1, v2, . . . vp. That is, Span{v1, v2 . . . vn} is the collection of all
vectors that can be written in the form: c1v1 + c2v2 + · · ·+ cpvp with c1, c2, . . . , cp scalars.

Asking if a vector b is in Span{v1, v2 . . . vp} amounts to asking whether the vector equation x1v1 + x2v2 +
· · · + xnvp = b has a solution, or equivalently whether the linear system with augmented matrix [v1v2vpb]
has a solution.

Note Span{v1, v2 . . . vp} contains every scalar multiple of v1.

The span of a single vector is a line. The span of 2 linearly independent vectors is a plane (not scalar multiples
of each other).
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1.4 The Matrix Equation Ax = b

The Matrix Equation: if A is an m×n matrix with columns, a1, a2, . . . , an and if x is in Rn, then the product
of A and x denoted Ax is the linear combination of the columns of A using the corresponding entries in x as
weights.

Note: Ax is defined only if the number of columns of A equals the numbers of entries in x.

For example:

[
1 2 −1
0 −5 3

]43
7

 = 4(1, 0) + 3(2,−5) + 7(−1, 3) = (3, 6)

Theorem 1.2: Matrix Equation, Vector Equation, System of Linear Equations

If A is an m × n matrix, with columns, a1, a2, . . . , an and if b is in Rm, the matrix equation Ax = b
has the same solution as the vector equation x1a1 +x2a2 + · · ·+xnan = b which in turn has the same
solution as the system of linear equations represented by the augmented matrix [a1a2 . . . anb].

Existence of Solutions: the equation Ax = b has a solution if and only if b is a linear combination of the
columns of A.

Example

Is A =

 1 3 4
−4 2 −6
−3 −2 7

 b⃗ =

b1b2
b3

 Is the equation Ax⃗ = b⃗ consistent for all b⃗. Using rref, we get that

0 = −2b1 + b2 − 2b3, so it is not consistent for every b⃗. It is only consistent if b2 = 2b1 + 2b3.

So let b⃗ = (1, 4, 1) and then do rref again and we get that x3 is free, x2 = 1/7(4 − 5x3) and
x1 = 1− 3(x2)− 4x3 and this basically gives us (1, 4, 1) too.

Theorem 1.3: Existence of soultion for Ax = b

Let A be an m × n matrix. Then the following statements are logically equivalent. That is, for a
particular A, they are all true statements or they are all false:

1. for each b in Rm, the equation Ax = b has a solution

2. each b in Rm is a linear combination of the columns of A

3. The columns of A span Rm

4. A has a pivot position in every row. Note: A is a coefficient matrix, not an augmented matrix.

Computation of Ax - an efficient method (matrix multiplication): if the product Ax is defined, then the ith
entry in Ax is the sum of the products of the corresponding entries from row i of A and from vector x.

The above is trivial.

Properties of the Matrix-Vector Product Ax

Theorem 1.4

if A is an m× n matrix, u and v are vectors in Rn, and c is a scalar, then :

1. A(u+ v)

2. A(cu) = c(Au)

Algebraic Properties of Rn: for all u, v,w in Rn and all scalars c and d. (This was from an above topic)
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1.5 Solution Sets of Linear Systems

Parametric Vector Form of Solutions:

� Parametric Vector Form of a Plane: a plane can be expressed in explicit form, such as 10x1−3x2−2x3 =
0 or implicit form: x = su+ tv, for s and t scalars.

� Parametric Form of a Line containing point p in direction of v : l(t) = p+ tv

The parametric equation of a plane in R2 : x = av+ bs.

The span of 2 non-colinear vectors is a plane. Span{v, s} = the R2 plane.

In R3, the Span is still a plane, just in R3.

The parametric equation of a line in R2 : l = p+ tv.

Homogeneous Linear Equation - Ax = 0.

The homogeneous equation always has at least 1 solution, x = 0 (the trivial solution).

Recall that a system of linear equation either has infinitely many solutions, no solution, or a unique solution.

The question is whether there exists a nontrivial solution (in which case there are infinitely many solutions).

� The homogeneous equation Ax = 0 has nontrivial solution if and only if the equation has at least 1 free
variable

Description of solutions: if the solutions consists of:

� the 0 vector: Span{0}

� 1 free variable: Span{v}, the solutions are a line through the origin

� 2 free variables, Span{v1, v2} is a plane through the origin

Example

Determine if the following system has a nontrivial solution. Then describe the solution set

3x1 + 5x2 − 4x3 = 0

−3x1 − 2x2 + 4x3 = 0

6x1 + x2 − 8x3 = 0

x3 is free. And everything is in the form (4/3, 0, 1).

Nonhomogeneous Equation: Ax = b.

For example, in the previous example when we let x3 = 0 we get (−1, 2, 0).

Theorem 1.5

Suppose the equation Ax = b is consistent for some given b and let p be a solution. Then the solution
set of Ax = b is the set of all vectors of the Form w = p + vh where vh is any solution of the
homogeneous equation Ax = 0.

1.6 Applications of Linear Systems

There are three examples here: economics, chemical equations and network flow.

Start with economics. There exist equilibrium prices that can be assigned to the total outputs of the various
sectors in an economy in such a way that the income of each sector exactly balances its expenses.

You can use row operations to find an equilibrium price.
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Other examples run similarly (sorry for bad note taking today I’m sick)

1.7 Linear Independence

Linear Independence: an indexed set of vectors {v1, v2, . . . , vp} in Rn is said to be

� linearly independent if the vector equation x1v1 + x2v2 + · · ·+ xpvp = 0 has only the trivial solution

� linearly dependent if there exists weights c1, c2, . . . , cp not all zero such that c1v1+c2v2+ · · ·+cpvp = 0

I’m too lazy to write matrices so much.

Linear Independence of Matrix Columns: the columns of matrix A are linearly independent if and only if the
equation Ax = 0 has only the trivial solution.

Sets of One or Two Vectors

� A set with 1 vector is linearly independent iff v is not the 0 vector because x1v = 0 has only the trivial
solution

� the zero vector, 0 is linearly dependent because x10 = 0 has many nontrivial solutions

� two vector {v1, v2} are linearly dependent iff at least one of the vectors is a multiple of the other

Theorem 1.6

Characterization of Linearly Dependent Sets: An indexed set S = {v1, v2, . . . , vp} of 2 or more vectors
is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.
In fact, if S is linearly dependent and v1 is not 0, then some vj with j > 1 is a linear combination of
the preceding vectors v1, v2, . . . , vj−1.

Note: the theorem does not say every vector in a linearly dependent set is a linear combination of
preceding vectors

Theorem 1.7

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent.
That is, any set {v1, v2, . . . , vp} in Rn is linearly dependent if p > n.

Theorem 1.8

If a set S = {v1, v2, . . . , vp} in Rn contains the zero vector, then the set is linearly dependent.

1.8 Introduction to Linear Transformations

Linear Transformations: we can view Ax = b as a mapping: the m× n matrix A is the transform, A : Rn →
Rm.

From this point of view, solving the equation Ax = b amounts to finding all the vectors x in Rn that
are transformed to b in Rm. The correspondence from x to Ax is a function from one set of vectors to
another.

Definition

A transform (or function or mapping) T from Rn to Rm is a rule that assigns to each vector x in Rn a
vector T (x) in Rm. The set Rn is called the domain of T , and Rm is called the codomain. The notion
T : Rn → Rm indicates that the domain of T is Rn and the codomain is Rm. For x in RnT (x) in Rm

is called the image of x. The set of all images T (x) is called the range of T .
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Matrix Transformations: T (x) is computed as Ax where A is an m×n matrix. Note: the domain of T is Rn

and the codomain of T is Rm. The range of T is the set of all linear combinations of the columns of A.

Linear Transformations: a transformation (or mapping) T is linear if

1. T (u+ v) = T (u) + T (v) for all u and v in the domain of T

2. T (cu) = cT (u) for all scalars c and all u in the domain of T .

� every matrix transformation is a linear transformation: A(u+ v) = A(u) +Av and A(cu) = cA(u)

� linear transformations preserve the operations of vector addition and scalar multiplication

If T is a linear transformation, then

1. T (0) = 0

2. T (cu+dv) = cT (u)+dT (v) for all scalars c, d and all vectors u, v in the domain of T . The generalization
T (c1v1 + c2v2 + · · · + cpvp) = c1T (v1) + c2T (v2) + · · · + cpT (vp) is known in engineering as the
superposition principle: whenever an input is expressed as a linear combination of signals the systems
response is the same linear combination of the responses to the individual signals.

1.9 The Matrix of a Linear Transformation

Goal: given a geometric desciprtion of a transformation, T , we want to find a “formula” for T

� Every linear transformation from Rn to Rm can be represented by a matrix transformation A(x).

� The key to finding matrix A is to that T is completely determined by what it does to the columns of
the n× n identiy matrix, In.

Theorem 1.9

Standard Matrix for a Linear Transformation: let T : Rn → Rm be a linear transformation. Then
there exists a unique matrix A such that T (x) = Ax for all x in Rn. And, A is the m × n matrix
whose jth column is the vector T (ej) where ej is jth column of the identity matrix in Rn. A =
[T (e1)T (e2) . . . T (en)]. A is caleld the standard matrix for the linear transformation T .

Onto/Existence: a mapping T : Rn → Rm is said to be onto Rm if each b in Rm is the image of at least 1 x
in Rn.

� T is onto Rm when the range of T is all of the codomain Rm; for each b in Rm, there exists at least
one solution of T (x) = b. The mapping T is not onto when there is some b in Rm for which T (x) = b
has no solution.

T is one-to-one if for each b in Rn, the equation T (x) = b has either unique solution or no solution. The
mapping is not one-to-one when some b in Rm is the image of more than one vector in Rn.

Theorem 1.10

Let T : Rn → Rm be a linear transformation, then T is one-to-one iff T (x) = 0 has only the trivial
solution.

Theorem 1.11

Let T : Rn → Rm be a linear transformation and let A be the standard matrix for T . Then:

1. T maps Rn onto Rm iff the columns of A span Rm

2. T is one-to-one iff the columns of A are linearly independent
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1.10 Linear Models in Business, Science, and Engineering

Linear Equations can be done in electrical networks.

Current flow in a simple electrical network can be described by a system of linear equations. Consider Ohm’s
Law, V = IR, which describes the current which passes through a resistor. The algebraic sum of IR voltage
drops in one direction around a loop equals the algebraic of the voltage sources in the same direction around
the loop.

The model for current flow is linear since the voltage drop across a resistor is proportional to the current
flowing through it, and the sum of the voltage drops in a loop equals the sum of the voltage sources in the
loop.

For difference equations, if there is a matrix A such that x1 = Ax0, x2 = Ax1, and in general xk+1 = Axk
for k = 0, 1, 2, . . . . then this is called a linear difference equation (or recurrence relation).

Ok whatever just use logic.
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