1 Matrix Algebra

1.1 Matrix Operations

Sums and Scalar Multiples of Matrices: if A and B are $m \times n$ matrices, A + B is the $m \times n$ whose columns are the sums of the corresponding columns in A and B, the scalar multiple rA is the matrix whose columns are r times the corresponding columns in A.

Theorem 1.1

Matrix addition and scalar multiplication: Let A, B, and C be matrices of the same size, and let r and s be scalars.

A + B = B + A
(A + B) + C = A + (B + C)
A + 0 = A
r(A + B) = rA = rB
(r + s)A = rA = sA
r(sA) = (rs)A

Matrix Multiplication: if A is an $m \times n$ matrix and B is an $n \times p$ matrix with columns $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_p$, then the product AB is the $m \times p$ matrix whose columns are $A\mathbf{b}_1, A\mathbf{b}_2, \dots, A\mathbf{b}_p$, i.e., $AB = A[\mathbf{b}_1\mathbf{b}_2\dots\mathbf{b}_p] = [A\mathbf{b}_1A\mathbf{b}_2\dots A\mathbf{b}_p]$. Matrix multiplication corresponds to composition of linear transformations.

• An efficient Matrix Multpilcation: if the product AB is defined, then the entry in row i and column j of AB is the sum of the products of corresponding entries from row i of A and column j of B. If $(AB)_{ij}$ denotes the (i, j)th entry in AB, and if A is $m \times n$, then $(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}$.

Properties of Matrix Multpilcation: Let A be $m \times n$ and let B, C have sizes such that the sums and products are defined:

- 1. A(BC) = (AB)C associative law
- 2. A(B+C) = AB + AC left distributive law
- 3. (B+C)A = BA + CA right distributive law
- 4. r(AB) = (rA)B = A(rB) for any scalar r
- 5. $I_m A = A = A I_n$ Identity matrix for multiplication
- Matrix mutiplication is not commutative. In general AB does not equal BA.
- Cancellation laws do not hold for matrix multiplication.
- If AB = 0, you cannot conclude either A = 0 or B = 0.

Powers of a Matrix: If A is $n \times n$ and k is a positive integer, A^k denote the product of k copies of A.

The Transpose of a Matrix: given an $m \times n$ matrix A, the transpose of A is the $n \times m$ matrix whose columns are formed from the corresponding rows of A.

Theorem 1.2: Transpose

Let $A,\,B$ denote matrices whose sizes are appropriate for the following:

1. $(A^T)^T = A$

- 2. $(A+B)^T = A^T + B^T$
- 3. for any scalar r, $(rA)^T = r(A)^T$
- 4. $(AB)^T = B^T A^T$

1.2 The Inverse of a Matrix

The Matrix Inverse is the matrix analogue of the multiplicative inverse of in real numbers.

• Invertible: an $n \times n$ matrix A is said to be invertible if there is an $n \times n$ matrix A^{-1} such that $A^{-1}A = AA^{-1} = I_n$. In this case A^{-1} is said to be the unique inverse of A.

Notice: because matrix multipilcation is not commutative, both equations are needed.

Singular Matrix: A matrix that is not invertible is a single matrix. An invertible matrix is nonsingular.

Theorem 1.3

Inverse of a 2×2 : Let A be the 2×2 matrix shown. If ab - dc is not zero, then A is invertible with A^{-1} as shown:

A =	$\begin{bmatrix} a \end{bmatrix}$	d	$1^{-1} - 1$	$\int d$	-b	
	c	d	$A = \frac{1}{ad - bc}$	$\left\lfloor -c \right\rfloor$	a	

Determinant: det A = ad - bc. The theorem says that a 2×2 matrix is invertible iff det A is not zero.

Theorem 1.4

If A is an invertible matrix, then for each **b** in \mathbf{R}^n , the equation $A\mathbf{x} = \mathbf{b}$ has a unique soultion $\mathbf{x} = A^{-1}\mathbf{b}$.

Theorem 1.5

- 1. If A is an invertible matrix, then A^{-1} is invertible and $(A^{-1})^{-1} = A$
- 2. If A and B are $n \times n$ invertible matrices, then so is AB and $(AB)^{-1} = B^{-1}A^{-1}$. Generalization: the product of $n \times n$ invertible matrices is invertible, and the inverse is the product of the their inverse in the reverse order.
- 3. If A is an invertible matrix, then so is A^T , and $(A^T)^{-1} = (A^{-1})^T$

Theorem 1.6

An $n \times n$ matrix is invertible iff it is row equivalent to I_n , and any sequence of elementary row operations that reduces A to I_n also transforms I_n to A^{-1} .

1.3 Characterizations of Invertible Matrices

The Invertible Matrix Theorem: let A be an $n \times n$ matrix. Then the following statements are equivalent.

- A is an invertible matrix.
- A is row equivalent to the $n \times n$ identity matrix.
- A has n pivot positions
- the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution
- the columns of A form a linearly independent set
- the linear transform $\mathbf{x} \to A\mathbf{x}$ is one-to-one

- the equation $A\mathbf{x} = \mathbf{b}$ has at least 1 soln for each **b** in \mathbf{R}^n
- the columns of A span \mathbf{R}^n
- the linear transformation $\mathbf{x} \to A\mathbf{x}$ maps \mathbf{R}^n onto \mathbf{R}^n
- there is an $n \times n$ matrix C such that CA = I
- there is an $n \times n$ matrix D such that AD = I
- A^T is an invertible matrix

Note that this only applies to square matrices.

Theorem 1.7: Inverse Transformation

Let $T : \mathbf{R}^n \to \mathbf{R}^n$ be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case, the linear transformation S given by $S(\mathbf{x}) = A^{-1}\mathbf{x}$ is the unique solution satisfying $S(T(\mathbf{x})) = \mathbf{x}$ and $T(S(\mathbf{x})) = \mathbf{x}$ for all \mathbf{x} in \mathbf{R}^n .

Recall that matrix multiplication corresponds to composition of linear transformations. When a matrix A is invertible, the equation $A^{-1}A\mathbf{x} = \mathbf{x}$ can be viewed as a statement about linear transformations. A linear transformation $T : \mathbf{R}^n \to \mathbf{R}^n$ is said to be invertible if there exists a function $S : \mathbf{R}^n \to \mathbf{R}^n$ such that $S(T(\mathbf{x})) = \mathbf{x}$ and $T(S(\mathbf{x})) = \mathbf{x}$ for all \mathbf{x} in \mathbf{R}^n .

1.4 Matrix Factorizations

A factorization of a matrix A is an equation that expresses A as a product of two or more matrices.

Whereas matrix multiplication involves a synthesis of data (combining the effects of two or more linear transformations into a single matrix), matrix factorization is an analysis of data.

The LU factorization:

At first assume that A is an $m \times n$ matrix that can be row reduced to echelon form, without row interchanges. Then A can be written in the form A = LU, where L is an $m \times m$ lower triangular matrix with 1's on the diagonal and U is an $m \times n$ echelon form of A.

Suppose A can be reduced to an echelon form U using only row replacements that add a multiple of one row to another below it. In this case, there exist unit lower triangular elementary matrices, E_1, \ldots, E_p such that $E_p \cdots E_1 A = U$.

Then $A = (E_p \cdots E_1)^{-1}U = LU$ where $L = (E_p \cdots E_1)^{-1}$.

It can be shown that products and inverses of unit lower triangular matrices are also unit lower triangular. Thus L is unit lower triangular.

Algorithm:

- Reduce A to an echelon form U by a sequence of row replacement operations, if possible.
- Place entries in L such that the same sequence of row operations reduces L to I.