
1 Matrix Algebra

1.1 Matrix Operations

Sums and Scalar Multiples of Matrices: if A and B are m× n matrices, A+B is the m× n whose columns
are the sums of the corresponding columns in A and B, the scalar multiple rA is the matrix whose columns
are r times the corresponding columns in A.

Theorem 1.1

Matrix addition and scalar multiplication: Let A, B, and C be matrices of the same size, and let r and
s be scalars.

1. A+B = B +A

2. (A+B) + C = A+ (B + C)

3. A+ 0 = A

4. r(A+B) = rA = rB

5. (r + s)A = rA = sA

6. r(sA) = (rs)A

Matrix Multiplication: if A is an m × n matrix and B is an n × p matrix with columns b1,b2, . . .bp, then
the product AB is the m × p matrix whose columns are Ab1, Ab2, . . . , Abp, i.e, AB = A[b1b2 . . .bp] =
[Ab1Ab2 . . . Abp]. Matrix multiplication corresponds to composition of linear transformations.

� An efficient Matrix Multpilcation: if the product AB is defined, then the entry in row i and column j of
AB is the sum of the products of corresponding entries from row i of A and column j of B. If (AB)ij
denotes the (i, j)th entry in AB, and if A is m× n, then (AB)ij = ai1b1j + ai2b2j + · · ·+ ainbnj .

Properties of Matrix Multpilcation: Let A be m×n and let B, C have sizes such that the sums and products
are defined:

1. A(BC) = (AB)C associative law

2. A(B + C) = AB +AC left distributive law

3. (B + C)A = BA+ CA right distributive law

4. r(AB) = (rA)B = A(rB) for any scalar r

5. ImA = A = AIn Identity matrix for multiplication

� Matrix mutiplication is not commutative. In general AB does not equal BA.

� Cancellation laws do not hold for matrix multiplication.

� If AB = 0, you cannot conclude either A = 0 or B = 0.

Powers of a Matrix: If A is n× n and k is a positive integer, Ak denote the product of k copies of A.

The Transpose of a Matrix: given an m×n matrix A, the transpose of A is the n×m matrix whose columns
are formed from the corresponding rows of A.
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Theorem 1.2: Transpose

Let A, B denote matrices whose sizes are appropriate for the following:

1. (AT )T = A
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2. (A+B)T = AT +BT

3. for any scalar r, (rA)T = r(A)T

4. (AB)T = BTAT

1.2 The Inverse of a Matrix

The Matrix Inverse is the matrix analogue of the multiplicative inverse of in real numbers.

� Invertible: an n × n matrix A is said to be invertible if there is an n × n matrix A−1 such that
A−1A = AA−1 = In. In this case A−1 is said to be the unique inverse of A.

Notice: because matrix multipilcation is not commutative, both equations are needed.

Singular Matrix: A matrix that is not invertible is a single matrix. An invertible matrix is nonsingular.

Theorem 1.3

Inverse of a 2 × 2: Let A be the 2 × 2 matrix shown. If ab − dc is not zero, then A is invertible with
A−1 as shown:

A =

[
a d
c d

]
A−1 =

1

ad− bc

[
d −b
−c a

]

Determinant: det A = ad− bc. The theorem says that a 2× 2 matrix is invertible iff det A is not zero.

Theorem 1.4

If A is an invertible matrix, then for each b in Rn, the equation Ax = b has a unique soultion x = A−1b.

Theorem 1.5

1. If A is an invertible matrix, then A−1 is invertible and (A−1)−1 = A

2. If A and B are n×n invertible matrices, then so is AB and (AB)−1 = B−1A−1. Generalization:
the product of n × n invertible matrices is invertible, and the inverse is the product of the their
inverse in the reverse order.

3. If A is an invertible matrix, then so is AT , and (AT )−1 = (A−1)T

Theorem 1.6

An n×n matrix is invertible iff it is row equivalent to In, and any sequence of elementary row operations
that reduces A to In also transforms In to A−1.

1.3 Characterizations of Invertible Matrices

The Invertible Matrix Theorem: let A be an n× n matrix. Then the following statements are equivalent.

� A is an invertible matrix.

� A is row equivalent to the n× n identity matrix.

� A has n pivot positions

� the equation Ax = 0 has only the trivial solution

� the columns of A form a linearly independent set

� the linear transform x → Ax is one-to-one
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� the equation Ax = b has at least 1 soln for each b in Rn

� the columns of A span Rn

� the linear transformation x → Ax maps Rn onto Rn

� there is an n× n matrix C such that CA = I

� there is an n× n matrix D such that AD = I

� AT is an invertible matrix

Note that this only applies to square matrices.

Theorem 1.7: Inverse Transformation

Let T : Rn → Rn be a linear transformation and let A be the standard matrix for T . Then T is invertible
if and only if A is an invertible matrix. In that case, the linear transformation S given by S(x) = A−1x
is the unique solution satisfying S(T (x)) = x and T (S(x)) = x for all x in Rn.

Recall that matrix multipilcation corresponds to composition of linear transformations. When a matrix A is
invertible, the equation A−1Ax = x can be viewed as a statement about linear transformations. A linear
transformation T : Rn → Rn is said to be invertible if there exists a function S : Rn → Rn such that
S(T (x)) = x and T (S(x)) = x for all x in Rn.

1.4 Matrix Factorizations

A factorization of a matrix A is an equation that expresses A as a product of two or more matrices.

Whereas matrix multiplication involves a synthesis of data (combining the effects of two or more linear
transformations into a single matrix), matrix factorization is an analysis of data.

The LU factorization:

At first assume that A is an m×n matrix that can be row reduced to echelon form, without row interchanges.
Then A can be written in the form A = LU , where L is an m ×m lower triangular matrix with 1’s on the
diagonal and U is an m× n echelon form of A.

Suppose A can be reduced to an echelon form U using only row replacements that add a multiple of one row
to another below it. In this case, there exist unit lower triangular elementary matrices, E1, . . . , Ep such that
Ep · · ·E1A = U .

Then A = (Ep · · ·E1)
−1U = LU where L = (Ep · · ·E1)

−1.

It can be shown that products and inverses of unit lower triangular matrices are also unit lower triangular.
Thus L is unit lower triangular.

Algorithm:

� Reduce A to an echelon form U by a sequence of row replacement operations, if possible.

� Place entries in L such that the same sequence of row operations reduces L to I.
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