
1 Eigenvalues and Eigenvectors

1.1 Eigenvectors and Eigenvalues

Eigenvectors and Eigenvalues: viewing a matrix as a linear transformation x → Ax vectors that are only
scaled (not rotated) are called eigenvectors. The scaling factor is the associated eigenvalue.

Definition

An eigenvector of an n× n matrix A is a nonzero vector x⃗ such that

Ax⃗ = λx⃗

is true for some scalar λ. A scalar λ is called an eigenvalue of A if there is a nontrivial solution x⃗ of the above
equation. We often state that x⃗ is an eigenvector corresponding to λ.

The equation you will solve to find eigenvectors: Ax⃗ = λx⃗ =⇒ Ax⃗− λx⃗ = 0⃗ =⇒ (A− λI)x⃗ = 0⃗.

The set of solutions to this homogeneous equation is just the nullspace of the matrix, so this set is a subspace
of Rn and is caleld the eigenspace corresponding to λ.

Theorem 1.1

The eigenvalues of a triangular matrix are the entries on its main diagonal.

Theorem 1.2

If v1, v2, . . . , vp are eigenvectors that correspond to distinct eigenvalues of an n × n matrix, then the
set {v1, v2, . . . , vp} is linearly independent.

Eigenvectors and Difference Equations: constructing a solution of the first-order difference equation: xk+1 =
Axk(k = 0, 1, 2, . . . ).

If A is n× n then xk+1(k = 0, 1, 2, . . . ) is a recursive description of a sequence {xk} in Rn.

A solution is an explicit description of {xk} whose formula for each xk does not depend directly on A or the
preceding terms in the sequence other than the initial term x0.

The simplest way to build a solution is to take an eigenvector x0 and it’s corresponding eigenvalue and let
x⃗k = λkx.

This sequence is a solution because: Ax⃗k = A(λkx⃗0) = λk(Ax⃗0) = λk(λx⃗0) = λk+1x⃗0 = x⃗k+1.

1.2 The Characteristic Equation

Theorem 1.3

An n× n matrix A is invertible if and only if 0 is not an eigenvalue of A,

The Characteristic Equation: a scalar λ is an eigenvalue of an n × n matrix A if and only if λ satisfies the
characteristic equation: det (A− λI) = 0.

The characteristic equation of an N × n matrix is an nth degree polynomial. We expect exactly n roots,
counting multiplicities, provided complex roots are allowed.
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Similarity: If A and B are n× n matrices, then A is similar to B if there is an invertible matrix P such that
P−1 = AP = B or equivalently A = PBP−1. Changing A to P−1AP is called a similarity transformation.

Theorem 1.4

If n×n matrices A and B are similar, then they have the same characteristic polynomial and hence the
same eigenvalues with the same multiplicities.

Similarity is not the same as row equivalence. If matrices have the same eigenvalues, they may not be
similar.

1.3 Diagonalization

A square matrix A is said to be diagonalizable if A is similar to a diagonal matrix, that is if A = PDP−1 for
some invertible matrix P and some diagonal, matrix D.

Theorem 1.5

An n× n matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

In fact, A = PDP−1, with D a diagonal matrix, if and only if the columns of P are n linearly
independent eigenvectors of A. In this case, the diagonal entries of D are eigenvalues of A that
correspond, respectively, to the eigenvectors in P .

In other words, A is diagonalizable if and only if there are enough eigenvectors to form a basis. We call
such a basis an eigenvector basiso f.

Theorem 1.6

An n× n matrix with n distinct eigenvalues is diagonalizable.

Theorem 1.7

Let A be an n× n matrix whose distinct eigenvalues are λ1, . . . , λp.

For 1 ≤ k ≤ p, the dimension of the eigenspace for λk is less than or equal to the multiplicity of the
eigenvalue λk.

The matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces equals n,
and this happens if and only if the characteristic polynomial factors completely into linear factors and
the dimension of the eigenspace for each λk equals the multiplicity of λk.

If A is diagonalizable and Bk is a bsis for the eigenspace corresponding to λk for each k, then the total
collection of vectors in the sets B1, . . . , Bp forms and eigenvector basis.

1.4 Applications to Differential Equations

Systems of Differential Equations: Several quantities are varying continuously in time and related by a linear
system of differential equations:

Linear x′(t) = Ax(t) where x(t) = (x1(t), x2(t), . . . , xn(t)).

A solution of x′(t) = Ax(t) is a vector-valued function that satisfies x′(t) = Ax(t) for all t in some interval
of real numbers such as t ≥ 0.

From Differential Equations, we know there always exist what is called a Fundamental Set of Solutions to
x′(t) = Ax(t) A fundamental set if a basis for the set of all solutions of x′(t) = Ax(t), and the solution set
is an n-dimensional vector space of functions.
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If a vector x0 specified, then the initial value problem is to construct the unique function x(t) such that
x′(t) = Ax(t) and x(0) = x0.

The 2 real solutions to x′(t) = Ax(t) are: y1(t) = Rex1(t) = [(Rev) cos(bt)− (Imv) cos(bt)]eat. and y2(t) is
basically the same but it is Im x1(t).
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