
1 Orthogonality and Least Sqaures

1.1 Inner Product, Length, and Orthogonality

Inner Product (generalization of the dot product of vectors in Rn)

Inner Product/Dot Product of vectors in Rn : u⃗ · v⃗ = u⃗T v⃗ = u1v1 + u2v2 + · · ·+ unvn

Theorem 1.1

Let u, v,w be vectors, let c be a scalar, then an inner product is a function assigns a scalar to each pair
of vector u and v satisfies:

� u⃗ · v⃗ = v⃗ · u⃗

� (u⃗+ v⃗) · w⃗ = u⃗ · w⃗ + v⃗ · w⃗

� (cu⃗) · v⃗ = c(u⃗ · v⃗) = u⃗ · (cv⃗)

� u⃗ · u⃗ = 0 iff u⃗ = 0⃗

The Length/Norm of a vector of v is the nonnegative scalar ||v⃗|| =
√
v⃗ · v⃗ =

√
v21 + v22 + · · ·+ v2n and

||v⃗||2 = v⃗ · v⃗

� A vector whose length is 1 is called a unit vector. If we divide a nonzero vector v by its length, that is,
multiply by 1/||v||, we obtain a unit vector this process is called normalizing (direction is preserved)

Distance in Rn: for u and v in Rn, the distance between u and v, written dist(u, v) is the length of the vector
u− v, that is dist(u, v) = ||u− v||

� In R2 and R3 this definition coincides with the usual formulas for Euclidean distance between 2 points

Orthogonality of vectors in Rn is the generalization of the concept of perpendicular lines in ordinary Euclidean
geometry.

Def: two vectors u and v in Rn are orthogonal (to each other) if u · v = 0.

Note the zero vector is ortohgonal to every vector in Rn

Pythagorean theorem: 2 vectors u and v are orthogonal if and only if ||u+ v||2 = ||u||2 + ||v||2.

Orthogonal Complements: used in SVD

If a vector z is orthogonal to every vector in a subspace W of Rn, then z is said to be ortohgonal to W

The set of all vectors z that are orthogonal to W is called the ortohgonal complement of W denoted W⊥

read as “W perpendicular” or “W perp”

Properties/facts

� a vector x is in W perp if and only if x is orthogonal to every vector in a set that spans W

� W perp is a subspace of Rn

Theorem 1.2

Let A be an m× n matrix. The orthogonal complement of the row space of A is the null space of A,
and the orthogonal complement of the column space of A is the null space of AT . (Row A)⊥ = Nul A
and (Col A)⊥ = Nul AT .
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1.2 Orthogonal Sets

Orthogonal Sets: a set of vectors {u1,u2, dots,up} in Rn is said to be an orthogonal set if each pair of
distinct vectors from theset is orthogonal.

Theorem 1.3

If S = {u1,u2, . . . ,up} is an orthogonal set of non-zero vectors in Rn, then S is linearly independent
and hence is a basis for the subspace spanned by S.

Definition

An Orthogonal Basis for a subspace W of Rn is a basis for W that is also an orthogonal set.

Theorem 1.4

Let {u1,u2, . . . ,up} be an orthogonal basis for a subspace W of Rn. For each vector y in W , the
weights in the linear combination y = c1u1 + c2u2 + · · ·+ cpup are:

cj =
v⃗ · u⃗j

u⃗j · u⃗j
j = 1, 2, . . . , p

This formula is why an orthogonal basis is much nicer than others.

Orthogonal projection: given a nonzero vector u in Rn, consider the problem of decomposing a vector y in
Rn into the sum of two vectors, one a multiple of u and the other orthogonal to u.

ŷ ios the orthogonal projection of y onto u, the vector |textbfz is the component of y orthogonal to u.

Geometric Interpreation THeorem for finding coordinates of an orthogonal basis: The theorem decomposes
vector y into a sum of orthogonal productions onto one-dimensiona subspaces.

Decomposing a Force into Component Forces: occurs in physics

Orthonormal Sets: a set {u1,u2, . . . ,up} is an orthonormal set if it is an orthogonal set of unit vectors. If W
is the subspace spanned by such a set, then {u1,u2, . . . ,up} is an orthonormal basis for W ¡ since the set is
automatically linearly independent.

Matrices whose columns form an orthonormal set are important in applications and computer algorithms for
matrix computations. Their main properties are given in the following two theorems:

Theorem 1.5

An m× n matrix U has orthonormal columns if and only if UTU = I.

Theorem 1.6

Let U be an m× n matrix with orthonormal columns, and let x and y be in Rn then:

� ||Ux⃗|| = ||x⃗||

� (Ux⃗) · (Uy⃗) = x⃗ · y⃗

� (Ux⃗) · (Uy⃗) = 0 iff x⃗ · y⃗ = 0

An orthogonal matrix is a square invertible matrix U , U−1 = UT .
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1.3 Orthogonal Projections

The Orthogonal Projection: Given a vector y and a subspace W in Rn there is a vector ŷ in W such that

� ŷ is the unique vector in W closest to y

� ŷ is the unique vector for which y− ŷ is orthogonal to W .

These two properties of y⃗ provide the key to finding the least squares solution to linear systems.

Theorem 1.7

Let W be a subspace of Rn. Then each y in Rn can be written uniquely in the form: y = ŷ+ z where
y⃗ is in W and z is in W⊥. In fact, if {u1,u2, . . . ,up} is any orthogonal basis of W , then

ŷ =
v⃗ · u⃗1

u⃗1 · u⃗1
u⃗1 + · · ·+ v⃗ · u⃗p

u⃗p · u⃗p
u⃗p and z⃗ = y⃗ · ŷ

The theorem tells us decomposition of y = z1 + z2 can be computed without having an orthogonal basis for
Rn. It is enough to haev an orthogonal basis only for W .

Geometric Interpretation of the Orthogonal Projection: the orthogonal projection ŷ of y onto W is the sum
of the projections of y onto one-dimensional subspaces that are orthogonal to each other.

Properties of Orthogonal Projections

Theorem 1.8

Let W be a subspace of Rn, let y be any vector in Rn and ŷ be the orthogonal projection of y onto W .
Then ŷ is the closest point in W to y in the sense that ||y− ŷ|| < ||y− v|| for all v in W distinct from
ŷ.

Theorem 1.9

If {u1,u2, . . . ,up} is an orthonormal basis for a subspace W of Rn, then projwy = (y⃗ · u⃗1)u⃗1 + (y⃗ ·
u⃗2)u⃗2 + · · ·+ (y⃗ · u⃗p)u⃗p.

If U = [u1u2 . . .up] then projwy = UUT y for all y in Rn.

1.4 The Gram-Schmidt Process

The Gram-Schmidt process is a simple algorithm for producing an orthogonal basis for any nonzero subspace
of Rn.

Theorem 1.10

Given a basis {x1, x2, . . . , xp} for a nonzero subspace of Rn, define:

� v⃗1 = x⃗1

� v⃗2 = x⃗2 − x⃗2·v⃗1
v⃗1·v⃗1 v⃗1

� v⃗3 = x⃗3 − x⃗3·v⃗1
v⃗1·v⃗1 v⃗1 −

x⃗2·v⃗2
v⃗2·v⃗2 v⃗2

Orthonormal Basis: when working problems by hand, it is easier to normalize each vk as they are foud.

QR Factorization of Matrices: if an m × n matrix A has linearly independent columns x1, x2, . . . , xp then
applying the Gram-Schmidt process with normalizations to x1, x2, . . . , xp amounts to factoring A as described
in the following theorem and is used widely in computer algorithms.



CHAPTER 1. ORTHOGONALITY AND LEAST SQAURES 4

Theorem 1.11

If A is an m × n matrix with linearly independent columns then A can be factored as A = QR where
Q is an m × n matrix whose columns form an orthonormal basis for Col A and R is an n × n upper
triangular matrix with positive entities on the diagonal.

When the Gram Schmidt process is run on the computer, a round off error can build up as the vectors are
calculated, one by one. For j and k large but unequal, the innter product may not be sufficiently close to zero.
A different computer based QR factorization is usually preferred to the modified Graham Schmidt Method
because it yields a more accurate orthogonal basis, even though the factorization requires about twice as
much arithmetic.

1.5 Least-Squares Problems

The Least Squares Problem: given Ax = b that is possibly inconsistent, find an x that makes ||b − Ax|| as
small as possible.

Definition

If A is an m × n matrix and b is in Rn, a least-squares solution of Ax = b is x in Rn such that
||b−Ax|| ≤ ||b−Ax′|| for all x′ in Rn

Notice: Ax is in the column space of A, Col A, so we seek an x that makes Ax the closest point to in Col A
to b.

Theorem 1.12

The set of least squares solutions of Ax = b coincides with the nonempty set of solutions of the normal
equation ATAx̂ = AT b̂

Note: if there is a free variable, the least squares solution may not be unique

Deriving the Normal Equations for Ax = b:

1. Note Ax is in the Col A, therefore the b associated least squares solution of Ax = b is in Col A

2. Use the Best Approximation Theorem to determine the solution of the Least Square Problem is the
orthogonal projection of b onto Col A, b̂ = projColAb

3. Note: for the Least Squares Problem: we are looking for x̂ that satisfies Ax̂ = b̂

4. use the Orthogonal Decomposition Theorem to find the vector z orthogonal to b̂, z = b− b̂

5. use the fact that z must be orthogonal to the Col A, and therefore any column vector of A, ai is
orthogonal to z = b− b̂ = b−Ax̂ =⇒ ai · (b−Ax̂ = 0)

Theorem 1.13

Let A be an m× n matrix. The following statements are logically equivalent

1. the equation Ax = b has a unique least-square solution for each b in Rn

2. the columns of A are linearly independent

3. the matrix ATA is invertible

When these statements are true, the least squares solution x̂ is given by x̂ = (ATA)−1ATb
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1.6 Machine Learning and Linear Models

Machine learning uses linear models in sitautions where the machine is being trained to predict the outcome
based on the values of hte inputs.

The machine is given a set of training data where the values of the independent and dependent variables are
known.

The least squares line is the line y = β0 + β1x that minimizes the sum of the squares of the residuals.

This line is also called a line of regression of y on x. The coefficients β0, β1 of the line are called regression
coefficients.

In general a linear model will arise whenever y is to be predicted by an equation of the form

y = β0f(0)(u, v) + β1f1(u, v) + · · ·+ βkfk(u, v)

with f0, . . . , fk any sort of known functions and β0, β1, . . . , βk unknown weights.

1.7 Inner Product Spaces

Definition

An inner product on a vector space V is a function that, to each pair of vectors u and v in V , associated
a real number ⟨u, v⟩ and satisfies the following axioms, for all u, v, and w in V and all scalars c:

1. ⟨u, v⟩ = ⟨v,u⟩

2. ⟨u+ v,w⟩ = ⟨u+w⟩+ ⟨v+w⟩

3. ⟨cu, v⟩ = c⟨u, v⟩

4. ⟨u,u⟩ ≥ 0 and ⟨u,u⟩ = 0 if and only if u = 0

A vector space with an innter product is called an inner product space.


	Orthogonality and Least Sqaures
	Inner Product, Length, and Orthogonality
	Orthogonal Sets
	Orthogonal Projections
	The Gram-Schmidt Process
	Least-Squares Problems
	Machine Learning and Linear Models
	Inner Product Spaces


