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Basic Vector Operations
The arrows that describe the raft’s motion are examples of vectors—quantities that have 
both length (or magnitude) and direction. Vectors arise naturally in many situations. For 
example, electric and magnetic fields, the flow of air over an airplane wing, and the veloc-
ity and acceleration of elementary particles are described by vectors (Figure 13.2). In this 
section, we examine vectors in the xy-plane; then we extend the concept to three dimen-
sions in Section 13.2.

The vector whose tail is at the point P and whose head is at the point Q is denoted PQr  
(Figure 13.3). The vector QPr  has its tail at Q and its head at P. We also label vectors with 
single boldface characters such as u and v.

13

Chapter Preview We now make a significant departure from previous chap-
ters by stepping out of the xy-plane 1ℝ22 into three-dimensional space 1ℝ32. The funda-
mental concept of a vector—a quantity with magnitude and direction—is introduced in 
two and three dimensions. We then develop the algebra associated with vectors (how to 
add, subtract, and combine them in various ways), and we define two fundamental opera-
tions for vectors: the dot product and the cross product. The chapter concludes with a brief 
survey of basic objects in three-dimensional geometry, namely lines, planes, and elemen-
tary surfaces.

13.1 Vectors in the Plane
Imagine a raft drifting down a river, carried by the current. The speed and direction of the 
raft at a point may be represented by an arrow (Figure 13.1). The length of the arrow rep-
resents the speed of the raft at that point; longer arrows correspond to greater speeds. The 
orientation of the arrow gives the direction in which the raft is headed at that point. The 
arrows at points A and C in Figure 13.1 have the same length and direction, indicating that 
the raft has the same speed and heading at these locations. The arrow at B is shorter and 
points to the left of the rock, indicating that the raft slows down as it nears the rock.

Vectors and the Geometry  
of Space

13.1 Vectors in the Plane

13.2 Vectors in Three Dimensions

13.3 Dot Products

13.4 Cross Products

13.5 Lines and Planes in Space

13.6 Cylinders and Quadric 
Surfaces

A
CB

Figure 13.1
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 13.1 Vectors in the Plane 805

Scalar Multiplication
A scalar c and a vector v can be combined using scalar-vector multiplication, or simply 
scalar multiplication. The resulting vector, denoted cv, is called a scalar multiple of v. The 
length of cv is 0 c 0  multiplied by the length of v. The vector cv has the same direction as v 
if c 7 0. If c 6 0, then cv and v point in opposite directions. If c = 0, then the product 
0v = 0 (the zero vector).

For example, the vector 3v is three times as long as v and has the same direction as v.  
The vector -2v is twice as long as v, but it points in the opposite direction. The vector 12 v  
points in the same direction as v and has half the length of v (Figure 13.5). The vectors v,  
3v, -2v, and 1

2 v are examples of parallel vectors: Each one is a scalar multiple of the 
others.

Two vectors u and v are equal, written u = v, if they have equal length and point in 
the same direction (Figure 13.4). An important fact is that equal vectors do not necessarily 
have the same location. Any two vectors with the same length and direction are equal.

Not all quantities are represented by vectors. For example, mass, temperature, and 
price have magnitude, but no direction. Such quantities are described by real numbers and 
are called scalars.

Electric field vectors due to two charges

2 1

   Velocity vectors of air flowing
over an airplane wing

   Tracks of elementary particles in a cloud chamber
are aligned with the velocity vectors of the particles.

Figure 13.2

Tail

Head

P

Q

Vector PQ

Figure 13.3

Vectors u and v
are equal if
they have the
same length
and direction.

v

u

Figure 13.4

➤	 In this text, scalar is another word for 
real number.

➤	 The vector v is commonly handwritten as 
vS. The zero vector is handwritten as 0S.

Vectors, Equal Vectors, Scalars, Zero Vector

Vectors are quantities that have both length (or magnitude) and direction. Two 
vectors are equal if they have the same magnitude and direction. Quantities having 
magnitude but no direction are called scalars. One exception is the zero vector, 
denoted 0: It has length 0 and no direction.

Same direction
as v and half
as long as v

Twice as long as
v, pointing in the
opposite direction

Same direction as v
and three times
as long as v

22v

3v

v

v22
1

Figure 13.5 DEFINITION Scalar Multiples and Parallel Vectors

Given a scalar c and a vector v, the scalar multiple cv is a vector whose length is 
0 c 0  multiplied by the length of v. If c 7 0, then cv has the same direction as v. If 
c 6 0, then cv and v point in opposite directions. Two vectors are parallel if they 
are scalar multiples of each other.
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806 Chapter 13  •  Vectors and the Geometry of Space 

Notice that 0v = 0 for all vectors v. It follows that the zero vector is parallel to all 
vectors. While it may seem counterintuitive, this result turns out to be a useful convention.

QUICK CHECK 1 Describe the length  
and direction of the vector -5v 
relative to v.	

➤	 For convenience, we write -u for 

1-12u, -cu for 1-c2u, and u>c for 
1
c

 u.

EXAMPLE 1 Parallel vectors Using Figure 13.6a, write the following vectors in terms 
of u or v.

a. PQr   b. QPr   c. QRr   d. RSr

SOLUTION

a. The vector PQr  has the same direction and length as u; therefore, PQr = u. These two 
vectors are equal even though they have different locations (Figure 13.6b).

b. Because QPr  and u have equal length but opposite directions, QPr = 1-12u = -u.

c. QRr  points in the same direction as v and is twice as long as v, so QRr = 2v.

d. RSr points in the direction opposite that of u with three times the length of u. Conse-
quently, RSr = -3u.

Related Exercise 15	

O QP

RS

v

u

(a)

O QP

RS

v

u
5 u

5 2u 5 2v

5 23uRS

PQ

QRQP

(b)

Figure 13.6

Vector Addition and Subtraction
To illustrate the idea of vector addition, consider a plane flying horizontally at a constant 
speed in a crosswind (Figure 13.7). The length of vector va represents the plane’s airspeed, 
which is the speed the plane would have in still air; va points in the direction of the nose 
of the plane. The wind vector w points in the direction of the crosswind and has a length 
equal to the speed of the crosswind. The combined effect of the motion of the plane and 
the wind is the vector sum vg = va + w, which is the velocity of the plane relative to the 
ground.

Figure 13.8 illustrates two ways to form the vector sum of two nonzero vectors u and 
v geometrically. The first method, called the Triangle Rule, places the tail of v at the 
head of u. The sum u + v is the vector that extends from the tail of u to the head of v  
(Figure 13.8b).

When u and v are not parallel, another way to form u + v is to use the Parallelo-
gram Rule. The tails of u and v are connected to form adjacent sides of a parallelogram; 
then the remaining two sides of the parallelogram are sketched. The sum u + v is the 
vector that coincides with the diagonal of the parallelogram, beginning at the tails of u 
and v (Figure 13.8c). Both the Triangle Rule and the Parallelogram Rule produce the same 
vector sum u + v.

va (v
elocity relative to air)

w

(velocity
of wind)

(velocity relative
to ground)

Figure 13.7

u 1 v

v

u

v

u

the Triangle RuleTo add u and v,
use…

u 1 v

v

u

(c)(b)(a)

or the Parallelogram Rule.

Figure 13.8

QUICK CHECK 2 Sketch the sum va + w 
in Figure 13.7 if the direction of w is 
reversed.	

The difference u - v is defined to be the sum u + 1-v2. By the Triangle Rule, the 
tail of -v is placed at the head of u; then u - v extends from the tail of u to the head of 
-v (Figure 13.9a). Equivalently, when the tails of u and v coincide, u - v has its tail at 
the head of v and its head at the head of u (Figure 13.9b).

QUICK CHECK 3 Use the Triangle Rule 
to show that the vectors in Figure 13.8 
satisfy u + v = v + u.	
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u 2 v

2v

uv

Finding u 2 v 5 u 1 (2v)
by Triangle Rule

(a)

u 2 v

u

v

Finding u 2 v directly

(b)

Figure 13.9

EXAMPLE 2 Vector operations Use Figure 13.10 to write the following vectors as 
sums of scalar multiples of v and w.

a. OPr   b. OQr   c. QRr

SOLUTION

a. Using the Triangle Rule, we start at O, move three lengths of v in the direction of v 
and then two lengths of w in the direction of w to reach P. Therefore, OPr = 3v + 2w 
(Figure 13.11a).

b. The vector OQr  coincides with the diagonal of a parallelogram having adjacent sides 
equal to 3v and -w. By the Parallelogram Rule, OQr = 3v - w (Figure 13.11b).

c. The vector QRr  lies on the diagonal of a parallelogram having adjacent sides equal to v 
and 2w. Therefore, QRr = v + 2w (Figure 13.11c).

O

Q

P

Rw

v

Figure 13.10

R

5 v 1 2w

(c)

O

w

v

Q

2w

v
QR

Q
5 3v 2 w

2w
3vO

(b)

OQ

(a)

3v

2w

O

P

5 3v 1 2wOP

Figure 13.11
Related Exercises 17–18	

Vector Components
So far, vectors have been examined from a geometric point of view. To do calculations 
with vectors, it is necessary to introduce a coordinate system. We begin by considering a 
vector v whose tail is at the origin in the Cartesian plane and whose head is at the point 
1v1, v22 (Figure 13.12a).

DEFINITION Position Vectors and Vector Components

A vector v with its tail at the origin and head at the point 1v1, v22 is called a 
position vector (or is said to be in standard position) and is written 8v1, v29 . 
The real numbers v1 and v2 are the x- and y-components of v, respectively. The 
position vectors u = 8u1, u29  and v = 8v1, v29  are equal if and only if u1 = v1 
and u2 = v2.

➤	 Round brackets 1a, b2 enclose the 
coordinates of a point, while angle 
brackets 8a, b9  enclose the components 
of a vector. Note that in component form, 
the zero vector is 0 = 80, 09 .

There are infinitely many vectors equal to the position vector v, all with the same 
length and direction (Figure 13.12b). It is important to abide by the convention that 
v = 8v1, v29  refers to the position vector v or to any other vector equal to v.
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x2 2 x1

y2 2 y1

P(x1, y1)

Q (x2, y2)

x

y

O v1 x1 x2

v2

y2

y1

v 5 kv1, v2l

PQ 5 kx2 2 x1, y2 2 y1l

uPQu 5 Ï(x2 2 x1)2 1 (y2 2 y1)2

Figure 13.13

QUICK CHECK 4 Given the points 
P12, 32 and Q1-4, 12, find the 
components of PQr .	

Now consider the vector PQr  equal to v = 8v1, v29 , but not in standard position, 
with its tail at the point P1x1, y12 and its head at the point Q1x2, y22. The x-component 
of PQr  is the difference in the x-coordinates of Q and P, or x2 - x1. The y-component  
of PQr  is the difference in the y-coordinates, y2 - y1 (Figure 13.13). Therefore, 
PQr = 8x2 - x1 

, y2 - y19 = 8v1, v29 = v.
As already noted, there are infinitely many vectors equal to a given position vec-

tor. All these vectors have the same length and direction; therefore, they are all equal. 
In other words, two arbitrary vectors are equal if they are equal to the same position 
vector. For example, the vector PQr  from P12, 52 to Q16, 32 and the vector ABr  from 
A17, 122 to B111, 102 are equal because they both equal the position vector 84, -29 .

Magnitude
The magnitude of a vector is simply its length. By the Pythagorean Theorem and  
Figure 13.13, we have the following definition.

➤	 Just as the absolute value 0 p - q 0  gives 
the distance between the points p and q 
on the number line, the magnitude 0PQr 0  
is the distance between the points P and 
Q. The magnitude of a vector is also 
called its norm.

DEFINITION Magnitude of a Vector

Given the points P1x1, y12 and Q1x2, y22, the magnitude, or length, of 
PQr = 8x2 - x1, y2 - y19 , denoted 0PQr 0 , is the distance between P and Q:

0PQr 0 = 21x2 - x122 + 1y2 - y122.

The magnitude of the position vector v = 8v1, v29  is 0 v 0 = 2v1
2 + v2

2.

EXAMPLE 3 Calculating components and magnitude Given the points O10, 02, 
P1-3, 42, and Q16, 52, find the components and magnitude of the following vectors.

a. OPr   b. PQr

SOLUTION

a. The vector OPr  is the position vector whose head is located at P1-3, 42. Therefore, 
OPr = 8 -3, 49  and its magnitude is 0OPr 0 = 21-322 + 42 = 5.

b. PQr = 86 - 1-32, 5 - 49 = 89, 19  and 0PQr 0 = 292 + 12 = 182.
Related Exercise 19	

Vector Operations in Terms of Components
We now show how vector addition, vector subtraction, and scalar multiplication are per-
formed using components. Suppose u = 8u1, u29  and v = 8v1, v29 . The vector sum of u 
and v is u + v = 8u1 + v1, u2 + v29 . This definition of a vector sum is consistent with 
the Parallelogram Rule given earlier (Figure 13.14).

u 1 v

x

y

O

v

u

v1 u1 u1 1 v1

v2

u2 1 v2

u2

u 1 v 5 ku1 1 v1, u2 1 v2l
by the Parallelogram Rule

(u1 1 v1, u2 1 v2)

Figure 13.14

(b)

x

y

v (position vector)

v

v

v
v

v

Copies of v at di�erent locations are equal.

O

v

v1

v2

(a)

Ox

y

Position vector v 5 kv1, v2l

Figure 13.12
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 13.1 Vectors in the Plane 809

For a scalar c and a vector u, the scalar multiple cu is cu = 8cu1, cu29 ; that is, the 
scalar c multiplies each component of u. If c 7 0, u and cu have the same direction  
(Figure 13.15a). If c 6 0, u and cu have opposite directions (Figure 13.15b). In either 
case, 0 cu 0 = 0 c 0 0 u 0  (Exercise 83).

Notice that u -  v = u +1-v2, where -v = 8 -v1, -v29 . Therefore, the vector dif-
ference of u and v is u -  v = 8u1 - v1, u2 - v29 .

x

y

cu1u1

cu2

u2

(a)

cu 5 kcu1, cu2l, for c . 0

cu 5 kcu1, cu2l

u 5 ku1, u2l

  

u 5 ku1, u2l

cu 5 kcu1, cu2l
x

y

cu1

u1

cu2

u2

(b)

cu 5 kcu1, cu2l, for c , 0

Figure 13.15

➤	 Recall that ℝ2 (pronounced R-two) stands 
for the xy-plane or the set of all ordered 
pairs of real numbers.

DEFINITION Vector Operations in ℝ2

Suppose c is a scalar, u = 8u1, u29 , and v = 8v1, v29 .
 u + v = 8u1 + v1, u2 + v29  Vector addition

 u - v = 8u1 - v1, u2 - v29  Vector subtraction

 cu = 8cu1, cu29  Scalar multiplication

EXAMPLE 4 Vector operations Let u = 8 -1, 29  and v = 82, 39 .
a. Evaluate 0 u + v 0 .
b. Simplify 2u - 3v.

c. Find two vectors half as long as u and parallel to u.

SOLUTION

a. Because u + v = 8 -1, 29 + 82, 39 = 81, 59 ,  we have 

0 u + v 0 = 212 + 52 = 126.

b. 2u - 3v = 28 -1, 29 - 382, 39 = 8 -2, 49 - 86, 99 = 8 -8, -59
c. The vectors 12 u = 1

2 8 -1, 29 = 8 -  12 , 19  and -  12 u = -  12 8 -1, 29 = 81
2 , -19  have 

half the length of u and are parallel to u.
Related Exercises 26, 28, 30	

Unit Vectors
A unit vector is any vector with length 1. Two useful unit vectors are the coordinate unit 
vectors i = 81, 09  and j = 80, 19  (Figure 13.16). These vectors are directed along the 
coordinate axes and enable us to express all vectors in an alternative form. For example, 
by the Triangle Rule (Figure 13.17a),

83, 49 = 381, 09 + 480, 19 = 3i + 4j.

In general, the vector v = 8v1, v29  (Figure 13.17b) is also written

v = v181, 09 + v280, 19 = v1i + v2 j.

1

1 x

y

j 5 k0, 1l
i 5 k1, 0l

0

Coordinate
unit vectors

Figure 13.16
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Given a nonzero vector v, we sometimes need to construct a new vector parallel to v 

of a specified length. Dividing v by its length, we obtain the vector u =
v
0 v 0  . Because u is 

a positive scalar multiple of v, it follows that u has the same direction as v. Furthermore, u 

is a unit vector because 0 u 0 = 0 v 00 v 0 = 1. The vector -u = -  
v
0 v 0  is also a unit vector with 

a direction opposite that of v (Figure 13.18). Therefore, { v
0 v 0  are unit vectors parallel to v  

that point in opposite directions.
To construct a vector that points in the direction of v and has a specified length c 7 0, 

we form the vector 
cv
0 v 0  . It is a positive scalar multiple of v, so it points in the direction of 

v, and its length is ` cv
0 v 0 ` = 0 c 0

0 v 0
0 v 0 = c. The vector -  

cv
0 v 0  points in the opposite direction 

and also has length c. With this construction, we can also write v as the product of its mag-
nitude and a unit vector in the direction of v:

v = 0 v 0 # v
0 v 0  ."

      "
 

magnitude
 direction

kv1, v2l 5 v1i 1 v2 j

x

y

v1i

v1i 1 v2 j

v2 j

(b)

O

k3, 4l 5 3i 1 4j

4

1 2 3 4

3

2

1

x

y

0

3i

3i 1 4j

4j

(a)

Figure 13.17

➤	 Coordinate unit vectors are also called 
standard basis vectors.

u 5       and 2u 5 2      have length 1.
uvu
v

uvu
v

v

uvu
v

uvu
v

2

21 1

1

21

0 x

y

Figure 13.18

QUICK CHECK 5 Find vectors of 
length 10 parallel to the unit vector 
u = 83

5 , 
4
5 9 .	

EXAMPLE 5 Magnitude and unit vectors Consider the points P11, -22 and Q16, 102.
a. Find PQr  and two unit vectors parallel to PQr .

b. Find two vectors of length 2 parallel to PQr .

c. Express PQr  as the product of its magnitude and a unit vector.

SOLUTION

a. PQr = 86 - 1, 10 - 1-229 = 85, 129 , or 5i + 12j. Because 

0PQr 0 = 252 + 122 = 1169 = 13, a unit vector parallel to PQr  is

PQr

0PQr 0 =
85, 129

13
= h 5

13
 , 

12
13
i =

5
13

 i +
12
13

 j.

The unit vector parallel to PQr  with the opposite direction is 8 -  5
13 , -  12

13 9 .
b. To obtain two vectors of length 2 that are parallel to PQr , we multiply the unit vector 

5
13 i + 12

13 j by{2:

2a 5
13

 i +
12
13

 jb =
10
13

 i +
24
13

 j and -2a 5
13

 i +
12
13

 jb = -
10
13

 i -
24
13

 j.
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 13.1 Vectors in the Plane 811

c. The unit vector 8 5
13 , 

12
13 9  points in the direction of PQr , so we have

PQr = 0PQr 0 PQr

0PQr 0 = 13h 5
13

 , 
12
13
i.

Related Exercises 34, 43, 45	

QUICK CHECK 6 Verify that the vector 
8 5

13 , 
12
13 9  has length 1.	

Properties of Vector Operations
When we stand back and look at vector operations, ten general properties emerge. 
For example, the first property says that vector addition is commutative, which means 
u + v = v + u. This property is proved by letting u = 8u1, u29  and v = 8v1, v29 . By 
the commutative property of addition for real numbers,

u + v = 8u1 + v1, u2 + v29 = 8v1 + u1, v2 + u29 = v + u.

The proofs of other properties are outlined in Exercises 78–81.

➤	 The Parallelogram Rule illustrates the 
commutative property u + v = v + u.

SUMMARY Properties of Vector Operations

Suppose u, v, and w are vectors and a and c are scalars. Then the following proper-
ties hold (for vectors in any number of dimensions).

1. u + v = v + u Commutative property of addition

2. 1u + v2 + w = u + 1v + w2 Associative property of addition

3. v + 0 = v Additive identity

4. v + 1-v2 = 0 Additive inverse

5. c1u + v2 = cu + cv Distributive property 1

6. 1a + c2v = av + cv Distributive property 2

7.  0v = 0 Multiplication by zero scalar

8. c0 = 0 Multiplication by zero vector

9. 1v = v Multiplicative identity

10. a1cv2 = 1ac2v Associative property of scalar multiplication

These properties allow us to solve vector equations. For example, to solve the equation 
u + v = w for u, we proceed as follows:

 1u + v2 + 1-v2 = w + 1-v2 Add -v to both sides.

 u + 1v + 1-v22 = w + 1-v2 Property 2
    (+1)1+*
      0

 u + 0 = w - v  Property 4

 u = w - v.  Property 3
QUICK CHECK 7 Solve 3u + 4v = 12w 
for u.	

Velocity Vectors Consider a motorboat crossing a river whose current is everywhere 
represented by the constant vector w (Figure 13.19); this means that 0w 0  is the speed of the 
moving water and w points in the direction of the moving water. Assume the vector vw gives 
the velocity of the boat relative to the water. The combined effect of w and vw is the sum 
vg = vw + w, which is the velocity of the boat that would be observed by someone on the 
shore (or on the ground). 

Applications of Vectors
Vectors have countless practical applications, particularly in the physical sciences and  
engineering. These applications are explored throughout the remainder of this text. For 
now, we present two common uses of vectors: to describe velocities and forces.

➤	 Velocity of the boat relative to the water 
means the velocity (direction and speed) the 
boat has relative to someone traveling with 
the current.

EXAMPLE 6 Speed of a boat in a current Suppose the water in a river moves south-
west (45° west of south) at 4 mi>hr and a motorboat travels due east at 15 mi>hr relative 
to the shore. Determine the speed of the boat and its heading relative to the moving water 
(Figure 13.19).

N

S

EW

vg 5 vw 1 w

w
(velocity
of water)

(velocity relative to shore)

vw
 (velocity relative to water)

Figure 13.19
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812 Chapter 13  •  Vectors and the Geometry of Space 

SOLUTION To solve this problem, the vectors are placed in a coordinate system  
(Figure 13.20). Because the boat moves east at 15 mi>hr, the velocity relative to the shore 
is vg = 815, 09 . To obtain the components of w = 8wx, wy9 , observe that 0w 0 = 4 and 
that the lengths of the sides of the 45–45–90 triangle in Figure 13.20 are

0wx 0 = 0wy 0 = 0w 0  cos 45° =
412

= 212.

N

S

EW

x

y

458 uwyu

uw
u

xu

vw
uwu 5 4

vg 5 vw 1 w 5 k15, 0l

uwxu 5 uwyu 5 uwu cos 458

w 5 k22Ï2, 22Ï2 l

O

Figure 13.20

Given the orientation of w (southwest), w = 8 -212, -2129 . Because vg = vw + w 
(Figure 13.20),

 vw = vg - w = 815, 09 - 8 -212, -2129
 = 815 + 212, 2129 .

The magnitude of vw is

0 vw 0 = 3115 + 21222 + 121222 ≈ 18.

Therefore, the speed of the boat relative to the water is approximately 18 mi>hr.
The heading of the boat is given by the angle u between vw and the positive x-axis. 

The x-component of vw is 15 + 212 and the y-component is 212. Therefore,

u = tan-1 a 212

15 + 212
b ≈ 9°.

The heading of the boat is approximately 9° north of east, and its speed relative to the  
water is approximately 18 mi>hr.

Related Exercises 56–57	

➤	 Recall that the lengths of the legs of 
a 45–45–90 triangle are equal and 
are 1>12 times the length of the 
hypotenuse.

458

458

aa

Ï2

a

Ï2

Force Vectors Suppose a child pulls on the handle of a wagon at an angle of u with 
the horizontal (Figure 13.21a). The vector F represents the force exerted on the wagon; 
it has a magnitude 0F 0  and a direction given by u. We denote the horizontal and ver-
tical components of F by Fx and Fy, respectively. From Figure 13.21b, we see that 
Fx = 0F 0  cos u, Fy = 0F 0  sin u, and the force vector is F = 8 0F 0  cos u, 0F 0  sin u9 .

(b)

u
Fy 5 uFu sin u

Fx 5 uFu cos u

F

(a)

F

u

Figure 13.21

➤	 The magnitude of F is typically measured 
in pounds (lb) or newtons (N), where 
1 N = 1 kg@m>s2.

➤	 The vector 8cos u, sin u9  is a unit vector. 
Therefore, any position vector v may be 
written v = 8 0 v 0  cos u, 0 v 0  sin u9 , where 
u is the angle that v makes with the 
positive x-axis.
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 13.1 Vectors in the Plane 813

EXAMPLE 7 Finding force vectors A child pulls a wagon (Figure 13.21) with a force 
of 0F 0 = 20 lb at an angle of u = 30° to the horizontal. Find the force vector F.

SOLUTION The force vector (Figure 13.22) is

F = 8 0F 0  cos u, 0F 0  sin u9 = 820 cos 30°, 20 sin 30°9 = 81013, 109 .
Related Exercise 60	

uFu 5 20

308

Fx 5 20 cos 308

Fy 5 20 sin 308

Figure 13.22

F2

F3

F1

(tension in
the chain)

(tension in
the chain)

(downward force,
weight of the engine)

608 608

Engine, 400 lb

Figure 13.23

608 608

x

y

608608

F3 5 k0, 2400l

F2 5 k2uF2u cos 608, uF2u sin 608l F1 5 kuF1u cos 608, uF1u sin 608l

Figure 13.24

EXAMPLE 8 Balancing forces A 400-lb engine is suspended from two chains that 
form 60° angles with a horizontal ceiling (Figure 13.23). How much weight does each 
chain support?

SOLUTION Let F1 and F2 denote the forces exerted by the chains on the engine, 
and let F3 be the downward force due to the weight of the engine (Figure 13.23). 
Placing the vectors in a standard coordinate system (Figure 13.24), we find that 
F1 = 8 0F1 0  cos 60°, 0F1 0  sin 60°9 , F2 = 8 - 0F2 0  cos 60°, 0F2 0  sin 60°9 , and 
F3 = 80, -4009 .

Because the engine is in equilibrium (the chains and engine are stationary), the sum of the 
forces is zero; that is, F1 + F2 + F3 = 0 or F1 + F2 = -F3. Therefore,

8 0F1 0  cos 60° - 0F2 0  cos 60°, 0F1 0  sin 60° + 0F2 0  sin 60°9 = 80, 4009 .
Equating corresponding components, we obtain two equations to be solved for 0F1 0   
and 0F2 0 :

 0F1 0  cos 60° - 0F2 0  cos 60° = 0 and

 0F1 0  sin 60° + 0F2 0  sin 60° = 400.

Factoring the first equation, we find that 1 0F1 0 - 0F2 0 2 cos 60° = 0, which implies that 
0F1 0 = 0F2 0 . Replacing 0F2 0  with 0F1 0  in the second equation gives 2 0F1 0  sin 60° = 400. 
Noting that sin 60° = 13>2 and solving for 0F1 0 , we find that 0F1 0 = 400>13 ≈ 231. 
Each chain must be able to support a weight of approximately 231 lb.

Related Exercise 63	

➤	 The components of F2 in 
Example 8 can also be computed 
using an angle of 120°. That is, 
F2 = 8 0F2 0  cos 120°, 0F2 0  sin 120°9 .

Getting Started
1. Interpret the following statement: Points have a location, but no 

size or direction; nonzero vectors have a size and direction, but no 
location.

2. What is a position vector?

SECTION 13.1 EXERCISES
3. Given a position vector v, why are there infinitely many vectors 

equal to v?

4. Use the points P13, 12 and Q17, 12 to find position vectors equal 
to PQr  and QPr .

5. If u = 8u1, u29  and v = 8v1, v29 , how do you find u + v?
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6. Find two unit vectors parallel to 82, 39 .
7. Is 81, 19  a unit vector? Explain.

8. Evaluate 83, 19 + 82, 49  and illustrate the sum geometrically  
using the Parallelogram Rule.

9. How do you compute the magnitude of v = 8v1, v29?
10. Write the vector v = 8v1, v29  in terms of the unit vectors i and j.

11. How do you compute 0PQr 0  from the coordinates of the points  
P and Q?

12. The velocity of a kayak on a lake is v = 8212, 2129 . Find the 
speed and heading of the kayak. Assume the positive x-axis points 
east and the positive y-axis points north. Assume the coordinates  
of v are in feet per second.

Practice Exercises
13–18. Vector operations Refer to the figure and carry out the follow-
ing vector operations.

uv
O

A B

F

E

C

D

K

L

J

I

H

G

13. Scalar multiples Which of the following vectors equal CEr ? 
(There may be more than one correct answer.)

a. v b. 
1
2

 HIr c. 
1
3

 OAr  d. u e. 
1
2

 IHr

14. Scalar multiples Which of the following vectors equal BKr ? 
(There may be more than one correct answer.)

a. 6v b. -6v c. 3 HIr d. 3 IHr e. 3 AOr

15. Scalar multiples Write the following vectors as scalar multiples  
of u or v.

a. OAr  b. ODr  c. OHr  d. AGr  e. CEr

16. Scalar multiples Write the following vectors as scalar multiples  
of u or v.

a. IHr b. HIr c. JKr d. FDr  e. EAr

17. Vector addition Write the following vectors as sums of scalar 
multiples of u and v.

a. OEr  b. OBr  c. OFr  d. OGr  e. OCr

f. OIr g. OJr  h. OKr  i. OLr

18. Vector addition Write the following vectors as sums of scalar 
multiples of u and v.

a. BFr  b. DEr  c. AFr  d. ADr  e. CDr

f. JDr  g. JIr h. DBr  i. ILr

19. Components and magnitudes Define the points O10, 02, P13, 22, 
Q14, 22, and R1-6, -12. For each vector, do the following.

(i)  Sketch the vector in an xy-coordinate system.
(ii)  Compute the magnitude of the vector.

a. OPr  b. QPr  c. RQr

20. Finding vectors from two points Given the points A1-2, 02, 
B16, 162, C11, 42, D15, 42, E112, 122, and F1312, -4122, 
find the position vector equal to the following vectors.

a. ABr b. ACr c. EFr d. CDr

21–23. Components and equality Define the points P1-3, -12, 
Q1-1, 22, R11, 22, S13, 52, T14, 22, and U16, 42.
21. Sketch QUr , PTr , and RSr and their corresponding position vectors.

22. Find the equal vectors among PQr , RSr, and TUr .

23. Consider the vectors QTr  and SUr : Which vector is equal to 85, 09?
24–27. Vector operations Let u = 84, -29 , v = 8 -4, 69 , and 
w = 80, 89 . Express the following vectors in the form 8a, b9 .
24. u + v 25. w - u

26. 2u + 3v 27. 10u - 3v + w

28–31. Vector operations Let u = 83, -49 , v = 81, 19 , and 
w = 8 -1, 09 .
28. Find 0 u + v + w 0 . 29. Find 0 -2v 0 .
30. Find two vectors parallel to u with four times the magnitude of u.

31. Which has the greater magnitude, u - v or w - u?

32. Find a unit vector in the direction of v = 8 -6, 89 .
33. Write v = 8 -5, 129  as a product of its magnitude and a unit vec-

tor in the direction of v.

34. Consider the points P12, 72 and Q16, 42. Write PQr  as a product of 
its magnitude and a unit vector in the direction of PQr .

35. Find the vector v of length 6 that has the same direction as the unit 
vector 81>2, 13>29 .

36. Find the vector v that has a magnitude of 10 and a direction oppo-
site that of the unit vector 83>5, -4>59 .

37. Find the vector in the direction of 85, -129  with length 3.

38. Find the vector pointing in the direction opposite that of 86, -89  
with length 20.

39. Find a vector in the same direction as 83, -29  with length 10.

40. Let v = 88, 159 .
a. Find a vector in the direction of v that is three times as long as v.
b. Find a vector in the direction of v that has length 3.

41–46. Unit vectors Define the points P1-4, 12, Q13, -42, and R12, 62.
41. Express QRr  in the form ai + bj.

42. Express PQr  in the form ai + bj.

43. Find two unit vectors parallel to PRr .

44. Find the unit vector with the same direction as QRr .

45. Find two vectors parallel to QPr  with length 4.

46. Find two vectors parallel to RPr  with length 4.
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47. Unit vectors

a. Find two unit vectors parallel to v = 6i - 8j.
b. Find b if v = 81>3, b9  is a unit vector.

c. Find all values of a such that w = ai -
a
3

 j is a unit vector.

48. Vectors from polar coordinates Suppose O is the origin and P 
has polar coordinates 1r, u2. Show that OPr = 8r cos u, r sin u9 .

49. Vectors from polar coordinates Find the position vector OPr  if O 
is the origin and P has polar coordinates 18, 5p>62.

50. Find the velocity v of an ocean freighter that is traveling northeast 
(45° east of north) at 40 km>hr.

51. Find the velocity v of an ocean freighter that is traveling 30° south 
of east at 30 km>hr.

52. Find a force vector of magnitude 100 that is directed 45° south  
of east.

53–55. Airplanes and crosswinds Assume each plane flies horizon-
tally in a crosswind that blows horizontally.

53. An airplane flies east to west at 320 mi>hr relative to the air in a 
crosswind that blows at 40 mi>hr toward the southwest (45° south 
of west).

a. Find the velocity of the plane relative to the air va, the velocity 
of the crosswind w, and the velocity of the plane relative to the 
ground vg.

b. Find the ground speed and heading of the plane relative to the 
ground.

54. A commercial jet flies west to east at 400 mi>hr relative to the air, 
and it flies at 420 mi>hr at a heading of 5° north of east relative to 
the ground.

a. Find the velocity of the plane relative to the air va, the velocity 
of the plane relative to the ground vg, and the crosswind w.

b. Find the speed and heading of the wind.

55. Determine the necessary air speed and heading that a pilot must 
maintain in order to fly her commercial jet north at a speed of 
480 mi>hr relative to the ground in a crosswind that is blowing 
60° south of east at 20 mi>hr.  

56. A boat in a current The water in a river moves south at 10 mi>hr. 
A motorboat travels due east at a speed of 20 mi>hr relative to the 
shore. Determine the speed and direction of the boat relative to the 
moving water.

57. Another boat in a current The water in a river moves south at 
5 km>hr. A motorboat travels due east at a speed of 40 km>hr 
relative to the water. Determine the speed of the boat relative to 
the shore.

58. Parachute in the wind In still air, a parachute with a payload 
falls vertically at a terminal speed of 4 m>s. Find the direction and 
magnitude of its terminal velocity relative to the ground if it falls 
in a steady wind blowing horizontally from west to east at 10 m>s.

59. Boat in a wind A sailboat floats in a current that flows due east 
at 1 m>s. Because of a wind, the boat’s actual speed relative to the 
shore is 13 m>s in a direction 30° north of east. Find the speed 
and direction of the wind.

60. Towing a boat A boat is towed with a force of 150 lb with a rope 
that makes an angle of 30° to the horizontal. Find the horizontal 
and vertical components of the force.

T

T

61. Pulling a suitcase Suppose you pull a suitcase with a strap that 
makes a 60° angle with the horizontal. The magnitude of the force 
you exert on the suitcase is 40 lb.

a. Find the horizontal and vertical components of the force.
b. Is the horizontal component of the force greater if the angle of 

the strap is 45° instead of 60°?
c. Is the vertical component of the force greater if the angle of the 

strap is 45° instead of 60°?

62. Which is greater? Which has a greater horizontal component, a 
100-N force directed at an angle of 60° above the horizontal or a 
60-N force directed at an angle of 30° above the horizontal?

63. Suspended load If a 500-lb load is suspended by two chains  
(see figure), what is the magnitude of the force each chain must  
be able to support?

458 458

500 lb

64. Net force Three forces are applied to an object, as shown in the 
figure. Find the magnitude and direction of the sum of the forces.

608

308458

uF1u 5 100 lb

uF2u 5 60 lb

uF3u 5 150 lb

65. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. José travels from point A to point B in the plane by following 
vector u, then vector v, and then vector w. If he starts at A and 
follows w, then v, and then u, he still arrives at B.

b. Maria travels from A to B in the plane by following the vector 
u. By following -u, she returns from B to A.

c. 0 u + v 0 Ú 0 u 0 , for all vectors u and v.

d. 0 u + v 0 Ú 0 u 0 + 0 v 0 , for all vectors u and v.
e. Parallel vectors have the same length.
f. If ABr = CDr , then A = C and B = D.
g. If u and v are perpendicular, then 0 u + v 0 = 0 u 0 + 0 v 0 .
h. If u and v are parallel and have the same direction, then 
0 u + v 0 = 0 u 0 + 0 v 0 .

66. Equal vectors For the points A13, 42, B16, 102, C1a + 2, b + 52, 
and D1b + 4, a - 22, find the values of a and b such that 
ABr = CDr .

67–69. Vector equations Use the properties of vectors to solve 
the following equations for the unknown vector x = 8a, b9 . Let 
u = 82, -39  and v = 8 -4, 19 .
67. 10x = u 68. 2x + u = v 69. 3x - 4u = v

70. Solve the pair of equations 2u + 3v = i, u - v = j for the vec-
tors u and v. Assume i = 81, 09  and j = 80, 19 .
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Explorations and Challenges
71–73. Linear combinations A sum of scalar multiples of two or 
more vectors (such as c1u + c2v + c3w, where ci are scalars) is called 
a linear combination of the vectors. Let i = 81, 09 , j = 80, 19 , 
u = 81, 19 , and v = 8 -1, 19 .
71. Express 84, -89  as a linear combination of i and j (that is, find 

scalars c1 and c2 such that 84, -89 = c1i + c2 j).

72. Express 84, -89  as a linear combination of u and v.

73. For arbitrary real numbers a and b, express 8a, b9  as a linear 
combination of u and v.

74. Ant on a page An ant walks due east at a constant speed of 
2 mi>hr on a sheet of paper that rests on a table. Suddenly, the 
sheet of paper starts moving southeast at 12 mi>hr. Describe the 
motion of the ant relative to the table.

75. Clock vectors Consider the 12 vectors that have their tails at the 
center of a (circular) clock and their heads at the numbers on the 
edge of the clock.

a. What is the sum of these 12 vectors?
b. If the 12:00 vector is removed, what is the sum of the remain-

ing 11 vectors?
c. By removing one or more of these 12 clock vectors, explain 

how to make the sum of the remaining vectors as large as  
possible in magnitude.

d. Consider the 11 vectors that originate at the number 12 at the 
top of the clock and point to the other 11 numbers. What is the 
sum of these vectors?

(Source: Calculus, by Gilbert Strang, Wellesley-Cambridge Press, 
1991)

76. Three-way tug-of-war Three people located at A, B, and C pull 
on ropes tied to a ring. Find the magnitude and direction of the 
force with which the person at C must pull so that no one moves 
(the system is at equilibrium).

A

B

C

F3

77–81. Prove the following vector properties using components. Then 
make a sketch to illustrate the property geometrically. Suppose u, v, 
and w are vectors in the xy-plane and a and c are scalars.

77. u + v = v + u Commutative property

78. 1u + v2 + w = u + 1v + w2 Associative property

79. a1cv2 = 1ac2v Associative property

80. a1u + v2 = au + av Distributive property 1

81. 1a + c2v = av + cv Distributive property 2

82. Midpoint of a line segment Use vectors to show that the mid-
point of the line segment joining P1x1, y12 and Q1x2, y22 is 

the point a x1 + x2

2
 , 

y1 + y2

2
b . (Hint: Let O be the origin and 

let M be the midpoint of PQ. Draw a picture and show that 

OMr = OPr +
1
2

 PQr = OPr +
1
2

 1OQr - OPr 2.)

83. Magnitude of scalar multiple Prove that 0 cv 0 = 0 c 0 0 v 0 , where c 
is a scalar and v is a vector.

84. Equality of vectors Assume PQr  equals RSr. Does it follow that 
PRr  is equal to QSr? Prove your conclusion.

85. Linear independence A pair of nonzero vectors in the plane is 
linearly dependent if one vector is a scalar multiple of the other. 
Otherwise, the pair is linearly independent.

a. Which pairs of the following vectors are linearly depen-
dent and which are linearly independent: u = 82, -39 , 
v = 8 -12, 189 , and w = 84, 69?

b. Geometrically, what does it mean for a pair of nonzero vectors 
in the plane to be linearly dependent? Linearly independent?

c. Prove that if a pair of vectors u and v is linearly independent, 
then given any vector w, there are constants c1 and c2 such that 
w = c1u + c2v.

86. Perpendicular vectors Show that two nonzero vectors 
u = 8u1, u29  and v = 8v1, v29  are perpendicular to each other if 
u1v1 + u2v2 = 0.

87. Parallel and perpendicular vectors Let u = 8a, 59  and 
v = 82, 69 .
a. Find the value of a such that u is parallel to v.
b. Find the value of a such that u is perpendicular to v.

88. The Triangle Inequality Suppose u and v are vectors in the 
plane.

a. Use the Triangle Rule for adding vectors to explain why 
0 u + v 0 … 0 u 0 + 0 v 0 . This result is known as the Triangle 
Inequality.

b. Under what conditions is 0 u + v 0 = 0 u 0 + 0 v 0 ?

QUICK CHECK ANSWERS

1. The vector -5v is five times as long as v and points in 
the opposite direction. 2. va + w points in a northeasterly 
direction. 3. Constructing u + v and v + u using the  
Triangle Rule produces vectors having the same length  
and direction. 4. PQr = 8 -6, -29  5. 10u = 86, 89  
and -10u = 8 -6, -89
6. ` h 5

13
 , 

12
13
i ` = A25 + 144

169
= A169

169
= 1

7. u = -  43 v + 4w	
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13.2 Vectors in Three Dimensions
Up to this point, our study of calculus has been limited to functions, curves, and vectors that 
can be plotted in the two-dimensional xy-plane. However, a two-dimensional coordinate 
system is insufficient for modeling many physical phenomena. For example, to describe the 
trajectory of a jet gaining altitude, we need two coordinates, say x and y, to measure east–
west and north–south distances. In addition, another coordinate, say z, is needed to measure 
the altitude of the jet. By adding a third coordinate and creating an ordered triple 1x, y, z2, 
the location of the jet can be described. The set of all points described by the triples 1x, y, z2 
is called three-dimensional space, xyz-space, or ℝ3. Many of the properties of xyz-space are 
extensions of familiar ideas you have seen in the xy-plane.

The xyz-Coordinate System
A three-dimensional coordinate system is created by adding a new axis, called the z-axis, 
to the familiar xy-coordinate system. The new z-axis is inserted through the origin perpen-
dicular to the x- and y-axes (Figure 13.25). The result is a new coordinate system called the 
three-dimensional rectangular coordinate system or the xyz-coordinate system.

We use a conventional right-handed coordinate system: If the curled fingers of the 
right hand are rotated from the positive x-axis to the positive y-axis, the thumb points in 
the direction of the positive z-axis (Figure 13.25).

➤	 The notation ℝ3 (pronounced R-three) 
stands for the set of all ordered triples of 
real numbers.

x

z

x

Right-handed
coordinate system

Add z-axis.

yy

z

Figure 13.25

The coordinate plane containing the x-axis and y-axis is still called the xy-plane. We 
now have two new coordinate planes: the xz-plane containing the x-axis and the z-axis, 
and the yz-plane containing the y-axis and the z-axis. Taken together, these three coordi-
nate planes divide xyz-space into eight regions called octants (Figure 13.26).

xyz-space is divided into octants.

First octant
{(x, y, z): x . 0, y . 0, z . 0}

xz-plane

xy-plane

yz-plane

x

y

z

Figure 13.26
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The point where all three axes intersect is the origin, which has coordinates 
10, 0, 02. An ordered triple 1a, b, c2 refers to the point in xyz-space that is found by 
starting at the origin, moving a units in the x-direction, b units in the y-direction, and 
c units in the z-direction. With a negative coordinate, you move in the negative direc-
tion along the corresponding coordinate axis. To visualize this point, it’s helpful to 
construct a rectangular box with one vertex at the origin and the opposite vertex at the 
point 1a, b, c2 (Figure 13.27).

z

y

x

Move a units
in x-direction.

Move b units
in y-direction.

Move c units
in z-direction.

(0, 0, 0)

(a, b, c)

b

c
a

Figure 13.27

EXAMPLE 1 Plotting points in xyz-space Plot the following points.

a. 13, 4, 52    b. 1-2, -3, 52
SOLUTION

a. Starting at 10, 0, 02, we move 3 units in the x-direction to the point 13, 0, 02, then  
4 units in the y-direction to the point 13, 4, 02, and finally 5 units in the z-direction to 
reach the point 13, 4, 52 (Figure 13.28).

(0, 0, 0) and (3, 4, 5) are
opposite vertices of a box.

z

y

x

(0, 0, 0)

(3, 4, 5)

Plotting (3, 4, 5)

z

y

x

(0, 0, 0)

(3, 0, 0)

(3, 4, 0)

(3, 4, 5)

Figure 13.28

b. We move -2 units in the x-direction to 1-2, 0, 02, -3 units in the y-direction to 
1-2, -3, 02, and 5 units in the z-direction to reach 1-2, -3, 52 (Figure 13.29).

Related Exercises 13–14	

(0, 0, 0)
(22, 0, 0)

(22, 23, 0)

(22, 23, 5)

z

yx

Plotting (22, 23, 5)

Figure 13.29

Equations of Simple Planes
The xy-plane consists of all points in xyz-space that have a z-coordinate of 0. Therefore, 
the xy-plane is the set 51x, y, z2: z = 06; it is represented by the equation z = 0. Simi-
larly, the xz-plane has the equation y = 0, and the yz-plane has the equation x = 0.

Planes parallel to one of the coordinate planes are easy to describe. For example, the 
equation x = 2 describes the set of all points whose x-coordinate is 2 and whose y@ and  
z-coordinates are arbitrary; this plane is parallel to and 2 units from the yz-plane. Similarly, 
the equation y = a describes a plane that is everywhere 0 a 0  units from the xz-plane, and 
z = a is the equation of a horizontal plane 0 a 0  units from the xy-plane (Figure 13.30).

QUICK CHECK 1 Suppose the positive 
x@, y-, and z-axes point east, north, 
and upward, respectively. Describe 
the location of the points 1-1, -1, 02, 
11, 0, 12, and 1-1, -1, -12 relative to 
the origin.	

➤	 Planes that are not parallel to the 
coordinate planes are discussed in 
Section 13.5.

z

x
y

x
y

x
y

z z

(2, 0, 0) (0, 4, 0)

(0, 0, 3)

Figure 13.30

QUICK CHECK 2 To which coordinate 
planes are the planes x = -2 and 
z = 16 parallel?	
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EXAMPLE 2 Parallel planes Determine the equation of the plane parallel to the  
xz-plane passing through the point 12, -3, 72.
SOLUTION Points on a plane parallel to the xz-plane have the same y-coordinate. There-
fore, the plane passing through the point 12, -3, 72 with a y-coordinate of -3 has the 
equation y = -3 (Figure 13.31).

Related Exercises 20–22	

z

y
x

(2, 0, 0)

(0, 0, 7)

Figure 13.31

Distances in xyz-Space
Recall that the distance between two points 1x1, y12 and 1x2, y22 in the xy-plane is 21x2 - x122 + 1y2 - y122. This distance formula is useful in deriving a similar formula 
for the distance between two points P1x1, y1, z12 and Q1x2, y2, z22 in xyz-space.

Figure 13.32 shows the points P and Q, together with the auxiliary point R1x2, y2, z12, 
which has the same z-coordinate as P and the same x- and y-coordinates as Q. The line 

segment PR has length 0PR 0 = 21x2 - x122 + 1y2 - y122 and is one leg of the right 

triangle △PRQ. The length of the hypotenuse of that triangle is the distance between P 
and Q:

0PQ 0 = 2 0PR 0 2 + 0RQ 0 2 = 21x 2 - x122 + 1y2 - y122 + 1z2 - z122.(++++1)1++++*  (+)+*
      0PR 0 2          0RQ 0 2

z

y

x

uRQu 5 uz2 2 z1u

Q(x2, y2, z2)

P(x1, y1, z1)

R(x2, y2, z1)

uPQu 5 ÏuPRu2 1 uRQu2

uPRu 5 Ï(x2 2 x1)2 1 (y2 2 y1)2

Figure 13.32

Distance Formula in xyz-Space

The distance between the points P1x1, y1, z12 and Q1x2, y2, z22 is21x2 - x122 + 1y2 - y122 + 1z2 - z122.

By using the distance formula, we can derive the formula (Exercise 81) for the midpoint 
of the line segment joining P1x1, y1, z12 and Q1x2, y2, z22, which is found by averaging the 
x@, y@, and z@coordinates (Figure 13.33):

Midpoint = a x1 + x2

2
 , 

y1 + y2

2
 , 

z1 + z2

2
b .

z

y
x

Q(x2, y2, z2)

P(x1, y1, z1)

Midpoint 5 ,2

x1 1 x2
2

y1 1 y2 , 2

z1 1 z2( )

Figure 13.33

Equation of a Sphere
A sphere is the set of all points that are a constant distance r from a point 1a, b, c2; r is the 
radius of the sphere, and 1a, b, c2 is the center of the sphere. A ball centered at 1a, b, c2 
with radius r consists of all the points inside and on the sphere centered at 1a, b, c2 with 
radius r (Figure 13.34). We now use the distance formula to translate these statements.
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EXAMPLE 3 Equation of a sphere Consider the points P11, -2, 52 and Q13, 4, -62. 
Find an equation of the sphere for which the line segment PQ is a diameter.

SOLUTION The center of the sphere is the midpoint of PQ:

a 1 + 3
2

 , 
-2 + 4

2
 , 

5 - 6
2
b = a2, 1, -  

1
2
b .

The diameter of the sphere is the distance 0PQ 0 , which is213 - 122 + 14 + 222 + 1-6 - 522 = 1161.

Therefore, the sphere’s radius is 12 1161, its center is 12, 1, -  122, and it is described by 
the equation

1x - 222 + 1y - 122 + az +
1
2
b

2

= a 1
2

 1161b
2

=
161
4

 .

Related Exercises 27–28	

DEFINITION Spheres and Balls

A sphere centered at 1a, b, c2 with radius r is the set of points satisfying the 
equation

1x - a22 + 1y - b22 + 1z - c22 = r2.

A ball centered at 1a, b, c2 with radius r is the set of points satisfying the inequality

1x - a22 + 1y - b22 + 1z - c22 … r2.

➤	 Just as a circle is the boundary of a 
disk in two dimensions, a sphere is the 
boundary of a ball in three dimensions. 
We have defined a closed ball, which 
includes its boundary. An open ball does 
not contain its boundary.

Vectors in ℝ3

Vectors in ℝ3 are straightforward extensions of vectors in the xy-plane; we simply in-
clude a third component. The position vector v = 8v1, v2, v39  has its tail at the origin 
and its head at the point 1v1, v2, v32. Vectors having the same length and direction are 
equal. Therefore, the vector from P1x1, y1, z12 to Q1x2, y2, z22 is denoted PQr  and is equal 
to the position vector 8x2 - x1, y2 - y1, z2 - z19 . It is also equal to all vectors such as RSr  
(Figure 13.35) that have the same length and direction as v.

EXAMPLE 4 Identifying equations Describe the set of points that satisfy the equation 
x2 + y2 + z2 - 2x + 6y - 8z = -1.

SOLUTION We simplify the equation by completing the square and factoring:

 1x2 - 2x2 + 1y2 + 6y2 + 1z2 - 8z2 = -1 Group terms.

 1x2 - 2x + 12 + 1y2 + 6y + 92 + 1z2 - 8z + 162 = 25  Complete the square.

 1x - 122 + 1y + 322 + 1z - 422 = 25. Factor.

The equation describes a sphere of radius 5 with center 11, -3, 42.
Related Exercises 31–32	

QUICK CHECK 3 Describe the solution  
set of the equation

1x - 122 + y2 + 1z + 122 + 4 = 0.	

z

yx

R S

P(x1, y1, z1) Q(x2, y2, z2)(0, 0, v3)

(v1, 0, 0)
(0, v2, 0)

Position vector for and
v 5 kv1, v2, v3l 

RSPQ

Figure 13.35

z

y
x

r

(a, b, c)

Sphere: (x 2 a)2 1 (y 2 b)2 1 (z 2 c)2 5 r2

Ball: (x 2 a)2 1 (y 2 b)2 1 (z 2 c)2 # r2

Figure 13.34
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The operations of vector addition and scalar multiplication in ℝ2 generalize in a natu-
ral way to three dimensions. For example, the sum of two vectors is found geometrically 
using the Triangle Rule or the Parallelogram Rule (Section 13.1). The sum is found analyt-
ically by adding the respective components of the two vectors. As with two-dimensional  
vectors, scalar multiplication corresponds to stretching or compressing a vector, possibly 
with a reversal of direction. Two nonzero vectors are parallel if one is a scalar multiple of 
the other (Figure 13.36).

QUICK CHECK 4 Which of the following 
vectors are parallel to each other?

a. u = 8 -2, 4, -69
b. v = 84, -8, 129
c. w = 8 -1, 2, 39 	

z

x

y

Scalar multiplication
for cv

v

cv,  c . 1

cv,
c , 21

u

v

u 1
 v

Parallelogram Rule
for vector addition 
u 1 v

Figure 13.36

DEFINITION Vector Operations in ℝ3

Let c be a scalar, u = 8u1, u2, u39 , and v = 8v1, v2, v39 .
 u + v = 8u1 + v1, u2 + v2, u3 + v39  Vector addition

 u - v = 8u1 - v1, u2 - v2, u3 - v39  Vector subtraction 

 cu = 8cu1, cu2, cu39  Scalar multiplication

EXAMPLE 5 Vectors in ℝ3 Let u = 82, -4, 19  and v = 83, 0, -19 . Find the com-
ponents of the following vectors and draw them in ℝ3.

a. 
1
2

 u    b. -2v    c. u + 2v

SOLUTION

a. Using the definition of scalar multiplication, 
1
2

 u =
1
2
82, -4, 19 = h1, -2, 

1
2
i. The 

vector 
1
2

 u has the same direction as u with half the length of u (Figure 13.37).

b. Using scalar multiplication, -2v = -283, 0, -19 = 8 -6, 0, 29 . The vector -2v 
has the direction opposite that of v and twice the length of v (Figure 13.38).

x

y

(2, 0, 0)

(0, 24, 0)

(2, 24, 1)

(2, 24, 0)

u 5 k2, 24, 1l

z

2u 5 k1, 22, 2l2
1

2
1

Figure 13.37

z

x y

(0, 0, 21)

(3, 0, 0)

(0, 0, 2)

(26, 0, 0)

22v 5 k26, 0, 2l

v 5 k3, 0, 21l 

Figure 13.38

c. Using vector addition and scalar multiplication,

u + 2v = 82, -4, 19 + 283, 0, -19 = 88, -4, -19 .
The vector u + 2v is drawn by applying the Parallelogram Rule to u and 2v  
(Figure 13.39).

z

y

x

u 5 k2, 24, 1l u 1 2v 5 k8, 24, 21l 

2v 5 k6, 0, 22l 

u 1 2v by the Parallelogram Rule

Figure 13.39 Related Exercise 39	
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Magnitude and Unit Vectors
The magnitude of the vector PQr  from P1x1, y1, z12 to Q1x2, y2, z22 is denoted 0PQr 0 ; it is 
the distance between P and Q and is given by the distance formula (Figure 13.40).

z

y

x

Q(x2, y2, z2)
P(x1, y1, z1)

uPQu5 Ï(x2 2 x1)2 1 (y2 2 y1)2 1 (z2 2 z1)2

Figure 13.40

The coordinate unit vectors introduced in Section 13.1 extend naturally to three di-
mensions. The three coordinate unit vectors in ℝ3 (Figure 13.41) are

i = 81, 0, 09 ,  j = 80, 1, 09 ,  and k = 80, 0, 19 .

DEFINITION Magnitude of a Vector

The magnitude (or length) of the vector PQr = 8x2 - x1, y2 - y1, z2 - z19  is the 
distance from P1x1, y1, z12 to Q1x2, y2, z22:

0PQr 0 = 21x2 - x122 + 1y2 - y122 + 1z2 - z122.

z

y

x

v

v2 j
v1i

v3k

v 5 kv1, v2, v3l 5 v1i 1 v2j 1 v3k

z

y

x

k 5 k0, 0, 1l 

j 5 k0, 1, 0l 

Coordinate unit vectors

i 5 k1, 0, 0l 

Figure 13.41

These unit vectors give an alternative way of expressing position vectors. If v = 8v1, v2, v39 , 
then we have

v = v181, 0, 09 + v280, 1, 09 + v380, 0, 19 = v1i + v2 j + v3k.
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EXAMPLE 6 Magnitudes and unit vectors Consider the points P15, 3, 12 and 
Q1-7, 8, 12.
a. Express PQr  in terms of the unit vectors i, j, and k.

b. Find the magnitude of PQr .

c. Find the position vector of magnitude 10 in the direction of PQr .

SOLUTION

a. PQr  is equal to the position vector 8 -7 - 5, 8 - 3, 1 - 19 = 8 -12, 5, 09 . There-
fore, PQr = -12i + 5j.

b. 0PQr 0 = 0 -12i + 5j 0 = 2122 + 52 = 1169 = 13

c. The unit vector in the direction of PQr  is u =
PQr

0PQr 0 =
1
13

 8 -12, 5, 09 . Therefore, the 

vector in the direction of u with a magnitude of 10 is 10u =
10
13

 8 -12, 5, 09 .
Related Exercises 45, 68	

QUICK CHECK 5 Which vector has the 
smaller magnitude: u = 3i - j - k 
or v = 21i + j + k2?	

EXAMPLE 7 Flight in crosswinds A plane is flying horizontally due 
north in calm air at 300 mi>hr when it encounters a horizontal crosswind 
blowing southeast at 40 mi>hr and a downdraft blowing vertically down-
ward at 30 mi>hr. What are the resulting speed and direction of the plane 
relative to the ground?

SOLUTION Let the unit vectors i, j, and k point east, north, and upward, 
respectively (Figure 13.42). The velocity of the plane relative to the air 
(300 mi>hr due north) is va = 300j. The crosswind blows 45° south  
of east, so its component to the east is 40 cos 45° = 2012 (in the  
i-direction) and its component to the south is 40 cos 45° = 2012 (in 
the negative j-direction). Therefore, the crosswind may be expressed as 
w = 2012i - 2012j. Finally, the downdraft in the negative k-direction 
is d = -30k. The velocity of the plane relative to the ground is the sum 
of va, w, and d:

 v = va + w + d

 = 300j + 12012i - 2012j2 - 30k

 = 2012i + 1300 - 20122j - 30k.

Figure 13.42 shows the velocity vector of the plane. A quick calculation shows that the speed 
is 0 v 0 ≈ 275 mi>hr. The direction of the plane is slightly east of north and downward. In 
the next section, we present methods for precisely determining the direction of a vector.

Related Exercises 51–52	

z (up)

y (North)

Velocity in
calm air
va 5 300j

v 5 va 1 w 1 d
Velocity relative
to ground

x (East) Crosswind
w 5 20Ï2 (i 2 j)

d 5 230k
Downdraft

Figure 13.42

Getting Started
1. Explain how to plot the point 13, -2, 12 in ℝ3.

2. What is the y-coordinate of all points in the xz-plane?

3. Describe the plane x = 4.

4. What position vector is equal to the vector from 13, 5, -22 to 
10, -6, 32?

SECTION 13.2 EXERCISES

5. Let u = 83, 5, -79  and v = 86, -5, 19 . Evaluate u + v and 
3u - v.

6. What is the magnitude of a vector joining two points P1x1, y1, z12 
and Q1x2, y2, z22?

7. Which point is farther from the origin, 13, -1, 22 or 10, 0, -42?
8. Express the vector from P1-1, -4, 62 to Q11, 3, -62 as a posi-

tion vector in terms of i, j, and k.
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Practice Exercises
9–12. Points in ℝ3 Find the coordinates of the vertices A, B, and C of 
the following rectangular boxes.

9. z

x

y

A C
(3, 4, 5)

B

10. z

x

y

A

C

(0, 0, 10)

(5, 8, 0)

B

11. z

x

y

A

C
(0, 0, 5)

B

(3, 24, 0)

12. Assume all the edges have the same length.

z

y

A

C

(0, 23, 0)

B

x

13–14. Plotting points in ℝ3 For each point P1x, y, z2 given below,  
let A1x, y, 02, B1x, 0, z2, and C10, y, z2 be points in the xy-, xz-, and  
yz-planes, respectively. Plot and label the points A, B, C, and P in ℝ3.

13. a. P12, 2, 42 b. P11, 2, 52 c. P1-2, 0, 52
14. a. P1-3, 2, 42 b. P14, -2, -32 c. P1-2, -4, -32
15–20. Sketching planes Sketch the following planes in the window 
30, 54 * 30, 54 * 30, 54.
15. x = 2 16. z = 3 17. y = 2 18. z = y

19. The plane that passes through 12, 0, 02, 10, 3, 02, and 10, 0, 42
20. The plane parallel to the xz-plane containing the point 11, 2, 32
21. Planes Sketch the plane parallel to the xy-plane through 12, 4, 22 

and find its equation.

22. Planes Sketch the plane parallel to the yz-plane through 12, 4, 22 
and find its equation.

23–26. Spheres and balls Find an equation or inequality that  
describes the following objects.

23. A sphere with center 11, 2, 32 and radius 4

24. A sphere with center 11, 2, 02 passing through the point 13, 4, 52
25. A ball with center 1-2, 0, 42 and radius 1

26. A ball with center 10, -2, 62 with the point 11, 4, 82 on its  
boundary

27. Midpoints and spheres Find an equation of the sphere passing 
through P11, 0, 52 and Q12, 3, 92 with its center at the midpoint 
of PQ.

28. Midpoints and spheres Find an equation of the sphere passing 
through P1-4, 2, 32 and Q10, 2, 72 with its center at the midpoint 
of PQ.

29–38. Identifying sets Give a geometric description of the following 
sets of points.

29. 1x - 122 + y2 + z2 - 9 = 0

30. 1x + 122 + y2 + z2 - 2y - 24 = 0

31. x2 + y2 + z2 - 2y - 4z - 4 = 0

32. x2 + y2 + z2 - 6x + 6y - 8z - 2 = 0

33. x2 + y2 - 14y + z2 Ú -13

34. x2 + y2 - 14y + z2 … -13

35. x2 + y2 + z2 - 8x - 14y - 18z … 79

36. x2 + y2 + z2 - 8x + 14y - 18z Ú 65

37. x2 - 2x + y2 + 6y + z2 + 10 = 0

38. x2 - 4x + y2 + 6y + z2 + 14 = 0

39–44. Vector operations For the given vectors u and v, evaluate the 
following expressions.

a. 3u + 2v    b. 4u - v    c. 0 u + 3v 0
39. u = 84, -3, 09 , v = 80, 1, 19
40. u = 8 -2, -3, 09 , v = 81, 2, 19
41. u = 8 -2, 1, -29 , v = 81, 1, 19
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42. u = 8 -5, 0, 29 , v = 83, 1, 19
43. u = 8 -7, 11, 89 , v = 83, -5, -19
44. u = 8 -4, -813, 2129 , v = 82, 313, -129
45–50. Unit vectors and magnitude Consider the following points  
P and Q.

a. Find PQr  and state your answer in two forms: 8a, b, c9  and 
ai + bj + ck.

b. Find the magnitude of PQr .
c. Find two unit vectors parallel to PQr .

45. P11, 5, 02, Q13, 11, 22 46. P15, 11, 122, Q11, 14, 132
47. P1-3, 1, 02, Q1-3, -4, 12 48. P13, 8, 122, Q13, 9, 112
49. P10, 0, 22, Q1-2, 4, 02
50. P1a, b, c2, Q11, 1, -12 (a, b, and c are real numbers)

51. Flight in crosswinds A model airplane is flying horizontally 
due north at 20 mi>hr when it encounters a horizontal crosswind 
blowing east at 20 mi>hr and a downdraft blowing vertically 
downward at 10 mi>hr.

a. Find the position vector that represents the velocity of the 
plane relative to the ground.

b. Find the speed of the plane relative to the ground.

52. Another crosswind flight A model airplane is flying horizontally 
due east at 10 mi>hr when it encounters a horizontal crosswind 
blowing south at 5 mi>hr and an updraft blowing vertically  
upward at 5 mi>hr.

a. Find the position vector that represents the velocity of the 
plane relative to the ground.

b. Find the speed of the plane relative to the ground.

53. Crosswinds A small plane is flying horizontally due east in  
calm air at 250 mi>hr when it encounters a horizontal crosswind 
blowing southwest at 50 mi>hr and a 30@mi>hr updraft. Find the 
resulting speed of the plane, and describe with a sketch the  
approximate direction of the velocity relative to the ground.

54. Combined force An object at the origin is acted on by the forces 
F1 = 20i - 10j, F2 = 30j + 10k, and F3 = 40j + 20k. Find the 
magnitude of the combined force, and describe the approximate 
direction of the force.

55. Submarine course A submarine climbs at an angle of 30° above 
the horizontal with a heading to the northeast. If its speed is  
20 knots, find the components of the velocity in the east, north, 
and vertical directions.

56. Maintaining equilibrium An object is acted on by the forces 
F1 = 810, 6, 39  and F2 = 80, 4, 99 . Find the force F3 that must 
act on the object so that the sum of the forces is zero.

57. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. Suppose u and v are distinct vectors that both make a 45° angle 
with w in ℝ3. Then u + v makes a 45° angle with w.

b. Suppose u and v are distinct vectors that both make a 90° angle 
with w in ℝ3. Then u + v can never make a 90° angle with w.

c. i + j + k = 0
d. The intersection of the planes x = 1, y = 1, and z = 1 is a 

point.

58–60. Sets of points Describe with a sketch the sets of points 1x, y, z2 
satisfying the following equations.

58. 1x + 121y - 32 = 0

59. x2y2z2 7 0

60. y - z = 0

61–64. Sets of points

61. Give a geometric description of the set of points 1x, y, z2 satisfy-
ing the pair of equations z = 0 and x2 + y2 = 1. Sketch a figure 
of this set of points.

62. Give a geometric description of the set of points 1x, y, z2 satisfy-
ing the pair of equations z = x2 and y = 0. Sketch a figure of this 
set of points.

63. Give a geometric description of the set of points 1x, y, z2 that lie 
on the intersection of the sphere x2 + y2 + z2 = 5 and the plane 
z = 1.

64. Give a geometric description of the set of points 1x, y, z2 that lie 
on the intersection of the sphere x2 + y2 + z2 = 36 and the plane 
z = 6.

65. Describing a circle Find a pair of equations describing a circle  
of radius 3 centered at 12, 4, 12 that lies in a plane parallel to the 
xz-plane.

66. Describing a line Find a pair of equations describing a line pass-
ing through the point 1-2, -5, 12 that is parallel to the x-axis.

67. Write the vector v = 82, -4, 49  as a product of its magnitude 
and a unit vector with the same direction as v.

68. Find the vector of length 10 with the same direction as 
w = 82, 12, 139 .

69. Find a vector of length 5 in the direction opposite that of 
83, -2, 139 .

70–73. Parallel vectors of varying lengths Find vectors parallel to v 
of the given length.

70. v = 83, -2, 69 ; length = 10

71. v = 86, -8, 09 ; length = 20

72. v = PQr  with P11, 0, 12 and Q12, -1, 12; length = 3

73. v = PQr  with P13, 4, 02 and Q12, 3, 12; length = 3

74. Collinear points Determine the values of x and y such that the 
points 11, 2, 32, 14, 7, 12, and 1x, y, 22 are collinear (lie on a line).

75. Collinear points Determine whether the points P, Q, and R are 
collinear (lie on a line) by comparing PQr  and PRr . If the points are 
collinear, determine which point lies between the other two points.

a. P11, 6, -52, Q12, 5, -32, R14, 3, 12
b. P11, 5, 72, Q15, 13, -12, R10, 3, 92
c. P11, 2, 32, Q12, -3, 62, R13, -1, 92
d. P19, 5, 12, Q111, 18, 42, R16, 3, 02

76. Lengths of the diagonals of a box What is the longest diagonal 
of a rectangular 2 ft * 3 ft * 4 ft box?
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Explorations and Challenges
77. Three-cable load A 500-lb load hangs from three cables of equal 

length that are anchored at the points 1-2, 0, 02, 11, 13, 02, and 
11, -13, 02. The load is located at 10, 0, -2132. Find the vec-
tors describing the forces on the cables due to the load.

z

x

y

(0, 0, 22Ï3)

(1, Ï3, 0)

(22, 0, 0)

(1, 2Ï3, 0)

78. Four-cable load A 500-lb load hangs from four cables of equal 
length that are anchored at the points 1{2, 0, 02 and 10, {2, 02. 
The load is located at 10, 0, -42. Find the vectors describing the 
forces on the cables due to the load.

z

x
y

(22, 0, 0)

(0, 2, 0)(2, 0, 0)

(0, 22, 0)

(0, 0, 24)

79. Possible parallelograms The points O10, 0, 02, P11, 4, 62, and 
Q12, 4, 32 lie at three vertices of a parallelogram. Find all possible 
locations of the fourth vertex.

80. Diagonals of parallelograms Two sides of a parallelogram are 
formed by the vectors u and v. Prove that the diagonals of the par-
allelogram are u + v and u - v.

81. Midpoint formula Prove that the midpoint of the line segment 
joining P1x1, y1, z12 and Q1x2, y2, z22 is

a x1 + x2

2
 , 

y1 + y2

2
 , 

z1 + z2

2
b .

82. Equation of a sphere For constants a, b, c, and d, show that the 
equation

x2 + y2 + z2 - 2ax - 2by - 2cz = d

describes a sphere centered at 1a, b, c2 with radius r, where 
r2 = d + a2 + b2 + c2, provided d + a2 + b2 + c2 7 0.

83. Medians of a triangle—without coordinates Assume u, v,  
and w are vectors in ℝ3 that form the sides of a triangle (see fig-
ure). Use the following steps to prove that the medians intersect at 
a point that divides each median in a 2:1 ratio. The proof does not 
use a coordinate system.

M1 v

u

M3M2

w

O

a. Show that u + v + w = 0.
b. Let M1 be the median vector from the midpoint of u to the  

opposite vertex. Define M2 and M3 similarly. Using the geom-

etry of vector addition, show that M1 =
u
2

+ v. Find analo-

gous expressions for M2 and M3.
c. Let a, b, and c be the vectors from O to the points one-third 

of the way along M1, M2, and M3, respectively. Show that 

a = b = c =
u - w

3
 .

d. Conclude that the medians intersect at a point that divides each 
median in a 2:1 ratio.

84. Medians of a triangle—with coordinates In contrast to the proof 
in Exercise 83, we now use coordinates and position vectors to 
prove the same result. Without loss of generality, let P1x1, y1, 02 and 
Q1x2, y2, 02 be two points in the xy-plane, and let R1x3, y3, z32 be a 
third point such that P, Q, and R do not lie on a line. Consider ∆PQR.

a. Let M1 be the midpoint of the side PQ. Find the coordinates of 
M1 and the components of the vector RMr 1.

b. Find the vector OZr 1 from the origin to the point Z1 two-thirds 
of the way along RMr 1.

c. Repeat the calculation of part (b) with the midpoint M2 of RQ 
and the vector PMr 2 to obtain the vector OZr 2.

d. Repeat the calculation of part (b) with the midpoint M3 of PR 
and the vector QMr 3 to obtain the vector OZr 3.

e. Conclude that the medians of ∆PQR intersect at a point. Give 
the coordinates of the point.

f. With P12, 4, 02, Q14, 1, 02, and R16, 3, 42, find the point at 
which the medians of ∆PQR intersect.

85. The amazing quadrilateral property—without coordinates  
The points P, Q, R, and S, joined by the vectors u, v, w, and x, are 
the vertices of a quadrilateral in ℝ3. The four points need not lie in 
a plane (see figure). Use the following steps to prove that the line 
segments joining the midpoints of the sides of the quadrilateral 
form a parallelogram. The proof does not use a coordinate system.

S

x

v
u

P

Q

m

n w

R
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a. Use vector addition to show that u + v = w + x.
b. Let m be the vector that joins the midpoints of PQ and QR. 

Show that m =
u + v

2
 .

c. Let n be the vector that joins the midpoints of PS and SR. 

Show that n =
x + w

2
 .

d. Combine parts (a), (b), and (c) to conclude that m = n.
e. Explain why part (d) implies that the line segments joining  

the midpoints of the sides of the quadrilateral form a  
parallelogram.

86. The amazing quadrilateral property—with coordinates Prove 
the quadrilateral property in Exercise 85, assuming the coordi-
nates of P, Q, R, and S are P1x1, y1, 02, Q1x2, y2, 02, R1x3, y3, 02, 
and S1x4, y4, z42, where we assume P, Q, and R lie in the  
xy-plane without loss of generality.

QUICK CHECK ANSWERS

1. Southwest; due east and upward; southwest and  
downward 2. yz-plane; xy-plane 3. No solution  
4. u and v are parallel. 5. 0 u 0 = 111 and 
0 v 0 = 112 = 213; u has the smaller magnitude. 

13.3 Dot Products
The dot product is used to determine the angle between two vectors. It is also a tool for 
calculating projections—the measure of how much of a given vector lies in the direction 
of another vector.

To see the usefulness of the dot product, consider an example. Recall that the work 
done by a constant force F in moving an object a distance d is W = Fd (Section 6.7). 
This rule is valid provided the force acts in the direction of motion (Figure 13.43a). Now 
assume the force is a vector F applied at an angle u to the direction of motion; the result-
ing displacement of the object is a vector d. In this case, the work done by the force is the 
component of the force in the direction of motion multiplied by the distance moved by the 
object, which is W = 1 0F 0  cos u2 0 d 0  (Figure 13.43b). We call this product of the magni-
tudes of two vectors and the cosine of the angle between them the dot product.

➤ The dot product is also called the 
scalar product, a term we do not use 
in order to avoid confusion with scalar 
multiplication.

F

d

(b)

d

F

Block moves
a distance d.

(a)

Figure 13.43

uFu cos u

F

Horizontal and vertical
components of a vector

uFu sin u

u

Two Forms of the Dot Product
The example of work done by a force leads to our first definition of the dot product. We 
then give an equivalent formula that is often better suited for computation.

DEFINITION Dot Product

Given two nonzero vectors u and v in two or three dimensions, their dot product is

u # v = 0 u 0 0 v 0  cos u,

where u is the angle between u and v with 0 … u … p (Figure 13.44). If u = 0 or 
v = 0, then u # v = 0, and u is undefined.

5 0,  u ? v 5 uuuuvu 5 p,  u ? v 5 2uuuuvu     5 2,  u ? v 5 0

u

u u

u

v

v

u

v
v

v

u ? v 5 uuuuvu cos    , 0u ? v 5 uuuuvu cos    . 0 2
p

u
u

uuu u u

Figure 13.44
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➤	 In two and three dimensions, the terms 
orthogonal and perpendicular are used 
interchangeably. Orthogonal is a more 
general term that also applies in more 
than three dimensions.

DEFINITION Orthogonal Vectors

Two vectors u and v are orthogonal if and only if u # v = 0. The zero vector is 
orthogonal to all vectors. In two or three dimensions, two nonzero orthogonal 
vectors are perpendicular to each other.

EXAMPLE 1 Dot products Compute the dot products of the following vectors.

a. u = 2i - 6j and v = 12k

b. u = 813, 19  and v = 80, 19
SOLUTION

a. The vector u lies in the xy-plane and the vector v is perpendicular to the xy-plane. 

Therefore, u =
p

2
 , u and v are orthogonal, and u # v = 0 (Figure 13.45a).

b. As shown in Figure 13.45b, u and v form two sides of a 30–60–90 triangle in the 
xy-plane, with an angle of p>3 between them. Because 0 u 0 = 2, 0 v 0 = 1, and 
cos p>3 = 1>2, the dot product is

u # v = 0 u 0 0 v 0  cos u = 2 # 1 # 1
2
= 1.

QUICK CHECK 1 Sketch two nonzero 
vectors u and v with u = 0. Sketch 
two nonzero vectors u and v with 
u = p.	

v 5 k0, 1l u 5 kÏ3, 1l 

Ï3 

p–
3

u ? v 5 1

1

1

y

x

(b)

z

x

y

v 5 12k

u 5 2i 2 6j

u ? v 5 0

(a)

Figure 13.45
Related Exercises 16–17	

Computing a dot product in this manner requires knowing the angle u between the vectors. 
Often the angle is not known; in fact, it may be exactly what we seek. For this reason, we 
present another method for computing the dot product that does not require knowing u.

THEOREM 13.1 Dot Product
Given two vectors u = 8u1, u2, u39  and v = 8v1, v2, v39 ,

u # v = u1v1 + u2v2 + u3v3.

➤	 In ℝ2 with u = 8u1, u29  and 
v = 8v1, v29 , u # v = u1v1 + u2v2.

The dot product of two vectors is itself a scalar. Two special cases immediately arise:

• u and v are parallel 1u = 0 or u = p2 if and only if u # v = { 0 u 0 0 v 0 .
• u and v are perpendicular 1u = p>22 if and only if u # v = 0.

The second case gives rise to the important property of orthogonality.
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Proof: Consider two position vectors u = 8u1, u2, u39  and v = 8v1, v2, v39 , and sup-
pose u is the angle between them. The vector u - v forms the third side of a triangle  
(Figure 13.46). By the Law of Cosines,

0 u - v 0 2 = 0 u 0 2 + 0 v 0 2 - 2 0 u 0 0 v 0  cos u.(+1)1+*
  u # v

The definition of the dot product, u # v = 0 u 0 0 v 0  cos u, allows us to write

u # v = 0 u 0 0 v 0  cos u =
1
2

 1 0 u 0 2 + 0 v 0 2 - 0 u - v 0 22. (1)

Using the definition of magnitude, we find that

0 u 0 2 = u1
2 + u2

2 + u3
2,  0 v 0 2 = v1

2 + v2
2 + v3

2,

and
0 u - v 0 2 = 1u1 - v122 + 1u2 - v222 + 1u3 - v322.

Expanding the terms in 0 u - v 0 2 and simplifying yields

0 u 0 2 + 0 v 0 2 - 0 u - v 0 2 = 21u1v1 + u2v2 + u3v32.
Substituting into expression (1) gives a compact expression for the dot product:

u # v = u1v1 + u2v2 + u3v3. 

This new representation of u # v has two immediate consequences.

1. Combining it with the definition of dot product gives

u # v = u1v1 + u2v2 + u3v3 = 0 u 0 0 v 0  cos u.

If u and v are both nonzero, then

cos u =
u1v1 + u2v2 + u3v3

0 u 0 0 v 0 =
u # v
0 u 0 0 v 0  ,

and we have a way to compute u.

2. Notice that u # u = u1
2 + u2

2 + u3
2 = 0 u 0 2. Therefore, we have a relationship between 

the dot product and the magnitude of a vector: 0 u 0 = 1u # u or 0 u 0 2 = u # u.

v

u

u 2 v

u

Figure 13.46

c

a

b
u

c2 5 a2 1 b2 2 2ab cos u

Law of Cosines

QUICK CHECK 2 Use Theorem 13.1 to 
compute the dot products i # j, i # k, 
and j # k for the unit coordinate 
vectors. What do you conclude about 
the angles between these vectors? 

EXAMPLE 2 Dot products and angles Let u = 813, 1, 09 , v = 81, 13, 09 , and 
w = 81, 13, 2139 .
a. Compute u # v.

b. Find the angle between u and v.

c. Find the angle between u and w.

SOLUTION

a. u # v = 813, 1, 09 # 81, 13, 09 = 13 + 13 + 0 = 213

b. Note that 0 u 0 = 1u # u = 2813, 1, 09 # 813, 1, 09 = 2, and similarly, 0 v 0 = 2. 
Therefore,

cos u =
u # v
0 u 0 0 v 0 =

213
2 # 2 =

13
2

.

Because 0 … u … p, it follows that u = cos-1 13
2

=
p

6
.

c. cos u =
u # w
0 u 0 0w 0 =

813, 1, 09 # 81, 13, 2139
0 813, 1, 09 0 0 81, 13, 2139 0 =

213
2 # 4 =

13
4

It follows that

u = cos-1 13
4

≈ 1.12 rad ≈ 64.3°.

Related Exercises 20, 26 
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Properties of Dot Products The properties of the dot product in the following theorem 
are easily proved using vector components (Exercises 79–81).

➤	 Theorem 13.1 extends to vectors 
with any number of components. 
If u = 8u1, c, un9  and 
v = 8v1, c, vn9 , then

u # v = u1v1 +  g+  unvn.

The properties in Theorem 13.2 also apply 
in two or more dimensions.

THEOREM 13.2 Properties of the Dot Product
Suppose u, v, and w are vectors and let c be a scalar.

1. u # v = v # u Commutative property

2. c1u # v2 = 1cu2 # v = u # 1cv2 Associative property

3. u # 1v + w2 = u # v + u # w Distributive property

Orthogonal Projections
Given vectors u and v, how closely aligned are they? That is, how much of u points in the 
direction of v? This question is answered using projections. As shown in Figure 13.47a, 
the projection of the vector u onto a nonzero vector v, denoted projvu, is the “shadow” 
cast by u onto the line through v. The projection of u onto v is itself a vector; it points 
in the same direction as v if the angle between u and v lies in the interval 0 … u 6 p>2  
(Figure 13.47b); it points in the direction opposite that of v if the angle between u and v 

lies in the interval p>2 6 u … p (Figure 13.47c). If u =
p

2
 , u and v are orthogonal, and  

there is no shadow.

projv u
is the shadow of u

on the line through v.

u

u

u

v v v

0 #    , ,    #

(a) (b) (c)

projv u projv u

2 2u

uu u

u
p

p
p

Figure 13.47

To find the projection of u onto v, we proceed as follows: With the tails of u and v 
together, we drop a perpendicular line segment from the head of u to the point P on the 
line through v (Figure 13.48). The vector OPr  is the orthogonal projection of u onto v. An 
expression for projvu is found using two observations.

• If 0 … u 6 p>2, then projvu has length 0 u 0  cos u and points in the direction of the unit 
vector v> 0 v 0  (Figure 13.48a). Therefore,

projvu = 0 u 0  cos u a v
0 v 0 b .

     
(+)+*

  ()*
 

length
 direction

We define the scalar component of u in the direction of v to be scalvu = 0 u 0  cos u. In 
this case, scalvu is the length of projvu.

• If p>2 6 u … p, then projvu has length - 0 u 0  cos u (which is positive) and points in 
the direction of -v> 0 v 0  (Figure 13.48b). Therefore,

projvu = - 0 u 0  cos u a - v
0 v 0 b = 0 u 0  cos u a v

0 v 0 b .
     

(+)+*
  (1)1*

 
length

 direction

In this case, scalvu = 0 u 0  cos u 6 0.

OP

u

   , u # p

scalv u 5 uuu cos u , 0

u

(b)

v

O P

u

0 # u ,  

scalv u 5 uuu cos u . 0

u

(a)

v
22
p

22
p

Figure 13.48
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We see that in both cases, the expression for projvu is the same:

projvu = 0 u 0  cos u a v
0 v 0 b = scalvua

v
0 v 0 b .

     (+)+*
      scalvu

Note that if u =
p

2
 , then projvu = 0 and scalvu = 0.

Using properties of the dot product, projvu may be written in different ways:

 projvu = 0 u 0  cos u a v
0 v 0 b

 =
u # v
0 v 0 a

v
0 v 0 b  0 u 0  cos u =

0 u 0 0 v 0  cos u

0 v 0 =
u # v
0 v 0

 = au # v
v # v b  v.  Regroup terms; 0 v 0 2 = v # v

     ()*
 scalar

The first two expressions show that projvu is a scalar multiple of the unit vector 
v
0 v 0 , 

whereas the last expression shows that projvu is a scalar multiple of v.

➤	 Notice that scalvu may be positive, 
negative, or zero. However, 0 scalvu 0  
is the length of projvu. The projection 
projvu is defined for all vectors u, but 
only for nonzero vectors v.

QUICK CHECK 3 Let u = 4i - 3j. By 
inspection (not calculations), find the 
orthogonal projection of u onto i and 
onto j. Find the scalar component 
of u in the direction of i and in the 
direction of j.	

DEFINITION (Orthogonal) Projection of u onto v

The orthogonal projection of u onto v, denoted projvu, where v ≠ 0, is

projvu = 0 u 0  cos u a v
0 v 0 b .

The orthogonal projection may also be computed with the formulas

projvu = scalvua
v
0 v 0 b = au # v

v # v b  v, 

where the scalar component of u in the direction of v is

scalvu = 0 u 0  cos u =
u # v
0 v 0 .

EXAMPLE 3 Orthogonal projections Find projvu and scalvu for the following vectors 
and illustrate each result.

a. u = 84, 19 , v = 83, 49
b. u = 8 -4, -39 , v = 81, -19
SOLUTION

a. The scalar component of u in the direction of v (Figure 13.49) is

scalvu =
u # v
0 v 0 =

84, 19 # 83, 49
0 83, 49 0 =

16
5

 .

Because 
v
0 v 0 = h

3
5

 , 
4
5
i, we have

projvu = scalvu a v
0 v 0 b =

16
5

 h 3
5

 , 
4
5
i =

16
25

 83, 49 .

b. Using another formula for projvu, we have

projvu = au # v
v # v b  v = a 8 -4, -39 # 81, -19

81, -19 # 81, -19 b 81, -19 = -  
1
2

 81, -19 .

x

y

u 5 k4, 1l 

v 5 k3, 4l 

k3, 4l 16
25projv u 5

scalv u 5 16
5

Figure 13.49
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The vectors v and projvu point in opposite directions because p>2 6 u … p  
(Figure 13.50). This fact is reflected in the scalar component of u in the direction  
of v, which is negative:

scalvu =
8 -4, -39 # 81, -19

0 81, -19 0 = -  
112

 .

Related Exercises 35–36	

x

y

u

v 5 k1, 21l 

u 5 k24, 23l 

projv u 5 k22, 2l
scalv u 5 2

1

Ï2

2
1

2
1

Figure 13.50

Applications of Dot Products
Work and Force In the opening of this section, we observed that if a constant force F 
acts at an angle u to the direction of motion of an object (Figure 13.51), the work done by 
the force is

W = 0F 0  cos u 0 d 0 = F # d.

Notice that the work is a scalar, and if the force acts in a direction orthogonal to the mo-
tion, then u = p>2, F # d = 0, and no work is done by the force.Direction

of motion

F

u

Only this component
of F does work: uFu cos u

Figure 13.51

➤	 If the unit of force is newtons (N) and 
the distance is measured in meters, then 
the unit of work is joules (J), where 
1 J = 1 N@m. If force is measured in 
pounds and distance is measured in feet, 
then work has units of ft@lb.

DEFINITION Work

Let a constant force F be applied to an object, producing a displacement d. If the 
angle between F and d is u, then the work done by the force is

W = 0F 0 0 d 0  cos u = F # d.

EXAMPLE 4 Calculating work A force F = 83, 3, 29  (in newtons) moves an object 
along a line segment from P11, 1, 02 to Q16, 6, 02 (in meters). What is the work done by 
the force? Interpret the result.

SOLUTION The displacement of the object is d = PQr = 86 - 1, 6 - 1, 0 - 09 =
85, 5, 09 . Therefore, the work done by the force is

W = F # d = 83, 3, 29 # 85, 5, 09 = 30 J.

To interpret this result, notice that the angle between the force and the displacement vec-
tor satisfies

cos u =
F # d
0F 0 0 d 0 =

83, 3, 29 # 85, 5, 09
0 83, 3, 29 0 0 85, 5, 09 0 =

30122150
≈ 0.905.

Therefore, u ≈ 0.44 rad ≈ 25°. The magnitude of the force is 0F 0 = 122 ≈ 4.7 N,  but 
only the component of that force in the direction of motion, 0F 0 cos u ≈ 122 cos 0.44 ≈   
4.2 N, contributes to the work (Figure 13.52).

Related Exercises 44, 46	

z

y

x
Only the component
of F in the direction of d
contributes to the work.

P(1, 1, 0)

Q(6, 6, 0)

258

 F 5 k3, 3, 2l 

d

Figure 13.52

Parallel
component
of FNormal

component
of F

F 5 gravitational force
(weight)

u

Figure 13.53

Parallel and Normal Forces Projections find frequent use in expressing a force in 
terms of orthogonal components. A common situation arises when an object rests on an 
inclined plane (Figure 13.53). The gravitational force on the object equals its weight, which 
is directed vertically downward. The projections of the gravitational force in the directions 
parallel to and normal (or perpendicular) to the plane are of interest. Specifically, the pro-
jection of the force parallel to the plane determines the tendency of the object to slide down 
the plane, while the projection of the force normal to the plane determines its tendency to 
“stick” to the plane.

EXAMPLE 5 Components of a force A 10-lb block rests on a plane that is inclined at 
30° above the horizontal. Find the components of the gravitational force parallel to and 
normal (perpendicular) to the plane.
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SOLUTION The gravitational force F acting on the block equals the weight of the block (10 lb);  
we regard the block as a point mass. Using the coordinate system shown in Figure 13.54, the 

force acts in the negative y-direction; therefore, F = 80, -109 . The direction down the 

plane is given by the unit vector v = 8cos 1-30°2, sin 1-30°29 = 8 13
2  , -  12 9  (check 

that 0 v 0 = 1). The component of the gravitational force parallel to the plane is

projvF = aF # v
v # v bv = a 80, -109 # h 13

2
 , -  

1
2
ib h 13

2
 , -  

1
2
i = 5h 13

2
 , -  

1
2
i.

     ()*    (1)1*   (+)+*   (+)+*
 v # v = 1 F v v

Let the component of F normal to the plane be N. Note that F = projvF + N, so

N = F - projvF = 80, -109 - 5h 13
2

, -
1
2
i = -5h 13

2
, 

3
2
i.

Figure 13.54 shows how the components of F parallel to and normal to the plane combine 
to form the total force F.

Related Exercises 47, 49	

x

y

2308

308

Unit vector
down the plane

k       l  ,2  v 5 2
Ï3

Parallel component
of F 5 projv F

N 5 Normal
component

of F

F 5 k0, 210l 

F 5 N 1 projv F

22
1

Figure 13.54

Getting Started
1. Express the dot product of u and v in terms of their magnitudes 

and the angle between them.

2. Express the dot product of u and v in terms of the components of 
the vectors.

3. Compute 82, 3, -69 # 81, -8, 39 .
4. Use the definition of the dot product to explain why v # v = �v � 2.

5. Explain how to find the angle between two nonzero vectors.

6. Find the angle u between u and v if scalvu = -2 and �u � = 4. 
Assume 0 … u … p.

7. Find projvu if scalvu = -2 and v = 82, -1, -29 .
8. Use a dot product to determine whether the vectors u = 81, 2, 39  

and v = 84, 1, -29  are orthogonal.

9. Find u # v if u and v are unit vectors and the angle between u and 
v is p.

10. Explain how the work done by a force in moving an object is 
computed using dot products.

11. Suppose v is a nonzero position vector in the xy-plane. How many 
position vectors with length 2 in the xy-plane are orthogonal to v?

12. Suppose v is a nonzero position vector in xyz-space. How many 
position vectors with length 2 in xyz-space are orthogonal to v?

Practice Exercises
13–16. Dot product from the definition Consider the following  
vectors u and v. Sketch the vectors, find the angle between the vectors, 
and compute the dot product using the definition u # v = 0 u 0 0 v 0 cos u.

13. u = 4i and v = 6j

14. u = 8 -3, 2, 09  and v = 80, 0, 69

SECTION 13.3 EXERCISES

15. u = 810, 09  and v = 810, 109
16. u = 8 -13, 19  and v = 813, 19
17. Dot product from the definition Compute u # v if u and v are 

unit vectors and the angle between them is p>3.

18. Dot product from the definition Compute u # v if u is a unit  
vector, �v � = 2, and the angle between them is 3p>4.

19–28. Dot products and angles Compute the dot product of the  
vectors u and v, and find the angle between the vectors.

19. u = i + j and v = i - j

20. u = 810, 09  and v = 8 -5, 59
21. u = i and v = i + 13 j

22. u = 12 i + 12 j and v = -12 i - 12 j

23. u = 4i + 3j and v = 4i - 6j

24. u = 83, 4, 09  and v = 80, 4, 59
25. u = 8 -10, 0, 49  and v = 81, 2, 39
26. u = 83, -5, 29  and v = 8 -9, 5, 19
27. u = 2i - 3k and v = i + 4j + 2k

28. u = i - 4j - 6k and v = 2i - 4j + 2k

29–30. Angles of a triangle For the given points P, Q, and R, find the 
approximate measurements of the angles of ∆PQR.

29. P10, -1, 32, Q12, 2, 12, R1-2, 2, 42
30. P11, -42, Q12, 72, R1-2, 22

T

T
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31–34. Sketching orthogonal projections Find projvu and scalvu by 
inspection without using formulas.

31. 

1 50 x

6

u

v
1

y

32. 

0 1 3 x

6

1

y

u

v

33. 

0 61 x

6

1

y

u
v

34. 

1 3

4

1

x

y

u

v

0

35–40. Calculating orthogonal projections For the given vectors u 
and v, calculate projvu and scalvu.

35. u = 8 -1, 49  and v = 8 -4, 29
36. u = 810, 59  and v = 82, 69
37. u = 8 -8, 0, 29  and v = 81, 3, -39
38. u = 85, 0, 159  and v = 80, 4, -29
39. u = 5i + j - 5k and v = - i + j - 2k

40. u = i + 4j + 7k and v = 2i - 4j + 2k

41–46. Computing work Calculate the work done in the following 
situations.

41. A suitcase is pulled 50 ft along a horizontal sidewalk with a con-
stant force of 30 lb at an angle of 30° above the horizontal.

42. A stroller is pushed 20 m along a horizontal sidewalk with a con-
stant force of 10 N at an angle of 15° below the horizontal.

43. A sled is pulled 10 m along horizontal ground with a constant 
force of 5 N at an angle of 45° above the horizontal.

44. A constant force F = 84, 3, 29  (in newtons) moves an object 
from 10, 0, 02 to 18, 6, 02. (Distance is measured in meters.)

45. A constant force F = 840, 309  (in newtons) is used to move a 
sled horizontally 10 m.

46. A constant force F = 82, 4, 19  (in newtons) moves an object 
from 10, 0, 02 to 12, 4, 62. (Distance is measured in meters.)

47–48. Parallel and normal forces Find the components of the  
vertical force F = 80, -109  in the directions parallel to and normal 
to the following planes. Show that the total force is the sum of the two 
component forces.

47. A plane that makes an angle of p>3 with the positive x-axis

48. A plane that makes an angle of u = tan-1 
4
5

 with the positive  

x-axis

49. Mass on a plane A 100-kg object rests on an inclined plane at an 
angle of 45° to the floor. Find the components of the force parallel 
to and perpendicular to the plane.

50. Forces on an inclined plane An object on an inclined plane does 
not slide, provided the component of the object’s weight parallel 
to the plane 0Wpar 0  is less than or equal to the magnitude of the  
opposing frictional force 0Ff 0 . The magnitude of the frictional 
force, in turn, is proportional to the component of the object’s 
weight perpendicular to the plane 0Wperp 0  (see figure). The con-
stant of proportionality is the coefficient of static friction m 7 0. 
Suppose a 100-lb block rests on a plane that is tilted at an angle  
of u = 20° to the horizontal.

uFfu 5 um Wperpu

Wpar

Wperp

Weight

u

u

T

T
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a. Find 0Wpar 0  and 0Wperp 0 . (Hint: It is not necessary to find Wpar 
and Wperp first.)

b. The condition for the block not sliding is 0Wpar 0 … m 0Wperp 0 . If 
m = 0.65, does the block slide?

c. What is the critical angle above which the block slides?

51. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. projvu = projuv.
b. If nonzero vectors u and v have the same magnitude, they 

make equal angles with u + v.
c. 1u # i22 + 1u # j22 + 1u # k22 = 0 u 0 2.
d. If u is orthogonal to v and v is orthogonal to w, then u is  

orthogonal to w.
e. The vectors orthogonal to 81, 1, 19  lie on the same line.
f. If projvu = 0, then vectors u and v (both nonzero) are  

orthogonal.

52. For what value of a is the vector v = 84, -3, 79  orthogonal to 
w = 8a, 8, 39?

53. For what value of c is the vector v = 82, -5, c9  orthogonal to 
w = 83, 2, 99?

54. Find two vectors that are orthogonal to 80, 1, 19  and to each 
other.

55. Let a and b be real numbers. Find all vectors 81, a, b9  orthogonal 
to 84, -8, 29 .

56. Find three mutually orthogonal unit vectors in ℝ3 besides { i, {j, 
and {k.

57. Equal angles Consider the set of all unit position vectors u in ℝ3 
that make a 60° angle with the unit vector k in ℝ3.

a. Prove that projku is the same for all vectors in this set.
b. Is scalku the same for all vectors in this set?

58–61. Vectors with equal projections Given a fixed vector v, there is 
an infinite set of vectors u with the same value of projvu.

58. Find another vector that has the same projection onto v = 81, 19  
as u = 81, 29 . Draw a picture.

59. Let v = 81, 19 . Give a description of the position vectors u such 
that projvu = projv81, 29 .

60. Find another vector that has the same projection onto v = 81, 1, 19  
as u = 81, 2, 39 .

61. Let v = 80, 0, 19 . Give a description of all position vectors u 
such that projvu = projv81, 2, 39 .

62–65. Decomposing vectors For the following vectors u and v,  
express u as the sum u = p + n, where p is parallel to v and n is  
orthogonal to v.

62. u = 84, 39 , v = 81, 19
63. u = 8 -2, 29 , v = 82, 19
64. u = 84, 3, 09 , v = 81, 1, 19
65. u = 8 -1, 2, 39 , v = 82, 1, 19
66–69. An alternative line definition Given a fixed point P01x0, y02 
and a nonzero vector n = 8a, b9 , the set of points P1x, y2 for which 
P0P
r  is orthogonal to n is a line / (see figure). The vector n is called a 
normal vector or a vector normal to /.

P0(x0, y0)

P(x, y)

n 5 ka, bl <

O

y

x

66. Show that the equation of the line passing through P01x0, y02 with 
a normal vector n = 8a, b9  is a1x - x02 + b1y - y02 = 0.  
(Hint: For a point P1x, y2 on /, examine n # P0P

r .)

67. Use the result of Exercise 66 to find an equation of the line pass-
ing through the point P012, 62 with a normal vector n = 83, -79 . 
Write the final answer in the form ax + by = c.

68. Use the result of Exercise 66 to find an equation of the line pass-
ing through the point P011, -32 with a normal vector n = 84, 09 .

69. Suppose a line is normal to n = 85, 39 . What is the slope of  
the line?

Explorations and Challenges
70–72. Orthogonal unit vectors in ℝ2 Consider the vectors 
I = 81>12, 1>129  and J = 8 -1>12, 1>129 .
70. Show that I and J are orthogonal unit vectors.

71. Express I and J in terms of the usual unit coordinate vectors i and 
j. Then write i and j in terms of I and J.

72. Write the vector 82, -69  in terms of I and J.

73. Orthogonal unit vectors in ℝ3 Consider the vectors 
I = 81>2, 1>2, 1>129 , J = 8 -1>12, 1>12, 09 , and 
K = 81>2, 1>2, -1>129 .
a. Sketch I, J, and K and show that they are unit vectors.
b. Show that I, J, and K are pairwise orthogonal.
c. Express the vector 81, 0, 09  in terms of I, J, and K.

74. Flow through a circle Suppose water flows in a thin sheet 
over the xy-plane with a uniform velocity given by the vector 
v = 81, 29 ; this means that at all points of the plane, the velocity 
of the water has components 1 m>s in the x-direction and 2 m>s 
in the y-direction (see figure). Let C be an imaginary unit circle 
(that does not interfere with the flow).

x

C

y

a. Show that at the point 1x, y2 on the circle C, the outward-
pointing unit vector normal to C is n = 8x, y9 .

b. Show that at the point 1cos u, sin u2 on the circle C,  
the outward-pointing unit vector normal to C is also 
n = 8cos u, sin u9 .
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c. Find all points on C at which the velocity is normal to C.
d. Find all points on C at which the velocity is tangential to C.
e. At each point on C, find the component of v normal to C.  

Express the answer as a function of 1x, y2 and as a function  
of u.

f. What is the net flow through the circle? Does water  
accumulate inside the circle?

75. Heat flux Let D be a solid heat-conducting cube formed by the 
planes x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. The heat flow 
at every point of D is given by the constant vector Q = 80, 2, 19 .
a. Through which faces of D does Q point into D?
b. Through which faces of D does Q point out of D?
c. On which faces of D is Q tangential to D (pointing neither in 

nor out of D)?
d. Find the scalar component of Q normal to the face x = 0.
e. Find the scalar component of Q normal to the face z = 1.
f. Find the scalar component of Q normal to the face y = 0.

76. Hexagonal circle packing The German mathematician  
Carl Friedrich Gauss proved that the densest way to pack circles 
with the same radius in the plane is to place the centers of the 
circles on a hexagonal grid (see figure). Some molecular structures 
use this packing or its three-dimensional analog. Assume all circles 
have a radius of 1, and let rij be the vector that extends from the 
center of circle i to the center of circle j, for i, j = 0, 1, c, 6.

x

14 0

723

65

y

a. Find r0j for j = 1, 2, c, 6.
b. Find r12, r34, and r61.
c. Imagine that circle 7 is added to the arrangement as shown in 

the figure. Find r07, r17, r47, and r75.

77. Hexagonal sphere packing Imagine three unit spheres  
(radius equal to 1) with centers at O10, 0, 02, P113, -1, 02,  
and Q113, 1, 02. Now place another unit sphere symmetrically 
on top of these spheres with its center at R (see figure).

z

x
y

O

R

P

Q

a. Find the coordinates of R. (Hint: The distance between the 
centers of any two spheres is 2.)

b. Let rIJ be the vector from point I to point J. Find rOP, rOQ, rPQ,  
rOR, and rPR.

78–81. Properties of dot products Let u = 8u1, u2, u39 , 
v = 8v1, v2, v39 , and w = 8w1, w2, w39 . Prove the following vector 
properties, where c is a scalar.

78. 0 u # v 0 … 0 u 0 0 v 0
79. u # v = v # u Commutative property

80. c1u # v2 = 1cu2 # v = u # 1cv2 Associative property

81. u # 1v + w2 = u # v + u # w Distributive property

82. Distributive properties 

a. Show that 1u + v2 # 1u + v2 = 0 u 0 2 + 2u # v + 0 v 0 2.

b. Show that 1u + v2 # 1u + v2 = 0 u 0 2 + 0 v 0 2 if u is orthogonal 
to v.

c. Show that 1u + v2 # 1u - v2 = 0 u 0 2 - 0 v 0 2.

83. Direction angles and cosines Let v = 8a, b, c9  and let a, b, and 
g be the angles between v and the positive x-axis, the positive  
y-axis, and the positive z-axis, respectively (see figure).

z

x

v

y

b

g

a

a. Prove that cos2 a + cos2 b + cos2 g = 1.
b. Find a vector that makes a 45° angle with i and j. What angle 

does it make with k?
c. Find a vector that makes a 60° angle with i and j. What angle 

does it make with k?
d. Is there a vector that makes a 30° angle with i and j? Explain.
e. Find a vector v such that a = b = g. What is the angle?

84–88. Cauchy-Schwarz Inequality The definition u # v = 0 u 0 0 v 0 cos u  
implies that 0 u # v 0 … 0 u 0 0 v 0  (because 0 cos u 0 … 1). This inequality, 
known as the Cauchy-Schwarz Inequality, holds in any number of  
dimensions and has many consequences.

84. What conditions on u and v lead to equality in the  
Cauchy-Schwarz Inequality?

85. Verify that the Cauchy-Schwarz Inequality holds for 
u = 83, -5, 69  and v = 8 -8, 3, 19 .

86. Geometric-arithmetic mean Use the vectors u = 81a, 1b9   
and v = 81b, 1a9  to show that 1ab …

a + b
2

, where a Ú 0  

and b Ú 0.

87. Triangle Inequality Consider the vectors u, v, and u + v  
(in any number of dimensions). Use the following steps to prove  
that 0 u + v 0 … 0 u 0 + 0 v 0 .
a. Show that 0 u + v 0 2 = 1u + v2 # 1u + v2 = 0 u 0 2 +

2u # v + 0 v 0 2.
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b. Use the Cauchy-Schwarz Inequality to show that 
0 u + v 0 2 … 1 0 u 0 + 0 v 0 22.

c. Conclude that 0 u + v 0 … 0 u 0 + 0 v 0 .
d. Interpret the Triangle Inequality geometrically in ℝ2 or ℝ3.

88. Algebra inequality Show that

1u1 + u2 + u322 … 31u2
1 + u2

2 + u2
32,

for any real numbers u1, u2, and u3. (Hint: Use the Cauchy-
Schwarz Inequality in three dimensions with u = 8u1, u2, u39   
and choose v in the right way.)

89. Diagonals of a parallelogram Consider the parallelogram with 
adjacent sides u and v.

a. Show that the diagonals of the parallelogram are u + v and 
u - v.

b. Prove that the diagonals have the same length if and only if 
u # v = 0.

c. Show that the sum of the squares of the lengths of the  
diagonals equals the sum of the squares of the lengths of  
the sides.

QUICK CHECK ANSWERS

1. If u = 0, then u and v are parallel and point in the same 
direction. If u = p, then u and v are parallel and point in  
opposite directions. 2. All these dot products are zero,  
and the unit vectors are mutually orthogonal. The angle  
between two different unit vectors is p>2. 3. projiu = 4i, 
projju = -3j, scaliu = 4, scalju = -3	

13.4 Cross Products
The dot product combines two vectors to produce a scalar result. There is an equally 
fundamental way to combine two vectors in ℝ3 and obtain a vector result. This opera-
tion, known as the cross product (or vector product), may be motivated by a physical 
application.

Suppose you want to loosen a bolt with a wrench. As you apply force to the end of the 
wrench in the plane perpendicular to the bolt, the “twisting power” you generate depends 
on three variables:

• the magnitude of the force F applied to the wrench;

• the length 0 r 0  of the wrench;

• the angle at which the force is applied to the wrench.

The twisting generated by a force acting at a distance from a pivot point is called torque 
(from the Latin to twist). The torque is a vector whose magnitude is proportional to 0F 0 , 
0 r 0 , and sin u, where u is the angle between F and r (Figure 13.55). If the force is applied 
parallel to the wrench—for example, if you pull the wrench (u = 0) or push the wrench 
(u = p)—there is no twisting effect; if the force is applied perpendicular to the wrench 
(u = p>2), the twisting effect is maximized. The direction of the torque vector is defined 
to be orthogonal to both F and r. As we will see shortly, the torque is expressed in terms 
of the cross product of F and r.

The Cross Product
The preceding physical example leads to the following definition of the cross product.

Torque r
F

Component of F
perpendicular to r
has length |F|sin u. 

u

u

Figure 13.55

u 3 v

v

u

u

Figure 13.56

DEFINITION Cross Product

Given two nonzero vectors u and v in ℝ3, the cross product u * v is a vector with 
magnitude

0 u * v 0 = 0 u 0 0 v 0  sin u,

where 0 … u … p is the angle between u and v. The direction of u * v is given 
by the right-hand rule: When you put the vectors tail to tail and let the fingers 
of your right hand curl from u to v, the direction of u * v is the direction of your 
thumb, orthogonal to both u and v (Figure 13.56). When u * v = 0, the direction 
of u * v is undefined.
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The following theorem is an immediate consequence of the definition of the cross product.QUICK CHECK 1 Sketch the vectors 
u = 81, 2, 09  and v = 8 -1, 2, 09 . 
Which way does u * v point? Which 
way does v * u point?	 THEOREM 13.3 Geometry of the Cross Product

Let u and v be two nonzero vectors in ℝ3.

1. The vectors u and v are parallel 1u = 0 or u = p2 if and only if u * v =  0.

2. If u and v are two sides of a parallelogram (Figure 13.57), then the area of the 
parallelogram is

0 u * v 0 = 0 u 0 0 v 0  sin u.

u

v

u

uuu

uvu sin u

5 uu 3 vu
5 uuuuvu sin u

Area 5 base 3 height

Figure 13.57

EXAMPLE 1 A cross product Find the magnitude and direction of u * v, where 
u = 81, 1, 09  and v = 81, 1, 129 .
SOLUTION Because u is one side of a 45–45–90 triangle and v is the hypotenuse  
(Figure 13.58), we have u = p>4 and sin u = 112

 . Also, 0 u 0 = 12 and 0 v 0 = 2, so the 
magnitude of u * v is

0 u * v 0 = 0 u 0 0 v 0  sin u = 12 # 2 # 112
= 2.

The direction of u * v is given by the right-hand rule: u * v is orthogonal to u and v  
(Figure 13.58).

Related Exercises 14–15	

u 3 v is orthogonal to
u and v with uu 3 vu 5 2.

z

y

x

u 5 k1, 1, 0l 

5 2

 v 5 k1, 1, Ï2l

4u
p

Figure 13.58

Properties of the Cross Product
The cross product has several algebraic properties that simplify calculations. For example, 
scalars factor out of a cross product; that is, if a and b are scalars, then (Exercise 69)

1au2 * 1bv2 = ab  1u * v2.
The order in which the cross product is performed is important. The magnitudes of u * v 
and v * u are equal. However, applying the right-hand rule shows that u * v and v * u 
point in opposite directions. Therefore, u * v = -1v * u2. There are two distributive 
properties for the cross product, whose proofs are omitted.

THEOREM 13.4 Properties of the Cross Product
Let u, v, and w be nonzero vectors in ℝ3, and let a and b be scalars.

1. u * v = -1v * u2 Anticommutative property

2. 1au2 * 1bv2 = ab  1u * v2 Associative property

3. u * 1v + w2 = 1u * v2 + 1u * w2 Distributive property

4. 1u + v2 * w = 1u * w2 + 1v * w2 Distributive property
QUICK CHECK 2 Explain why the vector 
2u * 3v points in the same direction 
as the vector u * v.	

EXAMPLE 2 Cross products of unit vectors Evaluate all the cross products among 
the coordinate unit vectors i, j, and k.

SOLUTION These vectors are mutually orthogonal, which means the angle between any 
two distinct vectors is u = p>2 and sin u = 1. Furthermore, 0 i 0 = 0 j 0 = 0 k 0 = 1. 
Therefore, the cross product of any two distinct vectors has magnitude 1. By the right-
hand rule, when the fingers of the right hand curl from i to j, the thumb points in the 
direction of the positive z-axis (Figure 13.59). The unit vector in the positive z-direction is 
k, so i * j = k. Similar calculations show that j * k = i and k * i = j.
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By property 1 of Theorem 13.4, j * i = -1i * j2 = -k, so  j * i and i * j point in 
opposite directions. Similarly, k * j = - i and i * k = -j. These relationships are eas-
ily remembered with the circle diagram in Figure 13.59. Finally, the angle between any 
unit vector and itself is u = 0. Therefore, i * i = j * j = k * k = 0.

Related Exercises 17–19	

k

i j
k 3 i 5 j
j 3 k 5 i
i 3 j 5 k

x

y

z

k 5 i 3 j 5 2(j 3 i)

j 5 k 3 i 5 2(i 3 k)
i 5 j 3 k 5 2(k 3 j)

i

Figure 13.59

What is missing so far is an efficient method for finding the components of the cross 
product of two vectors in ℝ3. Let u = u1i + u2 j + u3k and v = v1i + v2 j + v3k. Using 
the distributive properties of the cross product (Theorem 13.4), we have

 u * v = 1u1i + u2 j + u3k2 * 1v1i + v2 j + v3k2
 = u1v1 1i * i2 + u1v2 1i * j2 + u1v3 1i * k2

         (1)1*     (1)1*     (1)1*
 0 k - j

 +  u2v1 1j * i2 + u2v2 1j * j2 + u2v3 1j * k2
          (1)1*     (1)1*     (1)1*
 -k 0 i

 +  u3v1 1k * i2 + u3v2 1k * j2 + u3v3 1k * k2.
          (1)1*     (1)1*     (1)1*
 j - i 0

This formula looks impossible to remember until we see that it fits the pattern used to 
evaluate 3 * 3 determinants. Specifically, if we compute the determinant of the matrix

Unit vectors
Components of u
Components of v

  S  
  S  
  S  

 °
i  j k

u1 u2 u3

v1  v2 v3

¢

(expanding about the first row), the following formula for the cross product emerges (see 
margin note).

THEOREM 13.5 Cross Products of Coordinate Unit Vectors

 i * j = -1j * i2 = k   j * k = -1k * j2 = i

 k * i = -1i * k2 = j   i * i = j * j = k * k = 0

➤	 The determinant of the matrix A is 
denoted both 0A 0  and det A. The formula 
for the determinant of a 3 * 3 matrix A is

 †
a1 a2 a3

b1 b2 b3

c1 c2 c3

† = a1 `
b2 b3

c2 c3

` - a2 `
b1 b3

c1 c3

`

 +  a3 `
b1 b2

c1 c2

` ,

where

` a  b
c  d

` = ad - bc.

THEOREM 13.6 Evaluating the Cross Product
Let u = u1i + u2 j + u3k  and v = v1i + v2 j + v3k. Then

u * v = †
i j k

u1 u2 u3

v1 v2 v3

† = ` u2 u3

v2 v3

` i - ` u1 u3

v1 v3

` j + ` u1 u2

v1 v2

` k.

2
1

OQ 5 k3, 2, 0l 
Q(3, 2, 0)

P(2, 3, 4)

OP 5 k2, 3, 4l 

y

z

x
Area of parallelogram

5  uOP 3 OQu.

Area of triangle

5 2 uOP 3 OQu.

O

Figure 13.60
EXAMPLE 3 Area of a triangle Find the area of the triangle with vertices O10, 0, 02, 
P12, 3, 42, and Q13, 2, 02 (Figure 13.60).
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SOLUTION First consider the parallelogram, two of whose sides are the vectors OPr  and 
OQr . By Theorem 13.3, the area of this parallelogram is 0OPr * OQr 0 . Computing the 
cross product, we find that

 OPr * OQr = †
i j k
2 3 4
3 2 0

† = ` 3 4
2 0

` i - ` 2 4
3 0

` j + ` 2 3
3 2

` k

 =  -8i + 12j - 5k.

Therefore, the area of the parallelogram is

0OPr * OQr 0 = 0 -8i + 12j - 5k 0 = 1233 ≈ 15.26.

The triangle with vertices O, P, and Q forms half of the parallelogram, so its area is 1233>2 ≈ 7.63.
Related Exercises 34–36	

EXAMPLE 4 Vector orthogonal to two vectors Find a vector orthogonal to the two 
vectors u = - i + 6k and v = 2i - 5j - 3k.

SOLUTION A vector orthogonal to u and v is parallel to u * v (Figure 13.61). One such 
orthogonal vector is

 u * v = †
i j k

-1 0 6
2 -5 -3

†

 = 10 + 302i - 13 - 122j + 15 - 02k
 = 30i + 9j + 5k.

Any scalar multiple of this vector is also orthogonal to u and v.
Related Exercises 42–44	

x

y

z

u 3 v 5 30i 1 9j 1 5k
is orthogonal to u and v. 

u 5 2i 1 6k

v 5 2i 2 5j 2 3j

Figure 13.61

QUICK CHECK 3 A good check on a 
cross product calculation is to verify 
that u and v are orthogonal to the 
computed u * v. In Example 4, 
verify that u # 1u * v2 = 0 and 
v # 1u * v2 = 0.	

Applications of the Cross Product
We now investigate two physical applications of the cross product.

Torque Returning to the example of applying a force to a wrench, suppose a force F is 
applied to the point P at the head of a vector r = OPr  (Figure 13.62). The torque, or twist-
ing effect, produced by the force about the point O is given by T = r * F. The torque vec-
tor has a magnitude of

0 T 0 = 0 r * F 0 = 0 r 0 0F 0  sin u,

where u is the angle between r and F. The direction of the torque is given by the right-
hand rule; it is orthogonal to both r and F. As noted earlier, if r and F are parallel, then 
sin u = 0 and the torque is zero. For a given r and F, the maximum torque occurs when F 
is applied in a direction orthogonal to r 1u = p>22.

r

u

F

F

T 5 r 3 F

O

P

Direction given by
right-hand rule

Figure 13.62
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EXAMPLE 5 Tightening a bolt A force of 20 N is applied to a wrench attached to a 
bolt in a direction perpendicular to the bolt (Figure 13.63). Which produces more torque: 
applying the force at an angle of 60° on a wrench that is 0.15 m long or applying the force 
at an angle of 135° on a wrench that is 0.25 m long? In each case, what is the direction of 
the torque?

SOLUTION The magnitude of the torque in the first case is

0 T 0 = 0 r 0 0F 0  sin u = 10.15 m2120 N2 sin 60° ≈ 2.6 N@m.

In the second case, the magnitude of the torque is

0 T 0 = 0 r 0 0F 0  sin u = 10.25 m2120 N2 sin 135° ≈ 3.5 N@m.

The second instance gives the greater torque. In both cases, the torque is orthogonal to r 
and F, parallel to the shaft of the bolt (Figure 13.63).

Related Exercises 47, 49 

(b)

T 5 r 3 F
uTu 5 3.5 N-m

(a)

uFu 5 20 N

uFu 5 20 N

F

T 5 r 3 F
uTu 5 2.6 N-m

F

u 5 608

u 5 1358uru 5 0.15 m

O

P

uru 5 0.25 m

O

P

F

Figure 13.63

➤ When standard threads are added to the 
bolt in Figure 13.63, the forces used 
in Example 5 cause the bolt to move 
upward into a nut—in the direction of the 
torque.

Tnut

Magnetic Force on a Moving Charge Moving electric charges (either an isolated 
charge or a current in a wire) experience a force when they pass through a magnetic field. 
For an isolated charge q, the force is given by F = q1v * B2, where v is the velocity of the 
charge and B is the magnetic field. The magnitude of the force is

0F 0 = 0 q 0 0 v * B 0 = 0 q 0 0 v 0 0B 0  sin u,

where u is the angle between v and B (Figure 13.64). Note that the sign of the charge also 
determines the direction of the force. If the velocity vector is parallel to the magnetic field, 

the charge experiences no force. The maximum force occurs when the velocity 
is orthogonal to the magnetic field.

q

Path of charged
particle

B

v

F

F is orthogonal
to v and B.

Figure 13.64

EXAMPLE 6 Force on a proton A proton with a mass of 1.7 * 10-27 kg 
and a charge of q = +1.6 * 10-19 coulombs (C) moves along the x-axis with 
a speed of 0 v 0 = 9 * 105 m>s. When it reaches 10, 0, 02, a uniform magnetic 
field is turned on. The field has a constant strength of 1 tesla (1 T) and is  
directed along the negative z-axis (Figure 13.65).

a. Find the magnitude and direction of the force on the proton at the instant it 
enters the magnetic field.

b. Assume the proton loses no energy and the force in part (a) acts as a centrip-
etal force with magnitude 0F 0 = m 0 v 0 2>R that keeps the proton in a circular 
orbit of radius R. Find the radius of the orbit.

z

F
F

F

F

B

B

B

B

x

q

y

v

v

v

v

The force F 5 qv 3 B is orthogonal to
v and B at all points and holds the proton
in a circular trajectory.

Figure 13.65
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SOLUTION

a. Expressed as vectors, we have v = 9 * 105 i and B = -k. Therefore, the force on 
the proton in newtons is

 F = q1v * B2 = 1.6 * 10-19119 * 105 i2 * 1-k22
 = 1.44 * 10-13j.

As shown in Figure 13.65, when the proton enters the magnetic field in the positive  
x-direction, the force acts in the positive y-direction, which changes the path of the 
proton.

b. The magnitude of the force acting on the proton remains 1.44 * 10-13 N at all times 
(from part (a)). Equating this force to the centripetal force 0F 0 = m 0 v 0 2>R, we find 
that

R =
m 0 v 0 2
0F 0 =

11.7 * 10-27 kg2 19 * 105 m>s22

1.44 * 10-13 N
≈ 0.01 m.

Assuming no energy loss, the proton moves in a circular orbit of radius 0.01 m.
Related Exercises 55, 67	

➤	 The standard unit of magnetic field 
strength is the tesla (T, named after 
Nicola Tesla). A typical strong bar 
magnet has a strength of about 1 T. In 
terms of other units, 1 T = 1 kg>1C@s2,  
where C is the unit of charge called the 
coulomb. Therefore, the units of force in 
Example 6a are kg-m>s2, or newtons.

Getting Started
1. What is the magnitude of the cross product of two parallel vectors?

2. If u and v are orthogonal, what is the magnitude of u * v?

3. Suppose u and v are nonzero vectors. What is the geometric  
relationship between u and v under each of the following  
conditions?

a. u # v = 0 b. u * v = 0

4. Use a geometric argument to explain why u # 1u * v2 = 0.

5. Compute 0 u * v 0  if u and v are unit vectors and the angle  
between them is p>4.

6. Compute 0 u * v 0  if �u � = 3 and �v � = 4 and the angle between 
u and v is 2p>3.

7. Find v * u if u * v = 3i + 2j - 7k.

8. For any vector v in ℝ3, explain why v * v = 0.

9. Explain how to use a determinant to compute u * v.

10. Explain how to find the torque produced by a force using cross 
products.

Practice Exercises
11–12. Cross products from the definition Find the cross product 
u * v in each figure.

11. z

x

y

v 5 k0, 5, 0l 
u 5 k3, 0, 0l 

SECTION 13.4 EXERCISES

12. z

x

y

v 5 k0, 0, 2l 

u 5 k24, 0, 0l 

13–16. Cross products from the definition Sketch the following  
vectors u and v. Then compute 0 u * v 0  and show the cross product  
on your sketch.

13. u = 80, -2, 09 , v = 80, 1, 09
14. u = 80, 4, 09 , v = 80, 0, -89
15. u = 83, 3, 09 , v = 83, 3, 3129
16. u = 80, -2, -29 , v = 80, 2, -29
17–22. Coordinate unit vectors Compute the following cross  
products. Then make a sketch showing the two vectors and their  
cross product.

17. j * k 18. i * k 19. - j * k

20. 3j * i 21. -2i * 3k 22. 2j * 1-52i
23–28. Computing cross products Find the cross products u * v and 
v * u for the following vectors u and v.

23. u = 83, 5, 09 , v = 80, 3, -69
24. u = 8 -4, 1, 19 , v = 80, 1, -19
25. u = 82, 3, -99 , v = 8 -1, 1, -19
26. u = 83, -4, 69 , v = 81, 2, -19
27. u = 3i - j - 2k, v = i + 3j - 2k

28. u = 2i - 10j + 15k, v = 0.5i + j - 0.6k
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29–32. Area of a parallelogram Find the area of the parallelogram 
that has two adjacent sides u and v.

29. u = 3i - j, v = 3j + 2k

30. u = -3i + 2k, v = i + j + k

31. u = 2i - j - 2k, v = 3i + 2j - k

32. u = 8i + 2j - 3k, v = 2i + 4j - 4k

33–38. Areas of triangles Find the area of the following triangles T.

33. The vertices of T are A10, 0, 02, B13, 0, 12, and C11, 1, 02.
34. The vertices of T are O10, 0, 02, P11, 2, 32, and Q16, 5, 42.
35. The vertices of T are A15, 6, 22, B17, 16, 42, and C16, 7, 32.
36. The vertices of T are A1-1, -5, -32, B1-3, -2, -12, and 

C10, -5, -12.
37. The sides of T are u = 83, 3, 39 , v = 86, 0, 69 , and u - v.

38. The sides of T are u = 80, 6, 09 , v = 84, 4, 49 , and u - v.

39. Collinear points and cross products Explain why the points  
A, B, and C in ℝ3 are collinear if and only if ABr * ACr = 0.

40–41. Collinear points Use cross products to determine whether the 
points A, B, and C are collinear.

40. A13, 2, 12, B15, 4, 72, and C19, 8, 192
41. A1-3, -2, 12, B11, 4, 72, and C14, 10, 142
42–44. Orthogonal vectors Find a vector orthogonal to the  
given vectors.

42. 81, 2, 39  and 8 -2, 4, -19
43. 80, 1, 29  and 8 -2, 0, 39
44. 88, 0, 49  and 8 -8, 2, 19
45–48. Computing torque Answer the following questions about 
torque.

45. Let r = OPr = i + j + k. A force F = 820, 0, 09  is applied at 
P. Find the torque about O that is produced.

46. Let r = OPr = i - j + 2k. A force F = 810, 10, 09  is applied 
at P. Find the torque about O that is produced.

47. Let r = OPr = 10i. Which is greater (in magnitude): the torque 
about O when a force F = 5i - 5k is applied at P or the torque 
about O when a force F = 4i - 3j is applied at P?

48. A pump handle has a pivot at 10, 0, 02 and extends to P15, 0, -52. 
A force F = 81, 0, -109  is applied at P. Find the magnitude and 
direction of the torque about the pivot.

49. Tightening a bolt Suppose you apply a force of 20 N to a 
0.25-meter-long wrench attached to a bolt in a direction perpen-
dicular to the bolt. Determine the magnitude of the torque when 
the force is applied at an angle of 45° to the wrench.

50. Opening a laptop A force of 1.5 lb is applied in a direction  
perpendicular to the screen of a laptop at a distance of 10 in from 
the hinge of the screen. Find the magnitude of the torque (in ft-lb) 
that you apply.

51. Bicycle brakes A set of caliper brakes exerts a force on the rim 
of a bicycle wheel that creates a frictional force F of 40 N perpen-
dicular to the radius of the wheel (see figure). Assuming the wheel 

has a radius of 33 cm, find the magnitude and direction of the 
torque about the axle of the wheel.

F

r

52. Arm torque A horizontally outstretched arm supports a weight 
of 20 lb in a hand (see figure). If the distance from the shoulder 
to the elbow is 1 ft and the distance from the elbow to the hand is 
1 ft, find the magnitude and describe the direction of the torque 
about (a) the shoulder and (b) the elbow. (The units of torque in 
this case are ft-lb.)

F

1 ft 1 ft

53–56. Force on a moving charge Answer the following questions 
about force on a moving charge.

53. A particle with a unit positive charge 1q = 12 enters a constant 
magnetic field B = i + j with a velocity v = 20k. Find the mag-
nitude and direction of the force on the particle. Make a sketch of 
the magnetic field, the velocity, and the force.

54. A particle with a unit negative charge 1q = -12 enters a constant 
magnetic field B = 5k with a velocity v = i + 2j. Find the mag-
nitude and direction of the force on the particle. Make a sketch of 
the magnetic field, the velocity, and the force.

55. An electron 1q = -1.6 * 10-19 C2 enters a constant 2-T 
magnetic field at an angle of 45° to the field with a speed of 
2 * 105 m>s. Find the magnitude of the force on the electron.

56. A proton 1q = 1.6 * 10-19 C2 with velocity 2 * 106 j m>s  
experiences a force in newtons of F = 5 * 10-12 k as it  
passes through the origin. Find the magnitude and direction of  
the magnetic field at that instant.

57. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. The cross product of two nonzero vectors is a nonzero vector.
b. 0 u * v 0  is less than both 0 u 0  and 0 v 0 .
c. If u points east and v points south, then u * v points west.
d. If u * v = 0 and u # v = 0, then either u = 0 or v = 0.
e. Law of Cancellation? If u * v = u * w, then v = w.

58. Finding an unknown Find the value of a such that 
8a, a, 29 * 81, a, 39 = 82, -4, 29 .
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59. Vector equation Find all vectors u that satisfy the equation

81, 1, 19 * u = 8 -1, -1, 29 .
60. Vector equation Find all vectors u that satisfy the equation

81, 1, 19 * u = 80, 0, 19 .
61. Area of a triangle Find the area of the triangle with vertices on 

the coordinate axes at the points 1a, 0, 02, 10, b, 02, and 10, 0, c2, 
in terms of a, b, and c.

Explorations and Challenges
62–66. Scalar triple product Another operation with vectors is the 
scalar triple product, defined to be u # 1v * w2, for nonzero vectors  
u, v, and w in ℝ3.

62. Express u, v, and w in terms of their components, and show that 
u # 1v * w2 equals the determinant

†
u1 u2 u3

v1 v2 v3

w1 w2 w3

† .

63. Consider the parallelepiped (slanted box) determined by the  
position vectors u, v, and w (see figure). Show that the volume  
of the parallelepiped is 0 u # 1v * w2 0 , the absolute value of the  
scalar triple product.

v 3 w

vw

uuu cos uu

u

64. Find the volume of the parallelepiped determined by the position 
vectors u = 83, 1, 09 , v = 82, 4, 19 , and w = 81, 1, 59  (see 
Exercise 63).

65. Explain why the position vectors u, v, and w are coplanar if and 
only if �u # 1v * w2 � = 0. (Hint: See Exercise 63).

66. Prove that u # 1v * w2 = 1u * v2 # w.

67. Electron speed An electron with a mass of 9.1 * 10-31 kg and a 
charge of -1.6 * 10-19 C travels in a circular path with no loss of 
energy in a magnetic field of 0.05 T that is orthogonal to the path 
of the electron (see figure). If the radius of the path is 0.002 m, 
what is the speed of the electron?

B B

B

Electron

0.002 m

68. Three proofs Prove that u * u = 0 in three ways.

a. Use the definition of the cross product.
b. Use the determinant formulation of the cross product.
c. Use the property that u * v = -1v * u2.

69. Associative property Prove in two ways that for scalars a and b,  
1au2 * 1bv2 = ab1u * v2. Use the definition of the cross  
product and the determinant formula.

70–72. Possible identities Determine whether the following statements 
are true using a proof or counterexample. Assume u, v, and w are  
nonzero vectors in ℝ3.

70. u * 1u * v2 = 0

71. 1u - v2 * 1u + v2 = 2u * v

72. u # 1v * w2 = w # 1u * v2
73–74. Identities Prove the following identities. Assume u, v, w, and x 
are nonzero vectors in ℝ3.

73. u * 1v * w2 = 1u # w2 v - 1u # v2 w Vector triple product

74. 1u * v2 # 1w * x2 = 1u # w21v # x2 - 1u # x21v # w2
75. Cross product equations Suppose u and v are nonzero  

vectors in ℝ3.

a. Prove that the equation u * z = v has a nonzero solution z if 
and only if u # v = 0. (Hint: Take the dot product of both sides 
with v.)

b. Explain this result geometrically.

QUICK CHECK ANSWERS

1. u * v points in the positive z-direction; v * u  
points in the negative z-direction. 2. The vector  
2u points in the same direction as u, and the vector 
3v points in the same direction as v. So the right-hand 
rule gives the same direction for 2u * 3v as it does for 
u * v. 3. u # 1u * v2 = 8 -1, 0, 69 # 830, 9, 59 =
-30 + 0 + 30 = 0. A similar calculation shows that 
v # 1u * v2 = 0.	

13.5 Lines and Planes in Space
In Chapter 1, we reviewed the catalog of standard functions and their associated graphs. 
For example, the graph of a linear equation in two variables 1y = mx + b2 is a line, the 
graph of a quadratic equation 1y = ax2 + bx + c2 is a parabola, and both of these graphs 
lie in the xy-plane (two-dimensional space). Our immediate aim is to begin a similar jour-
ney through three-dimensional space. What are the basic geometrical objects in three di-
mensions, and how do we describe them with equations?
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Certainly among the most fundamental objects in three dimensions are the line and 
plane. In this section, we develop equations for both lines and planes and explore their 
properties and uses.

Lines in Space
Two distinct points in ℝ3 determine a unique line. Alternatively, one point and a direction 
also determine a unique line. We use both of these properties to derive two different de-
scriptions of lines in space: one using parametric equations, and one using vector equations.

Let / be the line passing through the point P01x0, y0, z02 parallel to the nonzero vec-
tor v = 8a, b, c9 , where P0 and v are given. The fixed point P0 is associated with the 
position vector r0 = OPr0 = 8x0, y0, z09 . We let P1x, y, z2 be a variable point on / and 
let r = OPr = 8x, y, z9  be the position vector associated with P (Figure 13.66). Because 
/ is parallel to v, the vector P0P

r  is also parallel to v; therefore, P0P
r = tv, where t is a real 

number. By vector addition, we see that OPr = OPr0 + P0P
r , or OPr = OPr0 + tv. Express-

ing these vectors in terms of their components, we obtain a vector equation for a line:

Component form  8x, y, z9 = 8x0, y0, z09 + t8a, b, c9 or
        (1)1*  (111)111*   (11)11*
           r = OPr      r0 = OPr0     v

Vector form    r = r0 + tv.

Equating components, we obtain parametric equations for a line:

x = x0 + at,  y = y0 + bt,  z = z0 + ct, for -∞ 6 t 6 ∞ .

z
Equation of line ,
r 5 r0 1 tv

Variable point
P(x, y, z)

v 5 ka, b, cl is
any vector in
the direction of ,.

,

Fixed point
P0(x0, y0, z0)

r 5 OP 5 kx, y, zl

r0 5 OP0 5 kx0, y0, z0l

tv

y

x

O

Figure 13.66

The parameter t determines the location of points on the line, where t = 0 corresponds to 
P0. If t increases from 0, we move along the line in the direction of v, and if t decreases 
from 0, we move along the line in the direction of -v. As t varies over all real numbers 
(-∞ 6 t 6 ∞), the entire line / is generated. If, instead of knowing the direction v of the 
line, we are given two points P01x0, y0, z02 and P11x1, y1, z12, then the direction of the line 
is v = P0P

r
1 = 8x1 - x0, y1 - y0, z1 - z09 .

QUICK CHECK 1 Describe the line 
r = t k, for -∞ 6 t 6 ∞ . Describe 
the line r = t1i + j + 0k2, for 
-∞ 6 t 6 ∞ .	

Equation of a Line

A vector equation of the line passing through the point P01x0, y0, z02 in the 
direction of the vector v = 8a, b, c9  is r = r0 + tv, or

8x, y, z9 = 8x0, y0, z09 + t8a, b, c9 , for -∞ 6 t 6 ∞ .

Equivalently, the corresponding parametric equations of the line are

x = x0 + at, y = y0 + bt, z = z0 + ct, for -∞ 6 t 6 ∞ .

➤	 There are infinitely many equations for 
the same line. The direction vector is 
determined only up to a scalar multiple.
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EXAMPLE 1 Equations of lines Find a vector equation of the line / that passes 
through the point P011, 2, 42 in the direction of v = 85, -3, 19 , and then find the corre-
sponding parametric equations of /.

SOLUTION We are given r0 = 81, 2, 49 . Therefore, an equation of the line is

r = r0 + tv = 81, 2, 49 + t85, -3, 19 = 81 + 5t, 2 - 3t, 4 + t9 ,
for -∞ 6 t 6 ∞  (Figure 13.67). The corresponding parametric equations are

x = 1 + 5t,  y = 2 - 3t,  z = 4 + t, for -∞ 6 t 6 ∞ .

The line is easier to visualize if it is plotted together with its projection in the xy-plane. 
Setting z = 0 (the equation of the xy-plane), parametric equations of the projection line 
are x = 1 + 5t, y = 2 - 3t, and z = 0. Eliminating t from these equations, an equation 
of the projection line is y = -  35 x + 13

5  (Figure 13.67).
Related Exercises 11–12 

,

z

v 5 k5, 23, 1l
P0(1, 2, 4)

r 5 k1 1 5t, 2 2 3t, 4 1 tl

Projection of line
in xy-plane

y 5 2
3
5

13
5

x 1
y

x

Figure 13.67 EXAMPLE 2 Equation of a line and a line segment Let / be the line that passes 
through the points P01-3, 5, 82 and P114, 2, -12.
a. Find an equation of /.

b. Find parametric equations of the line segment that extends from P0 to P1.

SOLUTION

a. The direction of the line is

v = P0 Pr 1 = 84 - 1-32, 2 - 5, -1 - 89 = 87, -3, -99 .
Therefore, with r0 = 8 -3, 5, 89 , a vector equation of / is

 r = r0 + tv, or

 8x, y, z9 = 8 -3, 5, 89 + t87, -3, -99
 = 8 -3 + 7t, 5 - 3t, 8 - 9t9 .

b. Parametric equations for / are

x = -3 + 7t, y = 5 - 3t, z = 8 - 9t, for -∞ 6 t 6 ∞ .

To generate only the line segment from P0 to P1, we simply restrict the values of the 
parameter t. Notice that t = 0 corresponds to P01-3, 5, 82, and t = 1 corresponds 
to P114, 2, -12. Letting t vary from 0 to 1 generates the line segment from P0 to P1. 
Therefore, parametric equations of the line segment are

x = -3 + 7t, y = 5 - 3t, z = 8 - 9t, for 0 … t … 1.

The graph of /, which includes the line segment from P0 to P1, is shown in  
Figure 13.68, along with the projection of / in the xz-plane. The parametric equations 
of the projection line are found by setting y = 0, which is the equation of the  
xz-plane.

Related Exercises 16, 29–30 

x 5 23 1 7t,
y 5 0,
z 5 8 2 9t

P0(23, 5, 8)

P1(4, 2, 21)

Projection of ,
on xz-plane: Parametric equations

of line segment:
x 5 23 1 7t,
y 5 5 2 3t,
z 5 8 2 9t,
for 0 # t # 1

,z

y
x

Figure 13.68

QUICK CHECK 2 In the equation of the line

8x, y, z9 = 8x0, y0, z09 + t8x1 - x0, y1 - y0, z1 - z09 ,
what value of t corresponds to the point P01x0, y0, z02? What value of t corresponds to the 
point P11x1, y1, z12? 

Distance from a Point to a Line
Three-dimensional geometry has practical applications in such diverse fields as orbital 
mechanics, ballistics, computer graphics, and regression analysis. For example, determin-
ing the distance from a point to a line is an important calculation in problems such as pro-
gramming video games. We first derive a formula for this distance and then illustrate how 
the formula is used to determine whether (virtual) billiard balls collide in a video game.
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Consider a point Q and a line / containing the point P, where / is given by the vector 
equation r = r0 + tv. Our goal is to find the distance d between Q and /. The geometry of 
the problem is shown in Figure 13.69, where we have placed the tail of v, which is a vector 
parallel to /, at the point P. We drop a perpendicular from Q to the point Q′ on / to form 
the right triangle PQQ′; the shortest distance d from Q to / is the distance from Q to Q′. 
From trigonometry, we know that d = 0PQr 0 sin u, where u is the angle between v and PQr . 
Using the definition of the magnitude of the cross product, we can also write

0 v * PQr 0 = 0 v 0 0PQr 0  sin u = 0 v 0 d. Cross product definition
        (+)+*
           d

Dividing both sides of this equation by 0 v 0  leads to the desired result,

d =
0 v * PQr 0
0 v 0  .

d 5 |PQ|sin u 

u 

x

y

y

<: r 5 r0 1 tvv

Q

P

Q9

Figure 13.69

The computer program for a billiards video game must keep track of the locations of 
all the balls on a two-dimensional screen. Although it is possible to write code that tracks 
each pixel in every ball, it is much simpler to track only the center pixel of each ball. As 
explained in the next example, the question of whether two balls collide during the game 
is answered by computing the distance between a point and a line.

Distance Between a Point and a Line

The distance d between the point Q and the line r = r0 + tv is

d =
0 v * PQr 0
0 v 0  ,

where P is any point on the line and v is a vector parallel to the line.

QUICK CHECK 3 Find the distance 
between the point Q11, 0, 32 and the 
line 8x, y, z9 = t82, 1, 29 . Note 
that P10, 0, 02 lies on the line and 
v = 82, 1, 29  is parallel to the line. 

EXAMPLE 3 Video game calculation Arria is playing a billiards video game on her 
iPad. The playing surface is represented in the video game by the rectangle in the first 
quadrant with opposite corners at the origin and the point 1100, 502 (Figure 13.70).  
Suppose the cue ball is located at P125, 162, and Arria shoots the ball with an angle  
of 30° above the x-axis, aiming for a target ball located at Q175, 462. If the cue ball is 
struck with sufficient force, will it collide with the target ball? Assume the diameter of 
each ball is 2.25.

Cue ball

y

Q(75, 46)

P(25, 16)

Target ball

u 5 30° 

x

(100, 50)

Figure 13.70
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SOLUTION We assume the video game stores the locations of all the balls by representing 
each ball with the coordinates of its center, and that the path of a pool shot is represented 
by the equation of a line. To determine whether two balls collide, it helps to look first at the 
situation where the cue ball barely touches the target ball. As illustrated in Figure 13.71,  
the balls will not collide when the distance between their centers (which lie on a line per-
pendicular to the line of the  shot) is greater than the diameter of the balls, or equivalently, 
when the distance d between Q and the line of the shot is greater than 2.25. Stating this 
result in another way leads to a useful test for the programmers of the game: If d 6 2.25, 
the balls will collide.

Line of pool shot

u

r

r 5 1.125

For a certain u, the cue
ball just touches the
target ball . . .

. . . and the distance d between
 Q and the line is 2r 5 2.25.

d 5 2r
Target ball

at Q Q

Therefore, when the distance d
between Q and the line is less
than 2r, the balls collide.

Figure 13.71

To find d for Arria’s attempt, we need a vector parallel to the line of the shot,  
and we need the vector from the cue ball at P125, 162 to the target ball at Q175, 462.  
Because the cue ball is aimed at an angle 30° above the x-axis, a vector parallel  

to the line of the shot is v = 8cos 30°, sin 30°9 = h 13
2

 , 
1
2
i. Notice that 

PQr = 875, 469 - 825, 169 = 850, 309 . Therefore, the distance between Q175, 462  
and the line of the pool shot is

d =
0 v * PQr 0
0 v 0 =

` h 13
2

 , 
1
2

 , 0i * 850, 30, 09 `

` h 13
2

 , 
1
2

 , 0i `
.

The cross product in the numerator is

†
i j k13>2 1>2 0

50 30 0
 † = a23

2
 30 -

1
2

 50b  k ≈ 0.98k.

Because v is a unit vector, its length is 1, and we find that d = 0 0.98k 0 = 0.98 6 2.25; 
therefore, the balls collide. Additional calculations enable the programmers to determine 
the directions in which the two balls travel after the collision.

Related Exercise 41 

➤ Example 3 is a two-dimensional problem 
while the cross product is defined for 
three-dimensional vectors. Therefore, 
we must embed the 2D vectors of the 
example into three dimensions by adding 
a z-component of 0.

Determining whether two balls collide in a video game may not seem very important. 
However, the same mathematical methods used to create realistic video games are em-
ployed in flight simulators that train military and civilian pilots. The principles used to de-
sign video games are also used to train surgeons and to assist them in performing surgery. 
Example 4 looks at another crucial calculation used in designing the virtual-world tools 
that are becoming part of our daily lives: finding points of intersection.
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EXAMPLE 4 Points of intersection Determine whether the lines /1 and /2 intersect. If 
they do, find the point of intersection.

a. /1: x = 2 + 3t, y = 3t, z = 1 - t  /2: x = 4 + 2s, y = -3 + 3s, z = -2s

b. /1: x = 3 + t, y = 4 - t, z = 5 + 3t  /2: x = 2s, y = -1 + 2s, z = 4s

SOLUTION

a. Let’s first check whether the lines are parallel; if they are, there is no point of in-
tersection (unless the lines are identical). Reading the coefficients in the paramet-
ric equations for each line, we find that v1 = 83, 3, -19  is parallel to /1 and that 
v2 = 82, 3, -29  is parallel to /2. Because v1 is not a constant multiple of v2, the lines 
are not parallel. In ℝ3, this fact alone does not guarantee that the lines intersect. Two 
lines that are neither parallel nor intersecting are said to be skew.

Determining whether two lines intersect amounts to solving a system of three lin-
ear equations in two variables. We set the x-, y-, and z-components of each line equal 
to one another, which results in the following system:

 2 + 3t = 4 + 2s  (1) Equate the x-components. 

 3t = -3 + 3s  (2) Equate the y-components.

 1 - t = -2s.  (3) Equate the z-components.

When equation (2) is subtracted from equation (1), the result is 2 = 7 - s, or s = 5. 
Substituting s = 5 into equation (1) or (2) yields t = 4. However, when these values 
are substituted into (3), a false statement results, which implies that the system of equa-
tions is inconsistent and the lines do not intersect. We conclude that /1 and /2 are skew.

b. Proceeding as we did in part (a), we note that the lines are not parallel and solve the 
system

 3 + t = 2s

 4 - t = -1 + 2s

 5 + 3t = 4s.

When the first two equations are added to eliminate the variable t, we find that s = 2, 
which implies that t = 1. When these values are substituted into the last equation, a 
true statement results, which means we have a solution to the system and the lines  
intersect. To find the point of intersection, we substitute t = 1 into the parametric 
equations for /1 and arrive at 14, 3, 82. You can verify that when s = 2 is substituted 
into the equations for /2, the same point of intersection results.

Related Exercises 32–33	

➤	 Given two skew lines in ℝ3, one can 
always find two parallel planes in which 
the lines lie: one line in one plane, and the 
other line in a plane parallel to the first.

Equations of Planes
Intuitively, a plane is a flat surface with infinite extent in all directions. Three noncollinear 
points (not all on the same line) determine a unique plane in ℝ3. A plane in ℝ3 is also uniquely 
determined by one point in the plane and any nonzero vector orthogonal (perpendicular) to 
the plane. Such a vector, called a normal vector, specifies the orientation of the plane.

DEFINITION Plane in ℝ3

Given a fixed point P0 and a nonzero normal vector n, the set of points P in ℝ3 for 
which P0 Pr  is orthogonal to n is called a plane (Figure 13.72).

We now derive an equation of the plane passing through the point P01x0, y0, z02 with 
nonzero normal vector n = 8a, b, c9 . Notice that for any point P1x, y, z2 in the plane, 

z

y
x

The orientation of a plane is
specified by a normal vector n.
All vectors P0P in the plane
are orthogonal to n.

P0(x0, y0, z0)

P(x, y, z)

n 5 ka, b, cl

P0P

Figure 13.72

M13_BRIG3644_03_SE_C13_804-867.indd   849 25/09/17   3:56 PM



850 Chapter 13  •  Vectors and the Geometry of Space 

the vector P0 Pr = 8x - x0, y - y0, z - z09  lies in the plane and is orthogonal to n. This 
orthogonality relationship is written and simplified as follows:

 n #  P0 Pr = 0  Dot product of orthogonal vectors

 8a, b, c9 # 8x - x0, y - y0, z - z09 = 0  Substitute vector components.

 a1x - x02 + b1y - y02 + c1z - z02 = 0  Expand the dot product.

 ax + by + cz = d. d = ax0 + by0 + cz0

This important result states that the most general linear equation in three variables, 
ax + by + cz = d, describes a plane in ℝ3.

The coefficients a, b, and c in the equation of a plane determine the orientation of the 
plane, while the constant term d determines the location of the plane. If a, b, and c are held 
constant and d is varied, a family of parallel planes is generated, all with the same orienta-
tion (Figure 13.73).

ax 1 by 1 cz 5 d1

ax 1 by 1 cz 5 d3

ax 1 by 1 cz 5 d2

The normal vectors of
parallel planes have
the same direction.

n

n

n 5 ka, b, cl

Figure 13.73

QUICK CHECK 4 Consider the equation 
of a plane in the form n #  P0 Pr = 0. 
Explain why the equation of the plane 
depends only on the direction, not on 
the length, of the normal vector n.	

General Equation of a Plane in ℝ3

The plane passing through the point P01x0, y0, z02 with a nonzero normal vector 
n = 8a, b, c9  is described by the equation

a1x - x02 + b1y - y02 + c1z - z02 = 0 or ax + by + cz = d,

where d = ax0 + by0 + cz0.

➤	 A vector n = 8a, b, c9  is used to 
describe a plane by specifying a direction 
orthogonal to the plane. By contrast, a 
vector v = 8a, b, c9  is used to describe 
a line by specifying a direction parallel 
to the line.

EXAMPLE 5 Equation of a plane

a. Find an equation of the plane passing through P012, -3, 42 with a normal vector 
n = 8 -1, 2, 39 .

b. Find an equation of the plane passing through P012, -3, 42 that is perpendicular to the 
line x = 3 + 2t, y = -4t, z = 1 - 6t.

SOLUTION

a. Substituting the components of n 1a = -1, b = 2, and c = 32 and the coordinates of 
P0 1x0 = 2, y0 = -3, and z0 = 42 into the equation of a plane, we have

 a1x - x02 + b1y - y02 + c1z - z02 = 0  General equation of a plane

 1-121x - 22 + 21y - 1-322 + 31z - 42 = 0  Substitute.

 -x + 2y + 3z = 4. Simplify.

The plane is shown in Figure 13.74.

b. Note that v = 82, -4, -69  is parallel to the given line and therefore perpendicular 
to the plane, so we have a vector normal to the plane. We could carry out calculations 
similar to those found in part (a) to find the equation of the plane, but here is an easier 
solution. Observe that v is a multiple of the normal vector in part (a) (v = -2n), and 
therefore v and n are parallel, which implies both planes are oriented in the same direc-
tion. Because both planes pass through P0, we conclude that the planes are identical.

Related Exercises 43–44	

x

z

y

P0(2, 23, 4)

n 5 k21, 2, 3l

2x 1 2y 1 3z 5 4

Figure 13.74

➤	 Three points P, Q, and R determine a 
plane provided they are not collinear. 
If P, Q, and R are collinear, then the 
vectors PQr  and PRr  are parallel, which 
implies that PQr * PRr = 0.

EXAMPLE 6 A plane through three points Find an equation of the plane that passes 
through the (noncollinear) points P12, -1, 32, Q11, 4, 02, and R10, -1, 52.
SOLUTION To write an equation of the plane, we must find a normal vector. Because 
P, Q, and R lie in the plane, the vectors PQr = 8 -1, 5, -39  and PRr = 8 -2, 0, 29  also 
lie in the plane. The cross product PQr * PRr  is perpendicular to both PQr  and PRr ; there-
fore, a vector normal to the plane is

n = PQr * PRr = †
i j k

-1 5 -3
-2 0 2

† = 10i + 8j + 10k.

➤	 Just as the slope determines the 
orientation of a line in ℝ2, a normal 
vector determines the orientation of a 
plane in ℝ3.
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Any nonzero scalar multiple of n may be used as the normal vector. Choosing 
n = 85, 4, 59  and P012, -1, 32 as the fixed point in the plane (Figure 13.75), an equation 
of the plane is

51x - 22 + 41y - 1-122 + 51z - 32 = 0 or 5x + 4y + 5z = 21.

Using either Q or R as the fixed point in the plane leads to an equivalent equation of  
the plane.

Related Exercises 49–50	

x

z

y

P(2, 21, 3) R(0, 21, 5)

Q(1, 4, 0)

5x 1 4y 1 5z 5 21n 5 PQ 3 PR

PQ and PR lie in
the same plane.
PQ 3 PR is orthogonal
to the plane.

Figure 13.75

QUICK CHECK 5 Verify that in  
Ex ample 6, the same equation for the 
plane results if either Q or R is used as 
the fixed point in the plane.	

EXAMPLE 7 Properties of a plane Let Q be the plane described by the equation 
2x - 3y - z = 6.

a. Find a vector normal to Q.

b. Find the points at which Q intersects the coordinate axes and plot Q.

c. Describe the sets of points at which Q intersects the yz@plane, the xz@plane, and the 
xy@plane.

SOLUTION

a. The coefficients of x, y, and z in the equation of Q are the components of a vector normal 
to Q. Therefore, a normal vector is n = 82, -3, -19  (or any nonzero multiple of n).

b. The point 1x, y, z2 at which Q intersects the x-axis must have y = z = 0. Substi-
tuting y = z = 0 into the equation of Q gives x = 3, so Q intersects the x-axis at 
13, 0, 02. Similarly, Q intersects the y-axis at 10, -2, 02, and Q intersects the z-axis at 
10, 0, -62. Connecting the three intercepts with straight lines allows us to visualize the 
plane (Figure 13.76).

c. All points in the yz@plane have x = 0. Setting x = 0 in the equation of Q gives the equa-
tion -3y - z = 6, which, with the condition x = 0, describes a line in the yz@plane.  
If we set y = 0, then Q intersects the xz@plane in the line 2x - z = 6, where y = 0.  
If z = 0, then Q intersects the xy@plane in the line 2x - 3y = 6, where z = 0  
(Figure 13.76).

y

x

z
The line 2x 2 3y 5 6,
z 5 0, in the xy-plane

The line 2x 2 z 5 6,
y 5 0, in the xz-plane

The line 23y 2 z 5 6,
x 5 0, in the yz-plane

2x 2 3y 2 z 5 6

(0, 0, 26)

(3, 0, 0)

(0, 22, 0)

Plane Q

Figure 13.76
Related Exercise 61	

➤	 There is a possibility for confusion 
here. Working in ℝ3 with no other 
restrictions, the equation -3y - z = 6 
describes a plane that is parallel to the 
x-axis (because x is unspecified). To 
make it clear that -3y - z = 6 is a line 
in the yz@plane, the condition x = 0 is 
included.

Parallel and Orthogonal Planes
The normal vectors of distinct planes tell us about the relative orientation of the planes. 
Two cases are of particular interest: Two distinct planes may be parallel (Figure 13.77a) 
and two intersecting planes may be orthogonal (Figure 13.77b).

Two distinct planes are
parallel if n1 and n2
are parallel.

Two planes are
orthogonal
if n1? n2 5 0.

(a)

(b)

n1

n2

n1 n2

Figure 13.77
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EXAMPLE 8 Parallel planes Find an equation of the plane Q that passes through the 
point 1-2, 4, 12 and is parallel to the plane R: 3x - 2y + z = 4.

SOLUTION The vector n = 83, -2, 19  is normal to R. Because Q and R are parallel, n 
is also normal to Q. We conclude that an equation of Q (which passes through 1-2, 4, 12 
and has a normal vector 83, -2, 19 ) is given by

31x + 22 - 21y - 42 + 1z - 12 = 0 or 3x - 2y + z = -13.

Related Exercises 51–52 

DEFINITION Parallel and Orthogonal Planes

Two distinct planes are parallel if their respective normal vectors are parallel 
(that is, the normal vectors are scalar multiples of each other). Two planes are 
orthogonal if their respective normal vectors are orthogonal (that is, the dot 
product of the normal vectors is zero).

QUICK CHECK 6 Determine whether 
the planes 2x - 3y + 6z = 12 and 
6x + 8y + 2z = 1 are parallel, 
orthogonal, or neither. 

EXAMPLE 9 Intersecting planes Find an equation of the line of intersection of the 
planes Q: x + 2y + z = 5 and R: 2x + y - z = 7.

SOLUTION First note that the vectors normal to the planes, nQ = 81, 2, 19  and 
nR = 82, 1, -19 , are not multiples of each other. Therefore, the planes are not parallel 
and they must intersect in a line; call it /. To find an equation of /, we need two pieces of 
information: a point on / and a vector pointing in the direction of /. Here is one of several 
ways to find a point on /. Setting z = 0 in the equations of the planes gives equations of 
the lines in which the planes intersect the xy@plane:

 x + 2y = 5

 2x + y = 7.

Solving these equations simultaneously, we find that x = 3 and y = 1. Combining this 
result with z = 0, we see that 13, 1, 02 is a point on / (Figure 13.78).

We next find a vector parallel to /. Because / lies in Q and R, it is orthogonal to the 
normal vectors nQ and nR. Therefore, the cross product of nQ and nR is a vector parallel to 
/ (Figure 13.78). In this case, the cross product is

nQ * nR = †
i j k
1 2 1
2 1 -1

† = -3i + 3j - 3k = 8 -3, 3, -39 .

An equation of the line / in the direction of the vector 8 -3, 3, -39  passing through the 
point 13, 1, 02 is

 r = 8x0, y0, z09 + t8a, b, c9  Equation of a line

 = 83, 1, 09 + t8 -3, 3, -39  Substitute.

 = 83 - 3t, 1 + 3t, -3t9 ,  Simplify.

where -∞ 6 t 6 ∞ . You can check that any point 1x, y, z2 with x = 3 - 3t, 
y = 1 + 3t, and z = -3t satisfies the equations of both planes.

Related Exercise 74 

(3, 1, 0)

nQ 3 nR is a vector perpendicular to
nQ and nR.
Line , is perpendicular to
nQ and nR.
Therefore, , and nQ 3 nR are parallel
to each other.

nQ 3 nR

nQ

nR

Q

R

,

Figure 13.78

➤ By setting z = 0 and solving the two 
resulting equations, we find the point 
that lies on both planes and lies in the 
xy@plane 1z = 02.

➤ Any nonzero scalar multiple of 
8 -3, 3, -39  can be used for the 
direction of /. For example, another 
equation of / is r = 83 + t, 1 - t, t9 .

Getting Started
1. Find a position vector that is parallel to the line 

x = 2 + 4t, y = 5 - 8t, z = 9t.

2. Find the parametric equations of the line 
r = 81, 2, 39 + t84, 0, -69 .

SECTION 13.5 EXERCISES
3. Explain how to find a vector in the direction of the line segment 

from P01x0, y0, z02 to P11x1, y1, z12.
4. Find the vector equation of the line through the points 

P01x0, y0, z02 and P11x1, y1, z12.
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5. Determine whether the plane x + y + z = 9 and the line 
x = t, y = t + 1, z = t + 2 are parallel, perpendicular, or nei-
ther. Be careful.

6. Determine whether the plane x + y + z = 9 and the line 
x = t, y = -2t + 1, z = t + 2 are parallel, perpendicular, or 
neither.

7. Give two pieces of information that, taken together, uniquely de-
termine a plane.

8. Find a vector normal to the plane -2x - 3y = 12 - 4z.

9. Where does the plane -2x - 3y + 4z = 12 intersect the coordi-
nate axes?

10. Give an equation of the plane with a normal vector n = 81, 1, 19  
that passes through the point 11, 0, 02.

Practice Exercises
11–26. Equations of lines Find both the parametric and the vector 
equations of the following lines.

11. The line through 10, 0, 12 in the direction of the vector 
v = 84, 7, 09

12. The line through 1-3, 2, -12 in the direction of the vector 
v = 81, -2, 09

13. The line through 10, 0, 12 parallel to the y-axis

14. The line through 1-2, 4, 32 parallel to the x-axis

15. The line through 10, 0, 02 and 11, 2, 32
16. The line through 1-3, 4, 62 and 15, -1, 02
17. The line through 10, 0, 02 that is parallel to the line 

r = 83 - 2t, 5 + 8t, 7 - 4t9
18. The line through 11, -3, 42 that is parallel to the line 

x = 3 + 4t, y = 5 - t, z = 7

19. The line through 10, 0, 02 that is perpendicular to both 
u = 81, 0, 29  and v = 80, 1, 19

20. The line through 1-3, 4, 22 that is perpendicular to both 
u = 81, 1, -59  and v = 80, 4, 09

21. The line through 1-2, 5, 32 that is perpendicular to both 
u = i + j - 2k and the x-axis

22. The line through 10, 2, 12 that is perpendicular to both 
u = 4i + 3j - 5k and the z-axis

23. The line through 11, 2, 32 that is perpendicular to 
the lines x = 3 - 2t, y = 5 + 8t, z = 7 - 4t and 
x = -2t, y = 5 + t, z = 7 - t

24. The line through 11, 0, -12 that is perpendicular to the lines 
x = 3 + 2t, y = 3t, z = -4t and x = t, y = t, z = - t

25. The line that is perpendicular to the lines r = 84t, 1 + 2t, 3t9  
and R = 8 -1 + s, -7 + 2s, -12 + 3s9 , and passes through 
the point of intersection of the lines r and R

26. The line that is perpendicular to the lines r = 8 -2 + 3t, 2t, 3t9  
and R = 8 -6 + s, -8 + 2s, -12 + 3s9 , and passes through 
the point of intersection of the lines r and R

27–30. Line segments Find parametric equations for the line segment 
joining the first point to the second point.

27. 10, 0, 02 and 11, 2, 32 28. 11, 0, 12 and 10, -2, 12

29. 12, 4, 82 and 17, 5, 32 30. 1-1, -8, 42 and 1-9, 5, -32
31–37. Parallel, intersecting, or skew lines Determine whether the 
following pairs of lines are parallel, intersect at a single point, or are 
skew. If the lines are parallel, determine whether they are the same line 
(and thus intersect at all points). If the lines intersect at a single point, 
determine the point of intersection.

31. r = 81, 3, 29 + t86, -7, 19 ; R = 810, 6, 149 + s83, 1, 49
32. x = 2t, y = t + 2, z = 3t - 1 and x = 5s - 2, y = s + 4, 

z = 5s + 1

33. x = 4, y = 6 - t, z = 1 + t and x = -3 - 7s, y = 1 + 4s, 
z = 4 - s

34. x = 4 + 5t, y = -2t, z = 1 + 3t and x = 10s, y = 6 + 4s, 
z = 4 + 6s

35. x = 1 + 2t, y = 7 - 3t, z = 6 + t and x = -9 + 6t, 
y = 22 - 9t, z = 1 + 3t

36. r = 83, 1, 09 + t84, -6, 49 ; R = 80, 5, 49 + s8 -2, 3, -29
37. r = 84 + t, -2t, 1 + 3t9 ; R = 81 - 7s, 6 + 14s, 4 - 21s9
38. Intersecting lines and colliding particles Consider the lines

 r = 82 + 2t, 8 + t, 10 + 3t9 and

 R = 86 + s, 10 - 2s, 16 - s9 .
a. Determine whether the lines intersect (have a common point), 

and if so, find the coordinates of that point.
b. If r and R describe the paths of two particles, do the particles 

collide? Assume t Ú 0 and s Ú 0 measure time in  
seconds, and that motion starts at s = t = 0.

39–40. Distance from a point to a line Find the distance between the 
given point Q and the given line.

39. Q1-5, 2, 92; x = 5t + 7, y = 2 - t, z = 12t + 4

40. Q15, 6, 12; x = 1 + 3t, y = 3 - 4t, z = t + 1

41. Billiards shot A cue ball in a billiards video game lies at 
P125, 162 (see figure). Refer to Example 3, where we assume the 
diameter of each ball is 2.25 screen units, and pool balls are repre-
sented by the point at their center.

a. The cue ball is aimed at an angle of 58° above the negative  
x-axis toward a target ball at A15, 452. Do the balls collide?

b. The cue ball is aimed at the point 150, 252 in an attempt to hit 
a target ball at B176, 402. Do the balls collide?

c. The cue ball is aimed at an angle u above the x-axis in the 
general direction of a target ball at C175, 302. What range of 
angles (for 0 … u … p>2) will result in a collision? Express 
your answer in degrees.

y

x(0, 0)

A(5, 45)

Cue ball

P(25, 16)
D(59, 17)

C(75, 30)

B(76, 40)

u 5 58° 

(100, 50)

T
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42. Bank shot Refer to the figure in Exercise 41. The cue ball lies 
at P125, 162 and Jerrod hopes to hit ball D159, 172; a direct shot 
isn’t an option with other balls blocking the path. Instead, he at-
tempts a bank shot, aiming the cue ball at an angle 45° below the 
x-axis. Will the balls collide? Assume the angles at which the cue 
ball meets and leaves the bumper are equal and that the diameter 
of each ball is 2 screen units. (Hint: The cue ball will bounce off 
the bumper when its center hits an “imaginary bumper” one unit 
above the bumper; see following figure.)

Cue ball

Imaginary
bumper

P(25, 16)
45° 

43–58. Equations of planes Find an equation of the following planes.

43. The plane passing through the point P010, 2, -22 with a normal 
vector n = 81, 1, -19

44. The plane passing through the point P012, 3, 02 with a normal  
vector n = 8 -1, 2, -39

45. The plane that is parallel to the vectors 81, 0, 19  and 80, 2, 19 , 
passing through the point 11, 2, 32

46. The plane that is parallel to the vectors 81, -3, 19  and 84, 2, 09 , 
passing through the point 13, 0, -22

47. The plane passing through the origin that is perpendicular to the 
line x = t, y = 1 + 4t, z = 7t

48. The plane passing through the point 12, -3, 52 that is perpendicu-
lar to the line x = 2t, y = 1 + 3t, z = 5 + 4t

49. The plane passing through the points 11, 0, 32, 10, 4, 22, and 
11, 1, 12

50. The plane passing through the points 12, -1, 42, 11, 1, -12, and 
1-4, 1, 12

51. The plane passing through the point P011, 0, 42 that is parallel to 
the plane -x + 2y - 4z = 1

52. The plane passing through the point P010, 2, -22 that is parallel to 
the plane 2x + y - z = 1

53. The plane containing the x-axis and the point P011, 2, 32
54. The plane containing the z-axis and the point P013, -1, 22
55. The plane passing through the origin and containing the line 

x = t - 1, y = 2t, z = 3t + 4

56. The plane passing though the point P011, -2, 32 and containing 
the line r = 8 t, - t, 2t9

57. The plane passing though the point P01-4, 1, 22 and containing 
the line r = 82t - 2, -2t, -4t + 19

58. The plane passing through the origin that contains the line of in-
tersection of the planes x + y + 2z = 0 and x - y = 4

59. Parallel planes Is the line x = t + 1, y = 2t + 3, z = 4t + 5 
parallel to the plane 2x - y = -2? If so, explain why, and then 

T find an equation of the plane containing the line that is parallel to 
the plane 2x - y = -2.

60. Do the lines x = t, y = 2t + 1, z = 3t + 4 and 
x = 2s - 2, y = 2s - 1, z = 3s + 1 intersect each other at only 
one point? If so, find a plane that contains both lines.

61–64. Properties of planes Find the points at which the following planes 
intersect the coordinate axes, and find equations of the lines where the 
planes intersect the coordinate planes. Sketch a graph of the plane.

61. 3x - 2y + z = 6 62. -4x + 8z = 16

63. x + 3y - 5z - 30 = 0 64. 12x - 9y + 4z + 72 = 0

65–68. Pairs of planes Determine whether the following pairs of 
planes are parallel, orthogonal, or neither.

65. x + y + 4z = 10 and -x - 3y + z = 10

66. 2x + 2y - 3z = 10 and -10x - 10y + 15z = 10

67. 3x + 2y - 3z = 10 and -6x - 10y + z = 10

68. 3x + 2y + 2z = 10 and -6x - 10y + 19z = 10

69–70. Equations of planes For the following sets of planes, determine 
which pairs of planes in the set are parallel, which pairs are orthogo-
nal, and which pairs are identical.

69. Q: 3x - 2y + z = 12; R: -x + 2y>3 - z>3 = 0; 
S: -x + 2y + 7z = 1; T: 3x>2 - y + z>2 = 6

70. Q: x + y - z = 0; R: y + z = 0; S: x - y = 0; 
T: x + y + z = 0

71–72. Lines normal to planes Find an equation of the following 
lines.

71. The line passing through the point P012, 1, 32 that is normal to the 
plane 2x - 4y + z = 10

72. The line passing through the point P010, -10, -32 that is normal 
to the plane x + 4z = 2

73–76. Intersecting planes Find an equation of the line of intersection 
of the planes Q and R.

73. Q: -x + 2y + z = 1; R: x + y + z = 0

74. Q: x + 2y - z = 1; R: x + y + z = 1

75. Q: 2x - y + 3z - 1 = 0; R: -x + 3y + z - 4 = 0

76. Q: x - y - 2z = 1; R: x + y + z = -1

77–80. Line-plane intersections Find the point (if it exists) at which 
the following planes and lines intersect.

77. x = 3 and r = 8 t, t, t9
78. y = -2 and r = 82t + 1, - t + 4, t - 69
79. 3x + 2y - 4z = -3 and x = -2t + 5, y = 3t - 5, z = 4t - 6

80. 2x - 3y + 3z = 2 and x = 3t, y = t, z = - t

81. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. The line r = 83, -1, 49 + t86, -2, 89  passes through the 
origin.

b. Any two nonparallel lines in ℝ3 intersect.
c. The plane x + y + z = 0 and the line x = t, y = t, z = t are 

parallel.
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d. The vector equations r = 81, 2, 39 + t81, 1, 19  and 
R = 81, 2, 39 + t8 -2, -2, -29  describe the same line.

e. The equations x + y - z = 1 and -x - y + z = 1 describe 
the same plane.

f. Any two distinct lines in ℝ3 determine a unique plane.
g. The vector 8 -1, -5, 79  is perpendicular to both the line 

x = 1 + 5t, y = 3 - t, z = 1 and the line x = 7t, y = 3, 
z = 3 + t.

82. Distance from a point to a plane Suppose P is a point in the 
plane ax + by + cz = d. The distance from any point Q to the 
plane equals the length of the orthogonal projection of PQr  onto a 
vector n = 8a, b, c9  normal to the plane. Use this information to 
show that the distance from Q to the plane is 0PQr # n 0 > 0 n 0 .

83. Find the distance from the point Q16, -2, 42 to the plane 
2x - y + 2z = 4.

84. Find the distance from the point Q11, 2, -42 to the plane 
2x - 5z = 5.

Explorations and Challenges
85–86. Symmetric equations for a line If we solve for t in the para-
metric equations of the line x = x0 + at, y = y0 + bt, z = z0 + ct, 
we obtain the symmetric equations

x - x0

a
=

y - y0

b
=

z - z0

c
 ,

provided a, b, and c do not equal 0.

85. Find symmetric equations of the line r = 81, 2, 09 + t84, 7, 29 .
86. Find parametric and symmetric equations of the line passing 

through the points P11, -2, 32 and Q12, 3, -12.
87. Angle between planes The angle between two planes is the small-

est angle u between the normal vectors of the planes, where the 
directions of the normal vectors are chosen so that 0 … u … p>2. 
Find the angle between the planes 5x + 2y - z = 0 and 
-3x + y + 2z = 0.

n2

u

u

n1

T

88. Intercepts Let a, b, c, and d be constants. Find the points at which 
the plane ax + by + cz = d intersects the x-, y-, and z-axes.

89. A family of orthogonal planes Find an equation for a family 
of planes that are orthogonal to the planes 2x + 3y = 4 and 
-x - y + 2z = 8.

90. Orthogonal plane Find an equation of the plane passing through 
10, -2, 42 that is orthogonal to the planes 2x + 5y - 3z = 0 and 
-x + 5y + 2z = 8.

91. Three intersecting planes Describe the set of all points (if 
any) at which all three planes x + 3z = 3, y + 4z = 6, and 
x + y + 6z = 9 intersect.

92. Three intersecting planes Describe the set of all points (if any) 
at which all three planes x + 2y + 2z = 3, y + 4z = 6, and 
x + 2y + 8z = 9 intersect.

93. T-shirt profits A clothing company makes a profit of $10 on its 
long-sleeved T-shirts and a profit of $5 on its short-sleeved  
T-shirts. Assuming there is a $200 setup cost, the profit on T-shirt 
sales is z = 10x + 5y - 200, where x is the number of long-
sleeved T-shirts sold and y is the number of short-sleeved T-shirts 
sold. Assume x and y are nonnegative.

a. Graph the plane that gives the profit using the window 
30, 404 * 30, 404 * 3-400, 4004.

b. If x = 20 and y = 10, is the profit positive or negative?
c. Describe the values of x and y for which the company breaks 

even (for which the profit is zero). Mark this set on your graph.

QUICK CHECK ANSWERS

1. The z-axis; the line y = x in the xy-plane 2. When 
t = 0, the point on the line is P0; when t = 1, the point 
on the line is P1. 3. d = 126>3 4. Because the right 
side of the equation is 0, the equation can be multiplied by 
any nonzero constant (changing the length of n) without 
changing the graph. 6. The planes are orthogonal because 
82, -3, 69 # 86, 8, 29 = 0. 

13.6 Cylinders and Quadric Surfaces
In Section 13.5, we discovered that lines in three-dimensional space are described by para-
metric equations (or vector equations) that are linear in the variable. We also saw that 
planes are described with linear equations in three variables. In this section, we take this 
progression one step further and investigate the geometry of three-dimensional objects 
described by quadratic equations in three variables. The result is a collection of quadric 
surfaces that you will encounter frequently throughout the remainder of the text. You saw 
one such surface in Section 13.2: A sphere with radius a centered at the origin with an 
equation of x2 + y2 + z2 = a2 is an example of a quadric surface. We also introduce a 
family of surfaces called cylinders, some of which are quadric surfaces.
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Cylinders and Traces
In everyday language, we use the word cylinder to describe the surface that forms, say, the 
curved wall of a paint can. In the context of three-dimensional surfaces, the term cylinder 
refers to a surface that is parallel to a line. In this text, we focus on cylinders that are parallel 
to one of the coordinate axes. Equations for such cylinders are easy to identify: The variable 
corresponding to the coordinate axis parallel to the cylinder is missing from the equation.

For example, working in ℝ3, the equation y = x2 does not include z, which means 
that z is arbitrary and can take on all values. Therefore, y = x2 describes the cylinder 
consisting of all lines parallel to the z-axis that pass through the parabola y = x2 in the 
xy@plane (Figure 13.79a). In a similar way, the equation y = z2 in ℝ3 is missing the vari-
able x, so it describes a cylinder parallel to the x-axis. The cylinder consists of lines paral-
lel to the x-axis that pass through the parabola y = z2 in the yz@plane (Figure 13.79b).

Graphing surfaces—and cylinders in particular—is facilitated by identifying the 
traces of the surface.

z

y
x

yx

Lines through y 5 x2

parallel to the z-axis

(a) (b)

The parabola y 5 x2

in the xy-plane

Lines through y 5 z2

parallel to the x-axis

The parabola y 5 z2

in the yz-plane

z

Figure 13.79

➤	 The parabolic cylinder in Figure 13.79a 
can also be described as the surface 
swept out by translating the plane curve 
y = x2 up and down (or parallel to) the 
z-axis.

QUICK CHECK 1 To which coordinate 
axis in ℝ3 is the cylinder  
z - 2 ln x = 0 parallel? To which 
coordinate axis in ℝ3 is the cylinder 
y = 4z2 - 1 parallel?	

DEFINITION Trace

A trace of a surface is the set of points at which the surface intersects a plane that 
is parallel to one of the coordinate planes. The traces in the coordinate planes are 
called the xy@trace, the yz@trace, and the xz@trace (Figure 13.80).

y

z

xz-trace
y

z

yx

z

xy-trace yz-trace
x x

Figure 13.80
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EXAMPLE 1 Graphing cylinders Sketch the graphs of the following cylinders in ℝ3. 
Identify the axis to which each cylinder is parallel.

a. x2 + 4y2 = 16    b. x - sin z = 0

SOLUTION

a. As an equation in ℝ3, the variable z is absent. Therefore, z assumes all real values and 
the graph is a cylinder consisting of lines parallel to the z-axis passing through the curve 
x2 + 4y2 = 16 in the xy@plane. You can sketch the cylinder in the following steps.

1.  Rewriting the given equation as 
x2

42 +
y2

22 = 1, we see that the trace of the cylinder  

in the xy@plane (the xy@trace) is an ellipse. We begin by drawing this ellipse.

2.  Next draw a second trace (a copy of the ellipse in Step 1) in a plane parallel to the 
xy@plane.

3.  Now draw lines parallel to the z-axis through the two traces to fill out the cylinder 
(Figure 13.81a).

The resulting surface, called an elliptic cylinder, runs parallel to the z-axis  
(Figure 13.81b).

b. As an equation in ℝ3, x - sin z = 0 is missing the variable y. Therefore, y assumes all 
real values and the graph is a cylinder consisting of lines parallel to the y-axis passing 
through the curve x = sin z in the xz@plane. You can sketch the cylinder in the follow-
ing steps.

1.  Graph the curve x = sin z in the xz@plane, which is the xz@trace of the surface.

2.  Draw a second trace (a copy of the curve in Step 1) in a plane parallel to the 
xz@plane.

3.  Draw lines parallel to the y-axis passing through the two traces (Figure 13.82a).

The result is a cylinder, running parallel to the y-axis, consisting of copies of the 
curve x = sin z (Figure 13.82b). 

z

x

y

(b)

1 

21 

(a)

z

x

y

Lines through
xz-trace parallel
to y-axis

xz-trace:
x 5 sin z

Figure 13.82

y

z

x

y

z

x

1. Sketch the
    basic trace in
    the appropriate
    plane.

xy-trace:
x2 1 4y2 5 16

3. Draw parallel
    lines through
    the two traces.

4. To give definition
    to the cylinder,
    draw light outer
    edges parallel to
    the traces.

2. Draw a second
    trace in a plane
    parallel to the basic
    trace.

(a) (b)

2

24

4

22

Elliptic cylinder

Figure 13.81 Related Exercises 8, 13	

Quadric Surfaces
Quadric surfaces are described by the general quadratic (second-degree) equation in 
three variables,

Ax2 + By2 + Cz2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0,

where the coefficients A, c, J are constants and not all of A, B, C, D, E, and F are zero. 
We do not attempt a detailed study of this large family of surfaces. However, a few stan-
dard surfaces are worth investigating.
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Apart from their mathematical interest, quadric surfaces have a variety of practical 
uses. Paraboloids (defined in Example 3) share the reflective properties of their two- 
dimensional counterparts (Section 12.4) and are used to design satellite dishes, headlamps, 
and mirrors in telescopes. Cooling towers for nuclear power plants have the shape of hy-
perboloids of one sheet. Ellipsoids appear in the design of water tanks and gears.

Making hand sketches of quadric surfaces can be challenging. Here are a few general 
ideas to keep in mind as you sketch their graphs.

1. Intercepts Determine the points, if any, where the surface intersects the coordinate 
axes. To find these intercepts, set x, y, and z equal to zero in pairs in the equation of the 
surface, and solve for the third coordinate.

2. Traces As illustrated in the following examples, finding traces of the surface helps 
visualize the surface. For example, setting z = 0 or z = z0 (a constant) gives the traces 
in planes parallel to the xy@plane.

3. Completing the figure Sketch at least two traces in parallel planes (for example, traces 
with z = 0 and z = {1). Then draw smooth curves that pass through the traces to fill 
out the surface.

➤	 Working with quadric surfaces requires 
familiarity with conic sections  
(Section 12.4).

QUICK CHECK 2 Explain why the  
elliptic cylinder discussed in  
Example 1a is a quadric surface.	

EXAMPLE 2 An ellipsoid The surface defined by the equation 
x2

a2 +
y2

b2 +
z2

c2 = 1 is 

an ellipsoid. Graph the ellipsoid with a = 3, b = 4, and c = 5.

SOLUTION Setting x, y, and z equal to zero in pairs gives the intercepts 1{3, 0, 02, 
10, {4, 02, and 10, 0, {52. Note that points in ℝ3 with 0 x 0 7 3 or 0 y 0 7 4 or 0 z 0 7 5 
do not satisfy the equation of the surface (because the left side of the equation is a sum of 
nonnegative terms that cannot exceed 1). Therefore, the entire surface is contained in the 
rectangular box defined by 0 x 0 … 3, 0 y 0 … 4, and 0 z 0 … 5.

The trace in the horizontal plane z = z0 is found by substituting z = z0 into the 
equation of the ellipsoid, which gives

x2

9
+

y2

16
+

z0
2

25
= 1 or 

x2

9
+

y2

16
= 1 -

z0
2

25
 .

If 0 z0 0 6 5, then 1 -
z0

2

25
7 0, and the equation describes an ellipse in the horizontal  

plane z = z0. The largest ellipse parallel to the xy@plane occurs with z0 = 0; it is the  

xy-trace, which is the ellipse 
x2

9
+

y2

16
= 1 with axes of length 6 and 8 (Figure 13.83a). 

You can check that the yz@trace, found by setting x = 0, is the ellipse 
y2

16
+

z2

25
= 1.  

The xz@trace (set y = 0) is the ellipse 
x2

9
+

z2

25
= 1 (Figure 13.83b). When we sketch the  

xy@, xz@, and yz@traces, an outline of the ellipsoid emerges (Figure 13.83c).

➤	 The name ellipsoid is used in Example 2 
because all traces of this surface, when 
they exist, are ellipses.

QUICK CHECK 3 Assume 0 6 c 6 b 6 a 
in the general equation of an ellipsoid. 
Along which coordinate axis does 
the ellipsoid have its longest axis? Its 
shortest axis?	

(c)

y

x2

9
y2

16
z2

25

Ellipsoid

1 1  5 1

x

zzz

x

(a) (b)

y
x

y

(0, 0, 5) (0, 0, 5)

(0, 4, 0) (0, 4, 0)

(3, 0, 0)

(3, 0, 0)xy-trace:

(ellipse)

x2

9
y2

16
1 5 1

xz-trace:

(ellipse)

x2

9
z2

25
1 5 1

xy-trace:

(ellipse)

x2

9
y2

16
1 5 1

y2

16

yz-trace:

(ellipse)

z2

25
1 5 1

Figure 13.83
Related Exercise 29	
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EXAMPLE 3 An elliptic paraboloid The surface defined by the equation z =
x2

a2 +
y2

b2 

is an elliptic paraboloid. Graph the elliptic paraboloid with a = 4 and b = 2.

SOLUTION Note that the only intercept of the coordinate axes is 10, 0, 02, which is the 
vertex of the paraboloid. The trace in the horizontal plane z = z0, where z0 7 0, satis-

fies the equation 
x2

16
+

y2

4
= z0, which describes an ellipse; there is no horizontal trace 

when z0 6 0 (Figure 13.84a). The trace in the vertical plane x = x0 is the parabola 

z =
x2

0

16
+

y2

4
 (Figure 13.84b); the trace in the vertical plane y = y0 is the parabola 

z =
x2

16
+

y2
0

4
 (Figure 13.84c).

To graph the surface, we sketch the xz@trace z =
x2

16
 (setting y = 0) and the 

yz@trace z =
y2

4
 (setting x = 0). When these traces are combined with an elliptical trace 

x2

16
+

y2

4
= z0 in a plane z = z0, an outline of the surface appears (Figure 13.84d).

➤	 The name elliptic paraboloid reflects 
the fact that the traces of this surface 
are parabolas and ellipses. Two of the 
three traces in the coordinate planes 
are parabolas, so this surface is called a 
paraboloid rather than an ellipsoid.

(a) (b) (c) (d)

z

y

x

z

y

x

z

y

x x

yz-trace

xz-trace

Trace in the
plane z 5 z0:

(ellipse)

x2

16
y2

4
1 5 z0

Trace in the
plane x 5 x0:

z 5

(parabola)

x0
2

16
y2

4
1

Trace in the
plane y 5 y0:

z 5

(parabola)

x2

16
y0

2

4
1

z 5 z0
x 5 x0

x2

16
y2

4
1

y 5 y0

Elliptic paraboloid

z 5

Trace in z 5 z0

z

y

Figure 13.84
Related Exercise 32	

QUICK CHECK 4 The elliptic paraboloid 

x =
y2

3
+

z2

7
 is a bowl-shaped  

surface. Along which axis does the  
bowl open?	

EXAMPLE 4 A hyperboloid of one sheet Graph the surface defined by the equation 
x2

4
+

y2

9
- z2 = 1.

SOLUTION The intercepts of the coordinate axes are 10, {3, 02 and 1{2, 0, 02. Setting 

z = z0, the traces in horizontal planes are ellipses of the form 
x2

4
+

y2

9
= 1 + z0

2. This 

equation has solutions for all choices of z0, so the surface has traces in all horizontal  
planes. These elliptical traces increase in size as 0 z0 0  increases (Figure 13.85a), with the  

smallest trace being the ellipse 
x2

4
+

y2

9
= 1 in the xy@plane. Setting y = 0, the xz@trace 

is the hyperbola 
x2

4
- z2 = 1; with x = 0, the yz@trace is the hyperbola 

y2

9
- z2 = 1  

(Figure 13.85b, c). In fact, the intersection of the surface with any vertical plane is a  
hyperbola. The resulting surface is a hyperboloid of one sheet (Figure 13.85d).

➤	 To be completely accurate, this surface 
should be called an elliptic hyperboloid 
of one sheet because the traces are 
ellipses and hyperbolas.
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Related Exercise 33	

(a) (b) (c) (d)

z

x y

zz

y

z

yx x yx

z0 5 2

z0 5 0

z0 5 22

z 5 z0 traces:

(ellipse)
for z0 5 22, 0, 2

x2

4
y2

9
1 5 1 1 z0

2
x2

4
y2

9
1 2 z2 5 1

Hyperboloid  of 
one sheetx2

4
2 z2 5 1

xz-trace:

(hyperbola)

2 z2 5 1

yz-trace:

(hyperbola)

y2

9

Figure 13.85

QUICK CHECK 5 Which coordinate 
axis is the axis of the hyperboloid 
y2

a2 +
z2

b2 -
x2

c2 = 1?	

EXAMPLE 5 A hyperbolic paraboloid Graph the surface defined by the equation 

z = x2 -
y2

4
 .

SOLUTION Setting z = 0 in the equation of the surface, we see that the xy@trace consists 
of the two lines y = {2x. However, slicing the surface with any other horizontal plane 

z = z0 produces a hyperbola x2 -
y2

4
= z0. If z0 7 0, then the axis of the hyperbola is  

parallel to the x-axis. On the other hand, if z0 6 0, then the axis of the hyperbola is  

parallel to the y-axis (Figure 13.86a). Setting x = x0 produces the trace z = x0
2 -

y2

4
 ,  

z

x

y

With z0 , 0, traces in the plane z 5 z0 are
hyperbolas with axis parallel to the y-axis.

With z0 . 0, traces in the plane z 5 z0 are
hyperbolas with axis parallel to the x-axis.

Hyperbolic paraboloid

z 5 x2 2

xz-trace:
z 5 x2

(parabola)

yz-trace:

z 5 2

(parabola)

y2

4

y2

4

x

z

y

(a) (b)

Figure 13.86

➤	 The name hyperbolic paraboloid tells 
us that the traces are hyperbolas and 
parabolas. Two of the three traces in 
the coordinate planes are parabolas, so 
this surface is a paraboloid rather than a 
hyperboloid.

➤	 The hyperbolic paraboloid has a feature 
called a saddle point. For the surface in 
Example 5, if you walk from the saddle 
point at the origin in the direction of the  
x-axis, you move uphill. If you walk from 
the saddle point in the direction of the  
y-axis, you move downhill. Saddle points 
are examined in detail in Section 15.7.
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which is the equation of a parabola that opens downward in a plane parallel to the  
yz@plane. You can check that traces in planes parallel to the xz@plane are parabolas that 
open upward. The resulting surface is a hyperbolic paraboloid (Figure 13.86b).

Related Exercise 35	

EXAMPLE 6 Elliptic cones Graph the surface defined by the equation 
y2

4
+ z2 = 4x2.

SOLUTION The only point at which the surface intersects the coordinate axes is 10, 0, 02. 
Traces in the planes x = x0 are ellipses of the form 

y2

4
+ z2 = 4x0

2 that shrink in size as  

x0 approaches 0. Setting y = 0, the xz@trace satisfies the equation z2 = 4x2 or z = {2x,  
which are equations of two lines in the xz@plane that intersect at the origin. Setting z = 0, 
the xy@trace satisfies y2 = 16x2 or y = {4x, which describes two lines in the xy@plane 
that intersect at the origin (Figure 13.87a). The complete surface consists of two cones 
opening in opposite directions along the x-axis with a common vertex at the origin  
(Figure 13.87b).

Related Exercise 38	

➤	 The equation -x2 -
y2

4
+

z2

16
= 1  

describes a hyperboloid of two sheets  
with its axis on the z-axis. Therefore, the 
equation in Example 7 describes the same 
surface shifted 2 units in the positive  
x-direction.

QUICK CHECK 6 In which variable(s) should you complete the square to identify the surface 
x = y2 + 2y + z2 - 4z + 16? Name and describe the surface.	

y

z

x

y

z

x

(a)

(b)

Elliptic cone
y2

4
1 z2 5 4x2

Trace in the
plane x 5 x0
is an ellipse.

z 5 z0

xy-trace:
y 5 64x
(two lines)

Figure 13.87
EXAMPLE 7 A hyperboloid of two sheets Graph the surface defined by the equation

-16x2 - 4y2 + z2 + 64x - 80 = 0.

SOLUTION We first regroup terms, which yields

-161x2 - 4x2 - 4y2 + z2 - 80 = 0,
  (+)+*
 complete the  
 square

and then complete the square in x:

-161x2 - 4x + 4 - 42 - 4y2 + z2 - 80 = 0.
   (+11)11+*
    1x - 222

Collecting terms and dividing by 16 gives the equation

-1x - 222 -
y2

4
+

z2

16
= 1.

Notice that if z = 0, the equation has no solution, so the surface does not intersect the 
xy@plane. The traces in planes parallel to the xz@ and yz@planes are hyperbolas. If  
0 z0 0 Ú 4, the trace in the plane z = z0 is an ellipse. This equation describes a hyper- 
boloid of two sheets, with its axis parallel to the z@axis and shifted 2 units in the positive  
x-direction (Figure 13.88).

Related Exercise 56	

x
y

z

y2

4
z2

16

Hyperboloid of two sheets

2(x 2 2)2 2 1 5 1

Vertex: (2, 0, 4)

Vertex: (2, 0, 24)

Figure 13.88
Table 13.1 (where a, b, and c are nonzero real numbers) summarizes the standard 

quadric surfaces. It is important to note that the same surfaces with different orientations 
are obtained when the roles of the variables are interchanged. For this reason, Table 13.1 
summarizes many more surfaces than those listed.
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Table 13.1

Name Standard Equation Features Graph

Ellipsoid
x2

a2 +
y2

b2 +
z2

c2 = 1 All traces are ellipses.
z

y
x

a
b

c

Elliptic 
paraboloid z =

x2

a2 +
y2

b2

Traces with z = z0 7 0 are ellipses. Traces with  
x = x0 or y = y0 are parabolas.

x

y

z

Hyperboloid  
of one sheet

x2

a2 +
y2

b2 -
z2

c2 = 1
Traces with z = z0 are ellipses for all z0. Traces with 
x = x0 or y = y0 are hyperbolas.

z

y
x

Hyperboloid  
of two sheets -

x2

a2 -
y2

b2 +
z2

c2 = 1
Traces with z = z0 with 0 z0 0 7 0 c 0  are ellipses. Traces 
with x = x0 and y = y0 are hyperbolas.

x y

z

Elliptic cone x2

a2 +
y2

b2 =
z2

c2

Traces with z = z0 ≠ 0 are ellipses. Traces with x = x0 
or y = y0 are hyperbolas or intersecting lines.

z

y

x

Hyperbolic 
paraboloid z =

x2

a2 -
y2

b2

Traces with z = z0 ≠ 0 are hyperbolas. Traces with 
x = x0 or y = y0 are parabolas.

x

z

y
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Getting Started
1. To which coordinate axes are the following cylinders in ℝ3 paral-

lel: x2 + 2y2 = 8, z2 + 2y2 = 8, and x2 + 2z2 = 8?

2. Describe the graph of x = z2 in ℝ3.

3. What is a trace of a surface?

4. What is the name of the surface defined by the equation 

y =
x2

4
+

z2

8
 ?

5. What is the name of the surface defined by the equation 

x2 +
y2

3
+ 2z2 = 1?

6. What is the name of the surface defined by the equation 

-y2 -
z2

2
+ x2 = 1?

Practice Exercises
7–14. Cylinders in ℝ3 Consider the following cylinders in ℝ3.

a. Identify the coordinate axis to which the cylinder is parallel.
b. Sketch the cylinder.

7. z = y2 8. x2 + 4y2 = 4

9. x2 + z2 = 4 10. x = z2 - 4

11. y - x3 = 0 12. x - 2z2 = 0

13. z - ln y = 0 14. x -
1
y
= 0

15–20. Identifying quadric surfaces Identify the following quadric 
surfaces by name. Find and describe the xy-, xz-, and yz-traces, when 
they exist.

15. 25x2 + 25y2 + z2 = 25 16. 25x2 + 25y2 - z2 = 25

17. 25x2 + 25y2 - z = 0 18. 25x2 - 25y2 - z = 0

19. -25x2 - 25y2 + z2 = 25 20. -25x2 - 25y2 + z2 = 0

21–28. Identifying surfaces Identify the following surfaces by name.

21. y = 4z2 - x2 22. -y2 - 9z2 +
x2

4
= 1

23. y =
x2

6
+

z2

16
 24. z2 + 4y2 - x2 = 1

25. y2 - z2 = 2 26. x2 + 4y2 = 1

27. 9x2 + 4z2 - 36y = 0 28. 9y2 + 4z2 - 36x2 = 0

29–51. Quadric surfaces Consider the following equations of quadric 
surfaces.

a. Find the intercepts with the three coordinate axes, when they exist.
b. Find the equations of the xy-, xz-, and yz-traces, when they exist.
c. Identify and sketch a graph of the surface.

29. x2 +
y2

4
+

z2

9
= 1 30. 4x2 + y2 +

z2

2
= 1

31. x = y2 + z2 32. z =
x2

4
+

y2

9
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33. 
x2

25
+

y2

9
- z2 = 1 34. 

y2

4
+

z2

9
-

x2

16
= 1

35. z =
x2

9
- y2 36. y =

x2

16
- 4z2

37. x2 +
y2

4
= z2 38. 4y2 + z2 = x2

39. 
x2

3
+ 3y2 +

z2

12
= 3 40. 

x2

6
+ 24y2 +

z2

24
- 6 = 0

41. 9x - 81y2 -
z2

4
= 0 42. 2y -

x2

8
-

z2

18
= 0

43. 
y2

16
+ 36z2 -

x2

4
- 9 = 0 44. 9z2 + x2 -

y2

3
- 1 = 0

45. 5x -
y2

5
+

z2

20
= 0 46. 6y +

x2

6
-

z2

24
= 0

47. 
z2

32
+

y2

18
= 2x2 48. 

x2

3
+

z2

12
= 3y2

49. -x2 +
y2

4
-

z2

9
= 1 50. -

x2

6
- 24y2 +

z2

24
- 6 = 0

51. -
x2

3
+ 3y2 -

z2

12
= 1

52. Describe the relationship between the graphs of the quadric sur-
faces x2 + y2 - z2 + 2z = 1 and x2 + y2 - z2 = 0, and state 
the names of the surfaces.

53. Describe the relationship between the graphs of 
x2 + 4y2 + 9z2 = 100 and x2 + 4y2 + 9z2 + 54z = 19, and 
state the names of the surfaces.

54–58. Identifying surfaces Identify and briefly describe the surfaces 
defined by the following equations.

54. x2 + y2 + 4z2 + 2x = 0

55. 9x2 + y2 - 4z2 + 2y = 0

56. -x2 - y2 +
z2

9
+ 6x - 8y = 26

57. 
x2

4
+ y2 - 2x - 10y - z2 + 41 = 0

58. z = -x2 - y2

59. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. The graph of the equation y = z2 in ℝ3 is both a cylinder and a 
quadric surface.

b. The xy-traces of the ellipsoid x2 + 2y2 + 3z2 = 16 and the 
cylinder x2 + 2y2 = 16 are identical.

c. Traces of the surface y = 3x2 - z2 in planes parallel to the  
xy-plane are parabolas.

d. Traces of the surface y = 3x2 - z2 in planes parallel to the  
xz-plane are parabolas.

e. The graph of the ellipsoid x2 + 2y2 + 31z - 422 = 25 
is obtained by shifting the graph of the ellipsoid 
x2 + 2y2 + 3z2 = 25 down 4 units.
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60. Matching graphs with equations Match equations a–f with sur-
faces A–F.

a. y - z2 = 0 b. 2x + 3y - z = 5

c. 4x2 +
y2

9
+ z2 = 1 d. x2 +

y2

9
- z2 = 1

e. x2 +
y2

9
= z2 f. y = 0 x 0

x
y

z

(A)  

x
y

z

(B)

x
y

z

(C)  

x y

z

(D)

z

yx

(E)  (F)

y
x

z

Explorations and Challenges
61. Solids of revolution Which of the quadric surfaces in Table 13.1 

can be generated by revolving a curve in one of the coordinate 
planes about a coordinate axis, assuming a = b = c ≠ 0?

62. Solids of revolution Consider the ellipse x2 + 4y2 = 1 in the  
xy-plane.

a. If this ellipse is revolved about the x-axis, what is the equation 
of the resulting ellipsoid?

b. If this ellipse is revolved about the y-axis, what is the equation 
of the resulting ellipsoid?

63. Volume Find the volume of the solid that is bounded between 
the planes z = 0 and z = 3 and the cylinders y = x2 and 
y = 2 - x2.

64. Light cones The idea of a light cone appears in the Special 
Theory of Relativity. The xy-plane (see figure) represents all of 
three-dimensional space, and the z-axis is the time axis (t-axis). If 
an event E occurs at the origin, the interior of the future light cone 
(t 7 0) represents all events in the future that could be affected 
by E, assuming no signal travels faster than the speed of light. The 
interior of the past light cone (t 6 0) represents all events in the 

past that could have affected E, again assuming no signal travels 
faster than the speed of light.

a. If time is measured in seconds and distance (x and y) is  
measured in light-seconds (the distance light travels in 1 s),  
the light cone makes a 45° angle with the xy-plane. Write the 
equation of the light cone in this case.

b. Suppose distance is measured in meters and time is measured 
in seconds. Write the equation of the light cone in this case, 
given that the speed of light is 3 * 108 m>s.

Space
Space

Time Future light cone

Past light cone

Event

65. Designing an NFL football A prolate spheroid is a surface of 
revolution obtained by rotating an ellipse about its major axis.

a. Explain why one possible equation for a prolate spheroid is 

x2 + z2

a2 +
y2

b2 = 1, where b 7 a 7 0.

b. According to the National Football League (NFL) rulebook, 
the shape of an NFL football is required to be a prolate spher-
oid with a long axis between 11 and 11.25 inches long and a 
short circumference (the circumference of the xz-trace) be-
tween 21 and 21.25 inches. Find an equation for the shape of 
the football if the long axis is 11.1 inches and the short circum-
ference is 21.1 inches.

66. Hand tracking Researchers are developing hand tracking soft-
ware that will allow computers to track and recognize detailed 
hand movements for better human-computer interaction. One three-
dimensional hand model under investigation is constructed from a 
set of truncated quadrics (see figure). For example, the palm of the 
hand consists of a truncated elliptic cylinder, capped off by the up-
per half of an ellipsoid. Suppose the palm of the hand is modeled 
by the truncated cylinder 4x2>9 + 4y2 = 1, for 0 … z … 3. Find 
an equation of the upper half of an ellipsoid, whose bottom corre-
sponds with the top of the cylinder, if the distance from the top of 
the truncated cylinder to the top of the ellipsoid is 1>2. 

(Source: Computer Vision and Pattern Recognition, 2, Dec 2001)

3-D model of hand

x

y

z

3
2

23

4

Upper half of
an ellipsoid
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radius of 1 inch and the top of the glass has a radius of 2 inches,  
find the values of a2, b2, and c2 that satisfy these conditions.  
Assume horizontal traces of the glass are circular.

QUICK CHECK ANSWERS

1. y-axis; x-axis 2. The equation x2 + 4y2 = 16 is a spe-
cial case of the general equation for quadric surfaces; all the 
coefficients except A, B, and J are zero. 3. x-axis; z-axis
4. Positive x-axis 5. x-axis 6. Complete the square in y 
and z; elliptic paraboloid with its axis parallel to the x-axis	

67. Designing a snow cone A surface, having the shape of an  

oblong snow cone, consists of a truncated cone, 
x2

2
+ y2 =

z2

8
 ,  

for 0 … z … 3, capped off by the upper half of an ellipsoid. Find  
an equation for the upper half of the ellipsoid so that the bottom 
edge of the truncated ellipsoid and the top edge of the cone  
coincide, and the distance from the top of the cone to the top of 
the ellipsoid is 3>2.

68. Designing a glass The outer, lateral side of a 6-inch-tall 
glass has the shape of the truncated hyperboloid of one sheet 
x2

a2 +
y2

b2 -
z2

c2 = 1, for 0 … z … 6. If the base of the glass has a  

 Review Exercises 865

1. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. Given two vectors u and v, it is always true that 
2u + v = v + 2u.

b. The vector in the direction of u with the length of v equals the 
vector in the direction of v with the length of u.

c. If u ≠ 0 and u + v = 0, then u and v are parallel.
d. The lines x = 3 + t, y = 4 + 2t, z = 2 - t and 

x = 2t, y = 4t, z = t are parallel.
e. The lines x = 3 + t, y = 4 + 2t, z = 2 - t and the plane 

x + 2y + 5z = 3 are parallel.
f. There is always a plane orthogonal to both of two distinct  

intersecting planes.

2–5. Working with vectors Let u = 83, -49  and v = 8 -1, 29 . 
Evaluate each of the following.

2. u - v 3. -3v

4. u + 2v 5. 2v - u

6–15. Working with vectors Let u = 82, 4, -59 , v = 8 -6, 10, 29 , 
and w = 84, -8, 89 .
6. Compute u - 3v.

7. Compute 0 u + v 0 .
8. Find the unit vector with the same direction as u.

9. Write the vector w as a product of its magnitude and a unit vector 
in the direction of w.

10. Find a vector in the direction of w that is 10 times as long as w.

11. Find a vector in the direction of w with a length of 10.

12. Compute u # v
13. Compute u * v

14. For what value of a is the vector v orthogonal to y = 8a, 1, -39?
15. For what value of a is the vector w parallel to y = 8a, 6, -69?
16. Scalar multiples Find scalars a, b, and c such that

82, 2, 29 = a81, 1, 09 + b80, 1, 19 + c81, 0, 19 .
17. Velocity vectors Assume the positive x-axis points east and the 

positive y-axis points north.

a. An airliner flies northwest at a constant altitude at 550 mi>hr 
in calm air. Find a and b such that its velocity may be  
expressed in the form v = ai + bj.

b. An airliner flies northwest at a constant altitude at 550 mi>hr 
relative to the air in a southerly crosswind w = 80, 409 . Find 
the velocity of the airliner relative to the ground.

18. Position vectors Let PQr  extend from P12, 0, 62 to Q12, -8, 52.
a. Find the position vector equal to PQr .
b. Find the midpoint M of the line segment PQ. Then find the 

magnitude of PMr .
c. Find a vector of length 8 with direction opposite to that of PQr .

19–21. Spheres and balls Use set notation to describe the  
following sets.

19. The sphere of radius 4 centered at 11, 0, -12
20. The points inside the sphere of radius 10 centered at 12, 4, -32
21. The points outside the sphere of radius 2 centered at 10, 1, 02
22–25. Identifying sets Give a geometric description of the following 
sets of points.

22. x2 - 6x + y2 + 8y + z2 - 2z - 23 = 0

23. x2 - x + y2 + 4y + z2 - 6z + 11 … 0

24. x2 + y2 - 10y + z2 - 6z = -34

25. x2 - 6x + y2 + z2 - 20z + 9 7 0

26. Combined force An object at the origin is acted on by the forces 
F1 = -10i + 20k, F2 = 40j + 10k, and F3 = -50i + 20j. 
Find the magnitude of the combined force, and use a sketch to  
illustrate the direction of the combined force.

27. Falling probe A remote sensing probe falls vertically with a 
terminal velocity of 60 m>s when it encounters a horizontal cross-
wind blowing north at 4 m>s and an updraft blowing vertically at 
10 m>s. Find the magnitude and direction of the resulting velocity 
relative to the ground.

28. Crosswinds A small plane is flying north in calm air at 250 mi>hr 
when it is hit by a horizontal crosswind blowing northeast at 
40 mi>hr and a 25 mi>hr downdraft. Find the resulting velocity 
and speed of the plane.

CHAPTER 13 REVIEW EXERCISES

M13_BRIG3644_03_SE_C13_804-867.indd   865 25/09/17   3:56 PM



866 Chapter 13  •  Vectors and the Geometry of Space 

29. Net force Jack pulls east on a rope attached to a camel with a force 
of 40 lb. Jill pulls north on a rope attached to the same camel with 
a force of 30 lb. What is the magnitude and direction of the force 
on the camel? Assume the vectors lie in a horizontal plane.

Jill
30 lb

Camel

Jack
40 lb

30. Canoe in a current A woman in a canoe paddles due west at 
4 mi>hr relative to the water in a current that flows northwest at 
2 mi>hr. Find the speed and direction of the canoe relative to  
the shore.

31. Set of points Describe the set of points satisfying both the equa-
tions x2 + z2 = 1 and y = 2.

32–33. Angles and projections

a. Find the angle between u and v.
b. Compute projvu and scalvu.
c. Compute projuv and scaluv.

32. u = -3j + 4k, v = -4i + j + 5k

33. u = - i + 2j + 2k, v = 3i + 6j + 6k

34. Parallelepiped Find the volume of a parallelepiped determined 
by the position vectors u = 82, 4, -59 , v = 8 -6, 10, 29 , and 
w = 84, -8, 89  (see Exercise 63 in Section 13.4).

35–36. Computing work Calculate the work done in the following 
situations.

35. A suitcase is pulled 25 ft along a horizontal sidewalk with a con-
stant force of 20 lb at an angle of 45° above the horizontal.

36. A constant force F = 82, 3, 49  (in newtons) moves an object 
from 10, 0, 02 to 12, 1, 62. (Distance is measured in meters.)

37–38. Inclined plane A 180-lb man stands on a hillside that makes an 
angle of 30° with the horizontal, producing a force of  W = 80, -1809 .

37. Find the component of his weight in the downward direction per-
pendicular to the hillside and in the downward direction parallel to 
the hillside.

38. How much work is done when the man moves 10 ft up the 
hillside?

39. Area of a parallelogram Find the area of the parallelogram with 
the vertices 11, 2, 32, 11, 0, 62, and 14, 2, 42.

40. Area of a triangle Find the area of the triangle with the vertices 
11, 0, 32, 15, 0, -12, and 10, 2, -22.

41. Unit normal vector Find unit vectors normal to the vectors 
82, -6, 99  and 8 -1, 0, 69 .

42. Angle in two ways Find the angle between 82, 0, -29  and 
82, 2, 09  using (a) the dot product and (b) the cross product.

43. Let r = OPr = 3i + 2j + k. A force F = 810, 10, 09  is applied 
at P. Find the torque about O that is produced.

44. Suppose you apply a force of 0F 0 = 50 N near the end of a 
wrench attached to a bolt (see figure). Determine the magnitude 
of the torque when the force is applied at an angle of 60° to the 
wrench. Assume the distance along the wrench from the center of 
the bolt to the point where the force is applied is 0 r 0 = 0.25 m.

60°

r
F

45. Knee torque Jan does leg lifts with a 10-kg weight attached to 
her foot, so the resulting force is mg ≈ 98 N directed vertically 
downward (see figure). If the distance from her knee to the weight 
is 0.4 m and her lower leg makes an angle of u to the vertical, find 
the magnitude of the torque about her knee as her leg is lifted (as a 
function of u). What are the minimum and maximum magnitudes 
of the torque? Does the direction of the torque change as her  
leg is lifted?

u

mg 5 98 N

m 5 10 kg

0.4 m

46–50. Lines in space Find an equation of the following lines or line 
segments.

46. The line that passes through the points 12, 6, -12 and 1-6, 4, 02
47. The line segment that joins the points 10, -3, 92 and 12, -8, 12
48. The line through the point 10, 1, 12 and parallel to the line 

R = 81 + 2t, 3 - 5t, 7 + 6t9 .
49. The line through the point 10, 1, 12 that is orthogonal to both 

80, -1, 39  and 82, -1, 29 .
50. The line through the point 10, 1, 42 and orthogonal to the vector 

8 -2, 1, 79  and the y-axis.
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72. y - e-x = 0 73. 
y2

49
+

x2

9
=

z2

64

74. y = 4x2 +
z2

9

75. Matching surfaces Match equations a–d with surfaces A–D.

a. z = 22x2 + 3y2 + 1 - 1 b. z = -3y2

c. z = 2x2 - 3y2 + 1 d. z = 22x2 + 3y2 - 1

  (A)

z

yx    (B)

z

yx

(C)

z

yx

 (D)

z

yx

76. Designing a water bottle The lateral surface of a water bottle 
consists of a circular cylinder of radius 2 and height 6, topped off 
by a truncated hyperboloid of one sheet of height 2 (see figure). 
Assume the top of the truncated hyperboloid has a radius of 1/2. 
Find two equations that, when graphed together, form the lateral 
surface of the bottle. Answers may vary.

8

66666666666

x

y

z

2
2

51. Equations of planes Consider the plane passing through the 
points 10, 0, 32, 11, 0, -62, and 11, 2, 32.
a. Find an equation of the plane.
b. Find the intercepts of the plane with the three coordinate axes.
c. Make a sketch of the plane.

52–53. Intersecting planes Find an equation of the line of intersection 
of the planes Q and R.

52. Q: 2x + y - z = 0, R: -x + y + z = 1

53. Q: -3x + y + 2z = 0, R: 3x + 3y + 4z - 12 = 0

54–57. Equations of planes Find an equation of the following planes.

54. The plane passing through 15, 0, 22 that is parallel to the plane 
2x + y - z = 0

55. The plane containing the lines x = 5 + t, y = 3 - 2t, z = 1 and 
x = 4s, y = 5s, z = 3 - 2s, if possible

56. The plane passing through 12, -3, 12 normal to the line 
8x, y, z9 = 82 + t, 3t, 2 - 3t9

57. The plane passing through 1-2, 3, 12, 11, 1, 02, and 1-1, 0, 12
58. Distance from a point to a line Find the distance from the point 
11, 2, 32 to the line x = 2 + t, y = 3, z = 1 - 3t.

59. Distance from a point to a plane Find the distance from the 
point 12, 2, 22 to the plane x + 2y + 2z = 1.

60–74. Identifying surfaces Consider the surfaces defined by the  
following equations.

a. Identify and briefly describe the surface.
b. Find the xy-, xz-, and yz-traces, when they exist.
c. Find the intercepts with the three coordinate axes, when they exist.
d. Sketch the surface.

60. z - 1x = 0 61. 3z =
x2

12
-

y2

48

62. 
x2

100
+ 4y2 +

z2

16
= 1 63. y2 = 4x2 +

z2

25

64. 
4x2

9
+

9z2

4
= y2 65. 4z =

x2

4
+

y2

9

66. 
x2

16
+

z2

36
-

y2

100
= 1 67. y2 + 4z2 - 2x2 = 1

68. -
x2

16
+

z2

36
-

y2

25
= 4 69. 

x2

4
+

y2

16
- z2 = 4

70. x =
y2

64
-

z2

9
 71. 

x2

4
+

y2

16
+ z2 = 4

 Guided Projects 867

Chapter 13 Guided Projects

Applications of the material in this chapter and related topics can be found in the following Guided Projects. For additional information, 
see the Preface.

• Intercepting a UFO • CORDIC algorithms: How your calculator works
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Vector-Valued Functions

Chapter Preview In Chapter 13, we used vectors to represent static quanti-
ties, such as the constant force applied to the end of a wrench or the constant velocity of 
a boat in a current. In this chapter, we put vectors in motion by introducing vector-valued 
functions, or simply vector functions. Our first task is to investigate the graphs of vector-
valued functions and to study them in the setting of calculus. Everything you already know 
about limits, derivatives, and integrals applies to this new family of functions. Also, with 
the calculus of vector functions, we can solve a wealth of practical problems involving the 
motion of objects in space. The chapter closes with an exploration of arc length, curvature, 
and tangent and normal vectors, all important features of space curves.

14.1 Vector-Valued Functions
Imagine a projectile moving along a path in three-dimensional space; it could be an elec-
tron or a comet, a soccer ball or a rocket. If you take a snapshot of the object, its position 
is described by a static position vector r = 8x, y, z9 . However, if you want to describe 
the full trajectory of the object as it unfolds in time, you must represent the object’s posi-
tion with a vector-valued function such as r1t2 = 8x1t2, y1t2, z1t29  whose components 
change in time (Figure 14.1). The goal of this section is to describe continuous motion 
using vector-valued functions.

Vector-Valued Functions
A function of the form r1t2 = 8x1t2, y1t2, z1t29  may be viewed in two ways.

• It is a set of three parametric equations that describe a curve in space.

• It is also a vector-valued function, which means that the three dependent variables  
(x, y, and z) are the components of r, and each component varies with respect to a single 
independent variable t (that often represents time).

Here is the connection between these perspectives: As t varies, a point 1x1t2, y1t2, z1t22  
on a parametric curve is also the head of the position vector r1t2 = 8x1t2, y1t2, z1t29 . In 
other words, a vector-valued function is a set of parametric equations written in vector 
form. It is useful to keep both of these interpretations in mind as you work with vector-
valued functions.

Although our focus is on vector functions whose graphs lie in three-dimensional 
space, vector functions can be given in any number of dimensions. In fact, you be-
came acquainted with the essential ideas behind two-dimensional vector functions  

14

14.1 Vector-Valued Functions

14.2 Calculus of Vector-Valued 
Functions

14.3 Motion in Space

14.4 Length of Curves

14.5 Curvature and Normal 
Vectors

z

y

x

Figure 14.1
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 14.1 Vector-Valued Functions 869

in Section 12.1 when you studied parametric equations. For example, recall that the para-
metric equations

x = a cos t,  y = a sin t, for 0 … t … 2p

describe a circle of radius a centered at the origin. The corresponding vector function is

r1t2 = 8a cos t, a sin t9 , for 0 … t … 2p.

All the plane curves described by parametric equations in Section 12.1 are easily con-
verted to vector functions in the same manner.

Curves in Space
We now explore general vector-valued functions of the form

r1t2 = 8ƒ1t2, g1t2, h1t29 = ƒ1t2 i + g1t2 j + h1t2 k,

where ƒ, g, and h are defined on an interval a … t … b. The domain of r is the largest set 
of values of t on which all of ƒ, g, and h are defined.

Figure 14.2 illustrates how a parameterized curve is generated by such a function. As 
the parameter t varies over the interval a … t … b, each value of t produces a position 
vector that corresponds to a point on the curve, starting at the initial vector r1a2 and end-
ing at the terminal vector r1b2. The resulting parameterized curve can either have finite 
length or extend indefinitely. The curve may also cross itself or close and retrace itself. As 
shown in Example 1, when ƒ, g, and h are linear functions of t, the resulting curve is a line 
or line segment.

z

x

y

The curve
r(t) 5 k f (t), g(t), h(t)l,
for a # t # b

t 5 a

t 5 b

t 5 t3

t 5 t2t 5 t1

r(a)

r(b)
r(t1)

r(t2)

r(t3)

Figure 14.2
EXAMPLE 1 Lines as vector-valued functions Find a vector function for the line that 
passes through the points P12, -1, 42 and Q13, 0, 62.
SOLUTION Recall from Section 13.5 that parametric equations of the line parallel to the 
vector v = 8a, b, c9  and passing through the point P01x0, y0, z02 are

x = x0 + at, y = y0 + bt, z = z0 + ct.

The vector v = PQr = 83 - 2, 0 - 1-12, 6 - 49 = 81, 1, 29  is parallel to the line, 
and we let P0 = P12, -1, 42. Therefore, parametric equations for the line are

x = 2 + t, y = -1 + t, z = 4 + 2t,

and the corresponding vector function for the line is

r1t2 = 82 + t, -1 + t, 4 + 2t9 ,
with a domain of all real numbers. As t increases, the line is generated in the direction of 
PQr . Just as we did with parametric equations, we can restrict the domain to a finite inter-
val to produce a vector function for a line segment (see Quick Check 1).

Related Exercises 9, 13 

QUICK CHECK 1 Restrict the domain of 
the vector function in Example 1 to 
produce a line segment that goes from 
P12, -1, 42 to R15, 1, 82. 

Orientation of Curves If a smooth curve C is viewed only as a set of 
points, then at any point of C, it is possible to draw tangent vectors in two 
directions (Figure 14.3a). On the other hand, a parameterized curve described 
by the function r1t2, where a … t … b, has a natural direction, or orienta-
tion. The positive orientation is the direction in which the curve is generated 
as the parameter increases from a to b. For example, the positive orientation 
of the circle r1t2 = 8cos t, sin t9 , for 0 … t … 2p, is counterclockwise 
(Figure 14.3b), and the positive orientation of the line in Example 1 is in the 
direction of the vector PQr . An important property of all parameterized curves 
is the relationship between the orientation of a given curve and its tangent 
vectors (to be defined precisely in Section 14.2): At all points, the tangent 
vectors point in the direction of the positive orientation of the curve.

Parameterized curve

(b)

Tangent vectors in
either of two directions

Unparameterized curve

C C

(a)

Tangent vectors indicate
positive orientation.

Figure 14.3
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EXAMPLE 2 A spiral Graph the curve described by the equation

r1t2 = 4 cos t i + sin t j +
t

2p
 k,

where (a) 0 … t … 2p and (b) -∞ 6 t 6 ∞ .

SOLUTION

a. We begin by setting z = 0 to determine the projection of the curve in the xy-plane. 
The resulting function r1t2 = 4 cos t i + sin t j implies that x = 4 cos t and 
y = sin t; these equations describe an ellipse in the xy-plane whose positive direction 
is counterclockwise (Figure 14.4a). Because z = t

2p, the value of z increases from 0 to 
1 as t increases from 0 to 2p. Therefore, the curve rises out of the xy-plane to create an 
elliptical spiral (or coil). Over the interval 30, 2p4, the spiral begins at 14, 0, 02, circles 
the z-axis once, and ends at 14, 0, 12 (Figure 14.4b).

b. Letting the parameter vary over the interval -∞ 6 t 6 ∞  generates a spiral that 
winds around the z-axis endlessly in both directions. The positive orientation is in the 
upward direction (increasing z-direction). Noticing once more that x = 4 cos t and 
y = sin t are x- and y-components of r, we see that the spiral lies on the elliptical  

cylinder a x
4
b

2

+ y2 = cos2 t + sin2 t = 1 (Figure 14.4c).

1 2 3 42324 22 21

1

2

22

21
x

y

(a)

Projection of spiral on
xy-plane is an ellipse.

 

z

y
x

(b)

t
2p

k,

for 0 # t # 2p

One loop of the spiral

r(t) 5 4 cos t i 1 sin t j 1

for 2` < t < `

Eight loops of the spiral
r(t) 5 4 cos t i 1 sin t j 1

t
2p

k,

(c)

The spiral lies on the
elliptical cylinder

z

x
y

 1 y2 5 1.
x2

16

Figure 14.4
Related Exercise 24 

➤ Recall that the functions sin at and  
cos at oscillate a times over the interval 
30, 2p4. Therefore, their period is 2p>a.
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EXAMPLE 3 Roller coaster curve Graph the curve

r1t2 = cos t i + sin t j + 0.4 sin 2t k,  for 0 … t … 2p.

SOLUTION Without the z-component, the resulting function r1t2 = cos t i + sin t j  
describes a circle of radius 1 in the xy-plane. The z-component of the function varies  
between -0.4 and 0.4 with a period of p units. Therefore, on the interval 30, 2p4, the  
z-coordinates of points on the curve oscillate twice between -0.4 and 0.4, while the  
x- and y-coordinates describe a circle. The result is a curve that circles the z-axis once in 
the counterclockwise direction with two peaks and two valleys (Figure 14.5a).

The space curve in this example is not particularly complicated, but visualizing a 
given curve is easier when we determine the surface(s) on which it lies. Writing the  
vector function r1t2 = cos t i + sin t j + 0.4 sin 2t k in parametric form, we have

x = cos t, y = sin t, z = 0.4 sin 2t, for 0 … t … 2p.

Noting that x2 + y2 = cos2 t + sin2 t = 1, we conclude that the curve lies on the cylin-
der x2 + y2 = 1. In this case, we can also eliminate the parameter by writing

 z = 0.4 sin 2t

 = 0.412 sin t cos t2 Double angle identity: sin 2t = 2 sin t cos t     ()* ()*
       y  x

 = 0.8xy,  x = cos t, y = sin t

which implies that the curve also lies on the hyperbolic paraboloid z = 0.8xy (see margin 
note). In fact, the roller coaster curve is the curve in which the surfaces x2 + y2 = 1 and 
z = 0.8xy intersect, as shown in Figure 14.5b.

➤ The graph of z = 0.8xy is a rotation of 
the quadric surface z = 0.41x2 - y22,  
which we recognize as a hyperbolic 
paraboloid. See the Guided Project 
Translation and rotation of axes.

Roller coaster curve
r(t) 5 cos t i 1 sin t j 1 0.4 sin 2t k,
for 0 # t # 2p

z

x y
Projection on xy-plane
is the circle x2 1 y2 5 1.

(a)  

x

Another look
at the roller
coaster curve

x2 1 y2 5 1

z 5 0.8xy

r(t) 5 kcos t, sin t, 0.4sin 2tl

y

z

(b)

Figure 14.5
Related Exercises 28, 55 

EXAMPLE 4 Slinky curve Use a graphing utility to graph the curve

r1t2 = 13 + cos 15t2 cos t i + 13 + cos 15t2 sin t j + sin 15t k,

for 0 … t … 2p, and discuss its properties.

SOLUTION The factor A1t2 = 3 + cos 15t that appears in the x- and y-components is a 
varying amplitude for cos t i and sin t j. Its effect is seen in the graph of the x-component 
A1t2 cos t (Figure 14.6a). For 0 … t … 2p, the curve consists of one period of 3 cos t 
with 15 small oscillations superimposed on it. As a result, the x-component of r varies 
from -4 to 4 with 15 small oscillations along the way. A similar behavior is seen in the 
y-component of r. Finally, the z-component of r, which is sin 15t, oscillates between 
-1 and 1 fifteen times over 30, 2p4. Combining these effects, we discover a coil-shaped 
curve that circles the z-axis in the counterclockwise direction and closes on itself.  
Figures 14.6b and 14.6c show two views, one looking along the xy-plane and the other 
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Related Exercises 27, 56 

x-component of r

x 5 A(t)  cos t
with an amplitude
A(t) 5 3 1 cos 15t4

24

t

2

22

3pp

22
2pp

x

(a)  

y

z

View along xy-plane

Torus

Slinky curve
r(t) 5 kA(t)  cos t, A(t)  sin t, sin 15tl
A(t) 5 3 1 cos 15t
0 # t # 2p

x

(b)  

View from above

Projection in xy-plane
r(t) 5 kA(t)  cos t, A(t)  sin tl
A(t) 5 3 1 cos 15t
0 # t # 2p

2

22 2

y

x

(c)

Figure 14.6

Limits and Continuity for Vector-Valued Functions
We have presented vector valued functions and established their relationship to parametric 
equations. The next step is to investigate the calculus of vector-valued functions. The con-
cepts of limits, derivatives, and integrals of vector-valued functions are direct extensions 
of what you have already learned.

The limit of a vector-valued function r1t2 = ƒ1t2 i + g1t2 j + h1t2 k is defined much 
as it is for scalar-valued functions. If there is a vector L such that the scalar function 
0 r1t2 - L 0  can be made arbitrarily small by taking t sufficiently close to a, then we write 
lim
tSa r1t2 = L and say the limit of r as t approaches a is L.

DEFINITION Limit of a Vector-Valued Function

A vector-valued function r approaches the limit L as t approaches a, written 
lim
tSa r1t2 = L, provided lim

tSa 0 r1t2 - L 0 = 0.

Notice that while r is vector valued, 0 r1t2 - L 0  is a function of the single variable t, 
to which our familiar limit theorems apply. Therefore, this definition and a short calcula-
tion (Exercise 66) lead to a straightforward method for computing limits of the vector-
valued function r = 8ƒ, g, h9 . Suppose

lim
tSa ƒ1t2 = L1,   lim

tSa
 g1t2 = L2,   and  lim

tSa
 h1t2 = L3.

Then

lim
tSa

 r1t2 = h lim
tSa

 ƒ1t2, lim
tSa g1t2, limtSa h1t2 i = 8L1, L2, L39 .

In other words, the limit of r is determined by computing the limits of its components.
The limits laws in Chapter 2 have analogs for vector-valued functions. For example, 

if lim
tSa

 r1t2 and lim
tSa

 s1t2 exist and c is a scalar, then

lim
tSa

 1r1t2 + s1t22 = lim
tSa r1t2 + lim

tSa s1t2 and lim
tSa

 cr1t2 = clim
tSa r1t2.

The idea of continuity also extends directly to vector-valued functions. A function  
r1t2 = ƒ1t2 i + g1t2 j + h1t2 k is continuous at a provided lim

tSa
 r1t2 = r1a2. Specifically, 

from overhead on the z-axis. It can be shown (Exercise 56) that eliminating the parameter 
from the parametric equations defining r leads to a standard equation of a torus in  
Cartesian coordinates—in this case, 13 - 2x2 + y222 + z2 = 1—and therefore, the 
curve lies on this torus, as seen in Figure 14.6b.
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 14.1 Vector-Valued Functions 873

if the component functions ƒ, g, and h are continuous at a, then r is also continuous at a, 
and vice versa. The function r is continuous on an interval I if it is continuous for all t in I.

Continuity has the same intuitive meaning in this setting as it does for scalar-valued 
functions. If r is continuous on an interval, the curve it describes has no breaks or gaps, 
which is an important property when r describes the trajectory of an object.

QUICK CHECK 2 Explain why the  
curve in Example 5 lies on the  
cylinder x2 + y2 = 1, as shown  
in Figure 14.7. 

➤ Continuity is often taken as part of the 
definition of a parameterized curve.

z

1

x y

r(t) 5 kcos pt, sin pt, e2tl,
for t $ 0

Curve approaches the
circle x2 1 y2 5 1 in
the xy-plane as t $ `.

Figure 14.7

Getting Started
1. How many independent variables does the function 

r1t2 = 8ƒ1t2, g1t2, h1t29  have?

2. How many dependent scalar variables does the function 
r1t2 = 8ƒ1t2, g1t2, h1t29  have?

3. Why is r1t2 = 8ƒ1t2, g1t2, h1t29  called a vector-valued function?

4. In what plane does the curve r1t2 = t  i + t2 k lie?

5. How do you evaluate lim
tSa 

r1t2, where r1t2 = 8ƒ1t2, g1t2, h1t29?
6. How do you determine whether r1t2 = ƒ1t2 i + g1t2 j + h1t2 k is 

continuous at t = a?

7. Find a function r1t2 for the line passing through the points 
P10, 0, 02 and Q11, 2, 32. Express your answer in terms of i, j, 
and k.

8. Find a function r1t2 whose graph is a circle of radius 1 parallel to 
the xy-plane and centered at 10, 0, 102.

Practice Exercises
9–14. Lines and line segments Find a function r1t2 that describes the 
given line or line segment.

9. The line through P12, 3, 72 and Q14, 6, 32
10. The line through P10, -3, 22 that is parallel to the line 

r1t2 = 84, 6 - t, 1 + t9
11. The line through P13, 4, 52 that is orthogonal to the plane 

2x - z = 4

12. The line of intersection of the planes 2x + 3y + 4z = 7 and 
2x + 3y + 5z = 8

SECTION 14.1 EXERCISES
13. The line segment from P11, 2, 12 to Q10, 2, 32
14. The line segment from P1-4, -2, 12 to Q1-2, -2, 32
15–26. Graphing curves Graph the curves described by the following 
functions, indicating the positive orientation.

15. r1t2 = 82 cos t, 2 sin t9 , for 0 … t … 2p

16. r1t2 = 81 + cos t, 2 + sin t9 , for 0 … t … 2p

17. r1t2 = 8 t, 2t9 , for 0 … t … 1

18. r1t2 = 83 cos t, 2 sin t9 , for 0 … t … 2p

19. r1t2 = 8cos t, 0, sin t9 , for 0 … t … 2p

20. r1t2 = 80, 4 cos t, 16 sin t9 , for 0 … t … 2p

21. r1t2 = cos t i + j + sin t k, for 0 … t … 2p

22. r1t2 = 2 cos t i + 2 sin t j + 2 k, for 0 … t … 2p

23. r1t2 = t cos t i + t sin t j + t k, for 0 … t … 6p

24. r1t2 = 4 sin t i + 4 cos t j + e-t>10 k, for 0 … t 6 ∞

25. r1t2 = e-t>20 sin t i + e-t>20 cos t j + t k, for 0 … t 6 ∞

26. r1t2 = e-t>10 i + 3 cos t j + 3 sin t k, for 0 … t 6 ∞

27–30. Exotic curves Graph the curves described by the following 
functions. Use analysis to anticipate the shape of the curve before  
using a graphing utility.

27. r1t2 = cos 15t i + 14 + sin 15t2 cos t j + 14 + sin 15t2 sin t k, 
for 0 … t … 2p

28. r1t2 = 2 cos t i + 4 sin t j + cos 10t k, for 0 … t … 2p

T

T

T

T

T

EXAMPLE 5 Limits and continuity Consider the function

r1t2 = cos pt i + sin pt j + e-t k, for t Ú 0.

a. Evaluate lim
tS2 r1t2.

b. Evaluate lim
tS∞ r1t2.

c. At what points is r continuous?

SOLUTION

a. We evaluate the limit of each component of r:

lim
tS2 r1t2 = lim

tS2 1cos pt   i + sin pt   j + e-t k2 = i + e-2 k.(1)1*  (1)1*   "
 S 1 S 0 S e-2

b. Note that although lim
tS∞

 e-t = 0, lim
tS∞

 cos t and lim
tS∞

 sin t do not exist. Therefore, 

lim
tS∞

 r1t2 does not exist. As shown in Figure 14.7, the curve is a coil that approaches 

the unit circle in the xy-plane.

c. Because the components of r are continuous for all t, r is also continuous for all t.
Related Exercise 31 
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29. r1t2 = sin t i + sin2 t j +
t

5p
 k, for 0 … t … 10p

30. r1t2 = cos t sin 3t i + sin t sin 3t j + 1t k, for 0 … t … 9

31–36. Limits Evaluate the following limits.

31. lim
tSp>2

acos 2t i - 4 sin t j +
2t
p

 kb

32. lim
tSln 2

 12et i + 6e-t j - 4e-2t k2

33. lim
tS∞

 ae-t i -
2t

t + 1
 j + tan-1 t kb

34. lim
tS2

 a t

t2 + 1
 i - 4e-t sin pt j +

114t + 1
 kb

35. lim
tS0

 a  sin t
t

 i -
et - t - 1

t
 j +

cos t + t2>2 - 1

t2  kb

36. lim
tS0

 a tan t
t

 i -
3t

 sin t
 j + 1t + 1 kb

37. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. The projection of the curve r1t2 = 8 t, cos t, t29  in the  
xz-plane is a parabola.

b. The curve r1t2 = 8sin t, cos t, sin t9  lies on a unit sphere.
c. The curve r1t2 = 8e-t, sin t, -cos t9  approaches a circle  

as t S ∞ .
d. If r1t2 = e-t281, 1, 19 , then lim

tS∞
 r1t2 = lim

tS-∞
 r1t2.

38–41. Domains Find the domain of the following vector-valued  
functions.

38. r1t2 = 2
t - 1

 i +
3

t + 2
 j

39. r1t2 = 1t + 2 i + 12 - t j

40. r1t2 = cos 2t i + e1t j +
12
t

 k

41. r1t2 = 24 - t2 i + 1t j -
211 + t

 k

42–44. Curve-plane intersections Find the points (if they exist) at 
which the following planes and curves intersect.

42. y = 1; r1t2 = 810 cos t, 2 sin t, 19 , for 0 … t … 2p

43. z = 16; r1t2 = 8 t, 2t, 4 + 3t9 , for -∞ 6 t 6 ∞

44. y + x = 0; r1t2 = 8cos t, sin t, t9 , for 0 … t … 4p

45. Matching functions with graphs Match functions a–f with the 
appropriate graphs A–F.

a. r1t2 = 8 t, - t, t9  b. r1t2 = 8 t2, t, t9
c. r1t2 = 84 cos t, 4 sin t, 29  d. r1t2 = 82t, sin t, cos t9
e. r1t2 = 8sin t, cos t, sin 2t9  f. r1t2 = 8sin t, 2t, cos t9

z

x

y

(A)  

z

x y

(B)

z

x

y

(C)  

z

x y

(D)

z

x
y

(E)  

z

x y
(F)

46. Upward path Consider the curve described by the vector function 
r1t2 = 150e-tcos t2 i + 150e-t sin t2 j + 15 - 5e-t2  k, for t Ú 0.

a. What is the initial point of the path corresponding to r102?
b. What is lim

tS∞
 r1t2?

c. Eliminate the parameter t to show that the curve r1t2 lies on the 
surface z = 5 - r>10, where r2 = x2 + y2.

47–50. Curve of intersection Find a function r1t2 that describes the 
curve where the following surfaces intersect. Answers are not unique.

47. z = 4; z = x2 + y2

Intersection
curve

z 5 4

z 5 x2 1 y2 

z

x
y

48. z = 3x2 + y2 + 1; z = 5 - x2 - 3y2

z

x

y

Intersection
curve

z 5 5 2 x2 2 3y2 

z 5 3x2 1 y2 1 1
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49. x2 + y2 = 25; z = 2x + 2y

50. z = y + 1; z = x2 + 1

51. Golf slice A golfer launches a tee shot down a horizontal fairway; 
it follows a path given by r1t2 = 8at, 175 - 0.1a2t, -5t2 + 80t9 , 
where t Ú 0 measures time in seconds and r has units of feet. The 
y-axis points straight down the fairway and the z-axis points verti-
cally upward. The parameter a is the slice factor that determines 
how much the shot deviates from a straight path down the fairway.

a. With no slice (a = 0), describe the shot. How far does the ball 
travel horizontally (the distance between the point where the 
ball leaves the ground and the point where it first strikes the 
ground)?

b. With a slice (a = 0.2), how far does the ball travel  
horizontally?

c. How far does the ball travel horizontally with a = 2.5?

52–56. Curves on surfaces Verify that the curve r1t2 lies on the given 
surface. Give the name of the surface.

52. r1t2 = 1t cos t2 i + 1t sin t2 j + t k; x2 + y2 = z2

53. r1t2 = 12t2 + 1 cos t2  i + 12t2 + 1 sin t2  j + t k; 
x2 + y2 - z2 = 1

54. r1t2 = 81t cos t, 1t sin t, t9 ; z = x2 + y2

55. r1t2 = 80, 2 cos t, 3 sin t9 ; x2 +
y2

4
+

z2

9
= 1

56. r1t2 = 813 + cos 15t2 cos t, 13 + cos 15t2 sin t, sin 15t9 ; 
13 - 2x2 + y2 2 2 + z2 = 1 (Hint: See Example 4.)

57–58. Closest point on a curve Find the point P on the curve r1t2 
that lies closest to P0 and state the distance between P0 and P.

57. r1t2 = t2 i + t j + t k; P011, 1, 152
58. r1t2 = cos t i + sin t j + t k; P011, 1, 32

Explorations and Challenges
59–61. Curves on spheres

59. Graph the curve r1t2 = h 1
2

 sin 2t, 
1
2

 11 - cos 2t2, cos ti and  

prove that it lies on the surface of a sphere centered at the origin.

60. Prove that for integers m and n, the curve

r1t2 = 8a sin mt cos nt, b sin mt sin nt, c cos mt9
lies on the surface of a sphere provided a2 = b2 = c2.

T

T

T

61. Find the period of the function in Exercise 60; that is, in terms 
of m and n, find the smallest positive real number T such that 
r1t + T2 = r1t2 for all t.

62–65. Closed plane curves Consider the curve 

r1t2 = 8a cos t + b sin t, c cos t + d sin t, e cos t + ƒ sin t9,
where a, b, c, d, e, and ƒ are real numbers. It can be shown that this 
curve lies in a plane.

62. Assuming the curve lies in a plane, show that it is a 
circle centered at the origin with radius R provided 
a2 + c2 + e2 = b2 + d2 + ƒ2 = R2 and ab + cd + eƒ = 0.

63. Graph the following curve and describe it.

r1t2 = a 112
 cos t +

113
 sin tb  i

   + a -  
112

 cos t +
113

 sin tb  j + a 123
 sin tb  k

64. Graph the following curve and describe it.

r1t2 = 12 cos t + 2 sin t2 i + 1-cos t + 2 sin t2 j + 1cos t - 2 sin t2 k

65. Find a general expression for a nonzero vector orthogonal to the 
plane containing the curve

r1t2 = 8a cos t + b sin t, c cos t + d sin t, e cos t + ƒ sin t9,
where 8a, c, e9 * 8b, d, ƒ9 ≠ 0.

66. Limits of vector functions Let r1t2 = 8ƒ1t2, g1t2, h1t29 .
a. Assume lim

tSa
 r1t2 = L = 8L1, L2, L39 , which means that 

lim
tSa

 0 r1t2 - L 0 = 0. Prove that

lim
tSa

 ƒ1t2 = L1, lim
tSa

 g1t2 = L2, and lim
tSa

 h1t2 = L3.

b. Assume lim
tSa

 ƒ1t2 = L1, limtSa
 g1t2 = L2, and lim

tSa
 h1t2 = L3.  

Prove that lim
tSa

 r1t2 = L = 8L1, L2, L39 , which means that 

lim
tSa

 0 r1t2 - L 0 = 0.

QUICK CHECK ANSWERS

1. 0 … t … 2 2. The x- and y-components of 
the curve are x = cos pt and y = sin pt, and 
x2 + y2 = cos2pt + sin2pt = 1. 

T

T

14.2  Calculus of Vector-Valued 
Functions

We now turn to the topic of ultimate interest in this chapter: the calculus of vector-valued 
functions. Everything you learned about differentiating and integrating functions of the 
form y = ƒ1x2 carries over to vector-valued functions r1t2; you simply apply the rules of 
differentiation and integration to the individual components of r.

The Derivative and Tangent Vector
Consider the function r1t2 = ƒ1t2 i + g1t2 j + h1t2 k, where ƒ, g, and h are differen-
tiable functions on an interval a 6 t 6 b. The first task is to explain the meaning of the 
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derivative of a vector-valued function and to show how to compute it. We begin with the 
definition of the derivative—now from a vector perspective:

r′1t2 = lim
∆tS0

 
∆r
∆t

= lim
∆tS0

 
r1t + ∆t2 - r1t2

∆t
 .

Let’s first look at the geometry of this limit. The function r1t2 = ƒ  1t2 i +g1t2 j + h1t2 k 
describes a parameterized curve in space. Let P be a point on that curve associated with 
the position vector r1t2, and let Q be a nearby point associated with the position vec-
tor r1t + ∆t2, where ∆t 7 0 is a small increment in t (Figure 14.8a). The difference 
∆r = r1t + ∆t2 - r1t2 is the vector PQr , where we assume ∆r ≠ 0. Because ∆t is a 
scalar, the direction of ∆r>∆t is the same as the direction of PQr .

As ∆t approaches 0, Q approaches P and the vector ∆r>∆t approaches a limit-
ing vector that we denote r′1t2 (Figure 14.8b). This new vector r′1t2 has two important 
interpretations.

• The vector r′1t2 points in the direction of the curve at P. For this reason, r′1t2 is a  
tangent vector at P (provided it is not the zero vector).

• The vector r′1t2 is the derivative of r with respect to t; it gives the rate of change of the 
function r1t2 at the point P. In fact, if r1t2 is the position function of a moving object, 
then r′1t2 is the velocity vector of the object, which always points in the direction of 
motion, and 0 r′1t2 0  is the speed of the object.

➤ An analogous argument can be given  
for ∆t 6 0, with the same result.  
Figure 14.8 illustrates the tangent vector 
r′ for ∆t 7 0.

➤ Section 14.3 is devoted to problems of 
motion in two and three dimensions.

z

x

y

r9(t)

r(t)

P

Q

(b)

As Dt $ 0, $ r9(t),Dr
Dt

which is a tangent vector at P.

z

x

y

r(t)

r(t 1 Dt)

P

Q

r(t) 5 k f (t), g(t), h(t)l

PQ 5 Dr 5 r(t 1 Dt) 2 r(t)

(a)

Figure 14.8

We now evaluate the limit that defines r′1t2 by expressing r in terms of its components 
and using the properties of limits.

 r′1t2 = lim
∆tS0

 
r1t + ∆t2 - r1t2

∆t

 = lim
∆tS0

 
1ƒ1t + ∆t2 i + g1t + ∆t2 j + h1t + ∆t2 k2 - 1ƒ1t2 i + g1t2 j + h1t2 k2

∆t
 Substitute components of r.

 = lim
∆tS0

 a ƒ1t + ∆t2 - ƒ1t2
∆t

 i +
g1t + ∆t2 - g1t2

∆t
 j +

h1t + ∆t2 - h1t2
∆t

 kb
 Rearrange terms inside of limit.

 = lim
∆tS0

 
ƒ1t + ∆t2 - ƒ1t2

∆t
 i + lim

∆tS0
 
g1t + ∆t2 - g1t2

∆t
 j + lim

∆tS0
 
h1t + ∆t2 - h1t2

∆t
 k

    (++++)++++*  (++++)++++*  (++++)++++*
 ƒ′1t2 g′1t2 h′1t2
 Limit of sum equals sum of limits.
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 14.2 Calculus of Vector-Valued Functions 877

Because ƒ, g, and h are differentiable scalar-valued functions of the variable t, the three 
limits in the last step are identified as the derivatives of ƒ, g, and h, respectively. There-
fore, there are no surprises:

r′1t2 = ƒ′1t2 i + g′1t2 j + h′1t2 k.

In other words, to differentiate the vector-valued function r1t2, we simply differentiate 
each of its components with respect to t.

DEFINITION Derivative and Tangent Vector

Let r1t2 = ƒ1t2 i + g1t2 j + h1t2 k, where ƒ, g, and h are differentiable functions 
on 1a, b2. Then r has a derivative (or is differentiable) on 1a, b2 and

r′1t2 = ƒ′1t2 i + g′1t2 j + h′1t2 k.

Provided r′1t2 ≠ 0, r′1t2 is a tangent vector at the point corresponding to r1t2.

QUICK CHECK 1 Let r1t2 = 8 t, t, t9 . 
Compute r′1t2 and interpret the  
result. 

z

x

y

Figure 14.9

➤ If a curve has a cusp at a point, then 
r′1t2 = 0 at that point. However, the 
converse is not true; it may happen that 
r′1t2 = 0 at a point that is not a cusp 
(Exercise 95).

QUICK CHECK 2 Suppose r′1t2 has 
units of m>s. Explain why T1t2 =
r′1t2> 0 r′1t2 0  is dimensionless (has 
no units) and carries information only 
about direction. 

DEFINITION Unit Tangent Vector

Let r1t2 = ƒ1t2 i + g1t2 j + h1t2 k be a smooth parameterized curve, for 
a … t … b. The unit tangent vector for a particular value of t is

T1t2 = r′1t2
0 r′1t2 0  .

EXAMPLE 1 Derivative of vector functions Compute the derivative of the following 
functions.

a. r1t2 = 8 t3, 3t2, t3>69  b. r1t2 = e-t i + 101t j + 2 cos 3t k

SOLUTION

a. r′1t2 = 83t2, 6t, t2>29 ; note that r is differentiable for all t and r′102 = 0.

b. r′1t2 = -e-t i +
51t

 j - 6 sin 3t k; the function r is differentiable for t 7 0.

Related Exercises 11–12 

The condition that r′1t2 ≠ 0 in order for the tangent vector to be defined requires ex-
planation. Consider the function r1t2 = 8 t3, 3t2, t3>69 . As shown in Example 1a, 
r′102 = 0; that is, all three components of r′1t2 are zero simultaneously when t = 0. 
We see in Figure 14.9 that this otherwise smooth curve has a cusp, or a sharp point, at the 
origin. If r describes the motion of an object, then r′1t2 = 0 means that the velocity (and 
speed) of the object is zero at a point. At such a stationary point, the object may change 
direction abruptly, creating a cusp in its trajectory. For this reason, we say a function 
r1t2 = 8ƒ1t2, g1t2, h1t29  is smooth on an interval if ƒ, g, and h are differentiable and 
r′1t2 ≠ 0 on that interval. Smooth curves have no cusps or corners.

Unit Tangent Vector In situations in which only the direction (but not the length) of 
the tangent vector is of interest, we work with the unit tangent vector. It is the vector with 
magnitude 1, formed by dividing r′1t2 by its length.

EXAMPLE 2 Unit tangent vectors Find the unit tangent vectors for the following pa-
rameterized curves.

a. r1t2 = 8 t2, 4t, 4 ln t9 , for t 7 0

b. r1t2 = 810, 3 cos t, 3 sin t9 , for 0 … t … 2p
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878 Chapter 14  •  Vector-Valued Functions

SOLUTION

a. A tangent vector is r′1t2 = 82t, 4, 4>t9 , which has a magnitude of

 0 r′1t2 0 = B12t22 + 42 + a 4
t
b

2

 Definition of magnitude

 = A4t2 + 16 +
16

t2  Expand.

 = B a2t +
4
t
b

2

 Factor.

 = 2t +
4
t

 .  Simplify.

Therefore, the unit tangent vector for a particular value of t is

T1t2 = 82t, 4, 4>t9
2t + 4>t  .

As shown in Figure 14.10, the unit tangent vectors change direction along the curve 
but maintain unit length.

b. In this case, r′1t2 = 80, -3 sin t, 3 cos t9  and

0 r′1t2 0 = 202 + 1-3 sin t22 + 13 cos t22 = 291sin2 t + cos2 t2 = 3.(++)++*
    1

Therefore, the unit tangent vector for a particular value of t is

T1t2 = 1
3
80, -3 sin t, 3 cos t9 = 80, -sin t, cos t9 .

The direction of T changes along the curve, but its length remains 1.
Related Exercises 25, 27 

z

x

y

r(t) 5 kt2, 4t, 4 ln tl,
                   for t . 0

Unit tangent vectors
change direction along
the curve, but they
always have length 1.

T(t)

T(t)

T(t)

Figure 14.10

THEOREM 14.1 Derivative Rules
Let u and v be differentiable vector-valued functions, and let ƒ be a differentiable 
scalar-valued function, all at a point t. Let c be a constant vector. The following 
rules apply.

1. 
d
dt

 1c2 = 0 Constant Rule

2. 
d
dt

 1u1t2 + v1t22 = u′1t2 + v′1t2 Sum Rule

3. 
d
dt

 1ƒ1t2u1t22 = ƒ′1t2u1t2 + ƒ1t2u′1t2 Product Rule

4. 
d
dt

 1u1ƒ1t222 = u′1ƒ1t22ƒ′1t2 Chain Rule

5. 
d
dt

 1u1t2 # v1t22 = u′1t2 # v1t2 + u1t2 # v′1t2 Dot Product Rule

6. 
d
dt

 1u1t2 * v1t22 = u′1t2 * v1t2 + u1t2 * v′1t2 Cross Product Rule

➤ With the exception of the Cross Product 
Rule, these rules apply to vector-
valued functions with any number of 
components. Notice that we have three 
new product rules, all of which mimic the 
original Product Rule. In Rule 4, u must 
be differentiable at ƒ1t2.

QUICK CHECK 3 Let u1t2 = 8 t, t, t9  
and v1t2 = 81, 1, 19 . Compute 
d
dt

 1u1t2 # v1t22 using Derivative  

Rule 5, and show that it agrees with  
the result obtained by first computing 
the dot product and differentiating 
directly. 

The proofs of these rules are assigned in Exercises 92–94 with the exception of the 
following representative proofs.

Proof of the Chain Rule: Let u1t2 = 8u11t2, u21t2, u31t29 , which implies that

u1ƒ1t22 = u11ƒ1t22 i + u21ƒ1t22 j + u31ƒ1t22 k.

Derivative Rules The rules for derivatives for single-variable functions either carry over 
directly to vector-valued functions or have close analogs. These rules are generally proved 
by working on the individual components of the vector function.
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 14.2 Calculus of Vector-Valued Functions 879

We now apply the ordinary Chain Rule componentwise:

 
d
dt

 1u1ƒ1t222 =
d
dt

 1u11ƒ1t22 i + u21ƒ1t22 j + u31ƒ1t22 k2 Components of u

 =
d
dt

 1u11ƒ1t222 i +
d
dt

 1u21ƒ1t222 j +
d
dt

 1u31ƒ1t222 k 
 Differentiate each 
component.

 = u1′1ƒ1t22 ƒ′1t2 i + u2′1ƒ1t22 ƒ′1t2 j + u3′1ƒ1t22 ƒ′1t2 k Chain Rule

 = 1u1′1ƒ1t22 i + u2′1ƒ1t22 j + u3′1ƒ1t22 k2  ƒ′1t2 Factor ƒ′1t2.
 = u′1ƒ1t22 ƒ′1t2. Definition of u′

 

EXAMPLE 3 Derivative rules Compute the following derivatives, where

u1t2 = t i + t2 j - t3 k and v1t2 = sin t i + 2 cos t j + cos t k.

a. 
d
dt

 1v1t222    b. 
d
dt

 1t2 v1t22    c. 
d
dt

 1u1t2 # v1t22

SOLUTION

a. Note that v′1t2 = cos t i - 2 sin t j - sin t k. Using the Chain Rule, we have

d
dt

 1v1t222 = v′1t22 d
dt

 1t22 = 1cos t2 i - 2 sin t2 j - sin t2 k212t2.(+++++11)11+++++*
      v′1t22

b.  
d
dt

 1t2 v1t22 = d
dt

 1t22v1t2 + t2 
d
dt

 1v1t22 Product Rule

 = 2t v1t2 + t2 v′1t2
 = 2t 1sin t i + 2 cos t j + cos t k2 + t21cos t i - 2 sin t j - sin t k2(+++++1)1+++++*   (+++++1)1+++++*

 v1t2 v′1t2
 Differentiate.

 = 12t sin t + t2 cos t2 i + 14t cos t - 2t2 sin t2 j + 12t cos t - t2 sin t2 k
 Collect terms.

c. 
d
dt

 1u1t2 # v1t22 = u′1t2 # v1t2 + u1t2 # v′1t2 Dot Product Rule

 = 1i + 2t j - 3t2 k2 # 1sin t i + 2 cos t j + cos t k2
   +  1t i + t2 j - t3 k2 # 1cos t i - 2 sin t j - sin t k2 Differentiate.

 = 1sin t + 4t cos t - 3t2 cos t2 + 1t cos t - 2t2 sin t + t3 sin t2 Dot products

 = 11 - 2t2 + t32  sin t + 15t - 3t22 cos t Simplify. 

Note that the result is a scalar. The same result is obtained if you first compute  
u # v and then differentiate.

Related Exercises 33, 36, 37 

Proof of the Dot Product Rule: We use the standard Product Rule on each component. 
Let u1t2 = 8u11t2, u21t2, u31t29  and v1t2 =  8v11t2, v21t2, v31t29 . Then

 
d
dt

 1u # v2 = d
dt

 1u1v1 + u2v2 + u3v32  Definition of dot product

 = u1′ v1 + u1 v1′ + u2′ v2 + u2 v2′ + u3′ v3 + u3 v3′ Product Rule

 = u1′ v1 + u2′ v2 + u3′ v3 + u1 v1′ + u2 v2′ + u3 v3′ Rearrange.
      (++++1)1++++*  (++++1)1++++*
 u′ # v u # v′

 = u′ # v + u # v′.  
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880 Chapter 14  •  Vector-Valued Functions

Higher-Order Derivatives Higher-order derivatives of vector-valued functions are 
computed in the expected way: We simply differentiate each component multiple times. 
Second derivatives feature prominently in the next section, playing the role of acceleration.

EXAMPLE 4 Higher-order derivatives Compute the first, second, and third derivative 
of r1t2 = 8 t2, 8 ln t, 3e-2t9 .
SOLUTION Differentiating once, we have r′1t2 = 82t, 8>t, -6e-2t9 . Differentiat-
ing again produces r″1t2 = 82, -8>t2, 12e-2t9 . Differentiating once more, we have 
r‴1t2 = 80, 16>t3, -24e-2t9 .

Related Exercise 58 

Integrals of Vector-Valued Functions
An antiderivative of the vector function r is a function R such that R′ = r. If

r1t2 = ƒ1t2 i + g1t2 j + h1t2 k,

then an antiderivative of r is

R1t2 = F1t2 i + G1t2 j + H1t2 k,

where F, G, and H are antiderivatives of ƒ, g, and h, respectively. This fact follows by 
differentiating the components of R and verifying that R′ = r. The collection of all anti-
derivatives of r is the indefinite integral of r.

DEFINITION Indefinite Integral of a Vector-Valued Function

Let r1t2 = ƒ1t2 i + g1t2 j + h1t2 k be a vector function, and let 
R1t2 = F1t2 i + G1t2 j + H1t2 k, where F, G, and H are antiderivatives of ƒ, g, 
and h, respectively. The indefinite integral of r is

∫r1t2 dt = R1t2 + C, 

where C is an arbitrary constant vector. Alternatively, in component form,

∫ 8ƒ1t2, g1t2, h1t29dt = 8F1t2, G1t2, H1t29 + 8C1, C2, C39 .

EXAMPLE 5 Indefinite integrals Compute

∫ a t2t2 + 2
 i + e-3t j + 1sin 4t + 12 kb  dt.

SOLUTION We compute the indefinite integral of each component:

∫ a t2t2 + 2
 i + e-3t j + 1sin 4t + 12 kb  dt

 = 12t2 + 2 + C12 i + a -  
1
3

 e-3t + C2b  j + a -  
1
4

 cos 4t + t + C3b
 

k

 = 2t2 + 2 i -
1
3

 e-3t j + a t -
1
4

 cos 4tb  k + C. Let C = C1 i + C2 j + C3 k.

The constants C1, C2, and C3 are combined to form one vector constant C at the end of the 
calculation.

Related Exercise 63 

➤ The substitution u = t2 + 2 is used to 
evaluate the i-component of the integral.

QUICK CHECK 4 Let r1t2 = 81, 2t, 3t29 . 
Compute#r1t2 dt. 

EXAMPLE 6 Finding one antiderivative Find r1t2 such that r′1t2 = 810, sin t, t9  
and r102 = j.

SOLUTION The required function r is an antiderivative of 810, sin t, t9 :

r1t2 = ∫ 810 , sin t, t9  dt = h10 t, -cos t, 
t  2

2
i + C, 
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 14.2 Calculus of Vector-Valued Functions 881

where C is an arbitrary constant vector. The condition r102 = j allows us to determine C; 
substituting t = 0 implies that r102 = 80, -1, 09 + C = j, where j = 80, 1, 09 . Solv-
ing for C, we have C = 80, 1, 09 - 80, -1, 09 = 80, 2, 09 . Therefore,

r1t2 = h10 t, 2 - cos t, 
t  2

2
i.

Related Exercise 65 

Definite integrals are evaluated by applying the Fundamental Theorem of Calculus to 
each component of a vector-valued function.

EXAMPLE 7 Definite integrals Evaluate

∫p
0
a i + 3 cos 

t
2

 j - 4t kb  dt.

SOLUTION

 ∫p
0
a i + 3 cos 

t
2

 j - 4t kb  dt = t i `
p

0
+ 6 sin 

t
2

 j `
p

0
- 2t2 k `

p

0
 

 Evaluate integrals  
for each component.

 = p i + 6j - 2p2 k  Simplify.

Related Exercise 75 

With the tools of differentiation and integration in hand, we are prepared to tackle 
some practical problems, notably the motion of objects in space.

DEFINITION Definite Integral of a Vector-Valued Function

Let r1t2 = ƒ1t2 i + g1t2 j + h1t2 k, where ƒ, g, and h are integrable on the 
interval 3a, b4. The definite integral of r on 3a, b4 is

∫b

a
r1t2 dt = a ∫b

a
ƒ1t2 dtb  i + a ∫b

a
g1t2 dtb  j + a ∫b

a
h1t2 dtb  k.

Getting Started
1. What is the derivative of r1t2 = 8ƒ1t2, g1t2, h1t29?
2. Explain the geometric meaning of r′1t2.
3. Given a tangent vector on an oriented curve, how do you find the 

unit tangent vector?

4. Compute r″1t2 when r1t2 = 8 t10, 8t, cos t9 .
5. How do you find the indefinite integral of r1t2 = 8ƒ1t2, g1t2, h1t29?
6. How do you evaluate #b

a  r1t2 dt?

7. Find C if r1t2 = 8et, 3 cos t, t + 109 + C and r102 = 80, 0, 09.
8. Find the unit tangent vector at t = 0 for the parameterized curve 

r1t2 if r′1t2 = 8et + 5, sin t + 2, cos t + 29 .

Practice Exercises
9–16. Derivatives of vector-valued functions Differentiate the follow-
ing functions.

9. r1t2 = 8cos t, t2, sin t9  10. r1t2 = 4et i + 5 j + ln t k

11. r1t2 = h2t3, 61t , 
3
t
i 12. r1t2 = 84, 3 cos 2t, 2 sin 3t9

13. r1t2 = et i + 2e-t j - 4e2t k

SECTION 14.2 EXERCISES

14. r1t2 = tan t i + sec t j + cos2 t k

15. r1t2 = 8 te-t, t ln t, t cos t9
16. r1t2 = 81t + 12-1, tan-1 t, ln 1t + 129
17–22. Tangent vectors Find a tangent vector at the given value of t 
for the following parameterized curves.

17. r1t2 = 8 t, 3t2, t39 , t = 1 18. r1t2 = 8et, e3t, e5t9 , t = 0

19. r1t2 = 8 t, cos 2t, 2 sin t9 , t =
p

2

20. r1t2 = h2 sin t, 3 cos t, sin 
t
2
i, t = p

21. r1t2 = 2t4 i + 6t3>2 j +
10
t

 k, t = 1

22. r1t2 = 2et i + e-2t j + 4e2t k, t = ln 3

23–28. Unit tangent vectors Find the unit tangent vector for the  
following parameterized curves.

23. r1t2 = 82t, 2t, t9 , for 0 … t … 1

24. r1t2 = 8cos t, sin t, 29 , for 0 … t … 2p

25. r1t2 = 88, cos 2t, 2 sin 2t9 , for 0 … t … 2p
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882 Chapter 14  •  Vector-Valued Functions

26. r1t2 = 8sin t, cos t, cos t9 , for 0 … t … 2p

27. r1t2 = h t, 2, 
2
t
i, for t Ú 1

28. r1t2 = 8e2t, 2e2t, 2e-3t9 , for t Ú 0

29–32. Unit tangent vectors at a point Find the unit tangent vector at 
the given value of t for the following parameterized curves.

29. r1t2 = 8cos 2t, 4, 3 sin 2t9 ; t =
p

2

30. r1t2 = 8sin t, cos t, e-t9 ; t = 0

31. r1t2 = h6t, 6, 
3
t
i; t = 1

32. r1t2 = 817et, 3et, 3et9 ; t = ln 2

33–38. Derivative rules Let u1t2 = 2t3 i + 1t2 - 12 j - 8 k and 
v1t2 = et i + 2e-t j - e2t k. Compute the derivative of the following 
functions.

33. 1t12 + 3t2 u1t2 34. 14t8 - 6t32 v1t2
35. u1t4 - 2t2 36. v11t 2
37. u1t2 # v1t2 38. u1t2 * v1t2
39–42. Derivative rules Suppose u and v are differentiable functions at 
t = 0 with u102 = 80, 1, 19 , u′102 = 80, 7, 19 , v102 = 80, 1, 19 , 
and v′102 = 81, 1, 29 . Evaluate the following expressions.

39. 
d
dt

 1u # v2 `
t=0

 40. 
d
dt

 1u * v2 `
t=0

41. 
d
dt

 1cos t u1t22 `
t=0

 42. 
d
dt

 1u1sin t22 `
t=0

43–48. Derivative rules Let u1t2 = 81, t, t29 , v1t2 = 8 t2, -2t, 19 , 
and g1t2 = 21t. Compute the derivatives of the following functions.

43. v1et2 44. u1t32 45. v1g1t22
46. g1t2v1t2 47. u1t2 * v1t2 48. u1t2 # v1t2
49–52. Derivative rules Compute the following derivatives.

49. 
d
dt

 1t21i + 2 i - 2t k2 # 1et i + 2et j - 3e-t k22

50. 
d
dt

 11t3 i - 2t j - 2 k2 * 1t i - t2 j - t3 k22

51. 
d
dt

 113t2 i + 1t j - 2t-1 k2 # 1cos t i + sin 2t j - 3t k22

52. 
d
dt

 11t3 i + 6 j - 21t k2 * 13t i - 12t2 j - 6t-2 k22
53–58. Higher-order derivatives Compute r″1t2 and r‴1t2 for the  
following functions.

53. r1t2 = 8 t2 + 1, t + 1, 19
54. r1t2 = 83t12 - t2, t8 + t3, t-4 - 29
55. r1t2 = 8cos 3t, sin 4t, cos 6t9
56. r1t2 = 8e4t, 2e-4t + 1, 2e-t9

57. r1t2 = 1t + 4 i +
t

t + 1
 j - e-t2 k

58. r1t2 = tan t i + a t +
1
t
b  j - ln 1t + 12 k

59–64. Indefinite integrals Compute the indefinite integral of the  
following functions.

59. r1t2 = 8 t4 - 3t, 2t - 1, 109

60. r1t2 = h5t-4 - t2, t6 - 4t3, 
2
t
i

61. r1t2 = 82 cos t, 2 sin 3t, 4 cos 8t9

62. r1t2 = tet i + t sin t2 j -
2t2t2 + 4

 k

63. r1t2 = e3t i +
1

1 + t2 j -
122t

 k

64. r1t2 = 2t i +
1

1 + 2t
 j + ln t k

65–70. Finding r from r′ Find the function r that satisfies the given 
conditions.

65. r′1t2 = 8e t, sin t, sec2 t9 ; r102 = 82, 2, 29
66. r′1t2 = 80, 2, 2t9 ; r112 = 84, 3, -59
67. r′1t2 = 81, 2t, 3t29 ; r112 = 84, 3, -59

68. r′1t2 = h1t, cos pt, 
4
t
i; r112 = 82, 3, 49

69. r′1t2 = 8e2t, 1 - 2e-t, 1 - 2et9 ; r102 = 81, 1, 19

70. r′1t2 = t

t2 + 1
 i + te-t2 j -

2t2t2 + 4
 k; r102 = i +

3
2

 j - 3k

71–78. Definite integrals Evaluate the following definite integrals.

71. ∫1

-1
1i + t j + 3t2 k2 dt

72. ∫4

1
16t2 i + 8t3 j + 9t2 k2 dt

73. ∫ ln 2

0
1et i + et cos 1pet2  j2 dt

74. ∫1

1>2a
3

1 + 2t
 i - p csc2ap

2
 tb  kb  dt

75. ∫p-p1sin t i + cos t j + 2t k2 dt

76. ∫ ln 2

0
1e-t i + 2e2t j - 4et k2 dt

77. ∫2

0
 tet1i + 2j - k2 dt

78. ∫p>4
0
1sec2 t i - 2 cos t j - k2 dt

79. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. The vectors r1t2 and r′1t2 are parallel for all values of t in the 
domain.

b. The curve described by the function r1t2 = 8 t, t2 - 2t, cos pt9   
is smooth, for -∞ 6 t 6 ∞ .

c. If ƒ, g, and h are odd integrable functions and a is a real num-
ber, then

∫a

-a
1ƒ1t2 i + g1t2 j + h1t2 k2 dt = 0.
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80–83. Tangent lines Suppose the vector-valued function 
r1t2 = 8ƒ1t2, g1t2, h1t29  is smooth on an interval containing the point 
t0. The line tangent to r1t2 at t = t0 is the line parallel to the tangent 
vector r′1t02 that passes through 1ƒ1t02, g1t02, h1t022. For each of the 
following functions, find an equation of the line tangent to the curve  
at t = t0. Choose an orientation for the line that is the same as the  
direction of r′.

80. r1t2 = 8et, e2t, e3t9 ; t0 = 0

81. r1t2 = 82 + cos t, 3 + sin 2t, t9 ; t0 =
p

2

82. r1t2 = 812t + 1, sin pt, 49 ; t0 = 4

83. r1t2 = 83t - 1, 7t + 2, t29 ; t0 = 1

Explorations and Challenges
84–89. Relationship between r and r′

84. Consider the circle r1t2 = 8a cos t, a sin t9 , for 0 … t … 2p, 
where a is a positive real number. Compute r′ and show that it is 
orthogonal to r for all t.

85. Consider the parabola r1t2 = 8at2 + 1, t9 , for -∞ 6 t 6 ∞ , 
where a is a positive real number. Find all points on the parabola 
at which r and r′ are orthogonal.

86. Consider the curve r1t2 = 81t, 1, t9 , for t 7 0. Find all points 
on the curve at which r and r′ are orthogonal.

87. Consider the helix r1t2 = 8cos t, sin t, t9 , for -∞ 6 t 6 ∞ . 
Find all points on the helix at which r and r′ are orthogonal.

88. Consider the ellipse r1t2 = 82 cos t, 8 sin t, 09 , for 0 … t … 2p. 
Find all points on the ellipse at which r and r′ are orthogonal.

89. Give two families of curves in ℝ3 for which r and r′ are parallel 
for all t in the domain.

90. Motion on a sphere Prove that r describes a curve that lies on 
the surface of a sphere centered at the origin 1x2 + y2 + z2 = a2 
with a Ú 02 if and only if r and r′ are orthogonal at all points of 
the curve.

91. Vectors r and r′ for lines 

a. If r1t2 = 8at, bt, ct9  with 8a, b, c9 ≠ 80, 0, 09 , show that 
the angle between r and r′ is constant for all t 7 0.

b. If r1t2 = 8x0 + at, y0 + bt, z0 + ct9 , where x0, y0, and z0 are 
not all zero, show that the angle between r and r′ varies with t.

c. Explain the results of parts (a) and (b) geometrically.

92. Proof of Sum Rule By expressing u and v in terms of their com-
ponents, prove that

d
dt

 1u1t2 + v1t22 = u′1t2 + v′1t2.

93. Proof of Product Rule By expressing u in terms of its compo-
nents, prove that

d
dt

 1ƒ1t2u1t22 = ƒ′1t2u1t2 + ƒ1t2u′1t2.

94. Proof of Cross Product Rule Prove that

d
dt

 1u1t2 * v1t22 = u′1t2 * v1t2 + u1t2 * v′1t2.
There are two ways to proceed: Either express u and v in terms of 
their three components or use the definition of the derivative.

95. Cusps and noncusps 

a. Graph the curve r1t2 = 8 t3, t39 . Show that r′102 = 0 and the 
curve does not have a cusp at t = 0. Explain.

b. Graph the curve r1t2 = 8 t3, t29 . Show that r′102 = 0 and the 
curve has a cusp at t = 0. Explain.

c. The functions r1t2 = 8 t, t29  and p1t2 = 8 t2, t49  both  
satisfy y = x2. Explain how the curves they parameterize  
are different.

d. Consider the curve r1t2 = 8 tm, tn9 , where m 7 1 and  
n 7 1 are integers with no common factors. Is it true that the 
curve has a cusp at t = 0 if one (not both) of m and n is even? 
Explain.

QUICK CHECK ANSWERS

1. r1t2 describes a line, so its tangent vector r′1t2 = 81, 1, 19   
has constant direction and magnitude. 2. Both r′ and 0 r′ 0   
have units of m>s. In forming r′> 0 r′ 0 , the units cancel  

and T1t2 is without units. 3. 
d
dt

 1u1t2 # v1t22 =   

81, 1, 19 # 81, 1, 19 + 8 t, t, t9 # 80, 0, 09 = 3.  
d
dt

 18 t, t, t9 # 81, 1, 192 = d
dt

 13t2 = 3. 4. 8 t, t2, t39 + C,  

where C = 8a, b, c9 , and a, b, and c are real numbers 

T

14.3 Motion in Space
It is a remarkable fact that given the forces acting on an object and its initial position and 
velocity, the motion of the object in three-dimensional space can be modeled for all future 
times. To be sure, the accuracy of the results depends on how well the various forces on 
the object are described. For example, it may be more difficult to predict the trajectory of a 
spinning soccer ball than the path of a space station orbiting Earth. Nevertheless, as shown 
in this section, by combining Newton’s Second Law of Motion with everything we have 
learned about vectors, it is possible to solve a variety of moving-body problems.

Position, Velocity, Speed, Acceleration
Until now, we have studied objects that move in one dimension (along a line). The 
next step is to consider the motion of objects in two dimensions (in a plane) and three  
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r(t1)

v(t1)

r(t2)

v(t2)
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Position and
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Position and
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t 5 t3

Figure 14.11

dimensions (in space). We work in a three-dimensional coordinate system and 
let the vector-valued function r1t2 = 8x1t2, y1t2, z1t29  describe the position of a 
moving object at times t Ú 0. The curve described by r is the path or trajectory of 
the object (Figure 14.11). Just as with one-dimensional motion, the rate of change 
of the position function with respect to time is the instantaneous velocity of the 
object—a vector with three components corresponding to the velocity in the x-, y-, 
and z-directions:

v1t2 = r′1t2 = 8x′1t2, y′1t2, z′1t29 .
This expression should look familiar. The velocity vectors of a moving object are 
simply tangent vectors; that is, at any point, the velocity vector is tangent to the 
trajectory (Figure 14.11).

As with one-dimensional motion, the speed of an object moving in three di-
mensions is the magnitude of its velocity vector:

0 v1t2 0 = 0 8x′1t2, y′1t2, z′1t29 0 = 2x′1t22 + y′1t22 + z′1t22.

The speed is a nonnegative scalar-valued function.
Finally, the acceleration of a moving object is the rate of change of the velocity:

a1t2 = v′1t2 = r″1t2.
Although the position vector gives the path of a moving object and the velocity vector is al-
ways tangent to the path, the acceleration vector is more difficult to visualize. Figure 14.12  
shows one particular instance of two-dimensional motion. The trajectory is a segment of 
a parabola and is traced out by the position vectors (shown at t = 0 and t = 1). As ex-
pected, the velocity vectors are tangent to the trajectory. In this case, the acceleration is 
a = 8 -2, 09 ; it is constant in magnitude and direction for all times. The relationships 
among r, v, and a are explored in the coming examples.

8

6

4

2

1 2 3 4 5 6 7 8

v(0)

v(1)

a(0)

a(1)

r(1)

r(0)

t 5 1

t 5 0

x

y

0

Figure 14.12
DEFINITION Position, Velocity, Speed, Acceleration

Let the position of an object moving in three-dimensional space be given by 
r1t2 = 8x1t2, y1t2, z1t29 , for t Ú 0. The velocity of the object is

v1t2 = r′1t2 = 8x′1t2, y′1t2, z′1t29 .
The speed of the object is the scalar function

0 v1t2 0 = 2x′1t22 + y′1t22 + z′1t22.

The acceleration of the object is a1t2 = v′1t2 = r″1t2.

➤ In the case of two-dimensional motion, 
r1t2 = 8x1t2, y1t29 , v1t2 = r′1t2, and 
a1t2 = r″1t2.

QUICK CHECK 1 Given 
r1t2 = 8 t, t2, t39 , find v1t2 and  
a1t2. 

EXAMPLE 1 Velocity and acceleration for circular motion Consider the two- 
dimensional motion given by the position vector

r1t2 = 8x1t2, y1t29 = 83 cos t, 3 sin t9 , for 0 … t … 2p.

a. Sketch the trajectory of the object.

b. Find the velocity and speed of the object.

c. Find the acceleration of the object.

d. Sketch the position, velocity, and acceleration vectors, for t = 0, p>2, p, and 3p>2.

SOLUTION

a. Notice that

x1t22 + y1t22 = 91cos2 t + sin2 t2 = 9,

which is an equation of a circle centered at the origin with radius 3. The object moves 
on this circle in the counterclockwise direction (Figure 14.13).

v(0)

v(p)

v(2)

r(0)

r(p)

r(2)

a(0)

a(p) t 5 0

t 5 2

t 5 p

Circular motion: At all times a(t) 5 2r(t)
and v(t) is orthogonal to r(t) and a(t).

2
p

2
p a(2)2

p

r(2)2
3p

v(2)2
3p

a(2)2
3p

2
3p

2
p

t 5 2

x

y

Figure 14.13
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 14.3 Motion in Space 885

b.  v1t2 = 8x′1t2, y′1t29 = 8 -3 sin t, 3 cos t9  Velocity vector

 0 v1t2 0 = 2x′1t22 + y′1t22  Definition of speed

 = 21-3 sin t22 + 13 cos t22

 = 291sin2 t + cos2 t2 = 3(++1)1++*
   1

The velocity vector has a constant magnitude and a continuously changing direction.

c. Differentiating the velocity, we find that a1t2 = v′1t2 = 8-3 cos t, -3 sin t9   =  -r1t2. 
In this case, the acceleration vector is the negative of the position vector at all times.

d. The relationships among r, v, and a at four points in time are shown in Figure 14.13. 
The velocity vector is always tangent to the trajectory and has length 3, while the  
acceleration vector and position vector each have length 3 and point in opposite direc-
tions. At all times, v is orthogonal to r and a.

Related Exercise 13 

EXAMPLE 2 Comparing trajectories Consider the trajectories described by the posi-
tion functions

 r1t2 = h t, t2 - 4, 
t3

4
- 8i,  for t Ú 0, and

 R1t2 = h t2, t4 - 4, 
t6

4
- 8i,  for t Ú 0,

where t is measured in the same time units for both functions.

a. Graph and compare the trajectories using a graphing utility.

b. Find the velocity vectors associated with the position functions.

SOLUTION

a. Plotting the position functions at selected values of t results in the trajectories shown 
in Figure 14.14. Because r102 = R102 = 80, -4, -89 , both curves have the same 
initial point. For t Ú 0, the two curves consist of the same points, but they are traced 
out differently. For example, both curves pass through the point 14, 12, 82, but that 
point corresponds to r142 on the first curve and R122 on the second curve. In general, 
r1t22 = R1t2, for t Ú 0.

y

z

x

r(t) 5 kt, t2 2 4, 2t3 2 8l

r(4) 5 k4, 12, 8l

R(t) 5 kt2, t4 2 4, 2t6 28l

R(2) 5 k4, 12, 8l

y

z

x

r(2) 5 k2, 0, 26l
r(0) 5 k0, 24, 28l R(0) 5 k0, 24, 28l

R(Ï2) 5 k2, 0, 26l

Same point on the
curve is reached at
di�erent times.

4
1

4
1

Figure 14.14

b. The velocity vectors are

r′1t2 = h1, 2t, 
3t2

4
i and R′1t2 = h2t, 4t3, 

3
2

 t5i.
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The difference in the motion on the two curves is revealed by the graphs of the speeds 
associated with the trajectories (Figure 14.15). The object on the first trajectory reaches 
the point 14, 12, 82 at t = 4, where its speed is 0 r′142 0 = 0 81, 8, 129 0 ≈ 14.5. The 
object on the second trajectory reaches the same point 14, 12, 82 at t = 2, where its 
speed is 0R′122 0 = 0 84, 32, 489 0 ≈ 57.8.

Related Exercise 21 

6

5

4

3

2

321

uv(t)u

t

Speed on
R(t) trajectory

Speed on
r(t) trajectory

1

0

Figure 14.15

QUICK CHECK 2 Find the functions that 
give the speed of the two objects in 
Example 2, for t Ú 0 (corresponding 
to the graphs in Figure 14.15). 

Straight-Line and Circular Motion
Two types of motion in space arise frequently and deserve to be singled out. First consider 
a trajectory described by the vector function

r1t2 = 8x0 + at, y0 + bt, z0 + ct9 , for t Ú 0,

where x0, y0, z0, a, b, and c are constants. This function describes a straight-line trajec-
tory with an initial position 8x0, y0, z09  and a direction given by the vector 8a, b, c9   
(Section 13.5). The velocity on this trajectory is the constant v1t2 = r′1t2 = 8a, b, c9  in 
the direction of the trajectory, and the acceleration is a = 80, 0, 09 . The motion associ-
ated with this function is uniform (constant velocity) straight-line motion.

A different situation is circular motion (Example 1). Consider the two-dimensional 
circular path

r1t2 = 8A cos t, A sin t9 , for 0 … t … 2p,

where A is a nonzero constant (Figure 14.16). The velocity and acceleration vectors are

 v1t2 = 8 -A sin t, A cos t9 and

 a1t2 = 8 -A cos t, -A sin t9 = -r1t2.
Notice that r and a are parallel but point in opposite directions. Furthermore, 
r # v = a # v = 0; therefore, the position and acceleration vectors are both orthogonal to 
the velocity vectors at any given point (Figure 14.16). Finally, r, v, and a have constant 
magnitude A and variable directions. The conclusion that r # v = 0 applies to any motion 
for which 0 r 0  is constant; that is, to any motion on a circle or a sphere (Figure 14.17).

➤ See Exercise 83 for a discussion of 
nonuniform straight-line motion.

r(t)
a(t)

v(t)

A2A

A

2A

x

y

Circular trajectory
r(t) 5 kA cos t, A sin tl
a(t) 5 2r(t)
r(t) ? v(t) 5 0
at all times

Figure 14.16

z

x

y

v

v

v

r

r

r

On a trajectory on which uru is constant,
v is orthogonal to r at all points.

Figure 14.17

THEOREM 14.2 Motion with Constant ∣ r ∣
Let r describe a path on which 0 r 0  is constant (motion on a circle or sphere cen-
tered at the origin). Then r # v = 0, which means the position vector and the veloc-
ity vector are orthogonal at all times for which the functions are defined.

Proof: If r has constant magnitude, then 0 r1t2 0 2 = r1t2 # r1t2 = c for some constant c. 
Differentiating the equation r1t2 # r1t2 = c, we have

 0 =
d
dt

 1r1t2 # r1t22  Differentiate both sides of 0 r1t2 0 2 = c.

 = r′1t2 # r1t2 + r1t2 # r′1t2 Derivative of dot product (Theorem 14.1)

 = 2r′1t2 # r1t2  Simplify.

 = 2v1t2 # r1t2.  r′1t2 = v1t2
Because r1t2 # v1t2 = 0 for all t, it follows that r and v are orthogonal for all t. 

EXAMPLE 3 Path on a sphere An object moves on a trajectory described by

r1t2 = 8x1t2, y1t2, z1t29 = 83 cos t, 5 sin t, 4 cos t9 , for 0 … t … 2p.

a. Show that the object moves on a sphere and find the radius of the sphere.

b. Find the velocity and speed of the object.

c. Consider the curve r1t2 = 85 cos t, 5 sin t, 5 sin 2t9 , which is the roller coaster curve 
from Example 3 of Section 14.1, with different coefficients. Show that this curve does 
not lie on a sphere. How could r be modified so that it describes a curve that lies on a 
sphere of radius l, centered at the origin?
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SOLUTION

a.  0 r1t2 0 2 = x1t22 + y1t22 + z1t22  Square of the distance from the origin

 = 13 cos t22 + 15 sin t22 + 14 cos t22 Substitute.

 = 25 cos2 t + 25 sin2 t  Simplify.

 = 251cos2 t + sin2 t2 = 25  Factor.(++1)1++*
   1

Therefore, 0 r1t2 0 = 5, for 0 … t … 2p, and the trajectory lies on a sphere of radius 5 
centered at the origin (Figure 14.18).

b.  v1t2 = r′1t2 = 8 -3 sin t, 5 cos t, -4 sin t9  Velocity vector

 0 v1t2 0 = 1v1t2 # v1t2  Speed of the object

 = 29 sin2 t + 25 cos2 t + 16 sin2 t  Evaluate the dot product.

 = 2251sin2 t + cos2 t2  Simplify.(++1)1++*
   1

 = 5  Simplify.

The speed of the object is always 5. You should verify that r1t2 # v1t2 = 0, for all t, 
implying that r and v are always orthogonal.

c. We first compute the distance from the origin to the curve:

 0 r1t2 0 = 215 cos t22 + 15 sin t22 + 15 sin 2t22 Distance from origin to curve

 = 2251cos2 t + sin2 t + sin2 2t2  Simplify.

 = 521 + sin2 2t.  cos2 t + sin2 t = 1

It is clear that 0 r1t2 0  is not constant, and therefore the curve does not lie on a sphere.
One way to modify the curve so that it does lie on a sphere is to divide each output 

vector r1t2 by its length. In fact, as long as 0 r1t2 0 ≠ 0 on the interval of interest, we can 
force any path onto a sphere (centered at the origin) with this modification. The function

u1t2 = r1t2
0 r1t2 0 = h

cos t21 + sin2 2t
 , 

 sin t21 + sin2 2t
 , 

 sin 2t21 + sin2 2t
i

describes a curve on which 0 u1t2 0  is constant because 
r1t2
0 r1t2 0  is a unit vector. We  

conclude that the new curve, which is reminiscent of the seam on a tennis ball  
(Figure 14.19), lies on the unit sphere centered at the origin.

Related Exercises 32–33 

➤ For generalizations of this example and 
explorations of trajectories that lie on 
spheres and ellipses, see Exercises 79  
and 82.

z

x
y

r(t) 5 k3 cos t, 5 sin t, 4 cos tl,
for 0 # t # 2p

ur(t)u 5 5,
for 0 # t # 2p

r(t)

Figure 14.18

z

Tennis ball curve

u(t) 5 r(t) / )r(t)), where
r(t) 5 k5 cos t, 5 sin t, 5 sin 2 tl
0 # t # 2p

)u(t)) 5 1,
for 0 # t # 2p

x

y

u(t)

Figure 14.19

QUICK CHECK 3 Explain how to modify 
the curve r1t2 given in Example 3c  
so that it lies on a sphere of radius  
5 centered at the origin. 

Two-Dimensional Motion in a Gravitational Field
Newton’s Second Law of Motion, which is used to model the motion of most objects, 
states that

mass # acceleration = sum of all forces.()*  (+1)1+*  (++1)1++*
 m  a1t2 = r″1t2      aFk

The governing law says something about the acceleration of an object, and in order to 
describe the motion fully, we must find the velocity and position from the acceleration.

Finding Velocity and Position from Acceleration We begin with the case of two- 
dimensional projectile motion in which the only force acting on the object is the gravita-
tional force; for the moment, air resistance and other possible external forces are neglected.

A convenient coordinate system uses a y-axis that points vertically upward and an 
x-axis that points in the direction of horizontal motion. The gravitational force is in the 
negative y-direction and is given by F = 80, -mg9 , where m is the mass of the object 
and g = 9.8 m>s2 = 32 ft>s2 is the acceleration due to gravity (Figure 14.20).

x

y

Initial velocity
v(0) 5 ku0, v0l

Initial position
r(0) 5 kx0, y0l

Trajectory

Gravitational force
F 5 k0, 2mgl

O

Figure 14.20
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With these observations, Newton’s Second Law takes the form

ma1t2 = F = 80, -mg9 .
Significantly, the mass of the object cancels, leaving the vector equation

a1t2 = 80, -g9 . (1)

In order to find the velocity v1t2 = 8x′1t2, y′1t29  and the position r1t2 = 8x1t2, y1t29  
from this equation, we must be given the following initial conditions:

 Initial velocity at t = 0: v102 = 8u0, v09  and

 Initial position at t = 0: r102 = 8x0, y09 .
We proceed in two steps.

1. Solve for the velocity  The velocity is an antiderivative of the acceleration in equation (1).  
Integrating the acceleration, we have

v1t2 = ∫a1t2 dt = ∫ 80, -g9  dt = 80, -gt9 + C, 

where C is an arbitrary constant vector. The arbitrary constant is determined by 
substituting t = 0 and using the initial condition v102 = 8u0, v09 . We find that 
v102 = 80, 09 + C = 8u0, v09 , or C = 8u0, v09 . Therefore, the velocity is

v1t2 = 80, -gt9 + 8u0, v09 = 8u0, -gt + v09 . (2)

Notice that the horizontal component of velocity is simply the initial horizontal veloc-
ity u0 for all time. The vertical component of velocity decreases linearly from its initial 
value of v0.

2. Solve for the position The position is an antiderivative of the velocity given by  
equation (2):

r1t2 = ∫v1t2 dt = ∫ 8u0, -gt + v09  dt = hu0 t, -  
1
2

 gt2 + v0 ti + C,

where C is an arbitrary constant vector. Substituting t = 0, we have 
r102 = 80, 09 + C = 8x0, y09 , which implies that C = 8x0, y09 . Therefore, the 
position of the object, for t Ú 0, is

r1t2 = hu0 t, -  
1
2

 gt2 + v0 ti + 8x0, y09 = hu0 t + x0, -  
1
2

 gt2 + v0 t + y0i.(+)+* (+++1)1+++*
  x1t2       y1t2

➤ Recall that an antiderivative of 0 is a 
constant C and an antiderivative of -g  
is -gt + C.

➤ You have a choice. You may do these 
calculations in vector notation as we 
have done here, or you may work with 
individual components.

SUMMARY Two-Dimensional Motion in a Gravitational Field

Consider an object moving in a plane with a horizontal x-axis and a vertical y-axis, 
subject only to the force of gravity. Given the initial velocity v102 = 8u0, v09  and 
the initial position r102 = 8x0, y09 , the velocity of the object, for t Ú 0, is

v1t2 = 8x′1t2, y′1t29 = 8u0, -gt + v09
and the position is

r1t2 = 8x1t2, y1t29 = hu0 t + x0, -  
1
2

 gt2 + v0 t + y0i.

EXAMPLE 4 Flight of a baseball A baseball is hit from 3 ft above home plate with 
an initial velocity in ft>s of v102 = 8u0, v09 = 880, 809 . Neglect all forces other than 
gravity.

a. Find the position and velocity of the ball between the time it is hit and the time it first 
hits the ground.

b. Show that the trajectory of the ball is a segment of a parabola.
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c. Assuming a flat playing field, how far does the ball travel horizontally? Plot the trajec-
tory of the ball.

d. What is the maximum height of the ball?

e. Does the ball clear a 20-ft fence that is 380 ft from home plate (directly under the path 
of the ball)?

SOLUTION Assume the origin is located at home plate. Because distances are measured in 
feet, we use g = 32 ft>s2.

a. Substituting x0 = 0 and y0 = 3 into the equation for r, the position of the ball is

r1t2 = 8x1t2, y1t29 = 880t, -16t2 + 80t + 39 , for t Ú 0. (3)

We then compute v1t2 = r′1t2 = 880, -32t + 809 .
b. Equation (3) says that the horizontal position is x = 80t and the vertical position is 

y = -16t2 + 80t + 3. Substituting t = x>80 into the equation for y gives

y = -16 a x
80
b

2

+ x + 3 = -
x2

400
+ x + 3,

which is an equation of a parabola.

c. The ball lands on the ground at the value of t 7 0 at which y = 0. Solving 
y1t2 = -16t2 + 80t + 3 = 0, we find that t ≈ -0.04 and t ≈ 5.04 s. The first 
root is not relevant for the problem at hand, so we conclude that the ball lands when 
t ≈ 5.04 s. The horizontal distance traveled by the ball is x15.042 ≈ 403 ft. The  
path of the ball in the xy-coordinate system on the time interval 30, 5.044 is shown in  
Figure 14.21.

d. The ball reaches its maximum height at the time its vertical velocity is zero. Solv-
ing y′1t2 = -32t + 80 = 0, we find that t = 2.5 s. The height at that time is 
y12.52 = 103 ft.

e. The ball reaches a horizontal distance of 380 ft (the distance to the fence) when 
x1t2 = 80t = 380. Solving for t, we find that t = 4.75 s. The height of the ball at that 
time is y14.752 = 22 ft. So, indeed, the ball clears a 20-ft fence.

Related Exercises 41, 43 

20

40

60

80

100

120

100 200 300 400 500 x

y

0

Fence

Parabolic trajectory of baseball
Time of flight 5.04 s
Range 403 ft
Maximum height 103 ft

Figure 14.21

QUICK CHECK 4 Write the functions 
x1t2 and y1t2 in Example 4 in 
the case that x0 = 0, y0 = 2, 
u0 = 100, and v0 = 60. 

➤ The equation in Example 4c can be 
solved using the quadratic formula or a 
root-finder on a calculator.

Range, Time of Flight, Maximum Height Having solved one specific motion problem, 
we can make some general observations about two-dimensional projectile motion in a grav-
itational field. Assume the motion of an object begins at the origin; that is, x0 = y0 = 0. 
Also assume the object is launched at an angle of a 10 … a … p>22 above the horizontal 
with an initial speed 0 v0 0  (Figure 14.22). This means that the initial velocity is

8u0, v09 = 8 0 v0 0  cos a, 0 v0 0  sin a9 .
Substituting these values into the general expressions for the velocity and position, we 
find that the velocity of the object is

v1t2 = 8u0, -gt + v09 = 8 0 v0 0  cos a, -gt + 0 v0 0  sin a9 .
The position of the object (with x0 = y0 = 0) is

r1t2 = 8x1t2, y1t29 = 81 0 v0 0  cos a2t, -gt2>2 + 1 0 v0 0  sin a2t9 .
Notice that the motion is determined entirely by the parameters 0 v0 0  and a. Several general 
conclusions now follow.

1. Assuming the object is launched from the origin over horizontal ground, it returns to 
the ground when y1t2 = -gt2>2 + 1 0 v0 0  sin a2t = 0. Solving for t, the time of flight 
is T = 2 0 v0 0  1sin a2>g.

x

y

trajectory

v0

uv0u cos a

uv0u sin auv0u

a

a

O

Figure 14.22

➤ The other root of the equation y1t2 = 0 
is t = 0, the time the object leaves the 
ground.
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2. The range of the object, which is the horizontal distance it travels, is the x-coordinate 
of the trajectory when t = T:

 x1T2 = 1 0 v0 0  cos a2T

 = 1 0 v0 0  cos a2 2 0 v0 0  sin a

g
 Substitute for T.

 =
2 0 v0 0 2 sin a cos a

g
 Simplify.

 =
0 v0 0 2 sin 2a

g
 .  2 sin a cos a = sin 2a

Note that on the interval 0 … a … p>2, sin 2a has a maximum value of 1 when 
a = p>4, so the maximum range is 0 v0 0 2>g. In other words, in an ideal world, firing an 
object from the ground at an angle of p>4 145°2 maximizes its range. Notice that the 
ranges obtained with the angles a and p>2 - a are equal (Figure 14.23).

3. The maximum height of the object is reached when the vertical velocity is zero, or 
when y′1t2 = -gt + 0 v0 0  sin a = 0. Solving for t, the maximum height is reached 
at t = 0 v0 0 1sin a2>g = T>2, which is half the time of flight. The object spends equal 
amounts of time ascending and descending. The maximum height is

y aT
2
b =

1 0 v0 0  sin a22

2g
 .

4. Finally, by eliminating t from the equations for x1t2 and y1t2, it can be shown  
(Exercise 72) that the trajectory of the object is a segment of a parabola.

50

100

50 100 150 200 250 x

y Trajectories for various a
Maximum range occurs for a 5 458.

a 5 458

a 5 608

a 5 708

a 5 308

a 5 208

0

Figure 14.23

QUICK CHECK 5 Show that the range 
attained with an angle a equals 
the range attained with the angle 
p>2 - a. 

➤ Use caution with the formulas in the 
summary box: They are applicable only 
when the initial position of the object is 
the origin. Exercise 73 addresses the case 
where the initial position of the object is 
80, y09 .

SUMMARY Two-Dimensional Motion

Assume an object traveling over horizontal ground, acted on only by the gravi-
tational force, has an initial position 8x0, y09 = 80, 09  and initial velocity 
8u0, v09 = 8 0 v0 0  cos a, 0 v0 0  sin a9 . The trajectory, which is a segment of a pa-
rabola, has the following properties.

 time of flight = T =
2 0 v0 0  sin a

g

  range =
0 v0 0 2 sin 2a

g

 maximum height = yaT
2
b =

1 0 v0 0  sin a22

2g

EXAMPLE 5 Flight of a golf ball A golf ball is driven down a horizontal fairway with 
an initial speed of 55 m>s at an initial angle of 25° (from a tee with negligible height). 
Neglect all forces except gravity, and assume the ball’s trajectory lies in a plane.

a. When the ball first touches the ground, how far has it traveled horizontally and how 
long has it been in the air?

b. What is the maximum height of the ball?

c. At what angles should the ball be hit to reach a green that is 300 m from the tee?

SOLUTION

a. Using the range formula with a = 25° and 0 v0 0 = 55 m>s, the ball travels

0 v0 0 2 sin 2a

g
=
155 m>s22 sin 50°

9.8 m>s2 ≈ 236 m.
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 14.3 Motion in Space 891

The time of the flight is

T =
2 0 v0 0  sin a

g
=

2155 m>s2 sin 25°
9.8 m>s2 ≈ 4.7 s.

b. The maximum height of the ball is

1 0 v0 0  sin a22

2g
=
1155 m>s2 1sin 25°222

219.8 m>s22 ≈ 27.6 m.

c. Letting R denote the range and solving the range formula for sin 2a, we find that 
sin 2a = Rg> 0 v0 0 2. For a range of R = 300 m and an initial speed of 0 v0 0 = 55 m>s, 
the required angle satisfies

sin 2a =
Rg

0 v0 0 2
=
1300 m2 19.8 m>s22
155 m>s22 ≈ 0.972.

For the ball to travel a horizontal distance of exactly 300 m, the required angles are 
a = 1

2 sin-1 0.972 ≈ 38.2° or 51.8°.
Related Exercises 42, 45 

Three-Dimensional Motion
To solve three-dimensional motion problems, we adopt a coordinate system in which the  
x- and y-axes point in two perpendicular horizontal directions (for example, east and 
north), while the positive z-axis points vertically upward (Figure 14.24). Newton’s Second 
Law now has three components and appears in the form

ma1t2 = 8mx″1t2, my″1t2, mz″1t29 = F.

If only the gravitational force is present (now in the negative z-direction), then the force 
vector is F = 80, 0, -mg9 ; the equation of motion is then a1t2 = 80, 0, -g9 . Other 
effects, such as crosswinds, spins, or slices, can be modeled by including other force 
components.

z (up)

x (East)

y (North)

Gravitational force
F 5 k0, 0, 2mgl

Figure 14.24

EXAMPLE 6 Projectile motion A small projectile is fired to the east over horizontal 
ground with an initial speed of 0 v0 0 = 300 m>s at an angle of a = 30° above the hori-
zontal. A crosswind blows from south to north, producing an acceleration of the projec-
tile of 0.36 m>s2 to the north.

a. Where does the projectile land? How far does it land from its launch site?

b. In order to correct for the crosswind and make the projectile land due east of the 
launch site, at what angle from due east must the projectile be fired? Assume the initial 
speed 0 v0 0 = 300 m>s and the angle of elevation a = 30° are the same as in part (a).

SOLUTION

a. Letting g = 9.8 m>s2, the equations of motion are a1t2 = v′1t2 = 80, 0.36, -9.89 . 
Proceeding as in the two-dimensional case, the indefinite integral of the acceleration is 
the velocity function

v1t2 = 80, 0.36t, -9.8t9 + C,

where C is an arbitrary constant vector. With an initial speed 0 v0 0 = 300 m>s and an 
angle of elevation of a = 30° (Figure 14.25a), the initial velocity is

v102 = 8300 cos 30°, 0, 300 sin 30°9 = 815013, 0, 1509 .
Substituting t = 0 and using the initial condition, we find that C = 815013, 0, 1509 . 
Therefore, the velocity function is

v1t2 = 815013, 0.36t, -9.8t + 1509 .
Integrating the velocity function produces the position function

r1t2 = 815013t, 0.18t2, -4.9t2 + 150t9 + C.
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Using the initial condition r102 = 80, 0, 09 , we find that C = 80, 0, 09 , and the  
position function is

r1t2 = 8x1t2, y1t2, z1t29 = 815013t, 0.18t2, -4.9t2 + 150t9 .
The projectile lands when z1t2 = -4.9t2 + 150t = 0. Solving for t, the positive root, 
which gives the time of flight, is T = 150>4.9 ≈ 30.6 s. The x- and y-coordinates at 
that time are

x1T2  ≈ 7953 m and y1T2  ≈ 169 m.

Therefore, the projectile lands approximately 7953 m east and 169 m north of the fir-
ing site. Because the projectile started at 10, 0, 02, it traveled a horizontal distance of 279532 + 1692 ≈ 7955 m (Figure 14.25a).

z

Crosswind

x (East)

y (North)

With correction, projectile
lands at approx. (7952, 0, 0).

Correction angle
u 5 21.2158

(b)

z

Crosswind

a 5 308

x (East)

y (North)

v0 5 k150Ï3, 0, 150l

Without correction, projectile
lands at approx. (7953, 169, 0).

(a)

Figure 14.25

b. Keeping the initial speed of the projectile equal to 0 v0 0 = 300 m>s, we decom-
pose the horizontal component of the speed, 15013 m>s, into an east component, 
u0 = 15013 cos u, and a north component, v0 = 15013 sin u, where u is the angle 
relative to due east; we must determine the correction angle u (Figure 14.25b). The  
x- and y-components of the position are

x1t2 = 115013 cos u2t and  y1t2 = 0.18t2 + 115013 sin u2t.
These changes in the initial velocity affect the x- and y-equations, but not the  
z-equation. Therefore, the time of flight is still T = 150>4.9 ≈ 30.6 s. The aim is 
to choose u so that the projectile lands on the x-axis (due east from the launch site), 
which means y1T2 = 0. Solving

y1T2 = 0.18T2 + 115013 sin u2T = 0,

with T = 150>4.9, we find that sin u ≈ -0.0212; therefore, u ≈ -0.0212 rad ≈  
-1.215°. In other words, the projectile must be fired at a horizontal angle of 1.215° to 
the south of east to correct for the northerly crosswind (Figure 14.25b). The landing 
location of the projectile is x1T2 ≈ 7952 m and y1T2 = 0.

Related Exercises 52–53 

Getting Started
1. Given the position function r of a moving object, explain how to 

find the velocity, speed, and acceleration of the object.

2. What is the relationship between the position and velocity vectors 
for motion on a circle?

SECTION 14.3 EXERCISES
3. Write Newton’s Second Law of Motion in vector form.

4. Write Newton’s Second Law of Motion for three-dimensional  
motion with only the gravitational force (acting in the z-direction).

5. Given the acceleration of an object and its initial velocity, how do 
you find the velocity of the object, for t Ú 0?
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6. Given the velocity of an object and its initial position, how do  
you find the position of the object, for t Ú 0?

7. The velocity of a moving object, for t Ú 0, is 
r′1t2 = 860, 96 - 32t9  ft>s.

a. When is the vertical component of velocity of the object equal  
to 0?

b. Find r1t2 if r102 = 80, 39 .
8. A baseball is hit 2 feet above home plate, and the position of the 

ball t seconds later is r1t2 = 840t, -16t2 + 31t + 29  ft. Find 
each of the following values.

a. The time of flight of the baseball
b. The range of the baseball

Practice Exercises
9–20. Velocity and acceleration from position Consider the following 
position functions.

a. Find the velocity and speed of the object.
b. Find the acceleration of the object.

9. r1t2 = 83t2 + 1, 4t2 + 39 , for t Ú 0

10. r1t2 = h 5
2

 t2 + 3, 6t2 + 10i, for t Ú 0

11. r1t2 = 82 + 2t, 1 - 4t9 , for t Ú 0

12. r1t2 = 81 - t2, 3 + 2t39 , for t Ú 0

13. r1t2 = 88 sin t, 8 cos t9 , for 0 … t … 2p

14. r1t2 = 83 cos t, 4 sin t9 , for 0 … t … 2p

15. r1t2 = h t2 + 3, t2 + 10, 
1
2

 t2i, for t Ú 0

16. r1t2 = 82e2t + 1, e2t - 1, 2e2t - 109 , for t Ú 0

17. r1t2 = 83 + t, 2 - 4t, 1 + 6t9 , for t Ú 0

18. r1t2 = 83 sin t, 5 cos t, 4 sin t9 , for 0 … t … 2p

19. r1t2 = 81, t2, e-t9 , for t Ú 0

20. r1t2 = 813 cos 2t, 12 sint 2t, 5 sin 2t9 , for 0 … t … p

21–26. Comparing trajectories Consider the following position  
functions r and R for two objects.

a. Find the interval 3c, d4 over which the R trajectory is the same as 
the r trajectory over 3a, b4.

b. Find the velocity for both objects.
c. Graph the speed of the two objects over the intervals 3a, b4 and 
3c, d4, respectively.

21. r1t2 = 8 t, t29 , 3a, b4 = 30, 24; R1t2 = 82t, 4t29  on 3c, d4
22. r1t2 = 81 + 3t, 2 + 4t9 , 3a, b4 = 30, 64; 

R1t2 = 81 + 9t, 2 + 12t9  on 3c, d4
23. r1t2 = 8cos t, 4 sin t9 , 3a, b4 = 30, 2p4; 

R1t2 = 8cos 3t, 4 sin 3t9  on 3c, d4
24. r1t2 = 82 - et, 4 - e-t9 , 3a, b4 = 30, ln 104; 

R1t2 = 82 - t, 4 - 1>t9  on 3c, d4
25. r1t2 = 84 + t2, 3 - 2t4, 1 + 3t69 , 3a, b4 = 30, 64; 

R1t2 = 84 + ln t, 3 - 2 ln2 t, 1 + 3 ln3 t9  on 3c, d4  
For graphing, let c = 1 and d = 20.

26. r1t2 = 82 cos 2t, 12 sin 2t, 12 sin 2t9 , 3a, b4 = 30, p4; 
R1t2 = 82 cos 4t, 12 sin 4t, 12 sin 4t9  on 3c, d4

T

27–28. Carnival rides

27. Consider a carnival ride where Andrea is at point P that moves 
counterclockwise around a circle centered at C while the arm,  
represented by the line segment from the origin O to point C, 
moves counterclockwise about the origin (see figure). Andrea’s 
position (in feet) at time t (in seconds) is

r1t2 = 820 cos t + 10 cos 5t, 20 sin t + 10 sin 5t9 .
a. Plot a graph of r1t2, for 0 … t … 2p.
b. Find the velocity v1t2.
c. Show that the speed 0 v1t2 0 = v1t2 = 10129 + 20 cos 4t 

and plot the speed, for 0 … t … 2p. (Hint: Use the identity 
sin mx sin nx + cos mx cos nx = cos 11m - n2x2.)

d. Determine Andrea’s maximum and minimum speeds.

30

20 C

P

10

230

220

210

302010230 220 210

y

x
O

28. Suppose the carnival ride in Exercise 27 is modified so that An-
drea’s position P (in ft) at time t (in s) is

r1t2 = 820 cos t + 10 cos 5t, 20 sin t + 10 sin 5t, 5 sin 2t9 .
a. Describe how this carnival ride differs from the ride in  

Exercise 27.
b. Find the speed function 0 v1t2 0 = v1t2 and plot its graph.
c. Find Andrea’s maximum and minimum speeds.

29–32. Trajectories on circles and spheres Determine whether the fol-
lowing trajectories lie on either a circle in ℝ2 or a sphere in ℝ3 centered 
at the origin. If so, find the radius of the circle or sphere, and show that 
the position vector and the velocity vector are everywhere orthogonal.

29. r1t2 = 88 cos 2t, 8 sin 2t9 , for 0 … t … p

30. r1t2 = 84 sin t, 2 cos t9 , for 0 … t … 2p

31. r1t2 = 8sin t + 13 cos t, 13 sin t - cos t9 , for 0 … t … 2p

32. r1t2 = 83 sin t, 5 cos t, 4 sin t9 , for 0 … t … 2p

33–34. Path on a sphere Show that the following trajectories lie on a 
sphere centered at the origin, and find the radius of the sphere.

33. r1t2 = h 5 sin t21 + sin2 2t
 , 

5 cos t21 + sin2 2t
 , 

5 sin 2t21 + sin2 2t
i,  

for 0 … t … 2p

34. r1t2 = h 4 cos t24 + t2
 , 

2t24 + t2
 , 

4 sin t24 + t2
i, for 0 … t … 4p

35–40. Solving equations of motion Given an acceleration vector, ini-
tial velocity 8u0, v09 , and initial position 8x0, y09 , find the velocity and 
position vectors for t Ú 0.

35. a1t2 = 80, 19 , 8u0, v09 = 82, 39 , 8x0, y09 = 80, 09
36. a1t2 = 81, 29 , 8u0, v09 = 81, 19 , 8x0, y09 = 82, 39

T

T
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37. a1t2 = 80, 109 , 8u0, v09 = 80, 59 , 8x0, y09 = 81, -19
38. a1t2 = 81, t9 , 8u0, v09 = 82, -19 , 8x0, y09 = 80, 89
39. a1t2 = 8cos t, 2 sin t9 , 8u0, v09 = 80, 19 , 8x0, y09 = 81, 09
40. a1t2 = 8e-t, 19 , 8u0, v09 = 81, 09 , 8x0, y09 = 80, 09
41–46. Two-dimensional motion Consider the motion of the following 
objects. Assume the x-axis is horizontal, the positive y-axis is vertical, 
the ground is horizontal, and only the gravitational force acts on the 
object.

a. Find the velocity and position vectors, for t Ú 0.
b. Graph the trajectory.
c. Determine the time of flight and range of the object.
d. Determine the maximum height of the object.

41. A soccer ball has an initial position (in m) of 8x0, y09 = 80, 09   
when it is kicked with an initial velocity of 8u0, v09 = 830, 69m>s.

42. A golf ball has an initial position (in ft) of 8x0, y09 = 80, 09  when  
it is hit at an angle of 30° with an initial speed of 150 ft>s.

43. A baseball has an initial position (in ft) of 8x0, y09 = 80, 69  when 
it is thrown with an initial velocity of 8u0, v09 = 880, 109  ft>s.

44. A baseball is thrown horizontally from a height of 10 ft above the 
ground with a speed of 132 ft>s.

45. A projectile is launched from a platform 20 ft above the ground at 
an angle of 60° above the horizontal with a speed of 250 ft>s.  
Assume the origin is at the base of the platform.

46. A rock is thrown from the edge of a vertical cliff 40 m above the 
ground at an angle of 45° above the horizontal with a speed of 
1012 m>s. Assume the origin is at the foot of the cliff.

47–50. Solving equations of motion Given an acceleration vector, 
initial velocity 8u0, v0, w09 , and initial position 8x0, y0, z09 , find the 
velocity and position vectors, for t Ú 0.

47. a1t2 = 80, 0, 109 , 8u0, v0, w09 = 81, 5, 09 , 
8x0, y0, z09 = 80, 5, 09

48. a1t2 = 81, t, 4t9 , 8u0, v0, w09 = 820, 0, 09 , 
8x0, y0, z09 = 80, 0, 09

49. a1t2 = 8sin t, cos t, 19 , 8u0, v0, w09 = 80, 2, 09 , 
8x0, y0, z09 = 80, 0, 09

50. a1t2 = 8 t, e-t, 19 , 8u0, v0, w09 = 80, 0, 19 , 
8x0, y0, z09 = 84, 0, 09

51–56. Three-dimensional motion Consider the motion of the  
following objects. Assume the x-axis points east, the y-axis points 
north, the positive z-axis is vertical and opposite g, the ground is  
horizontal, and only the gravitational force acts on the object unless 
otherwise stated.

a. Find the velocity and position vectors, for t Ú 0.
b. Make a sketch of the trajectory.
c. Determine the time of flight and range of the object.
d. Determine the maximum height of the object.

51. A bullet is fired from a rifle 1 m above the ground in a northeast 
direction. The initial velocity of the bullet is 8200, 200, 09  m>s.

52. A golf ball is hit east down a fairway with an initial velocity of 
850, 0, 309  m>s. A crosswind blowing to the south produces an 
acceleration of the ball of -0.8 m>s2.

T

T

53. A baseball is hit 3 ft above home plate with an initial velocity of 
860, 80, 809  ft>s. The spin on the baseball produces a horizontal 
acceleration of the ball of 10 ft>s2 in the eastward direction.

54. A baseball is hit 3 ft above home plate with an initial velocity of 
830, 30, 809  ft>s. The spin on the baseball produces a horizontal 
acceleration of the ball of 5 ft>s2 in the northward direction.

55. A small rocket is fired from a launch pad 10 m above the ground 
with an initial velocity, in m>s, of 8300, 400, 5009 . A crosswind 
blowing to the north produces an acceleration of the rocket of 
2.5 m>s2.

56. A soccer ball is kicked from the point 80, 0, 09  with an initial 
velocity of 80, 80, 809  ft>s. The spin on the ball produces an ac-
celeration of 81.2, 0, 09  ft>s2.

57. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. If the speed of an object is constant, then its velocity compo-
nents are constant.

b. The functions r1t2 = 8cos t, sin t9  and R1t2 = 8sin t2, cos t29  
generate the same set of points, for t Ú 0.

c. A velocity vector of variable magnitude cannot have a constant 
direction.

d. If the acceleration of an object is a1t2 = 0, for all t Ú 0, then 
the velocity of the object is constant.

e. If you double the initial speed of a projectile, its range also 
doubles (assume no forces other than gravity act on the  
projectile).

f. If you double the initial speed of a projectile, its time of flight 
also doubles (assume no forces other than gravity).

g. A trajectory with v1t2 = a1t2 ≠ 0, for all t, is possible.

58–61. Trajectory properties Find the time of flight, range, and maxi-
mum height of the following two-dimensional trajectories, assuming 
no forces other than gravity. In each case, the initial position is 80, 09  
and the initial velocity is v0 = 8u0, v09 .
58. 8u0, v09 = 810, 209  ft>s
59. Initial speed 0 v0 0 = 150 m>s, launch angle a = 30°

60. 8u0, v09 = 840, 809  m>s
61. Initial speed 0 v0 0 = 400 ft>s, launch angle a = 60°

62. Motion on the moon The acceleration due to gravity on the moon 
is approximately g>6 (one-sixth its value on Earth). Compare the 
time of flight, range, and maximum height of a projectile on the 
moon with the corresponding values on Earth.

63. Firing angles A projectile is fired over horizontal ground from the 
origin with an initial speed of 60 m>s. What firing angles produce 
a range of 300 m?

64. Firing strategies Suppose you wish to fire a projectile over hori-
zontal ground from the origin and attain a range of 1000 m.

a. Sketch a graph of the initial speed required for all firing angles 
0 6 a 6 p>2.

b. What firing angle requires the least initial speed?

65. Speed on an ellipse An object moves along an ellipse given by 
the function r1t2 = 8a cos t, b sin t9 , for 0 … t … 2p, where 
a 7 0 and b 7 0.

a. Find the velocity and speed of the object in terms of a and b, 
for 0 … t … 2p.

T

T
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b. With a = 1 and b = 6, graph the speed function, for 
0 … t … 2p. Mark the points on the trajectory at which the 
speed is a minimum and a maximum.

c. Is it true that the object speeds up along the flattest (straight-
est) parts of the trajectory and slows down where the curves 
are sharpest?

d. For general a and b, find the ratio of the maximum speed to the 
minimum speed on the ellipse (in terms of a and b).

Explorations and Challenges
66. Golf shot A golfer stands 390 ft (130 yd) horizontally from the 

hole and 40 ft below the hole (see figure). Assuming the ball is hit 
with an initial speed of 150 ft>s, at what angle(s) should it be hit 
to land in the hole? Assume the path of the ball lies in a plane.

390 ft (130 yd)

40 ft

67. Another golf shot A golfer stands 420 ft (140 yd) horizontally 
from the hole and 50 ft above the hole (see figure). Assuming the 
ball is hit with an initial speed of 120 ft>s, at what angle(s) should 
it be hit to land in the hole? Assume the path of the ball lies in a 
plane.

420 ft (140 yd)

50 ft

68. Initial speed of a golf shot A golfer stands 390 ft horizontally 
from the hole and 40 ft below the hole (see figure for Exercise 66). 
If the ball leaves the ground at an initial angle of 45° with  
the horizontal, with what initial speed should it be hit to land  
in the hole?

69. Initial speed of a golf shot A golfer stands 420 ft horizontally 
from the hole and 50 ft above the hole (see figure for Exercise 67).  
If the ball leaves the ground at an initial angle of 30° with the  
horizontal, with what initial speed should it be hit to land in  
the hole?

70. Ski jump The lip of a ski jump is 8 m above the outrun that is 
sloped at an angle of 30° to the horizontal (see figure).

a. If the initial velocity of a ski jumper at the lip of the jump is 
840, 09  m>s, what is the length of the jump (distance from  
the origin to the landing point)? Assume only gravity affects 
the motion.

b. Assume air resistance produces a constant horizontal accelera-
tion of 0.15 m>s2 opposing the motion. What is the length of 
the jump?

c. Suppose the takeoff ramp is tilted upward at an angle of u°,  
so that the skier’s initial velocity is 408cos u, sin u9  m>s.  
What value of u maximizes the length of the jump? Express 
your answer in degrees and neglect air resistance.

T

T

T

Takeo� point (0, 8)
Inrun

Outrun

(0, 0)

Trajectory

308

71. Designing a baseball pitch A baseball leaves the hand of a 
pitcher 6 vertical feet above and 60 horizontal feet from home 
plate. Assume the coordinate axes are oriented as shown in the 
figure.

x

y

z

60 ft

6 ft

a. Suppose a pitch is thrown with an initial velocity of 
8130, 0, -39  ft>s (about 90 mi>hr). In the absence of all 
forces except gravity, how far above the ground is the ball 
when it crosses home plate and how long does it take the pitch 
to arrive?

b. What vertical velocity component should the pitcher use so 
that the pitch crosses home plate exactly 3 ft above the ground?

c. A simple model to describe the curve of a baseball assumes 
the spin of the ball produces a constant sideways accelera-
tion (in the y-direction) of c ft>s2. Suppose a pitcher throws 
a curve ball with c = 8 ft>s2 (one fourth the acceleration of 
gravity). How far does the ball move in the y-direction by the 
time it reaches home plate, assuming an initial velocity of 
8130, 0, -39ft>s?

d. In part (c), does the ball curve more in the first half of its trip 
to the plate or in the second half? How does this fact affect the 
batter?

e. Suppose the pitcher releases the ball from an initial position of 
80, -3, 69  with initial velocity 8130, 0, -39 . What value of 
the spin parameter c is needed to put the ball over home plate 
passing through the point 160, 0, 32?

72. Parabolic trajectories Show that the two-dimensional trajectory

x1t2 = u0t + x0 and y1t2 = -  
gt2

2
+ v0t + y0, for 0 … t … T,

of an object moving in a gravitational field is a segment of a  
parabola for some value of T 7 0. Find T such that y1T2 = 0.

73. Time of flight, range, height Derive the formulas for time of 
flight, range, and maximum height in the case that an object is 
launched from the initial position 80, y09  above the horizontal 
ground with initial velocity 0 v0 0 8cos a, sin a9 .
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74. A race Two people travel from P14, 02 to Q1-4, 02 along the 
paths given by

 r1t2 = h4 cos 
pt
8

 , 4 sin 
pt
8
i and

 R1t2 = 84 - t, 14 - t22 - 169 .
a. Graph both paths between P and Q.
b. Graph the speeds of both people between P and Q.
c. Who arrives at Q first?

75. Circular motion Consider an object moving along the circular 
trajectory r1t2 = 8A cos vt, A sin vt9 , where A and v are  
constants.

a. Over what time interval 30, T4 does the object traverse the 
circle once?

b. Find the velocity and speed of the object. Is the velocity  
constant in either direction or magnitude? Is the speed  
constant?

c. Find the acceleration of the object.
d. How are the position and velocity related? How are the  

position and acceleration related?
e. Sketch the position, velocity, and acceleration vectors at four 

different points on the trajectory with A = v = 1.

76. A linear trajectory An object moves along a straight line from 
the point P11, 2, 42 to the point Q1-6, 8, 102.
a. Find a position function r that describes the motion if it occurs 

with a constant speed over the time interval 30, 54.
b. Find a position function r that describes the motion if it occurs 

with speed et.

77. A circular trajectory An object moves clockwise around a  
circle centered at the origin with radius 5 m beginning at the  
point 10, 52.
a. Find a position function r that describes the motion if the  

object moves with a constant speed, completing 1 lap every 
12 s.

b. Find a position function r that describes the motion if it occurs 
with speed e-t.

78. A helical trajectory An object moves on the helix 8cos t, sin t, t9 , 
for t Ú 0.

a. Find a position function r that describes the motion if it occurs 
with a constant speed of 10.

b. Find a position function r that describes the motion if it occurs 
with speed t.

79. Tilted ellipse Consider the curve r1t2 = 8cos t, sin t, c sin t9 , for 
0 … t … 2p, where c is a real number. Assuming the curve lies in 
a plane, prove that the curve is an ellipse in that plane.

80. Equal area property Consider the ellipse r1t2 = 8a cos t, b sin t9 , 
for 0 … t … 2p, where a and b are real numbers. Let u be the 
angle between the position vector and the x-axis.

a. Show that tan u =
b
a

 tan t.

b. Find u′1t2.
c. Recall that the area bounded by the polar curve r = ƒ1u2  

on the interval 30, u4 is A1u2 = 1
2 ∫

u

0
1ƒ1u222 du. Letting  

ƒ1u1t22 = 0 r1u1t22 0 , show that A′1t2 = 1
2

 ab.

d. Conclude that as an object moves around the ellipse, it sweeps 
out equal areas in equal times.

81. Another property of constant ∣ r ∣  motion Suppose an object 
moves on the surface of a sphere with 0 r1t2 0  constant for all t. 
Show that r1t2 and a1t2 = r″1t2 satisfy r1t2 # a1t2 = - 0 v1t2 0 2.

82. Conditions for a circular/elliptical trajectory in the plane An 
object moves along a path given by

r1t2 = 8a cos t + b sin t, c cos t + d sin t9 , for 0 … t … 2p.

a. What conditions on a, b, c, and d guarantee that the path is a 
circle?

b. What conditions on a, b, c, and d guarantee that the path is an 
ellipse?

83. Nonuniform straight-line motion Consider the motion of an  
object given by the position function

r1t2 = ƒ1t28a, b, c9 + 8x0, y0, z09 , for t Ú 0,

where a, b, c, x0, y0, and z0 are constants, and ƒ is a differentiable 
scalar function, for t Ú 0.

a. Explain why r describes motion along a line.
b. Find the velocity function. In general, is the velocity constant 

in magnitude or direction along the path?

QUICK CHECK ANSWERS

1. v1t2 = 81, 2t, 3t29 , a1t2 = 80, 2, 6t9
2. 0 r′1t2 0 = 21 + 4t2 + 9t4>16; 

0R′1t2 0 = 24t2 + 16t6 + 9t10>4 3. The curve 

R1t2 = 5r1t2> 0 r1t2 0  lies on a sphere of radius 5.
4. x1t2 = 100t, y1t2 = -16t2 + 60t + 2
5. sin121p>2 - a22 = sin1p - 2a2 = sin 2a 

14.4 Length of Curves
We return now to a recurring theme: determining the arc length of a curve. In Section 6.5, 
we learned how to find the arc length of curves of the form y = ƒ1x2, and in Sections 12.1 
and 12.3, we discovered formulas for the arc length of a plane curve described parametri-
cally or described in polar coordinates. In this section, we extend these ideas to handle the 
arc length of a three-dimensional curve described by a vector function. We also discover 
how to formulate a parametric description of a curve using arc length as a parameter.
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Arc Length
Suppose a curve is described by the vector-valued function r1t2 = 8ƒ1t2, g1t2, h1t29 , for 
a … t … b, where ƒ′, g′, and h′ are continuous on 3a, b4. In Section 12.1, we showed 
that the arc length L of the two-dimensional curve r1t2 = 8ƒ1t2, g1t29 , for a … t … b is 
given by

L = ∫b

a
2ƒ′1t22 + g′1t22 dt.

An analogous arc length formula for three-dimensional curves follows using a similar 
argument. The length of the curve r1t2 = 8ƒ1t2, g1t2, h1t29  on the interval 3a, b4 is

L = ∫b

a
2ƒ′1t22 + g′1t22 + h′1t22 dt.  

Noting that r′1t2 = 8ƒ′1t2, g′1t2, h′1t29 , we state the following definition.

The following application of arc length leads to an integral that is difficult to evaluate 
exactly.

DEFINITION Arc Length for Vector Functions

Consider the parameterized curve r1t2 = 8ƒ1t2, g1t2, h1t29 , where ƒ′, g′, and h′ 
are continuous, and the curve is traversed once for a … t … b. The arc length of 
the curve between 1ƒ1a2, g1a2, h1a22 and 1ƒ1b2, g1b2, h1b22 is

L = ∫b

a
2ƒ′1t22 + g′1t22 + h′1t22 dt = ∫b

a
0 r′1t2 0  dt.

QUICK CHECK 1 What does the arc 
length formula give for the length 
of the line r1t2 = 82t, t, -2t9 , for 
0 … t … 3? 

➤ For curves in the xy-plane, we set 
h1t2 = 0 in the definition of arc length.

➤ An important fact is that the arc length 
of a smooth parameterized curve is 
independent of the choice of parameter 
(Exercise 54).

EXAMPLE 1 Lengths of planetary orbits According to Kepler’s first law, the planets 
revolve about the sun in elliptical orbits. A vector function that describes an ellipse in the 
xy-plane is

r1t2 = 8a cos t, b sin t9 ,  where 0 … t … 2p.

If a 7 b 7 0, then 2a is the length of the major axis and 2b is the length of the minor 
axis (Figure 14.26). Verify the lengths of the planetary orbits given in Table 14.1.  
Distances are given in terms of the astronomical unit (AU), which is the length of the 
semimajor axis of Earth’s orbit, or about 93 million miles.

x

y
Ellipse
r(t) 5 ka cos t, b sin tl,
0 # t # 2p

a

b

2b

2a

Figure 14.26 Table 14.1

Planet
Semimajor 
axis, a (AU)

Semiminor 
axis, b (AU) A = b ,a

Orbit length 
(AU)

Mercury 0.387 0.379 0.979 2.407

Venus 0.723 0.723 1.000 4.543

Earth 1.000 0.999 0.999 6.280

Mars 1.524 1.517 0.995 9.554

Jupiter 5.203 5.179 0.995 32.616

Saturn 9.539 9.524 0.998 59.888

Uranus 19.182 19.161 0.999 120.458

Neptune 30.058 30.057 1.000 188.857

SOLUTION Using the arc length formula, the length of a general elliptical orbit is

 L = ∫2p

0
2x′1t22 + y′1t22 dt

 = ∫2p

0
21-a sin t22 + 1b cos t22 dt Substitute for x′1t2 and y′1t2.

 = ∫2p

0
2a2 sin2 t + b2 cos2 t dt.  Simplify.

➤ The German astronomer and 
mathematician Johannes Kepler  
(1571–1630) worked with the 
meticulously gathered data of Tycho 
Brahe to formulate three empirical laws 
obeyed by planets and comets orbiting 
the sun. The work of Kepler formed 
the foundation for Newton’s laws of 
gravitation developed 50 years later.

➤ In September 2006, Pluto joined the 
ranks of Ceres, Haumea, Makemake, and 
Eris as one of five dwarf planets in our 
solar system.
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Factoring a2 out of the square root and letting a = b>a, we have

 L = ∫2p

0
2a2 1sin2 t + 1b>a22 cos2 t2 dt Factor out a2.

 = a∫2p

0
2 sin2 t + a2 cos2 t dt  Let a = b>a.

 = 4a∫p>2
0
2 sin2 t + a2 cos2 t dt.  Use symmetry; quarter orbit on 30, p>24.

Unfortunately, an antiderivative for this integrand cannot be found in terms of el-
ementary functions, so we have two options: This integral is well known and values 
have been tabulated for various values of a. Alternatively, we may use a calculator to 
approximate the integral numerically (see Section 8.8). Using numerical integration, the 
orbit lengths in Table 14.1 are obtained. For example, the length of Mercury’s orbit with 
a = 0.387 and a = 0.979 is

 L = 4a∫p>2
0
2 sin2 t + a2 cos2 t dt

 = 1.548∫p>2
0
2 sin2 t + 0.959 cos2 t dt Simplify.

 ≈ 2.407.  Approximate using calculator.

The fact that a is close to 1 for all the planets means that their orbits are nearly circular. 
For this reason, the lengths of the orbits shown in the table are nearly equal to 2pa, which 
is the length of a circular orbit with radius a.

Related Exercises 27–28 

➤ The integral that gives the length of an 
ellipse is a complete elliptic integral 
of the second kind. Many reference 
books and software packages provide 
approximate values of this integral.

➤ Although rounded values for a appear in 
Table 14.1, the calculations in Example 1  
were done in full precision and were 
rounded to three decimal places only in 
the final step.

➤ Recall from Chapter 6 that the distance 
traveled by an object in one dimension 
is #b

a 0 v1t2 0  dt. The arc length formula 
generalizes this formula to three 
dimensions.

x

y

z

1000

500

250

Helix
r(t)  250 cos t, 250 sin t, 100 t

Figure 14.27

➤ The standard parameterization for a helix 
winding counterclockwise around the 
z-axis is r1t2 = 8a cos t, a sin t, bt9 . 
A helix has the property that its tangent 
vector makes a constant angle with the 
axis around which it winds.

If the function r1t2 = 8x1t2, y1t2, z1t29  is the position function for a moving object, 
then the arc length formula has a natural interpretation. Recall that v1t2 = r′1t2 is the 
velocity of the object and 0 v1t2 0 = 0 r′1t2 0  is the speed of the object. Therefore, the arc 
length formula becomes

L = ∫b

a
0 r′1t2 0  dt = ∫b

a
0 v1t2 0  dt.

This formula is an analog of the familiar distance = speed * elapsed time formula.

EXAMPLE 2 Flight of an eagle An eagle rises at a rate of 100 vertical ft>min on a  
helical path given by

r1t2 = 8250 cos t, 250 sin t, 100t9
(Figure 14.27), where r is measured in feet and t is measured in minutes. How far does it 
travel in 10 min?

SOLUTION The speed of the eagle is

 0 v1t2 0 = 2x′1t22 + y′1t22 + z′1t22

 = 21-250 sin t22 + 1250 cos t22 + 1002  Substitute derivatives.

 = 22502 1sin2 t + cos2 t2 + 1002  Combine terms.

 = 22502 + 1002 ≈ 269.  sin2 t + cos2 t = 1

The constant speed makes the arc length integral easy to evaluate:

L = ∫10

0
0 v1t2 0  dt ≈ ∫10

0
269 dt = 2690.

The eagle travels approximately 2690 ft in 10 min.
Related Exercise 25 

Arc Length as a Parameter
Until now, the parameter t used to describe a curve r1t2 = 8ƒ1t2, g1t2, h1t29  has been 
chosen either for convenience or because it represents time in some specified unit. We now 
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introduce the most natural parameter for describing curves; that parameter is arc length. 
Let’s see what it means for a curve to be parameterized by arc length.

Consider the following two characterizations of the unit circle centered at the origin:

8cos t, sin t9 , for 0 … t … 2p and 8cos 2t, sin 2t9 , for 0 … t … p.

In the first description, as the parameter t increases from t = 0 to t = 2p, the full circle is 
generated and the arc length s of the curve also increases from s = 0 to s = 2p. In other 
words, as the parameter t increases, it measures the arc length of the curve that is gener-
ated (Figure 14.28a).

In the second description, as t varies from t = 0 to t = p, the full circle is generated 
and the arc length increases from s = 0 to s = 2p. In this case, the length of the interval 
in t does not equal the length of the curve generated; therefore, the parameter t does not 
correspond to arc length (Figure 14.28b). In general, there are infinitely many ways to 
parameterize a given curve; however, for a given initial point and orientation, arc length is 
the parameter for only one of them.

x

y

1

(b)

t 5 s 5 0

t 5 p,
s 5 2p

t 5    , s 5

t 5    , s 5 p

t 5     , s 5    

r 5 kcos 2t, sin 2tl,
0 # t # p
Arc length s 5 2t.

x

y

t 5 s 5 0

t 5 s 5 2p

t 5 s 5

t 5 s 5 p

1

r 5 kcos t, sin tl,
0 # t # 2p
Arc length s 5 t.

(a)

2
p

p

p

p p

p p

24

t 5 s 5 2
3

2
3

4
3

2

Figure 14.28

QUICK CHECK 2 Consider the portion 
of a circle r1t2 = 8cos t, sin t9 , for 
a … t … b. Show that the arc length 
of the curve is b - a. 

The Arc Length Function Suppose a smooth curve is represented by the function 
r1t2 = 8ƒ1t2, g1t2, h1t29 , for t Ú a, where t is a parameter. Notice that as t increases, 
the length of the curve also increases. Using the arc length formula, the length of the curve 
from r1a2 to r1t2 is

s1t2 = ∫ t

a
2ƒ′1u22 + g′1u22 + h′1u22 du = ∫ t

a
0 v1u2 0  du.

This equation gives the relationship between the arc length of a curve and any parameter t 
used to describe the curve.

An important consequence of this relationship arises if we differentiate both sides 
with respect to t using the Fundamental Theorem of Calculus:

ds
dt

=
d
dt

 a ∫ t

a
0 v1u2 0  dub = 0 v1t2 0 .

Specifically, if t represents time and r is the position of an object moving on the curve, 
then the rate of change of the arc length with respect to time is the speed of the object. 
Notice that if r1t2 describes a smooth curve, then 0 v1t2 0 ≠ 0; hence ds>dt 7 0, and s is 
an increasing function of t—as t increases, the arc length also increases. If r1t2 is a curve 
on which 0 v1t2 0 = 1, then

s1t2 = ∫ t

a
0 v1u2 0  du = ∫ t

a
1 du = t - a,

which means the parameter t corresponds to arc length. These observations are summa-
rized in the following theorem.

➤ Notice that t is the independent variable 
of the function s1t2, so a different symbol 
u is used for the variable of integration. 
It is common to use s as the arc length 
function.
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EXAMPLE 3 Arc length parameterization Consider the helix 
r1t2 = 82 cos t, 2 sin t, 4t9 , for t Ú 0.

a. Find the arc length function s1t2.
b. Find another description of the helix that uses arc length as the parameter.

SOLUTION

a. Note that r′1t2 = 8 -2 sin t, 2 cos t, 49  and

 0 v1t2 0 = 0 r′1t2 0 = 21-2 sin t22 + 12 cos t22 + 42

 = 241sin2 t + cos2 t2 + 42  Simplify.

 = 24 + 42  sin2 t + cos2 t = 1

 = 120 = 215.  Simplify.

Therefore, the relationship between the arc length s and the parameter t is

s1t2 = ∫ t

a
0 v1u2 0  du = ∫ t

0
 215 du = 215 t.

An increase of 1>12152 in the parameter t corresponds to an increase of 1 in the arc 
length. Therefore, the curve is not parameterized by arc length.

b. Substituting t = s>12152 into the original parametric description of the helix, we 
find that the description with arc length as a parameter is (using a different function 
name)

r11s2 = h2 cos a s

215
b , 2 sin a s

215
b , 

2s15
i, for s Ú 0.

This description has the property that an increment of ∆s in the parameter corresponds 
to an increment of exactly ∆s in the arc length.

Related Exercises 37–39 

As you will see in Section 14.5, using arc length as a parameter—when it can be done— 
generally leads to simplified calculations.

THEOREM 14.3 Arc Length as a Function of a Parameter
Let r1t2 describe a smooth curve, for t Ú a. The arc length is given by

s1t2 = ∫ t

a
0 v1u2 0  du,

where 0 v 0 = 0 r′ 0 . Equivalently, 
ds
dt

= 0 v1t2 0 . If 0 v1t2 0 = 1, for all t Ú a, then the 

parameter t corresponds to arc length.

QUICK CHECK 3 Does the line 
r1t2 = 8 t, t, t9  have arc length as a 
parameter? Explain. 

Getting Started
1. Find the length of the line given by r1t2 = 8 t, 2t9 , for a … t … b.

2. Explain how to find the length of the curve 

r1t2 = 8ƒ1t2, g1t2, h1t29 , for a … t … b.   

3. Express the arc length of a curve in terms of the speed of an object 
moving along the curve.

4. Suppose an object moves in space with the position function 
r1t2 = 8x1t2, y1t2, z1t29 . Write the integral that gives the dis-
tance it travels between t = a and t = b.

SECTION 14.4 EXERCISES
5. An object moves on a trajectory given by 

r1t2 = 810 cos 2t, 10 sin 2t9 , for 0 … t … p. 

How far does it travel?

6. Use calculus to find the length of the line segment 
r1t2 = 8 t, -8t, 4t9 , for 0 … t … 2. Verify your answer  
without using calculus.

7. Explain what it means for a curve to be parameterized by its arc 
length.

8. Is the curve r1t2 = 8cos t, sin t9  parameterized by its arc length? 
Explain.
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Practice Exercises
9–22. Arc length calculations Find the length of the following two- 
and three-dimensional curves.

9. r1t2 = 83t2 - 1, 4t2 + 59 , for 0 … t … 1

10. r1t2 = 83t - 1, 4t + 5, t9 , for 0 … t … 1

11. r1t2 = 83 cos t, 3 sin t9 , for 0 … t … p

12. r1t2 = 84 cos 3t, 4 sin 3t9 , for 0 … t … 2p>3
13. r1t2 = 8cos t + t sin t, sin t - t cos t9 , for 0 … t … p>2
14. r1t2 = 8cos t + sin t, cos t - sin t9 , for 0 … t … 2p

15. r1t2 = 82 + 3t, 1 - 4t, -4 + 3t9 , for 1 … t … 6

16. r1t2 = 84 cos t, 4 sin t, 3t9 , for 0 … t … 6p

17. r1t2 = 8 t, 8 sin t, 8 cos t9 , for 0 … t … 4p

18. r1t2 = h t2

2
, 
12t + 123>2

3
i, for 0 … t … 2

19. r1t2 = 8e2t, 2e2t + 5, 2e2t - 209 , for 0 … t … ln 2

20. r1t2 = 8 t2, t39 , for 0 … t … 4

21. r1t2 = 8cos3 t, sin3 t9 , for 0 … t … p>2
22. r1t2 = 82 cos t, 213 cos t, 4 sin t9 , for 0 … t … 2p

23–26. Speed and arc length For the following trajectories, find the 
speed associated with the trajectory, and then find the length of the  
trajectory on the given interval.

23. r1t2 = 82t3, - t3, 5t39 , for 0 … t … 4

24. r1t2 = 85 cos t2, 5 sin t2, 12t29 , for 0 … t … 2

25. r1t2 = 813 sin 2t, 12 cos 2t, 5 cos 2t9 , for 0 … t … p

26. r1t2 = 8et sin t, et cos t, et9 , for 0 … t … ln 2

27. Speed of Earth Verify that the length of one orbit of Earth is  
approximately 6.280 AU (see Table 14.1). Then determine the  
average speed of Earth relative to the sun in miles per hour.  
(Hint: It takes Earth 365.25 days to orbit the sun.)

28. Speed of Jupiter Verify that the length of one orbit of Jupiter 
is approximately 32.616 AU (see Table 14.1). Then determine 
the average speed of Jupiter relative to the sun in miles per hour. 
(Hint: It takes Jupiter 11.8618 Earth years to orbit the sun.)

29–32. Arc length approximations Use a calculator to approximate 
the length of the following curves. In each case, simplify the arc length 
integral as much as possible before finding an approximation.

29. r1t2 = 82 cos t, 4 sin t9 , for 0 … t … 2p

30. r1t2 = 82 cos t, 4 sin t, 6 cos t9 , for 0 … t … 2p

31. r1t2 = 8 t, 4t2, 109 , for -2 … t … 2

32. r1t2 = 8et, 2e-t, t9 , for 0 … t … ln 3

33–42. Arc length parametrization Determine whether the following 
curves use arc length as a parameter. If not, find a description that uses 
arc length as a parameter.

33. r1t2 = 81, sin t, cos t9 , for t Ú 1

34. r1t2 = h t13
 , 

t13
 , 

t13
i, for 0 … t … 10

T

T

T

35. r1t2 = 8 t, 2t9 , for 0 … t … 3

36. r1t2 = 8 t + 1, 2t - 3, 6t9 , for 0 … t … 10

37. r1t2 = 82 cos t, 2 sin t9 , for 0 … t … 2p

38. r1t2 = 817 cos t, 15 sin t, 8 sin t9 , for 0 … t … p

39. r1t2 = 8cos t2, sin t29 , for 0 … t … 2p

40. r1t2 = 8 t2, 2t2, 4t29 , for 1 … t … 4

41. r1t2 = 8et, et, et9 , for t Ú 0

42. r1t2 = h cos t22
, 

cos t22
, sin ti, for 0 … t … 10

43. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. If an object moves on a trajectory with constant speed S over 
a time interval a … t … b, then the length of the trajectory is 
S1b - a2.

b. The curves defined by 

r1t2 = 8ƒ1t2, g1t29  and R1t2 = 8g1t2, ƒ1t29   
have the same length over the interval 3a, b4.

c. The curve r1t2 = 8ƒ1t2, g1t29 , for 0 … a … t … b, and the 
curve R1t2 = 8ƒ1t22, g1t229 , for 1a … t … 1b, have the 
same length.

d. The curve r1t2 = 8 t, t2, 3t29 , for 1 … t … 4, is parameterized 
by arc length.

44. Length of a line segment Consider the line segment joining the 
points P1x0, y0, z02 and Q1x1, y1, z12.
a. Find a function r1t2 for the segment PQ.
b. Use the arc length formula to find the length of PQ.
c. Use geometry (distance formula) to verify the result of part (b).

45. Tilted circles Let the curve C be described by 

r1t2 = 8a cos t, b sin t, c sin t9 , 
where a, b, and c are real positive numbers.

a. Assume C lies in a plane. Show that C is a circle centered at 
the origin, provided a2 = b2 + c2.

b. Find the arc length of the circle in part (a).
c. Assuming C lies in a plane, find the conditions for which 

r1t2 = 8a cos t + b sin t, c cos t + d sin t, e cos t + ƒ sin t9  
describes a circle. Then find its arc length.

46. A family of arc length integrals Find the length of the curve 
r1t2 = 8 tm, tm, t3m>29 , for 0 … a … t … b, where m is a real 
number. Express the result in terms of m, a, and b.

47. A special case Suppose a curve is described by 

r1t2 = 8Ah1t2, Bh1t29 , for a … t … b, 

where A and B are constants and h has a continuous derivative.

a. Show that the length of the curve is2A2 + B2∫b

a
�h′1t2 �dt.

b. Use part (a) to find the length of the curve x = 2t3, y = 5t3, 
for 0 … t … 4.

c. Use part (a) to find the length of the curve x = 4>t, y = 10>t, 
for 1 … t … 8.
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Explorations and Challenges
48. Toroidal magnetic field A circle of radius a that is centered at 

1A, 02 is revolved about the y-axis to create a torus (assume  
a 6 A). When current flows through a copper wire that is 
wrapped around this torus, a magnetic field is created and the 
strength of this field depends on the amount of copper wire used. 
If the wire is wrapped evenly around the torus a total of k times, 
the shape of the wire is modeled by the function

r1t2 = 81A + a cos kt2 cos t, 1A + a cos kt2 sin t, a sin kt9 , 
for 0 … t … 2p. Determine the amount of copper required if 
A = 4 in, a = 1 in, and k = 35.

49. Projectile trajectories A projectile (such as a baseball or a 
cannonball) launched from the origin with an initial horizontal 
velocity u0 and an initial vertical velocity v0 moves in a parabolic 
trajectory given by

r1t2 = hu0 t, -  
1
2

 gt2 + v0ti, for t Ú 0,

where air resistance is neglected and g = 9.8 m>s2 is the accel-
eration due to gravity (see Section 14.3).

a. Let u0 = 20 m>s and v0 = 25 m>s. Assuming the projectile 
is launched over horizontal ground, at what time does it return 
to Earth?

b. Find the integral that gives the length of the trajectory from 
launch to landing.

c. Evaluate the integral in part (b) by first making the change of 
variables u = -gt + v0. The resulting integral is evaluated 
either by making a second change of variables or by using a 
calculator. What is the length of the trajectory?

d. How far does the projectile land from its launch site?

50. Variable speed on a circle Consider a particle that moves in a 
plane according to the function r1t2 = 8sin t2, cos t29  with an 
initial position 10, 12 at t = 0.

a. Describe the path of the particle, including the time required to 
return to the initial position.

b. What is the length of the path in part (a)?
c. Describe how the motion of this particle differs from the  

motion described by the equations x = sin t and y = cos t.

T

T

d. Consider the motion described by x = sin tn and y = cos tn, 
where n is a positive integer. Describe the path of the particle, 
including the time required to return to the initial position.

e. What is the length of the path in part (d) for any positive  
integer n?

f. If you were watching a race on a circular path between two 
runners, one moving according to x = sin t and y = cos t and 
one according to x = sin t2 and y = cos t2, who would win 
and when would one runner pass the other?

51. Arc length parameterization Prove that the line 
r1t2 = 8x0 + at, y0 + bt, z0 + ct9  is parameterized by arc 
length, provided a2 + b2 + c2 = 1.

52. Arc length parameterization Prove that the curve 
r1t2 = 8a cos t, b sin t, c sin t9  is parameterized by arc length, 
provided a2 = b2 + c2 = 1.

53. Lengths of related curves Suppose a curve is given by 
r1t2 = 8ƒ1t2, g1t29 , where ƒ′ and g′ are continuous, for 
a … t … b. Assume the curve is traversed once, for a … t … b, 
and the length of the curve between 1ƒ1a2, g1a22 and 1ƒ1b2, g1b22 
is L. Prove that for any nonzero constant c, the length of the curve 
defined by r1t2 = 8cƒ1t2, cg1t29 , for a … t … b, is 0 c �L.

54. Change of variables Consider the parameterized curves 
r1t2 = 8ƒ1t2, g1t2, h1t29  and R1t2 = 8ƒ1u1t22, g1u1t22, h1u1t229,  
where ƒ, g, h, and u are continuously differentiable functions and 
u has an inverse on 3a, b4.
a. Show that the curve generated by r on the interval 

a … t … b is the same as the curve generated by R on 
u-11a2 … t … u-11b2 (or u-11b2 … t … u-11a2).

b. Show that the lengths of the two curves are equal.  
(Hint: Use the Chain Rule and a change of variables in the  
arc length integral for the curve generated by R.)

QUICK CHECK ANSWERS

1. 9 2. For a … t … b, the curve C generated is 
1b - a2>2p of a full circle. Because the full circle has a 
length of 2p, the curve C has a length of b - a. 3. No.  
If t increases by 1 unit, the length of the curve increases by  13 units. 

14.5 Curvature and Normal Vectors
We know how to find tangent vectors and lengths of curves in space, but much more can 
be said about the shape of such curves. In this section, we introduce several new concepts. 
Curvature measures how fast a curve turns at a point, the normal vector gives the direc-
tion in which a curve turns, and the binormal vector and the torsion describe the twisting 
of a curve.

Curvature
Imagine driving a car along a winding mountain road. There are two ways to change the 
velocity of the car (that is, to accelerate). You can change the speed of the car or you can 
change the direction of the car. A change of speed is relatively easy to describe, so we 
postpone that discussion and focus on the change of direction. The rate at which the car 
changes direction is related to the notion of curvature.
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Unit Tangent Vector Recall from Section 14.2 that if r1t2 = 8x1t2, y1t2, z1t29  is a 
smooth oriented curve, then the unit tangent vector at a point is the unit vector that points in 
the direction of the tangent vector r′1t2; that is,

T1t2 = r′1t2
0 r′1t2 0 =

v1t2
0 v1t2 0  .

Because T is a unit vector, its length does not change along the curve. The only way T can 
change is through a change in direction.

How quickly does T change (in direction) as we move along the curve? If a small 
increment in arc length ∆s along the curve results in a large change in the direction of 
T, the curve is turning quickly over that interval and we say it has a large curvature  
(Figure 14.29a). If a small increment ∆s in arc length results in a small change in the 
direction of T, the curve is turning slowly over that interval and it has a small curvature  
(Figure 14.29b). The magnitude of the rate at which the direction of T changes with re-
spect to arc length is the curvature of the curve.

arc length 5 s

Ds

T(s)

T(s) T(s 1 Ds) 2 T(s)
small curvature

T(s 1 Ds)

T(s 1 Ds)

(b)

s 5 0s 5 0

(a)

arc length 5 s

Ds
T(s)

T(s)

T(s 1 Ds)

T(s 1 Ds)

T(s 1 Ds) 2 T(s)
large curvature

Figure 14.29

Note that k is a nonnegative scalar-valued function. A large value of k at a point indi-
cates a tight curve that changes direction quickly. If k is small, then the curve is relatively 
flat and its direction changes slowly. The minimum curvature (zero) occurs on a straight 
line, where the tangent vector never changes direction along the curve.

In order to evaluate d T>ds, a description of the curve in terms of the arc length ap-
pears to be needed, but it may be difficult to obtain. A short calculation leads to the first of 
two practical curvature formulas.

Letting t be an arbitrary parameter, we begin with the Chain Rule and write 
d  T
dt

=
d  T
ds

# ds
dt

 . After dividing both sides of this equation by ds>dt = 0 v 0 , we take abso-

lute values and arrive at

k = ` d  T
ds
` = 0 d  T>dt 0

0 ds>dt 0 =
1

0 v 0 `
d  T
dt
` .

This derivation is a proof of the following theorem.

DEFINITION Curvature

Let r describe a smooth parameterized curve. If s denotes arc length and 

T = r′> 0 r′ 0  is the unit tangent vector, the curvature is k1s2 = ` d T
ds
` .

➤ Recall that the unit tangent vector at a 
point depends on the orientation of the 
curve. The curvature does not depend on 
the orientation of the curve, but it does 
depend on the shape of the curve. The 
Greek letter k (kappa) is used to denote 
curvature.

THEOREM 14.4 Curvature Formula
Let r1t2 describe a smooth parameterized curve, where t is any parameter. If 
v = r′ is the velocity and T is the unit tangent vector, then the curvature is

k1t2 = 1

0 v 0 `
d  T
dt
` = 0T′1t2 0

0 r′1t2 0  .
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EXAMPLE 1 Lines have zero curvature Consider the line 

r1t2 = 8x0 + at, y0 + bt, z0 + ct9 , for -∞ 6 t 6 ∞ . 

Show that k = 0 at all points on the line.

SOLUTION Note that r′1t2 = 8a, b, c9  and 0 r′1t2 0 = 0 v1t2 0 = 2a2 + b2 + c2.  
Therefore,

T1t2 = r′1t2
0 r′1t2 0 =

8a, b, c92a2 + b2 + c2
 .   

Because T is a constant, 
d  T
dt

= 0; therefore, k = 0 at all points of the line.
Related Exercise 11 

EXAMPLE 2 Circles have constant curvature Consider the circle 
r1t2 = 8R cos t, R sin t9 , for 0 … t … 2p, where R 7 0. Show that k = 1>R.

SOLUTION We compute r′1t2 = 8 -R sin t, R cos t9  and

 0 v1t2 0 = 0 r′1t2 0 = 21-R sin t22 + 1R cos t22

 = 2R2 1sin2 t + cos2 t2  Simplify.

 = R.  sin2 t + cos2 t = 1, R 7 0
Therefore,

 T1t2 = r′1t2
0 r′1t2 0 =

8 -R sin t, R cos t9
R

= 8 -sin t, cos t9 , and

 
d  T
dt

= 8 -cos t, -sin t9 .

Combining these observations, the curvature is

k =
1

0 v 0 `
d  T
dt
` = 1

R
 0 8 -cos t, -sin t9 0 = 1

R
 2cos2 t + sin2 t =

1
R

 .(+11)11+*
    1

The curvature of a circle is constant; a circle with a small radius has a large curvature, 
and vice versa. Related Exercise 12 

QUICK CHECK 1 What is the curvature of 
the circle r1t2 = 83 sin t, 3 cos t9? 

➤ The curvature of a curve at a point can 
also be visualized in terms of a circle of 
curvature, which is a circle of radius R 
that is tangent to the curve at that point. 
The curvature at the point is k = 1>R. 
See Exercises 70–73.

An Alternative Curvature Formula A second curvature formula, which pertains spe-
cifically to trajectories of moving objects, is easier to use in some cases. The calculation is 
instructive because it relies on many properties of vector functions. In the end, a remarkably 
simple formula emerges.

Again consider a smooth curve r1t2 = 8x1t2, y1t2, z1t29 , where v1t2 = r′1t2 and 
a1t2 = v′1t2 are the velocity and acceleration of an object moving along that curve, re-
spectively. We assume v1t2 ≠ 0 and a1t2 ≠ 0. Because T = v> 0 v 0 , we begin by writing 
v = 0 v 0  T and differentiating both sides with respect to t:

a =
dv
dt

=
d
dt

 1 0 v1t2 0  T1t22 = d
dt

 1 0 v1t2 0 2T1t2 + 0 v1t2 0  d  T
dt

 . Product Rule

We now form v * a:

 v * a = 0 v 0T * a d
dt

 1 0 v 0 2T + 0 v 0 d  T
dt
b()*

  (+++1)1+++*
 

v
         a

 = 0 v 0T * a d
dt

 1 0 v 0 2b  T + 0 v 0T * 0 v 0 d  T
dt

 Distributive law for cross products

     (+++11)11+++*
           0

The first term in this expression has the form aT * bT, where a and b are scalars.  
Therefore, aT and bT are parallel vectors and aT * bT = 0. To simplify the second 
term, recall that a vector u1t2 of constant length has the property that u and du>dt are 

➤ Distributive law for cross products:

w * 1u + v2 = 1w * u2 + 1w * v2
1u + v2 * w = 1u * w2 + 1v * w2
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orthogonal (Section 14.3). Because T is a unit vector, it has constant length, and T and 
d T>dt are orthogonal. Furthermore, scalar multiples of T and d T>dt are also orthogonal. 
Therefore, the magnitude of the second term simplifies as follows:

 ̀ 0 v 0T * 0 v 0 d  T
dt
` = 0 v 0 0T 0 ` 0 v 0 d  T

dt
`  sin u 0 u * v 0 = 0 u 0 0 v 0  sin u()*
 1

 = 0 v 0 2 ` d  T
dt
` 0T 0  Simplify, u = p>2.
"
 1

 = 0 v 0 2 ` d  T
dt
` .  0T 0 = 1

The final step is to use Theorem 14.4 and substitute ` d  T
dt
` = k 0 v 0 . Putting these results 

together, we find that

0 v * a 0 = 0 v 0 2 ` d  T
dt
` = 0 v 0 2 k 0 v 0 = k 0 v 0 3.

Solving for the curvature gives k =
0 v * a 0
0 v 0 3  .

➤ Recall that the magnitude of the 
cross product of nonzero vectors is 
0 u * v 0 = 0 u 0 0 v 0  sin u, where u is 
the angle between the vectors. If the 
vectors are orthogonal, sin u = 1 and 
0 u * v 0 = 0 u 0 0 v 0 .

➤ Note that a1t2 = 0 corresponds to 
straight-line motion and k = 0. If 
v1t2 = 0, the object is at rest and k is 
undefined.

THEOREM 14.5 Alternative Curvature Formula
Let r be the position of an object moving on a smooth curve. The curvature at a 
point on the curve is

k =
0 v * a 0
0 v 0 3  ,

where v = r′ is the velocity and a = v′ is the acceleration.

QUICK CHECK 2 Use the alternative 
curvature formula to compute 
the curvature of the curve 
r1t2 = 8 t2, 10, -109 . 

EXAMPLE 3 Curvature of a parabola Find the curvature of the parabola 
r1t2 = 8 t, at29 , for -∞ 6 t 6 ∞ , where a 7 0 is a real number.

SOLUTION The alternative formula works well in this case. We find that 
v1t2 = r′1t2 = 81, 2at9  and a1t2 = v′1t2 = 80, 2a9 . To compute the cross product 
v * a, we append a third component of 0 to each vector:

v * a = †
i  j k
1 2at 0
0 2a 0

† = 2a k.

Therefore, the curvature is

k1t2 = 0 v * a 0
0 v 0 3 =

0 2a k 0
0 81, 2at9 0 3 =

2a

11 + 4a2 t223>2 .

The curvature is a maximum at the vertex of the parabola where t = 0 and k = 2a. The 
curvature decreases as one moves along the curve away from the vertex, as shown in  
Figure 14.30 with a = 1.

Related Exercise 23 

1 222 21

1

2

3

x

y
Parabola
r 5 kt, t2l

Curvature
of parabola

21 t2122 0

3

2

k

Curve flattens
k $ 0, as t $ `

Maximum
curvatureCurve flattens

k $ 0, as t $ 2`

Figure 14.30

EXAMPLE 4 Curvature of a helix Find the curvature of the helix 
r1t2 = 8a cos t, a sin t, bt9 , for -∞ 6 t 6 ∞ , where a 7 0 and b 7 0 are real 
numbers.

SOLUTION We use the alternative curvature formula, with

 v1t2 = r′1t2 = 8 -a sin t, a cos t, b9 and

 a1t2 = v′1t2 = 8 -a cos t, -a sin t, 09 .
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The cross product v * a is

v * a = †
i  j k

-a sin t a cos t b
-a cos t -a sin t 0

† = ab sin t i - ab cos t j + a2 k.

Therefore,

 0 v * a 0 = 0 ab sin t i - ab cos t j + a2 k 0
 = 2a2 b2 1sin2 t + cos2 t2 + a4

 (++)++*
    1

 = a2a2 + b2.

By a familiar calculation, 0 v 0 = 0 8 -a sin t, a cos t, b9 0 = 2a2 + b2. Therefore,

k =
0 v * a 0
0 v 0 3 =

a2a2 + b2

12a2 + b223
=

a

a2 + b2 .

A similar calculation shows that all helices of this form have constant curvature.
Related Exercise 22 

➤ In the curvature formula for the helix, if 
b = 0, the helix becomes a circle of  

radius a with k =
1
a

 . At the other  

extreme, holding a fixed and letting  
b S ∞  stretches and straightens the helix 
so that k S 0.

Principal Unit Normal Vector
The curvature answers the question of how fast a curve turns. The principal unit normal 
vector determines the direction in which a curve turns. Specifically, the magnitude of 
d  T>ds is the curvature: k = 0 d  T>ds 0 . What about the direction of d  T>ds? If only the 
direction, but not the magnitude, of a vector is of interest, it is convenient to work with a 
unit vector that has the same direction as the original vector. We apply this idea to d  T>ds. 
The unit vector that points in the direction of d  T>ds is the principal unit normal vector.

DEFINITION Principal Unit Normal Vector

Let r describe a smooth curve parameterized by arc length. The principal unit 
normal vector at a point P on the curve at which k ≠ 0 is

N1s2 = d  T>ds

0 d  T>ds 0 =
1
k

 
d  T
ds

 .

For other parameters, we use the equivalent formula

N1t2 = d  T>dt

0 d  T>dt 0  ,

evaluated at the value of t corresponding to P.

➤ The principal unit normal vector depends 
on the shape of the curve but not on the 
orientation of the curve.

The practical formula N =
d  T>dt

0 d  T>dt 0  follows from the definition by using the Chain Rule 

to write 
d  T
ds

=
d  T
dt

# dt
ds

 (Exercise 80). Two important properties of the principal unit  

normal vector follow from the definition.

THEOREM 14.6 Properties of the Principal Unit Normal Vector
Let r describe a smooth parameterized curve with unit tangent vector T and princi-
pal unit normal vector N.

1. T and N are orthogonal at all points of the curve; that is, T # N = 0 at all 
points where N is defined.

2. The principal unit normal vector points to the inside of the curve—in the  
direction that the curve is turning.
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Proof:

1. As a unit vector, T has constant length. Therefore, by Theorem 14.2, T and d  T>dt (or 
T and d  T>ds) are orthogonal. Because N is a scalar multiple of d  T>ds, T and N are 
orthogonal (Figure 14.31).

2. We motivate—but do not prove—this fact by recalling that

d  T
ds

= lim
∆sS0

T1s + ∆s2 - T1s2
∆s

.

Therefore, d  T>ds points in the approximate direction of T1s + ∆s2 - T1s2 when ∆s 
is small. As shown in Figure 14.32, this difference points in the direction in which the 
curve is turning. Because N is a positive scalar multiple of d  T>ds, it points in the same  
direction. 

T

N N N

T

T

At all points,
uTu 5 uNu 5 1
and T ? N 5 0.

N points to the inside of the
curve—in the direction the
curve is turning.

Figure 14.31

T(s)

T(s)

T(s 1 Ds)

T(s 1 Ds)

T(s 1 Ds) 2 T(s)

For small Ds,
T(s 1 Ds) 2 T(s)
points to the inside of
the curve, as does dT/ds.

Ds

Figure 14.32

QUICK CHECK 3 Consider the parabola 
r1t2 = 8 t, - t29 . Does the principal 
unit normal vector point in the positive 
y-direction or the negative y-direction 
along the curve? 

EXAMPLE 5 Principal unit normal vector for a helix Find the principal unit normal 
vector for the helix r1t2 = 8a cos t, a sin t, bt9 ,  for -∞  6 t 6 ∞ , where a 7 0 and 
b 7 0 are real numbers.

SOLUTION Several preliminary calculations are needed. First, we have 
v1t2 = r′1t2 = 8 -a sin t, a cos t, b9 . Therefore,

 0 v1t2 0 = 0 r′1t2 0 = 21-a sin t22 + 1a cos t22 + b2

 = 2a2 1sin2 t + cos2 t2 + b2  Simplify.

 = 2a2 + b2.  sin2 t + cos2 t = 1

The unit tangent vector is

T1t2 = r′1t2
0 r′1t2 0 =

8 -a sin t, a cos t, b92a2 + b2
 .

Notice that T points along the curve in an upward direction (at an angle to the horizontal 
that satisfies the equation tan u = b>a; Figure 14.33). We can now calculate the principal 
unit normal vector. First, we determine that

d  T
dt

=
d
dt

 a 8 -a sin t, a cos t, b92a2 + b2
b =

8 -a cos t, -a sin t, 092a2 + b2

and

` d  T
dt
` = a2a2 + b2

 .

The principal unit normal vector now follows:

N =
d  T>dt

0 d  T>dt 0 =
8 -a cos t, -a sin t, 092a2 + b2

a2a2 + b2

= 8 -cos t, -sin t, 09 .

Several important checks should be made. First note that N is a unit vector; that is, 
0N 0 = 1. It should also be confirmed that T # N = 0; that is, the unit tangent vector  
and the principal unit normal vector are everywhere orthogonal. Finally, N is parallel to 
the xy-plane and points inward toward the z-axis, in the direction the curve turns  
(Figure 14.33). Notice that in the special case b = 0, the trajectory is a circle, but the 
normal vector is still N = 8 -cos t, -sin t, 09 .

Related Exercise 28 

Helix
r(t) 5 ka cos t, a sin t, btl

T ? N 5 0 at all points of the curve.
T points in the direction of the curve.
N points to the inside of the curve.

T

N

T

T

N

N
y

x

z

Figure 14.33

QUICK CHECK 4 Why is the principal 
unit normal vector for a straight line 
undefined? 

Components of the Acceleration
The vectors T and N may be used to gain insight into how moving objects accelerate. 
Recall the observation made earlier that the two ways to change the velocity of an object 
(accelerate) are to change its speed and to change its direction of motion. We show that 
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changing the speed produces acceleration in the direction of T and changing the direction 
produces acceleration in the direction of N.

We begin with the fact that T =
v
0 v 0 or v = T 0 v 0 = T 

ds
dt

 . Differentiating both 

sides of v = T 
ds
dt

 with respect to t gives

 a =
dv
dt

=
d
dt

 aT 
ds
dt
b

 =
d  T
dt

 
ds
dt

+ T 
d2s

dt2  Product Rule

 =
d  T
ds

 
ds
dt

 
ds
dt

+ T 
d2s

dt2  Chain Rule: 
d  T
dt

=
d  T
ds

 
ds
dt

  " "
   kN  0 v 0

 = kN 0 v 0 2 + T 
d2s

dt2  .  Substitute.

We now identify the normal and tangential components of the acceleration.

➤ Recall that the speed is 0 v 0 = ds>dt, 
where s is arc length.

THEOREM 14.7 Tangential and Normal Components of the Acceleration
The acceleration vector of an object moving in space along a smooth curve has the 
following representation in terms of its tangential component aT (in the direction 
of T) and its normal component aN (in the direction of N):

a = aN N + aT T,

where aN = k 0 v 0 2 =
0 v * a 0
0 v 0  and aT =

d2s

dt2  .

➤ Note that aN and aT are defined even at 
points where k = 0 and N is undefined.

The tangential component of the acceleration, in the direction of T, is the usual accel-
eration aT = d2s>dt2 of an object moving along a straight line (Figure 14.34). The normal 
component, in the direction of N, increases with the speed 0 v 0  and with the curvature. 
Higher speeds on tighter curves produce greater normal accelerations.

Tangential
component aTT

Trajectory in R3

Normal
component aNN

a

a

aTT

aNN

a 5 aNN 1 aTT

Figure 14.34
EXAMPLE 6 Acceleration on a circular path Find the components of the acceleration 
on the circular trajectory

r1t2 = 8R cos vt, R sin vt9 ,
where R and v are positive real numbers.

1 222 21

1

2

3

4

x

y
Parabolic trajectory
r(t) 5 kt, t2l

t 5 2

t 5 1

t 5 0

t 5 21

t 5 22

t . 0t , 0

Leaving bendApproaching bend

Figure 14.35

EXAMPLE 7 A bend in the road The driver of a car follows the parabolic 
trajectory r1t2 = 8 t, t29 , for -2 … t … 2, through a sharp bend (Figure 14.35). 
Find the tangential and normal components of the acceleration of the car.

SOLUTION We find that r′1t2 = 8 -Rv sin vt, Rv cos vt9 , 
0 v1t2 0 = 0 r′1t2 0 = Rv, and, by Example 2, k = 1>R. Recall that 
ds>dt = 0 v1t2 0 , which is constant; therefore, d2s>dt2 = 0 and the tangential 
component of the acceleration is zero. The acceleration is

a = k 0 v 0 2 N +
d2s

dt2  T =
1
R

 1Rv22 N = Rv2 N.
"
 0

On a circular path (traversed at constant speed), the acceleration is entirely in 
the normal direction, orthogonal to the tangent vectors. The acceleration in-
creases with the radius of the circle R and with the frequency of the motion v.

Related Exercise 36 
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 14.5 Curvature and Normal Vectors 909

➤ Using the fact that 0T 0 = 0N 0 = 1, we 
have, from Section 13.3,

aN = scalNa =
a # N
0N 0 = a # N

and

aT = scalTa =
a # T
0T 0 = a # T =

v # a
0 v 0 .

SOLUTION The velocity and acceleration vectors are easily computed: 
v1t2 = r′1t2 = 81, 2t9  and a1t2 = r″1t2 = 80, 29 . The goal is to express a = 80, 29  
in terms of T and N. A short calculation reveals that

T =
v
0 v 0 =

81, 2t921 + 4t2
 and N =

d  T>dt

0 d  T>dt 0 =
8 -2t, 1921 + 4t2

 .

We now have two ways to proceed. One is to compute the normal and tangential compo-
nents of the acceleration directly using the definitions. More efficient is to note that T and 
N are orthogonal unit vectors, and then to compute the scalar projections of a = 80, 29  
in the directions of T and N. We find that

aN = a # N = 80, 29 # 8 -2t, 1921 + 4t2
=

221 + 4t2

and

aT = a # T = 80, 29 # 81, 2t921 + 4t2
=

4t21 + 4t2
.

You should verify that at all times (Exercise 76),

a = aN N + aT T =
221 + 4t2

 1N + 2t T2 = 80, 29 .

Let’s interpret these results. First notice that the driver negotiates the curve in a sensible 
way: The speed 0 v 0 = 21 + 4t2 decreases as the car approaches the origin (the tightest 
part of the curve) and increases as it moves away from the origin (Figure 14.36). As the 
car approaches the origin (t 6 0), T points in the direction of the trajectory and N points 

to the inside of the curve. However, aT =
d2s

dt2 6 0 when t 6 0, so aT T points in the  

direction opposite that of T (corresponding to a deceleration). As the car leaves the origin  
(t 7 0), aT 7 0 (corresponding to an acceleration) and aTT and T point in the direction of 
the trajectory. At all times, N points to the inside of the curve (Figure 14.36; Exercise 78).

Related Exercise 38 

1 222 21

2

3

4

x

y

a

Parabolic trajectory
r 5 kt, t2l

0

aTT
(aT , 0)

aTT
(aT . 0)

aNN aNN

a a

a 5 k0, 2l
for all t.

Figure 14.36

QUICK CHECK 5 Verify that T and 
N given in Example 7 satisfy 
0T 0 = 0N 0 = 1 and that T # N = 0. 

The Binormal Vector and Torsion
We have seen that the curvature function and the principal unit normal vector tell us how 
quickly and in what direction a curve turns. For curves in two dimensions, these quantities 
give a fairly complete description of motion along the curve. However, in three dimen-
sions, a curve has more “room” in which to change its course, and another descriptive 
function is often useful. Figure 14.37 shows a smooth parameterized curve C with its unit 
tangent vector T and its principal unit normal vector N at two different points. These two 
vectors determine a plane called the osculating plane (Figure 14.37b). The question we 
now ask is, How quickly does the curve C move out of the plane determined by T and N?

TNB frame
changes
orientation
along the curve.

z

(a)

B

N

T

y
x

  

Osculating plane
formed by
T and N

N

B

T

z

(b)

y
x

Figure 14.37
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910 Chapter 14  •  Vector-Valued Functions

Notice that by definition, N =
1
k

 
d  T
ds

, which implies that N and 
d  T
ds

 are scalar multiples of 

each other. Therefore, their cross product is the zero vector.

The properties of 
d  B
ds

 become clear with the following observations.

• 
d  B
ds

 is orthogonal to both T and 
d N
ds

 , because it is the cross product of T and 
d N
ds

 .

• Applying Theorem 14.2 to the unit vector B, it follows that 
d  B
ds

 is also orthogonal to B.

• By the previous two observations, 
d  B
ds

 is orthogonal to both B and T, so it must be par-
allel to N.

Because 
d B
ds

 is parallel to (a scalar multiple of) N, we write

d  B
ds

= -tN,

where the scalar t is the torsion. Notice that ` d B
ds
` = 0 -tN 0 = 0 -t 0 , so the magnitude 

of the torsion equals the magnitude of 
d  B
ds

 , which is the rate at which the curve twists out  

of the TN-plane.
A short calculation gives a method for computing the torsion. We take the dot product 

of both sides of the equation defining the torsion with N:

 
d  B
ds

# N = -tN # N       ()*
         1

 
d  B
ds

# N = -t. N is a unit vector.

➤ Note that B is a unit vector (of constant 
length). Therefore, by Theorem 14.2,  
B and B′1t2 are orthogonal. Because 
B′1t2 and B′1s2 are parallel, it follows 
that B and B′1s2 are orthogonal.

➤ The negative sign in the definition of the 
torsion is conventional. However, t may 
be positive or negative (or zero), and in 
general, it varies along the curve.

➤ Notice that B and t depend on the 
orientation of the curve.

QUICK CHECK 7 Explain why  
N # N = 1. 

DEFINITION Unit Binormal Vector and Torsion

Let C be a smooth parameterized curve with unit tangent and principal unit 
normal vectors T and N, respectively. Then at each point of the curve at which the 
curvature is nonzero, the unit binormal vector is

B = T * N, 
and the torsion is

t = -  
d  B
ds

# N.

➤ The TNB frame is also called the Frenet-
Serret frame, after two 19th-century 
French mathematicians, Jean Frenet and 
Joseph Serret.

QUICK CHECK 6 Explain why 
B = T * N is a unit vector. 

To answer this question, we begin by defining the unit binormal vector B = T * N.  
By the definition of the cross product, B is orthogonal to T and N. Because T and N are 
unit vectors, B is also a unit vector. Notice that T, N, and B form a right-handed coordi-
nate system (like the xyz-coordinate system) that changes its orientation as we move along 
the curve. This coordinate system is often called the TNB frame (Figure 14.37).

The rate at which the curve C twists out of the plane determined by T and N is the 

rate at which B changes as we move along C, which is 
d B
ds

 . A short calculation leads to a  

practical formula for the twisting of the curve. Differentiating the cross product T * N, 
we find that

 
d  B
ds

=
d
ds

 1T * N2

  =
d T
ds

* N + T *
d N
ds

 Product Rule for cross products
   (+)+*
 parallel vectors

  = T *
d N
ds

 . 
d  T
ds

 and N are parallel; 
d  T
ds

* N = 0.
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 14.5 Curvature and Normal Vectors 911

Figure 14.38 provides some interpretation of the curvature and the torsion. First, we see a 
smooth curve C passing through a point where the mutually orthogonal vectors T, N, and 
B are defined. The osculating plane is defined by the vectors T and N. The plane orthogo-

nal to the osculating plane containing N is called the normal plane. Because N and 
d  B
ds

 

are parallel, 
d  B
ds

 also lies in the normal plane. The torsion, which is equal in magnitude to 

` d  B
ds
` , gives the rate at which the curve moves out of the osculating plane. In a comple-

mentary way, the curvature, which is equal to ` d  T
ds
` , gives the rate at which the curve  

turns within the osculating plane. Two examples will clarify these concepts.Normal plane

Osculating plane

N

T
B

yx

z

Figure 14.38

➤ The third plane formed by the vectors T 
and B is called the rectifying plane.

EXAMPLE 8 Unit binormal vector Consider the circle C defined by

r1t2 = 8R cos t, R sin t9 , for 0 … t … 2p, with R 7 0.

a. Without doing any calculations, find the unit binormal vector B and determine the torsion.

b. Use the definition of B to calculate B and confirm your answer in part (a).

SOLUTION

a. The circle C lies in the xy-plane, so at all points on the circle, T and N are in the  
xy-plane. Therefore, at all points of the circle, B = T * N is the unit vector in the 
positive z-direction (by the right-hand rule); that is, B = k. Because B changes in  

neither length nor direction, 
d  B
ds

= 0 and t = 0 (Figure 14.39).

b. Building on the calculations of Example 2, we find that

T = 8 -sin t, cos t9 and N = 8 -cos t, -sin t9 .
Therefore, the unit binormal vector is

B = T * N = †
i j k

-sin t cos t 0
-cos t -sin t 0

† = 0 # i - 0 # j + 1 # k = k.

As in part (a), it follows that the torsion is zero.
Related Exercise 41 

Generalizing Example 8, it can be shown that the binormal vector of any curve that 
lies in the xy-plane is always parallel to the z-axis; therefore, the torsion of the curve is 
everywhere zero.

C: r(t) 5 kR cos t, R sin tl

B 5 k0, 0, 1l
at all points,
so t 5 0.

B

N

T

z

y
x

P

Figure 14.39

EXAMPLE 9 Torsion of a helix Compute the torsion of the helix 
r1t2 = 8a cos t, a sin t, bt9 , for t Ú 0, a 7 0, and b 7 0.

SOLUTION In Example 5, we found that

T =
8 -a sin t, a cos t, b92a2 + b2

 and N = 8 -cos t, -sin t, 09 .

Therefore,

B = T * N =
12a2 + b2

 †
i j k

-a sin t a cos t b
-cos t -sin t 0

† = 8b sin t, -b cos t, a92a2 + b2
 .

The next step is to determine 
d  B
ds

 , which we do in the same way we computed 
d  T
ds

 , by 

writing

d  B
dt

=
d  B
ds

# ds
dt
 or 

d  B
ds

=
d  B>dt

ds>dt
 .
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912 Chapter 14  •  Vector-Valued Functions

In this case,

ds
dt

= 0 r′1t2 0 = 2a2 sin2 t + a2 cos2 t + b2 = 2a2 + b2.

Computing 
d  B
dt

 , we have

d  B
ds

=
d  B>dt

ds>dt
=
8b cos t, b sin t, 09

a2 + b2  .

The final step is to compute the torsion:

t = -
d  B
ds

# N = -
8b cos t, b sin t, 09

a2 + b2
# 8 -cos t, -sin t, 09 =

b

a2 + b2 .

We see that the torsion is constant over the helix. In Example 4, we found that the  
curvature of a helix is also constant. This special property of circular helices means  
that the curve turns about its axis at a constant rate and rises vertically at a constant rate 
(Figure 14.40).

Related Exercise 47 

Example 9 suggests that the computation of the binormal vector and the torsion can 
be involved. We close by stating some alternative formulas for B and t that may simplify 
calculations in some cases. Letting v = r′1t2 and a = v′1t2 = r″1t2, the binormal vector 
can be written compactly as (Exercise 83)

B = T * N =
v * a
0 v * a 0  .

We also state without proof that the torsion may be expressed in either of the forms

t =
1v * a2 # a′
0 v * a 0 2  or t =

1r′ * r″2 # r‴
0 r′ * r″ 0 2  .

r(t) 5 ka cos t, a sin t, btl

B

N

T

z

y
x

P

t 5
b

a2 1 b2

Figure 14.40

SUMMARY Formulas for Curves in Space

Position function: r1t2 = 8x1t2, y1t2, z1t29
Velocity: v = r′
Acceleration: a = v′

Unit tangent vector: T =
v
0 v 0

Principal unit normal vector: N =
d  T>dt

0 d  T>dt 0  1provided d  T>dt ≠ 02

Curvature: k = ` d  T
ds
` = 1

0 v 0 `
d  T
dt
` = 0 v * a 0

0 v 0 3

Components of acceleration: a = aNN + aTT, where aN = k 0 v 0 2 =
0 v * a 0
0 v 0  

and aT =
d2s

dt2 =
v # a
0 v 0

Unit binormal vector: B = T * N =
v * a
0 v * a 0

Torsion: t = -
d  B
ds

# N =
1v * a2 # a′
0 v * a 0 2 =

1r′ * r″2 # r‴
0 r′ * r″ 0 2
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 14.5 Curvature and Normal Vectors 913

Getting Started
1. What is the curvature of a straight line?

2. Explain in words the meaning of the curvature of a curve. Is it a 
scalar function or a vector function?

3. Give a practical formula for computing curvature.

4. Interpret the principal unit normal vector of a curve. Is it a scalar 
function or a vector function?

5. Give a practical formula for computing the principal unit normal 
vector.

6. Explain how to decompose the acceleration vector of a moving 
object into its tangential and normal components.

7. Explain how the vectors T, N, and B are related geometrically.

8. How do you compute B?

9. Give a geometrical interpretation of torsion.

10. How do you compute torsion?

Practice Exercises
11–20. Curvature Find the unit tangent vector T and the curvature k 
for the following parameterized curves.

11. r1t2 = 82t + 1, 4t - 5, 6t + 129
12. r1t2 = 82 cos t, -2 sin t9
13. r1t2 = 82t, 4 sin t, 4 cos t9
14. r1t2 = 8cos t2, sin t29
15. r1t2 = 813 sin t, sin t, 2 cos t9
16. r1t2 = 8 t, ln cos t9
17. r1t2 = 8 t, 2t29
18. r1t2 = 8cos3 t, sin3 t9

19. r1t2 = h ∫ t

0
 cos 

pu2

2
 du, ∫ t

0
 sin 

pu2

2
 dui, t 7 0

20. r1t2 = h ∫ t

0
cos u2 du, ∫ t

0
 sin u2 dui, t 7 0

21–26. Alternative curvature formula Use the alternative curvature 

formula k =
�v * a �
�v � 3  to find the curvature of the following param-

eterized curves.

21. r1t2 = 8 -3 cos t, 3 sin t, 09
22. r1t2 = 84t, 3 sin t, 3 cos t9
23. r1t2 = 84 + t2, t, 09
24. r1t2 = 813 sin t, sin t, 2 cos t9
25. r1t2 = 84 cos t, sin t, 2 cos t9
26. r1t2 = 8et cos t, et sin t, et9
27–34. Principal unit normal vector Find the unit tangent vector T 
and the principal unit normal vector N for the following parameterized 
curves. In each case, verify that 0T 0 = 0N 0 = 1 and T # N = 0.

27. r1t2 = 82 sin t, 2 cos t9  28. r1t2 = 84 sin t, 4 cos t, 10t9

SECTION 14.5 EXERCISES

29. r1t2 = h t2

2
 , 4 - 3t, 1i 30. r1t2 = h t2

2
 , 

t3

3
i, t 7 0

31. r1t2 = 8cos t2, sin t29  32. r1t2 = 8cos3 t, sin3 t9
33. r1t2 = 8 t2, t9  34. r1t2 = 8 t, ln cos t9
35–40. Components of the acceleration Consider the following 
trajectories of moving objects. Find the tangential and normal compo-
nents of the acceleration.

35. r1t2 = 8 t, 1 + 4t, 2 - 6t9  36. r1t2 = 810 cos t, -10 sin t9
37. r1t2 = 8et cos t, et sin t, et9  38. r1t2 = 8 t, t2 + 19
39. r1t2 = 8 t3, t29  40. r1t2 = 820 cos t, 20 sin t, 30t9
41–44. Computing the binormal vector and torsion In Exercises 
27–30, the unit tangent vector T and the principal unit normal vector 
N were computed for the following parameterized curves. Use the  
definitions to compute their unit binormal vector and torsion.

41. r1t2 = 82 sin t, 2 cos t9  42. r1t2 = 84 sin t, 4 cos t, 10t9

43. r1t2 = h t2

2
, 4 - 3t, 1i 44. r1t2 = h t2

2
, 

t3

3
i, t 7 0

45–48. Computing the binormal vector and torsion Use the defini-
tions to compute the unit binormal vector and torsion of the following 
curves.

45. r1t2 = 82 cos t, 2 sin t, - t9
46. r1t2 = 8 t, cosh t, -sinh t9
47. r1t2 = 812t, 5 cos t, 5 sin t9
48. r1t2 = 8sin t - t cos t, cos t + t sin t, t9
49. Explain why or why not Determine whether the following state-

ments are true and give an explanation or counterexample.

a. The position, unit tangent, and principal unit normal vectors (r, 
T, and N) at a point lie in the same plane.

b. The vectors T and N at a point depend on the orientation of a 
curve.

c. The curvature at a point depends on the orientation of a curve.
d. An object with unit speed ( 0 v � = 1) on a circle of radius R has 

an acceleration of a = N>R.
e. If the speedometer of a car reads a constant 60 mi>hr, the car 

is not accelerating.
f. A curve in the xy-plane that is concave up at all points has 

positive torsion.
g. A curve with large curvature also has large torsion.

50. Special formula: Curvature for y = ƒ 1x 2  Assume ƒ is twice 
differentiable. Prove that the curve y = ƒ1x2 has curvature

k1x2 = 0 ƒ″1x2 0
11 + ƒ′1x2223>2 .

(Hint: Use the parametric description x = t, y = ƒ1t2.)
51–54. Curvature for y = ƒ 1x 2  Use the result of Exercise 50 to find 
the curvature function of the following curves.

51. ƒ1x2 = x2 52. ƒ1x2 = 2a2 - x2

53. ƒ1x2 = ln x 54. ƒ1x2 = ln cos x
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914 Chapter 14  •  Vector-Valued Functions

55. Special formula: Curvature for plane curves Show that the 
parametric curve r1t2 = 8ƒ1t2, g1t29 , where ƒ and g are twice 
differentiable, has curvature

k1t2 = 0 ƒ′g″ - ƒ″g′ �

11ƒ′22 + 1g′2223>2 ,

where all derivatives are taken with respect to t.

56–59. Curvature for plane curves Use the result of Exercise 55 to 
find the curvature function of the following curves.

56. r1t2 = 8a sin t, a cos t9 1circle2
57. r1t2 = 8a sin t, b cos t9 1ellipse2
58. r1t2 = 8a cos3 t, a sin3 t9 1astroid2
59. r1t2 = 8 t, at29 1parabola2
When appropriate, consider using the special formulas derived in  
Exercises 50 and 55 in the remaining exercises.

60–63. Same paths, different velocity The position functions of  
objects A and B describe different motion along the same path for 
t Ú 0.

a. Sketch the path followed by both A and B.
b. Find the velocity and acceleration of A and B and discuss the  

differences.
c. Express the acceleration of A and B in terms of the tangential and 

normal components and discuss the differences.

60. A: r1t2 = 81 + 2t, 2 - 3t, 4t9 , B: r1t2 = 81 + 6t, 2 - 9t, 12t9
61. A: r1t2 = 8 t, 2t, 3t9 , B: r1t2 = 8 t2, 2t2, 3t29
62. A: r1t2 = 8cos t, sin t9 , B: r1t2 = 8cos 3t, sin 3t9
63. A: r1t2 = 8cos t, sin t9 , B: r1t2 = 8cos t2, sin t29
64–67. Graphs of the curvature Consider the following curves.

a. Graph the curve.
b. Compute the curvature.
c. Graph the curvature as a function of the parameter.
d. Identify the points (if any) at which the curve has a maximum or 

minimum curvature.
e. Verify that the graph of the curvature is consistent with the graph  

of the curve.

64. r1t2 = 8 t, t29 , for -2 … t … 2 1parabola2
65. r1t2 = 8 t - sin t, 1 - cos t9 , for 0 … t … 2p 1cycloid2
66. r1t2 = 8 t, sin t9 , for 0 … t … p 1sine curve2

67. r1t2 = h t2

2
 , 

t3

3
i, for t 7 0

68. Curvature of ln x Find the curvature of ƒ1x2 = ln x, for x 7 0, 
and find the point at which it is a maximum. What is the value of 
the maximum curvature?

69. Curvature of ex Find the curvature of ƒ1x2 = ex and find the 
point at which it is a maximum. What is the value of the maxi-
mum curvature?

70. Circle and radius of curvature Choose a point P on a smooth 
curve C in the plane. The circle of curvature (or osculating 
circle) at P is the circle that (a) is tangent to C at P, (b) has the 
same curvature as C at P, and (c) lies on the same side of C as the 
principal unit normal N (see figure). The radius of curvature is 

T

the radius of the circle of curvature. Show that the radius of  
curvature is 1>k, where k is the curvature of C at P.

N

N r(t)

Circles of curvature

Radius of curvature 5
1
k

P

P

71–73. Finding the radius of curvature Find the radius of curvature 
(see Exercise 70) of the following curves at the given point. Then write 
an equation of the circle of curvature at the point.

71. r1t2 = 8 t, t29  (parabola) at t = 0

72. y = ln x at x = 1

73. r1t2 = 8 t - sin t, 1 - cos t9  (cycloid) at t = p

74. Designing a highway curve The function 

r1t2 = h ∫ t

0
 cos 

u2

2
du, ∫ t

0
 sin 

u2

2
dui, 

whose graph is called a clothoid or Euler spiral (Figure A), has 
applications in the design of railroad tracks, roller coasters, and 
highways.

(A)

Clothoid

y

xO

(B)

O x

y

 (C)

O

A

x

y

Easement curve

a. A car moves from left to right on a straight highway, approach-
ing a curve at the origin (Figure B). Sudden changes in curvature 
at the start of the curve may cause the driver to jerk the steering 
wheel. Suppose the curve starting at the origin is a segment of a 
circle of radius a. Explain why there is a sudden change in the 
curvature of the road at the origin. (Hint: See Exercise 70.)
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b. A better approach is to use a segment of a clothoid as an ease-
ment curve, in between the straight highway and a circle, 
to avoid sudden changes in curvature (Figure C). Assume 
the easement curve corresponds to the clothoid r1t2, for 
0 … t … 1.2. Find the curvature of the easement curve as a 
function of t, and explain why this curve eliminates the sudden 
change in curvature at the origin.

c. Find the radius of a circle connected to the easement curve at 
point A (that corresponds to t = 1.2 on the curve r1t2) so that 
the curvature of the circle matches the curvature of the ease-
ment curve at point A.

75. Curvature of the sine curve The function ƒ1x2 = sin nx, where 

n is a positive real number, has a local maximum at x =
p

2n
 .  

Compute the curvature k of ƒ at this point. How does k vary (if at  
all) as n varies?

76. Parabolic trajectory In Example 7 it was shown that for 
the parabolic trajectory r1t2 = 8 t, t29 , a = 80, 29  and 

a =
221 + 4t2

 1N + 2t T2. Show that the second expression  

for a reduces to the first expression.

77. Parabolic trajectory Consider the parabolic trajectory

x = 1V0 cos a2t, y = 1V0 sin a2t -
1
2

 gt2,   

where V0 is the initial speed, a is the angle of launch, and g is the 
acceleration due to gravity. Consider all times 30, T4 for which 
y Ú 0.

a. Find and graph the speed, for 0 … t … T.
b. Find and graph the curvature, for 0 … t … T.
c. At what times (if any) do the speed and curvature have maxi-

mum and minimum values?

Explorations and Challenges
78. Relationship between T, N, and a Show that if an object acceler-

ates in the sense that 
d2s

dt2 7 0 and k ≠ 0, then the acceleration  

vector lies between T and N in the plane of T and N. Show that if 

an object decelerates in the sense that 
d2s

dt2 6 0, then the accelera-

tion vector lies in the plane of T and N, but not between T and N.

79. Zero curvature Prove that the curve

r1t2 = 8a + bt p, c + dt p, e + ƒt p9 ,
where a, b, c, d, e, and ƒ are real numbers and p is a positive 
integer, has zero curvature. Give an explanation.

80. Practical formula for N Show that the definition of the principal 

unit normal vector N =
d T>ds

�d T>ds �
 implies the practical formula 

N =
d T>dt

�d T>dt �
 . Use the Chain Rule and recall that 0 v 0 = ds

dt
7 0.

T

81. Maximum curvature Consider the “superparabolas” ƒn1x2 = x2n,  
where n is a positive integer.

a. Find the curvature function of ƒn, for n = 1, 2, and 3.
b. Plot ƒn and their curvature functions, for n = 1, 2, and 3, and 

check for consistency.
c. At what points does the maximum curvature occur, for 

n = 1, 2, and 3?
d. Let the maximum curvature for ƒn occur at x = {zn. Using 

either analytical methods or a calculator, determine lim
nS∞

 zn. 
Interpret your result.

82. Alternative derivation of curvature Derive the computational 
formula for curvature using the following steps.

a. Use the tangential and normal components of the acceleration 
to show that v * a = k 0 v 0 3B. (Note that T * T = 0.)

b. Solve the equation in part (a) for k and conclude that 

k =
�v * a �
�v � 3  , as shown in the text.

83. Computational formula for B Use the result of part (a) of  
Exercise 82 and the formula for k to show that

B =
v * a

0 v * a 0  .

84. Torsion formula Show that the formula defining torsion, 

t = -  
d  B
ds

# N, is equivalent to t = -  
1

0 v 0
d  B
dt

# N. The second  

formula is generally easier to use.

85. Descartes’ four-circle solution Consider the four mutually tan-
gent circles shown in the figure that have radii a, b, c, and d, and 

curvatures A =
1
a

 , B =
1
b

 , C =
1
c

 , and D =
1
d

 . Prove Descartes’  

result (1643) that

1A + B + C + D22 = 21A2 + B2 + C2 + D22.

QUICK CHECK ANSWERS

1. k = 1
3 2. k = 0 3. Negative y-direction

4. k = 0, so N is undefined. 6. 0T 0 = 0N 0 = 1,  
so 0B 0 = 1 7. For any vector, u # u = �u � 2. Because 
0N 0 = 1, N # N = 1. 

T
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916 Chapter 14  •  Vector-Valued Functions

1. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. If r1t2 = 8cos t, et, t9 + C and r102 = 80, 0, 09 , then 
C = 80, 0, 09 .

b. The curvature of a circle of radius 5 is k = 1>5.
c. The graph of r1t2 = 83 cos t, 0, 6 sin t9  is an ellipse in the  

xz-plane.
d. If r′1t2 = 0, then r1t2 = 8a, b, c9 , where a, b, and c are real 

numbers.
e. The parameterized curve r1t2 = 85 cos t, 12 cos t, 13 sin t9  

has arc length as a parameter.
f. The position vector and the principal unit normal are always 

parallel on a smooth curve.

2. Sets of points Describe the set of points satisfying the equations 
x2 + z2 = 1 and y = 2.

3–6. Graphing curves Sketch the curves described by the following 
functions, indicating the orientation of the curve. Use analysis and de-
scribe the shape of the curve before using a graphing utility.

3. r1t2 = 12t + 12 i + t j

4. r1t2 = 8cos t, 1 + cos2 t9 , for 0 … t … p>2
5. r1t2 = 4 cos t i + j + 4 sin t k, for 0 … t … 2p

6. r1t2 = et i + 2et j + k, for t Ú 0

7. Intersection curve A sphere S and a plane P intersect along the 
curve r1t2 = sin t i + 12 cos t j + sin t k, for 0 … t … 2p. 
Find equations for S and P and describe the curve r.

8–13. Vector-valued functions Find a function r1t2 that describes 
each of the following curves.

8. The line segment from P12, -3, 02 to Q11, 4, 92
9. The line passing through the point P14, -2, 32 that is orthogonal 

to the lines R1t2 = 8 t, 5t, 2t9  and S1t2 = 8 t + 1, -1, 3t - 19
10. A circle of radius 3 centered at 12, 1, 02 that lies in the plane 

y = 1

11. An ellipse in the plane x = 2 satisfying the equation 
y2

9
+

z2

16
= 1

12. The projection of the curve onto the xy-plane is the parabola 
y = x2, and the projection of the curve onto the xz-plane is the 
line z = x.

13. The projection of the curve onto the xy-plane is the unit circle 
x2 + y2 = 1, and the projection of the curve onto the yz-plane is 
the line segment z = y, for -1 … y … 1.

14–15. Intersection curve Find the curve r1t2 where the following 
surfaces intersect.

14. z = x2 - 5y2; z = 10x2 + 4y2 - 36

15. x2 + 7y2 + 2z2 = 9; z = y

16–19. Working with vector-valued functions For each vector-valued 
function r, carry out the following steps.

a. Evaluate lim
tS0

 r1t2 and lim
tS∞

 r1t2, if each exists.

b. Find r′1t2 and evaluate r′102.

T

c. Find r″1t2.
d. Evaluate #r1t2 dt.

16. r1t2 = 8 t + 1, t2 - 39  17. r1t2 = h 1
2t + 1

 , 
t

t + 1
i

18. r1t2 = 8e-2t, te-t, tan-1t9  19. r1t2 = 8sin 2t, 3 cos 4t, t9
20–21. Definite integrals Evaluate the following definite integrals.

20. ∫3

1
a6t2 i + 4t j +

1
t
 kb  dt

21. ∫1

-1
asin pt i + j +

2

1 + t2 kb  dt

22–24. Derivative rules Suppose u and v are differentiable functions at 
t = 0 with u102 = 82, 7, 09 , u′102 = 83, 1, 29 , v102 = 83, -1, 09 , 
and v′102 = 85, 0, 39 . Evaluate the following expressions.

22. 
d
dt

 1u # v2 `
t=0

 23. 
d
dt
1u * v2 `

t=0

24. 
d
dt
1u1e5t - 122 `

t=0

25–27. Finding r from r′ Find the function r that satisfies the given 
conditions.

25. r′1t2 = 81, sin 2t, sec2t9 ; r102 = 82, 2, 29
26. r′1t2 = 8et, 2e2t, 6e3t9 ; r102 = 81, 3, -19

27. r′1t2 = h 4

1 + t2 , 2t + 1, 3t2i; r112 = 80, 0, 09

28–29. Unit tangent vectors Find the unit tangent vector T1t2 for the 
following parameterized curves. Then determine the unit tangent vector 
at the given value of t.

28. r1t2 = 88, 3 sin 2t, 3 cos 2t9 , for 0 … t … p; t = p>4
29. r1t2 = 82et, e2t, t9 , for 0 … t … 2p; t = 0

30–31. Velocity and acceleration from position Consider the follow-
ing position functions.

a. Find the velocity and speed of the object.
b. Find the acceleration of the object.

30. r1t2 = h 5
3

 t3 + 1, t2 + 10ti, for t Ú 0

31. r1t2 = h e4t + 1, e4t, 
1
2

 e4t + 1i, for t Ú 0

32–33. Solving equations of motion Given an acceleration vector,  
initial velocity 8u0, v09 , and initial position 8x0, y09 , find the velocity 
and position vectors for t Ú 0.

32. a1t2 = 81, 49 , 8u0, v09 = 84, 39 , 8x0, y09 = 80, 29
33. a1t2 = 8cos t, 2 sin t9 , 8u0, v09 = 82, 19 , 8x0, y09 = 81, 29
34. Orthogonal r and r′ Find all points on the ellipse 

r1t2 = 81, 8 sin t, cos t9 , for 0 … t … 2p, at which r1t2 and 
r′1t2 are orthogonal. Sketch the curve and the tangent vectors to 
verify your conclusion.

T

CHAPTER 14 REVIEW EXERCISES
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42. Basketball shot A basketball is shot at an angle of 45° to the  
horizontal. The center of the basketball is at the point A10, 82 at 
the moment it is released, and it passes through the center of the  
basketball hoop that is located at the point B118, 102. Assume the 
basketball does not hit the front of the hoop (otherwise it might 
not pass through the basket). The validity of this assumption is 
investigated in parts (d), (e), and (f ).

4 82 6 10

y

x1412 16 180

8

12

14

10

a. Determine the initial speed of the basketball.
b. Find the initial velocity v102 at the moment it is released.
c. Find the position function r1t2 of the center of the basketball t 

seconds after the ball is released. Assume r102 = 80, 89 .
d. Find the distance s1t2 between the center of the basketball  

and the front of the basketball hoop t seconds after the ball is 
released. Assume the diameter of the basketball hoop is  
18 inches.

e. Determine the closest distance (in inches) between the center 
of the basketball and the front of the basketball hoop.

f. Is the assumption that the basketball does not hit the front of 
the hoop valid? Use the fact that the diameter of a women’s 
basketball is about 9.23 inches. (Hint: The ball hits the front 
of the hoop if, during its flight, the distance from the center of 
the ball to the front of the hoop is less than the radius of the 
basketball.)

43–46. Arc length Find the arc length of the following curves.

43. r1t2 = h t2, 
412

3
 t3>2, 2ti, for 1 … t … 3

44. r1t2 = 82t9>2, t39 , for 0 … t … 2

45. r1t2 = 8sin t, t + cos t, 4t9 , for 0 … t …
p

2

46. r1t2 = 8 t, ln sec t, ln 1sec t + tan t29 , for 0 … t …
p

4

47. Velocity and trajectory length The acceleration of a wayward 
firework is given by a1t2 = 12 j + 2t k, for 0 … t … 3.  
Suppose the initial velocity of the firework is v102 = i.

a. Find the velocity of the firework, for 0 … t … 3.
b. Find the length of the trajectory of the firework over the  

interval 0 … t … 3.

48–49. Arc length parameterization Find a description of the follow-
ing curves that uses arc length as a parameter.

48. r1t2 = 11 + 4t2i - 3t j, for t Ú 1

49. r1t2 = h t2, 
412

3
 t3>2, 2ti, for t Ú 0

T

T

35–36. Modeling motion Consider the motion of the following  
objects. Assume the x-axis is horizontal, the positive y-axis is  
vertical, the ground is horizontal, and only the gravitational force  
acts on the object.

a. Find the velocity and position vectors, for t Ú 0.
b. Determine the time of flight and range of the object.
c. Determine the maximum height of the object.

35. A baseball has an initial position 8x0, y09 = 80, 39  ft when it is 
hit at an angle of 60° with an initial speed of 80 ft>s.

36. A rock is thrown from 2 m above horizontal ground at an angle of 
30° above the horizontal with a speed of 6 m>s. Assume the initial 
position of the rock is 8x0, y09 = 80, 29 .

37. A baseball is hit 2 ft above home plate with an initial velocity  
of 840, 20, 409  ft>s. The spin on the baseball produces a horizon-
tal acceleration of the ball of 4 ft>s2 in the eastward direction.  
Assume the positive x-axis points east and the positive y-axis 
points north.

a. Find the velocity and position vectors, for t Ú 0. Assume the 
origin is at home plate.

b. When does the ball hit the ground? Round your answer to 
three digits to the right of the decimal place.

c. How far does it land from home plate? Round your answer to 
the nearest whole number.

38. Firing angles A projectile is fired over horizontal ground from 
the ground with an initial speed of 40 m>s. What firing angles 
produce a range of 100 m?

39. Projectile motion A projectile is launched from the origin, 
which is a point 50 ft from a 30-ft vertical cliff (see figure). It is 
launched at a speed of 5012 ft>s at an angle of 45° to the hori-
zontal. Assume the ground is horizontal on top of the cliff and that 
only the gravitational force affects the motion of the object.

458

x

y

10

10

20

30

20 30 40 50

a. Give the coordinates of the landing spot of the projectile on the 
top of the cliff.

b. What is the maximum height reached by the projectile?
c. What is the time of flight?
d. Write the integral that gives the length of the trajectory.
e. Approximate the length of the trajectory.
f. What is the range of launch angles needed to clear the edge of 

the cliff?

40. Baseball motion A toddler on level ground throws a baseball into 
the air at an angle of 30° with the ground from a height of 2 ft.  
If the ball lands 10 ft from the child, determine the initial speed of 
the ball.

41. Closest point Find the approximate location of the point on 
the curve r1t2 = 8 t, t2 + 1, 3t9  that lies closest to the point 
P13, 1, 62.

T

T

T

T

 Review Exercises 917
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918 Chapter 14  •  Vector-Valued Functions

50. Tangents and normals for an ellipse Consider the ellipse 
r1t2 = 83 cos t, 4 sin t9 , for 0 … t … 2p.

a. Find the tangent vector r′, the unit tangent vector T, and the 
principal unit normal vector N at all points on the curve.

b. At what points does 0 r′ 0  have maximum and minimum values?
c. At what points does the curvature have maximum and mini-

mum values? Interpret this result in light of part (b).
d. Find the points (if any) at which r and N are parallel.

51–54. Properties of space curves Do the following calculations.

a. Find the tangent vector and the unit tangent vector.
b. Find the curvature.
c. Find the principal unit normal vector.
d. Verify that 0N � = 1 and T # N = 0.
e. Graph the curve and sketch T and N at two points.

51. r1t2 = 86 cos t, 3 sin t9 , for 0 … t … 2p

52. r1t2 = cos t i + 2 sin t j + k, for 0 … t … 2p

53. r1t2 = cos t i + 2 cos t j + 15 sin t k, for 0 … t … 2p

54. r1t2 = t i + 2 cos t j + 2 sin t k, for 0 … t … 2p

55–58. Analyzing motion Consider the position vector of the following 
moving objects.

a. Find the normal and tangential components of the acceleration.
b. Graph the trajectory and sketch the normal and tangential compo-

nents of the acceleration at two points on the trajectory. Show that 
their sum gives the total acceleration.

55. r1t2 = 2 cos t i + 2 sin t j, for 0 … t … 2p

56. r1t2 = 3t i + 14 - t2 j + t k, for t Ú 0

57. r1t2 = 1t2 + 12 i + 2t j, for t Ú 0

58. r1t2 = 2 cos t i + 2 sin t j + 10t k, for 0 … t … 2p

59. Computing the binormal vector and torsion Compute the unit 
binormal vector B and the torsion of the curve r1t2 = 8 t, t2, t39  
at t = 1.

60–61. Curve analysis Carry out the following steps for the given 
curves C.

a. Find T1t2 at all points of C.
b. Find N1t2 and the curvature at all points of C.
c. Sketch the curve and show T1t2 and N1t2 at the points of C corre-

sponding to t = 0 and t = p>2.
d. Are the results of parts (a) and (b) consistent with the graph?
e. Find B1t2 at all points of C.
f. On the graph of part (c), plot B1t2 at the points of C corresponding 

to t = 0 and t = p>2.
g. Describe three calculations that serve to check the accuracy of your 

results in parts (a)–( f ).
h. Compute the torsion at all points of C. Interpret this result.

60. C: r1t2 = 83 sin t, 4 sin t, 5 cos t9 , for 0 … t … 2p

61. C: r1t2 = 83 sin t, 3 cos t, 4t9 , for 0 … t … 2p

T

62. Torsion of a plane curve Suppose r1t2 = 8ƒ1t2, g1t2, h1t29 ,  
where ƒ, g, and h are the quadratic functions 
ƒ1t2 = a1t

2 + b1t + c1, g1t2 = a2t
2 + b2t + c2, and 

h1t2 = a3t
2 + b3t + c3, and where at least one of the leading 

coefficients a1, a2, and a3 is nonzero. Apart from a set of degener-
ate cases (for example, r1t2 = 8 t2, t2, t29 , whose graph is a line), 
it can be shown that the graph of r1t2 is a parabola that lies in a 
plane (Exercise 63).

a. Show by direct computation that v * a is constant. Then  
explain why the unit binormal vector is constant at all points 
on the curve. What does this result say about the torsion of  
the curve?

b. Compute a′1t2 and explain why the torsion is zero at all points 
on the curve for which the torsion is defined.

63. Families of plane curves Let ƒ and g be continuous on an interval 
I. Consider the curve

 C: r1t2 = 8a1ƒ1t2 + a2g1t2 + a3, b1ƒ1t2 + b2g1t2 + b3, 

 c1ƒ1t2 + c2g1t2 + c39 , 

for t in I, and where ai, bi, and ci, for i = 1, 2, and 3, are real  
numbers.

a. Show that, in general, C lies in a plane.
b. Explain why the torsion is zero at all points of C for which the 

torsion is defined.

64. Length of a DVD groove The capacity of a single-sided, single-
layer digital versatile disc (DVD) is approximately 4.7 billion 
bytes—enough to store a two-hour movie. (Newer double-sided, 
double-layer DVDs have about four times that capacity, and Blu-
ray discs are in the range of 50 gigabytes.) A DVD consists of a 
single “groove” that spirals outward from the inner edge to the 
outer edge of the storage region.

a. First consider the spiral given in polar coordinates by r =
tu
2p

 ,  

where 0 … u … 2pN and successive loops of the spiral are t  
units apart. Explain why this spiral has N loops and why the 
entire spiral has a radius of R = Nt units. Sketch three loops 
of the spiral.

b. Write an integral for the length L of the spiral with N loops.
c. The integral in part (b) can be evaluated exactly, but a good 

approximation can also be made. Assuming N is large, explain 
why u2 + 1 ≈ u2. Use this approximation to simplify the in-

tegral in part (b) and show that L ≈ tpN2 =
pR2

t
 .

d. Now consider a DVD with an inner radius of r = 2.5 cm and 
an outer radius of R = 5.9 cm. Model the groove by a spiral 
with a thickness of t = 1.5 microns = 1.5 * 10-6 m. Because 
of the hole in the DVD, the lower limit in the arc length inte-
gral is not u = 0. What are the limits of integration?

e. Use the approximation in part (c) to find the length of the DVD 
groove. Express your answer in centimeters and miles.

Chapter 14 Guided Projects

Applications of the material in this chapter and related topics can be found in the following Guided Projects. For additional information, 
see the Preface.

• Designing a trajectory

• Bezier curves for graphic design

• Kepler’s laws
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15

Chapter Preview The vectors of Chapter 13 and the vector-valued functions 
of Chapter 14 took us into three-dimensional space for the first time. In this chapter, we 
step into three-dimensional space along a different path by considering functions with 
several independent variables and one dependent variable. All the familiar properties of 
single-variable functions—domains, graphs, limits, continuity, and derivatives—have 
generalizations for multivariable functions, although you will also see subtle differences 
and new features. With functions of several independent variables, we work with partial 
derivatives, which, in turn, give rise to directional derivatives and the gradient, a funda-
mental concept in calculus. Partial derivatives allow us to find maximum and minimum 
values of multivariable functions. We define tangent planes, rather than tangent lines, that 
enable us to make linear approximations. The chapter ends with a survey of optimization 
problems in several variables.

15.1 Graphs and Level Curves
In Chapter 14, we discussed vector-valued functions with one independent variable and 
several dependent variables. We now reverse the situation and consider functions with 
several independent variables and one dependent variable. Such functions are aptly called 
functions of several variables or multivariable functions.

To set the stage, consider the following practical questions that illustrate a few of the 
many applications of functions of several variables.

• What is the probability that one man selected randomly from a large group of men 
weighs more than 200 pounds and is over 6 feet tall? (The answer depends on two vari-
ables, weight and height.)

• Where on the wing of an airliner flying at a speed of 550 mi>hr is the pressure  
greatest? (Pressure depends on the x-, y-, and z-coordinates of various points on the 
wing.)

• A physician knows the optimal blood concentration of an antibiotic needed by a patient. 
What dose of antibiotic is needed and how often should it be given to reach this  
optimal level? (The concentration depends (at least) on the amount of the dose, the fre-
quency with which it is administered, and the weight of the patient.)

Although we don’t answer these questions immediately, they clearly suggest the scope 
and importance of the topic. First, we must introduce the idea of a function of several 
variables.

Functions of Several 
Variables

15.1 Graphs and Level Curves

15.2 Limits and Continuity

15.3 Partial Derivatives

15.4 The Chain Rule

15.5 Directional Derivatives and 
the Gradient

15.6 Tangent Planes and Linear 
Approximation

15.7 Maximum/Minimum 
Problems

15.8 Lagrange Multipliers
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920 Chapter 15  •  Functions of Several Variables

Functions of Two Variables
The key concepts related to functions of several variables are most easily presented in the 
case of two independent variables; the extension to three or more variables is then straight-
forward. In general, functions of two variables are written explicitly in the form

z = ƒ1x, y2
or implicitly in the form

F1x, y, z2 = 0.

Both forms are important, but for now, we consider explicitly defined functions.
The concepts of domain and range carry over directly from functions of a single 

variable.

DEFINITION Function, Domain, and Range with Two Independent Variables

A function z = ƒ1x, y2 assigns to each point 1x, y2 in a set D in ℝ2 a unique real 
number z in a subset of ℝ. The set D is the domain of ƒ. The range of ƒ is the set 
of real numbers z that are assumed as the points 1x, y2 vary over the domain  
(Figure 15.1).

y

x z

Range of f

z

Domain
of f

z 5 f (x, y)

(x, y)

f maps D to a subset of R.

f assigns to each point
(x, y) in D a real number z.

D

Figure 15.1

As with functions of one variable, a function of several variables may have a  
domain that is restricted by the context of the problem. For example, if the independent 
variables correspond to price or length or population, they take only nonnegative values, 
even though the associated function may be defined for negative values of the variables. If 
not stated otherwise, D is the set of all points for which the function is defined.

A polynomial in x and y consists of sums and products of polynomials in x and poly-
nomials in y; for example, ƒ1x, y2 = x2y - 2xy - xy2. Such polynomials are defined for 
all values of x and y, so their domain is ℝ2. A quotient of two polynomials in x and y, such 

as h1x, y2 = xy
x - y

 , is a rational function in x and y. The domain of a rational function 

excludes points at which the denominator is zero, so the domain of h is 51x, y2: x ≠ y6.

EXAMPLE 1 Finding domains Find the domain of the function 
g1x, y2 = 24 - x2 - y2.

SOLUTION Because g involves a square root, its domain consists of ordered pairs 1x, y2 
for which 4 - x2 - y2 Ú 0 or x2 + y2 … 4. Therefore, the domain of g is 51x, y2  : 
x2 + y2 … 46, which is the set of points on or within the circle of radius 2 centered at 
the origin in the xy@plane (a disk of radius 2) (Figure 15.2).

Related Exercises 17–18 

2

y

x2

Domain of
g(x, y) 5

Ï4 2 x2 2 y2

Figure 15.2

QUICK CHECK 1 Find the domains 
of ƒ1x, y2 = sin xy and 

g1x, y2 = 21x2 + 12y. 

Graphs of Functions of Two Variables
The graph of a function ƒ of two variables is the set of points 1x, y, z2 that satisfy the 
equation z = ƒ1x, y2. More specifically, for each point 1x, y2 in the domain of ƒ, the point 
1x, y, ƒ1x, y22 lies on the graph of ƒ (Figure 15.3). A similar definition applies to relations 
of the form F1x, y, z2 = 0.
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 15.1 Graphs and Level Curves 921

Like functions of one variable, functions of two variables must pass a vertical line 
test. A relation of the form F1x, y, z2 = 0 is a function provided every line parallel to 
the z@axis intersects the graph of the relation at most once. For example, an ellipsoid (dis-
cussed in Section 13.6) is not the graph of a function because some vertical lines intersect 
the surface twice. On the other hand, an elliptic paraboloid of the form z = ax2 + by2 
does represent a function (Figure 15.4).

x

y

z

Domain of f

(x, y)

(x, y, f (x, y))

x

y

z

Domain of f

(x, y)

(x, y, f (x, y))

A function f assigns to
each point (x, y) in the
domain a real number
z 5 f (x, y).

Graph of f

Figure 15.3

x
y

z

An ellipsoid does not pass
the vertical line test:
not the graph of a function.

This elliptic paraboloid
passes the vertical line test:
graph of a function.

y

z

x

Figure 15.4

QUICK CHECK 2 Does the graph of a 
hyperboloid of one sheet represent a 
function? Does the graph of a cone 
with its axis parallel to the x-axis 
represent a function? 

EXAMPLE 2 Graphing two-variable functions Find the domain and range of the fol-
lowing functions. Then sketch a graph.

a. ƒ1x, y2 = 2x + 3y - 12  b. g1x, y2 = x2 + y2  c. h1x, y2 = 21 + x2 + y2

SOLUTION

a. Letting z = ƒ1x, y2, we have the equation z = 2x + 3y - 12, or 2x + 3y - z = 12, 
which describes a plane with a normal vector 82, 3, -19  (Section 13.5). The domain 
consists of all points in ℝ2, and the range is ℝ. We sketch the surface by noting that  
the x-intercept is 16, 0, 02 (setting y = z = 0); the y-intercept is 10, 4, 02 and the  
z-intercept is 10, 0, -122 (Figure 15.5).

b. Letting z = g1x, y2, we have the equation z = x2 + y2, which describes an elliptic 
paraboloid that opens upward with vertex 10, 0, 02. The domain is ℝ2 and the range 
consists of all nonnegative real numbers (Figure 15.6).

x

y

z

Plane
z 5 f (x, y) 5 2x 1 3y 2 12(6, 0, 0)

(0, 4, 0)
(0, 0, 212)

Figure 15.5

x

z

y

Paraboloid
z 5 f (x, y) 5 x2 1 y2

Figure 15.6
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922 Chapter 15  •  Functions of Several Variables

c. The domain of the function is ℝ2 because the quantity under the square root is always 
positive. Note that 1 + x2 + y2 Ú 1, so the range is 5z: z Ú 16. Squaring both sides 

of z = 21 + x2 + y2, we obtain z2 = 1 + x2 + y2, or -x2 - y2 + z2 = 1. This 
is the equation of a hyperboloid of two sheets that opens along the z-axis. Because the 
range is 5z: z Ú 16, the given function represents only the upper sheet of the hyper-
boloid (Figure 15.7; the lower sheet was introduced when we squared the original  
equation).

Related Exercises 25, 27, 29 

Upper sheet of hyperboloid of two sheets

z 5     1 1 x2 1 y2

x

y

z

Figure 15.7

QUICK CHECK 3 Find a function whose graph is the lower half of the hyperboloid 
-x2 - y2 + z2 = 1. 

Level Curves Functions of two variables are represented by surfaces in ℝ3. However, 
such functions can be represented in another illuminating way, which is used to make topo-
graphic maps (Figure 15.8).

Closely spaced
contours: rapid
changes in
elevation

Widely spaced
contours: slow
changes in
elevation

Figure 15.8

Consider a surface defined by the function z = ƒ1x, y2 (Figure 15.9). Now imag-
ine stepping onto the surface and walking along a path on which your elevation has the 
constant value z = z0. The path you walk on the surface is part of a contour curve; the 
complete contour curve is the intersection of the surface and the horizontal plane z = z0. 
When the contour curve is projected onto the xy@plane, the result is the curve ƒ1x, y2 = z0. 
This curve in the xy@plane is called a level curve.

Imagine repeating this process with a different constant value of z, say, z = z1. The 
path you walk this time, when projected onto the xy@plane, is part of another level curve 
ƒ1x, y2 = z1. A collection of such level curves, corresponding to different values of z, pro-
vides a useful two-dimensional representation of the surface (Figure 15.10).

➤ To anticipate results that appear later 
in the chapter, notice how the streams 
in the topographic map—which flow 
downhill—cross the level curves  
roughly at right angles.

➤ A contour curve is a trace (Section 13.6) 
in the plane z = z0.

➤ A level curve may not always be a 
single curve. It might consist of a point 
1x2 + y2 = 02 or it might consist of 
several lines or curves 1xy = 02.

y

z

x

Surface
z 5 f (x, y) Contour curve

Level curve:
f (x, y) 5 z0 in the
xy-plane.

z0

Figure 15.9

z

x

yz 5 f (x, y)

y

x

f (x, y) 5 z0

f (x, y) 5 z1z 5 z1

z 5 z0

 Level curves of f

Figure 15.10
QUICK CHECK 4 Can two level curves of 
a function intersect? Explain. 
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 15.1 Graphs and Level Curves 923

Assuming two adjacent level curves always correspond to the same change in z, 
widely spaced level curves indicate gradual changes in z@values, while closely spaced 
level curves indicate rapid changes in some directions (Figure 15.11). Concentric closed 
level curves generally indicate either a peak or a depression on the surface.y

x

Curves closely spaced:
rapid change in
function values

Curves widely spaced:
slow change in
function values

Figure 15.11

QUICK CHECK 5 Describe in words the 
level curves of the top half of the 
sphere x2 + y2 + z2 = 1. 

EXAMPLE 3 Level curves Find and sketch the level curves of the following surfaces.

a. ƒ1x, y2 = y - x2 - 1  b. ƒ1x, y2 = e-x2 - y2

SOLUTION

a. The level curves are described by the equation y - x2 - 1 = z0, where z0 is a con-
stant in the range of ƒ. For all values of z0, these curves are parabolas in the xy@plane, 
as seen by writing the equation in the form y = x2 + z0 + 1. For example:

• With z0 = 0, the level curve is the parabola y = x2 + 1; along this curve, the sur-
face has an elevation (z-coordinate) of 0.

• With z0 = -1, the level curve is y = x2; along this curve, the surface has an eleva-
tion of -1.

• With z0 = 1, the level curve is y = x2 + 2, along which the surface has an elevation 
of 1.

As shown in Figure 15.12a, the level curves form a family of shifted parabolas. 
When these level curves are labeled with their z-coordinates, the graph of the surface 
z = ƒ1x, y2 can be visualized (Figure 15.12b).

y

z

x

Contour curves are formed
by the intersection of the
surface and horizontal 
planes z 5 z0.     

(b)(a)

Surface
z 5 y 2 x2 2 1

4

24

23 0

y

x3

Level curves of
z 5 y 2 x2 2 1

z0 5 1
z0 5 0

z0 5 21
z0 5 22

Figure 15.12

b. The level curves satisfy the equation e-x2-y2
= z0, where z0 is a positive constant. Tak-

ing the natural logarithm of both sides gives the equation x2 + y2 = - ln z0, which 
describes circular level curves. These curves can be sketched for all values of z0 with 
0 6 z0 … 1 (because the right side of x2 + y2 = - ln z0 must be nonnegative). For 
example:

• With z0 = 1, the level curve satisfies the equation x2 + y2 = 0, whose solution is 
the single point 10, 02; at this point, the surface has an elevation of 1.

• With z0 = e-1, the level curve is x2 + y2 = - ln e-1 = 1, which is a circle cen-
tered at 10, 02 with a radius of 1; along this curve the surface has an elevation of 
e-1 ≈ 0.37.

In general, the level curves are circles centered at 10, 02; as the radii of the circles  
increase, the corresponding z-values decrease. Figure 15.13a shows the level curves, 
with larger z-values corresponding to darker shades. From these labeled level curves, 
we can reconstruct the graph of the surface (Figure 15.13b).
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924 Chapter 15  •  Functions of Several Variables

Related Exercises 37, 40 

(b)(a)

x
y

z
Surface
z 5 e2x22y2

Contour curves
are formed by the
intersection of
the surface and
planes z 5 z0,
for 0 , z0 # 1.

22

22

y

x2

2
z 5 0.1

Level curves of
z 5 e2x22y2

0.9

0.3
0.2

Figure 15.13

QUICK CHECK 6 Does the surface in 
Example 3b have a level curve for 
z0 = 0? Explain. 

EXAMPLE 4 Level curves The graph of the function

ƒ1x, y2 = 2 + sin 1x - y2
is shown in Figure 15.14a. Sketch several level curves of the function.

SOLUTION The level curves are ƒ1x, y2 = 2 + sin 1x - y2 = z0, or 
sin 1x - y2 = z0 - 2. Because -1 … sin 1x - y2 … 1, the admissible values of z0 
satisfy -1 … z0 - 2 … 1, or, equivalently, 1 … z0 … 3. For example, when z0 = 2, the 
level curves satisfy sin 1x - y2 = 0. The solutions of this equation are x - y = kp, 
or y = x - kp, where k is an integer. Therefore, the surface has an elevation of 2 
on this set of lines. With z0 = 1 (the minimum value of z), the level curves satisfy 
sin 1x - y2 = -1. The solutions are x - y = -p>2 + 2kp, where k is an integer; 
along these lines, the surface has an elevation of 1. Here we have an example in which 
each level curve is an infinite collection of lines of slope 1 (Figure 15.14b).

Related Exercise 43 

z

y
x

z 5 2 1 sin (x 2 y)

(b)

(a)

z 5 3

z 5 2

z 5 2

z 5 1

Level curves of
z 5 2 1 sin (x 2 y)

22p

y

x

2p

22p

2p

z 5 3

z 5 2

z 5 1

Figure 15.14

Applications of Functions of Two Variables
The following examples offer two of many applications of functions of two variables.

EXAMPLE 5 A probability function of two variables Suppose on a particular day, 
the fraction of students on campus infected with flu is r, where 0 … r … 1. If you have 
n random (possibly repeated) encounters with students during the day, the probability of 
meeting at least one infected person is p1n, r2 = 1 - 11 - r2n (Figure 15.15a). Discuss 
this probability function.

(a) (b)

1

0

r

n8642

Level curves of p

p 5 0.8

p 5 0.6
p 5 0.4

p 5 0.2
r

n

1

8

p 5 1 2 (1 2 r)n
p

Figure 15.15

SOLUTION The independent variable r is restricted to the interval 30, 14 because it is a 
fraction of the population. The other independent variable n is any nonnegative integer; 
for the purposes of graphing, we treat n as a real number in the interval 30, 84. With 
0 … r … 1, note that 0 … 1 - r … 1. If n is nonnegative, then 0 … 11 - r2n … 1, and 
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 15.1 Graphs and Level Curves 925

it follows that 0 … p1n, r2 … 1. Therefore, the range of the function is 30, 14, which is 
consistent with the fact that p is a probability.

The level curves (Figure 15.15b) show that for a fixed value of n, the probability of at 
least one encounter increases with r; and for a fixed value of r, the probability increases 
with n. Therefore, as r increases or as n increases, the probability approaches 1 (at a 
surprising rate). If 10% of the population is infected 1r = 0.12 and you have n = 10 
encounters, then the probability of at least one encounter with an infected person is 
p110, 0.12 ≈ 0.651, which is about 2 in 3.

A numerical view of this function is given in Table 15.1, where we see probabilities 
tabulated for various values of n and r (rounded to two digits). The numerical values con-
firm the preceding observations.

Related Exercise 44 

Table 15.1

n 

r

2 5 10 15 20

0.05 0.10 0.23 0.40 0.54 0.64

0.1 0.19 0.41 0.65 0.79 0.88

0.3 0.51 0.83 0.97 1 1

0.5 0.75 0.97 1 1 1

0.7 0.91 1 1 1 1
   

QUICK CHECK 7 In Example 5, if 50% 
of the population is infected, what is 
the probability of meeting at least one 
infected person in five encounters? 

EXAMPLE 6 Electric potential function in two variables The electric field at points 
in the xy@plane due to two point charges located at 10, 02 and 11, 02 is related to the elec-
tric potential function

w1x, y2 = 22x2 + y2
+

221x - 122 + y2
 .

Discuss the electric potential function.

SOLUTION The domain of the function contains all points of ℝ2 except 10, 02 and 11, 02 
where the charges are located. As these points are approached, the potential function be-
comes arbitrarily large (Figure 15.16a). The potential approaches zero as x or y increases 
in magnitude. These observations imply that the range of the potential function is all 
positive real numbers. The level curves of w are closed curves, encircling either a single 
charge (at small distances) or both charges (at larger distances; Figure 15.16b).

(a)

w

y
x

1

21

21 210

y

x

(b)

Level curves of electric
potential function

Figure 15.16 Related Exercise 45 

Functions of More Than Two Variables
Many properties of functions of two independent variables extend naturally to functions 
of three or more variables. A function of three variables is defined explicitly in the form 
w = ƒ1x, y, z2 and implicitly in the form F1x, y, z, w2 = 0. With more than three inde-
pendent variables, the variables are usually written x1, c, xn. Table 15.2 shows the pro-
gression of functions of several variables.

➤ The electric potential function, often 
denoted w (pronounced fee or fie), is a 
scalar-valued function from which the 
electric field can be computed. Potential 
functions are discussed in detail in 
Chapter 17.

➤ A function that grows without bound 
near a point, as in the case of the electric 
potential function, is said to have a 
singularity at that point. A singularity 
is analogous to a vertical asymptote in a 
function of one variable.

QUICK CHECK 8 In Example 6, what 
is the electric potential at the point 
11

2 , 02? 

Table 15.2

Number of  
Independent 

Variables Explicit Form Implicit Form
Graph Resides  

In . . .

1   y = ƒ1x2 F1x, y2 = 0 ℝ2 (xy@plane)

2   z = ƒ1x, y2 F1x, y, z2 = 0 ℝ3 (xyz@space)

3   w = ƒ1x, y, z2 F1x, y, z, w2 = 0 ℝ4

n xn + 1 = ƒ1x1, x2,  c, xn2 F1x1, x2, c, xn, xn + 12 = 0 ℝn + 1
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926 Chapter 15  •  Functions of Several Variables

The concepts of domain and range extend from the one- and two-variable cases in an 
obvious way.

DEFINITION Function, Domain, and Range with n Independent Variables

The function xn + 1 = ƒ1x1, x2,  c, xn2 assigns a unique real number xn + 1 to each 
point 1x1, x2,  c, xn2 in a set D in ℝn. The set D is the domain of ƒ. The range is 
the set of real numbers xn + 1 that are assumed as the points 1x1, x2,  c, xn2 vary 
over the domain.

EXAMPLE 7 Finding domains Find the domain of the following functions.

a. g1x, y, z2 = 216 - x2 - y2 - z2  b. h1x, y, z2 = 12y2

z - y

SOLUTION

a. Values of the variables that make the argument of a square root negative must be  
excluded from the domain. In this case, the quantity under the square root is nonnega-
tive provided

16 - x2 - y2 - z2 Ú 0,  or x2 + y2 + z2 … 16.

Therefore, the domain of g is a closed ball in ℝ3 of radius 4 centered at the origin.

b. Values of the variables that make a denominator zero must be excluded from the 
domain. In this case, the denominator vanishes for all points in ℝ3 that satisfy 
z - y = 0, or y = z. Therefore, the domain of h is the set 51x, y, z2: y ≠ z6. This set 
is ℝ3 excluding the points on the plane y = z.

Related Exercises 51–52 

QUICK CHECK 9 What is the domain of the 
function w = ƒ1x, y, z2 = 1>xyz? 

➤ Recall that a closed ball of radius r is the 
set of all points on or within a sphere of 
radius r.

Graphs of Functions of More Than Two Variables
Graphing functions of two independent variables requires a three-dimensional coordi-
nate system, which is the limit of ordinary graphing methods. Clearly, difficulties arise in 
graphing functions with three or more independent variables. For example, the graph of 
the function w = ƒ1x, y, z2 resides in four dimensions. Here are two approaches to repre-
senting functions of three independent variables.

The idea of level curves can be extended. With the function w = ƒ1x, y, z2, level 
curves become level surfaces, which are surfaces in ℝ3 on which w is constant. For  
example, the level surfaces of the function

w = ƒ1x, y, z2 = 2z - x2 - 2y2

satisfy w = 2z - x2 - 2y2 = C, where C is a nonnegative constant. This equation is 
satisfied when z = x2 + 2y2 + C  

2. Therefore, the level surfaces are elliptic paraboloids, 
stacked one inside another (Figure 15.17).

Another approach to displaying functions of three variables is to use colors to repre-
sent the fourth dimension. Figure 15.18a shows the electrical activity of the heart at one 
snapshot in time. The three independent variables correspond to locations in the heart. At 
each point, the value of the electrical activity, which is the dependent variable, is coded 
by colors.

In Figure 15.18b, the dependent variable is the switching speed in an integrated  
circuit, again represented by colors, as it varies over points of the domain. Software to 
produce such images, once expensive and inefficient, has become much more accessible.

x y

z

w 5 1

w 5 2

w 5 3

w 5 0

Figure 15.17
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(a)   (b)

Figure 15.18

Getting Started
1. A function is defined by z = x2y - xy2. Identify the independent 

and dependent variables.

2. What is the domain of ƒ1x, y2 = x2y - xy2?

3. What is the domain of g1x, y2 = 1
xy

 ?

4. What is the domain of h1x, y2 = 1x - y?

5. How many axes (or how many dimensions) are needed to graph 
the function z = ƒ1x, y2? Explain.

6. Explain how to graph the level curves of a surface z = ƒ1x, y2.
7. Given the function ƒ1x, y2 = 110 - x + y, evaluate ƒ12, 12 and 

ƒ1-9, -32.

8. Given the function g1x, y, z2 = x + y

z
 , evaluate g11, 5, 32 and 

g13, 7, 22.
9–10. The function z = ƒ1x, y2 gives the elevation z (in hundreds of 
feet) of a hillside above the point 1x, y2. Use the level curves of ƒ to 
answer the following questions (see figure).

1

D E

2

3

4

1 32 4

y

x0

B

14

14

12

11
13

15 15 15

10

8
6

2 3

7
9

A C

9. Katie and Zeke are standing on the surface above the point A12, 22.
a. At what elevation are Katie and Zeke standing?
b. Katie hikes south to the point on the surface above B12, 12 and 

Zeke hikes east to the point on the surface above C13, 22. Who 
experienced the greater elevation change and what is the differ-
ence in their elevations?

SECTION 15.1 EXERCISES

10. Katie and Zeke are standing on the surface above D11, 02. Katie 
hikes on the surface above the level curve containing D11, 02 to 
B12, 12 and Zeke walks east along the surface to E12, 02. What can 
be said about the elevations of Katie and Zeke during their hikes?

11. Describe in words the level curves of the paraboloid z = x2 + y2.

12. How many axes (or how many dimensions) are needed to graph 
the level surfaces of w = ƒ1x, y, z2? Explain.

13. The domain of Q = ƒ1u, v, w, x, y, z2 lies in ℝn for what value of 
n? Explain.

14. Give two methods for graphically representing a function with 
three independent variables.

Practice Exercises
15–24. Domains Find the domain of the following functions.

15. ƒ1x, y2 = 2xy - 3x + 4y 16. ƒ1x, y2 = cos 1x2 - y22

17. ƒ1x, y2 = 225 - x2 - y2 18. ƒ1x, y2 = 12x2 + y2 - 25

19. ƒ1x, y2 = sin 
x
y
 20. ƒ1x, y2 = 12

y2 - x2

21. g1x, y2 = ln 1x2 - y2 22. ƒ1x, y2 = sin-11y - x22

23. g1x, y2 = A xy

x2 + y2 24. h1x, y2 = 1x - 2y + 4

25–33. Graphs of familiar functions Use what you learned about 
surfaces in Sections 13.5 and 13.6 to sketch a graph of the following 
functions. In each case, identify the surface and state the domain and 
range of the function.

25. ƒ1x, y2 = 6 - x - 2y 26. g1x, y2 = 4

27. p1x, y2 = x2 - y2 28. h1x, y2 = 2x2 + 3y2

29. G1x, y2 = -21 + x2 + y2

30. F1x, y2 = 21 - x2 - y2

31. P1x, y2 = 2x2 + y2 - 1

32. H1x, y2 = 2x2 + y2 33. g1x, y2 = 216 - 4x2
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928 Chapter 15  •  Functions of Several Variables

34. Matching level curves with surfaces Match surfaces a–f in the 
figure with level curves A–F.

x y

z

(a)  

z

x

y

(b)

(c)
x

y

z

 

x

z

y

(d)

(e)
x

y

z

 

z

y
x

(f)

2

2

(A)

y

x

 

2

2

(B)

y

x

2

2

(C)

y

x

 

y

x

(D)

2

2

y

x

(E)

2

2

 (F)

y

x

2

2

35. Matching surfaces Match functions a–d with surfaces A–D in the 
figure.

a. ƒ1x, y2 = cos xy b. g1x, y2 = ln 1x2 + y22

c. h1x, y2 = 1
x - y

 d. p1x, y2 = 1

1 + x2 + y2

z

y

x

(A)  (B)

z

yx

z

y
x

(C)  

z

y

x

(D)

36–43. Level curves Graph several level curves of the following  
functions using the given window. Label at least two level curves with 
their z-values.

36. z = x2 + y2; 3-4, 44 * 3-4, 44
37. z = x - y2; 30, 44 * 3-2, 24
38. z = 2x - y; 3-2, 24 * 3-2, 24

T
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39. z = 2x2 + 4y2; 3-8, 84 * 3-8, 84
40. z = e-x2 - 2y2

; 3-2, 24 * 3-2, 24
41. z = 225 - x2 - y2; 3-6, 64 * 3-6, 64
42. z = 2y - x2 - 1; 3-5, 54 * 3-5, 54
43. z = 3 cos 12x + y2; 3-2, 24 * 3-2, 24
44. Earned run average A baseball pitcher’s earned run average 

(ERA) is A1e, i2 = 9e>i, where e is the number of earned runs 
given up by the pitcher and i is the number of innings pitched. 
Good pitchers have low ERAs. Assume e Ú 0 and i 7 0 are  
real numbers.

a. The single-season major league record for the lowest ERA was 
set by Dutch Leonard of the Detroit Tigers in 1914. During 
that season, Dutch pitched a total of 224 innings and gave up 
just 24 earned runs. What was his ERA?

b. Determine the ERA of a relief pitcher who gives up 4 earned 
runs in one-third of an inning.

c. Graph the level curve A1e, i2 = 3 and describe the relation-
ship between e and i in this case.

45. Electric potential function The electric potential function for 
two positive charges, one at 10, 12 with twice the strength of the 
charge at 10, -12, is given by

w1x, y2 = 22x2 + 1y - 122
+

12x2 + 1y + 122
 .

a. Graph the electric potential using the window 
3-5, 54 * 3-5, 54 * 30, 104.

b. For what values of x and y is the potential w defined?
c. Is the electric potential greater at 13, 22 or 12, 32?
d. Describe how the electric potential varies along the line y = x.

46. Cobb-Douglas production function The output Q of an eco-
nomic system subject to two inputs, such as labor L and capital 
K, is often modeled by the Cobb-Douglas production function 
Q1L, K2 = cLaKb, where a, b, and c are positive real numbers. 
When a + b = 1, the case is called constant returns to scale. 
Suppose a = 1>3, b = 2>3, and c = 40.

a. Graph the output function using the window 
30, 204 * 30, 204 * 30, 5004.

b. If L is held constant at L = 10, write the function that gives 
the dependence of Q on K.

c. If K is held constant at K = 15, write the function that gives 
the dependence of Q on L.

47. Resistors in parallel Two resistors wired in parallel in an electri-

cal circuit give an effective resistance of R1x, y2 = xy

x + y
 , where  

x and y are the positive resistances of the individual resistors  
(typically measured in ohms).

x y

a. Graph the resistance function using the window 
30, 104 * 30, 104 * 30, 54.

b. Estimate the maximum value of R, for 0 6 x … 10 and 
0 6 y … 10.

c. Explain what it means to say that the resistance function is 
symmetric in x and y.

T

T

T

48. Level curves of a savings account Suppose you make a one-time 
deposit of P dollars into a savings account that earns interest at an 
annual rate of p% compounded continuously. The balance in the 
account after t years is B1P, r, t2 = Pert, where r = p>100 (for 
example, if the annual interest rate is 4%, then r = 0.04). Let the 
interest rate be fixed at r = 0.04.

a. With a target balance of $2000, find the set of all points 1P, t2 
that satisfy B = 2000. This curve gives all deposits P and 
times t that result in a balance of $2000.

b. Repeat part (a) with B = $500, $1000, $1500, and $2500, and 
draw the resulting level curves of the balance function.

c. In general, on one level curve, if t increases, does P increase or 
decrease?

49. Level curves of a savings plan Suppose you make monthly 
deposits of P dollars into an account that earns interest at a 
monthly rate of p%. The balance in the account after t years is 

B1P, r, t2 = Pa 11 + r212t - 1

r
b , where r =

p

100
 (for example,  

if the annual interest rate is 9%, then p =
9
12

= 0.75 and  

r = 0.0075). Let the time of investment be fixed at t = 20 years.

a. With a target balance of $20,000, find the set of all points 
1P, r2 that satisfy B = 20,000. This curve gives all deposits  
P and monthly interest rates r that result in a balance of 
$20,000 after 20 years.

b. Repeat part (a) with B = $5000, $10,000, $15,000, and 
$25,000, and draw the resulting level curves of the balance 
function.

50–56. Domains of functions of three or more variables Find the 
domain of the following functions. If possible, give a description of the 
domains (for example, all points outside a sphere of radius 1 centered 
at the origin).

50. ƒ1x, y, z2 = 2xyz - 3xz + 4yz

51. g1x, y, z2 = 1
x - z

52. p1x, y, z2 = 2x2 + y2 + z2 - 9

53. ƒ1x, y, z2 = 1y - z

54. Q1x, y, z2 = 10

1 + x2 + y2 + 4z2

55. F1x, y, z2 = 2y - x2

56. ƒ1w, x, y, z2 = 21 - w2 - x2 - y2 - z2

57. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. The domain of the function ƒ1x, y2 = 1 - 0 x - y 0  is 
51x, y2: x Ú y6.

b. The domain of the function Q = g1w, x, y, z2 is a region in ℝ3.
c. All level curves of the plane z = 2x - 3y are lines.

58. Quarterback passer ratings One measurement of the qual-
ity of a quarterback in the National Football League is known 
as the quarterback passer rating. The rating formula is 

R1c, t, i, y2 = 50 + 20c + 80t - 100i + 100y

24
 , where c% of  

a quarterback’s passes were completed, t% of his passes were  
thrown for touchdowns, i% of his passes were intercepted, and  
an average of y yards were gained per attempted pass.

T

T
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a. In the 2016/17 NFL playoffs, Atlanta Falcons quarterback Matt 
Ryan completed 71.43% of his passes, 9.18% of his passes 
were thrown for touchdowns, none of his passes were inter-
cepted, and he gained an average of 10.35 yards per passing 
attempt. What was his passer rating in the 2016 playoffs?

b. In the 2016 regular season, New England Patriots quarterback 
Tom Brady completed 67.36% of his passes, 6.48% of his 
passes were thrown for touchdowns, 0.46% of his passes were 
intercepted, and he gained an average of 8.23 yards per passing 
attempt. What was his passer rating in the 2016 regular season?

c. If c, t, and y remain fixed, what happens to the quarterback 
passer rating as i increases? Explain your answer with and 
without mathematics.

(Source: www.nfl.com)

59. Ideal Gas Law Many gases can be modeled by the Ideal Gas 
Law, PV = nRT, which relates the temperature (T, measured 
in kelvins (K)), pressure (P, measured in pascals (Pa)), and vol-
ume (V, measured in m3) of a gas. Assume the quantity of gas in 
question is n = 1 mole (mol). The gas constant has a value of 
R = 8.3 m3 Pa>mol@K.

a. Consider T to be the dependent variable, and plot several level 
curves (called isotherms) of the temperature surface in the  
region 0 … P … 100,000 and 0 … V … 0.5.

b. Consider P to be the dependent variable, and plot several level 
curves (called isobars) of the pressure surface in the region 
0 … T … 900 and 0 6 V … 0.5.

c. Consider V to be the dependent variable, and plot several level 
curves of the volume surface in the region 0 … T … 900 and 
0 6 P … 100,000.

Explorations and Challenges
60. Water waves A snapshot of a water wave moving toward shore 

is described by the function z = 10 sin 12x - 3y2, where z is the 
height of the water surface above (or below) the xy-plane, which is 
the level of undisturbed water.

a. Graph the height function using the window 
3-5, 54 * 3-5, 54 * 3-15, 154.

b. For what values of x and y is z defined?
c. What are the maximum and minimum values of the water 

height?
d. Give a vector in the xy-plane that is orthogonal to the level 

curves of the crests and troughs of the wave (which is parallel 
to the direction of wave propagation).

61. Approximate mountains Suppose the elevation of Earth’s surface 
over a 16-mi by 16-mi region is approximated by the function

z = 10e-1x2 + y22 + 5e-11x + 522 + 1y - 3222>10 + 4e-211x - 422 + 1y + 1222.

a. Graph the height function using the window 
3-8, 84 * 3-8, 84 * 30, 154.

b. Approximate the points 1x, y2 where the peaks in the landscape 
appear.

c. What are the approximate elevations of the peaks?

62–68. Graphing functions

a. Determine the domain and range of the following functions.
b. Graph each function using a graphing utility. Be sure to experiment 

with the window and orientation to give the best perspective on the 
surface.

62. g1x, y2 = e-xy 63. ƒ1x, y2 = 0 xy 0

T

T

T

T

64. p1x, y2 = 1 - 0 x - 1 0 + 0 y + 1 0

65. h1x, y2 = x + y

x - y

66. G1x, y2 = ln 12 + sin 1x + y22
67. F1x, y2 = tan21x - y2 68. P1x, y2 = cos x sin 2y

69–72. Peaks and valleys The following functions have exactly one 
isolated peak or one isolated depression (one local maximum or  
minimum). Use a graphing utility to approximate the coordinates of  
the peak or depression.

69. ƒ1x, y2 = x2y2 - 8x2 - y2 + 6

70. g1x, y2 = 1x2 - x - 221y2 + 2y2
71. h1x, y2 = 1 - e-1x2 + y2 - 2x2

72. p1x, y2 = 2 + 0 x - 1 0 + 0 y - 1 0
73. Level curves of planes Prove that the level curves of the plane 

ax + by + cz = d are parallel lines in the xy-plane, provided 
a2 + b2 ≠ 0 and c ≠ 0.

74–77. Level surfaces Find an equation for the family of level surfaces 
corresponding to ƒ. Describe the level surfaces.

74. ƒ1x, y, z2 = 1

x2 + y2 + z2 75. ƒ1x, y, z2 = x2 + y2 - z

76. ƒ1x, y, z2 = x2 - y2 - z 77. ƒ1x, y, z2 = 2x2 + 2z2

78–81. Challenge domains Find the domain of the following functions. 
Specify the domain mathematically, and then describe it in words or 
with a sketch.

78. g1x, y, z2 = 10

x2 - 1y + z2x + yz

79. ƒ1x, y2 = sin-11x - y22

80. ƒ1x, y, z2 = ln 1z - x2 - y2 + 2x + 32
81. h1x, y, z2 = 24 z2 - xz + yz - xy

82. Other balls The closed unit ball in ℝ3 centered at the origin is the 
set 51x, y, z2: x2 + y2 + z2 … 16. Describe the following alter-
native unit balls.

a. 51x, y, z2: 0 x 0 + 0 y 0 + 0 z 0 … 16
b. 51x, y, z2: max 5 0 x 0 , 0 y 0 , 0 z 0 6 … 16, where max 5a, b, c6  

is the maximum value of a, b, and c

QUICK CHECK ANSWERS

1. ℝ2; 51x, y2: y Ú 06 2. No; no

3. z = -21 + x2 + y2 4. No; otherwise the function 
would have two values at a single point. 5. Concentric 
circles 6. No; z = 0 is not in the range of the function.
7. 0.97 8. 8 9. 51x, y, z2: x ≠ 0 and y ≠ 0 and 
z ≠ 06 (which is ℝ3, excluding the coordinate planes) 

T
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15.2 Limits and Continuity
You have now seen examples of functions of several variables, but calculus has not yet 
entered the picture. In this section, we revisit topics encountered in single-variable calcu-
lus and see how they apply to functions of several variables. We begin with the fundamen-
tal concepts of limits and continuity.

Limit of a Function of Two Variables
A function ƒ of two variables has a limit L as P1x, y2 approaches a fixed point P01a, b2 if 
0 ƒ1x, y2 - L 0  can be made arbitrarily small for all P in the domain that are sufficiently 
close to P0. If such a limit exists, we write

lim
1x, y2S1a, b2

 ƒ1x, y2 = lim
PSP0

 ƒ1x, y2 = L.

To make this definition more precise, close to must be defined carefully.
A point x on the number line is close to another point a provided the distance 0 x - a 0  

is small (Figure 15.19a). In ℝ2, a point P1x, y2 is close to another point P01a, b2 if the dis-

tance between them 0PP0 0 = 21x - a22 + 1y - b22 is small (Figure 15.19b). When we 
say for all P close to P0, it means that 0PP0 0  is small for points P on all sides of P0.

With this understanding of closeness, we can give a formal definition of a limit with 
two independent variables. This definition parallels the formal definition of a limit given 
in Section 2.7 (Figure 15.20).

a 1 da x

d

a 2 d x

(a)

(b)

ux 2 au , d

P(x, y)

P0(a, b)

uPP0u , d

Figure 15.19

f (x, y) is between L 2 e and L 1 e
whenever P(x, y) is within d of P0.

z

y
x

P0(a, b)

L 1 e

z 5 L 1 eL

z 5 L 2 e

d

L 2 e

z 5 f (x, y)

f (x, y)

P(x, y)

Figure 15.20

y

x

P

P

P
P

P0

f (x, y) $ L as P $ P0
along all paths in the
domain of f. 

Figure 15.21

➤ The formal definition extends 
naturally to any number of variables. 
With n variables, the limit point is 
P01a1, c, an2, the variable point 
is P1x1, c, xn2, and 0PP0 0 =21x1 - a122 +  g+  1xn - an22 . DEFINITION Limit of a Function of Two Variables

The function ƒ has the limit L as P1x, y2 approaches P01a, b2, written

lim
1x, y2S1a, b2

 ƒ1x, y2 = lim
PSP0

 ƒ1x, y2 = L,

if, given any e 7 0, there exists a d 7 0 such that

0 ƒ1x, y2 - L 0 6 e

whenever 1x, y2 is in the domain of ƒ and

0 6 0PP0 0 = 21x - a22 + 1y - b22 6 d.

The condition 0PP0 0 6 d means that the distance between P1x, y2 and P01a, b2 is less 
than d as P approaches P0 from all possible directions (Figure 15.21). Therefore, the limit 
exists only if ƒ1x, y2 approaches L as P approaches P0 along all possible paths in the  
domain of ƒ. As shown in upcoming examples, this interpretation is critical in determining 
whether a limit exists.

As with functions of one variable, we first establish limits of the simplest functions.

THEOREM 15.1 Limits of Constant and Linear Functions
Let a, b, and c be real numbers.

1. Constant function ƒ1x, y2 = c: lim
1x, y2S1a, b2

 c = c

2. Linear function ƒ1x, y2 = x: lim
1x, y2S1a, b2

 x = a

3. Linear function ƒ1x, y2 = y: lim
1x, y2S1a, b2

 y = b

Proof:

1. Consider the constant function ƒ1x, y2 = c and assume e 7 0 is given. To prove that 
the value of the limit is L = c, we must produce a d 7 0 such that 0 ƒ1x, y2 - L 0 6 e 
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whenever 0 6 21x - a22 + 1y - b22 6 d. For constant functions, we may use any 
d 7 0. Then, for every 1x, y2 in the domain of ƒ,

0 ƒ1x, y2 - L 0 = 0  ƒ1x, y2 - c 0 = 0 c - c 0 = 0 6 e

whenever 0 6 21x - a22 + 1y - b22 6 d.

2. Assume e 7 0 is given and take d = e. The condition 0 6 21x - a22 + 1y - b22

6  d implies that

 0 6 21x - a22 + 1y - b22 6 e  d = e

 21x - a22 6 e  1x - a22 … 1x - a22 + 1y - b22

 0 x - a 0 6 e. 2x2 = 0 x 0  for real numbers x 

Because ƒ1x, y2 = x and L = a, we have shown that 0 ƒ1x, y2 - L 0 6 e  

whenever 0 6 21x - a22 + 1y - b22 6 d. Therefore, lim
1x, y2S1a, b2

 ƒ1x, y2 = L, or 

lim
1x, y2S1a, b2

 x = a. The proof that lim
1x, y2S1a, b2

 y = b is similar (Exercise 86). 

Using the three basic limits in Theorem 15.1, we can compute limits of more compli-
cated functions. The only tools needed are limit laws analogous to those given in Theorem 
2.3. The proofs of these laws are examined in Exercises 88–89.

THEOREM 15.2 Limit Laws for Functions of Two Variables
Let L and M be real numbers and suppose lim

1x, y2S1a, b2
 ƒ1x, y2 = L and 

lim
1x, y2S1a, b2

 g1x, y2 = M. Assume c is a constant, and n 7 0 is an integer.

1. Sum lim
1x, y2S1a, b2

 1ƒ1x, y2 + g1x, y22 = L + M

2. Difference lim
1x, y2S1a, b2

 1ƒ1x, y2 - g1x, y22 = L - M

3. Constant multiple lim
1x, y2S1a, b2

cƒ1x, y2 = cL

4. Product lim
1x, y2S1a, b2

 ƒ1x, y2g1x, y2 = LM

5. Quotient lim
1x, y2S1a, b2 

ƒ1x, y2
g1x, y2 =

L
M

 , provided M ≠ 0

6. Power lim
1x, y2S1a, b2

 1ƒ1x, y22n = Ln

7. Root lim
1x, y2S1a, b2

1ƒ1x, y221>n = L1>n, where we assume L 7 0 if n is even.

Combining Theorems 15.1 and 15.2 allows us to find limits of polynomial, rational, 
and algebraic functions in two variables.

➤ Recall that a polynomial in two variables 
consists of sums and products of 
polynomials in x and polynomials in y. 
A rational function is the quotient of two 
polynomials.

EXAMPLE 1 Limits of two-variable functions Evaluate lim
1x, y2S12, 82

 13x2y + 1xy2.
SOLUTION All the operations in this function appear in Theorem 15.2. Therefore, we can 
apply the limit laws directly.

 lim
1x, y2S12, 82

 13x2y + 1xy2 = lim
1x, y2S12, 82

 3x2y + lim
1x, y2S12, 82

 1xy Law 1

 = 3 lim
1x, y2S12, 82

 x2 # lim
1x, y2S12, 82

 y

 +  3 lim
1x, y2S12, 82

x # lim
1x, y2S12, 82

y  Laws 3, 4, 7

 = 3 # 22 # 8 + 12 # 8 = 100  
 Law 6 and  
Theorem 15.1

Related Exercise 16 
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In Example 1, the value of the limit equals the value of the function at 1a, b2; in other 
words, lim

1x, y2S1a, b2
  ƒ1x, y2 = ƒ1a, b2 and the limit can be evaluated by substitution. This 

is a property of continuous functions, discussed later in this section.

QUICK CHECK 1 Which of the following 
limits exist?

a. lim
1x, y2S11, 12

3x12y2 

b. lim
1x, y2S10, 02

3x-2y2

c. lim
1x, y2S11, 22

2x - y2 

Limits at Boundary Points
This is an appropriate place to make some definitions that are used in the remainder of the 
text.

DEFINITION Interior and Boundary Points

Let R be a region in ℝ2. An interior point P of R lies entirely within R, which 
means it is possible to find a disk centered at P that contains only points of R 
(Figure 15.22).

A boundary point Q of R lies on the edge of R in the sense that every disk 
centered at Q contains at least one point in R and at least one point not in R.

DEFINITION Open and Closed Sets

A region is open if it consists entirely of interior points. A region is closed if it 
contains all its boundary points.

QUICK CHECK 2 Give an example of a 
set that contains none of its boundary 
points. 

➤ The definitions of interior point and 
boundary point apply to regions in ℝ3 if 
we replace disk by ball.

➤ Many sets, such as the annulus 
51x, y2: 2 … x2 + y2 6 56, are neither 
open nor closed.

R
P

Q

Q is a boundary point:
Every disk centered at Q
contains points in R and
points not in R.

P is an interior point:
There is a disk centered
at P that lies entirely in R.

Figure 15.22

For example, let R be the points in ℝ2 satisfying x2 + y2 6 9. The boundary points 
of R lie on the circle x2 + y2 = 9. The interior points lie inside that circle and satisfy 
x2 + y2 6 9. Notice that the boundary points of a set need not lie in the set.

An example of an open region in ℝ2 is the open disk 51x, y2: x2 + y2 6 96. An ex-
ample of a closed region in ℝ2 is the square 51x, y2: 0 x 0 … 1, 0 y 0 … 16. Later in the text, 
we encounter interior and boundary points of three-dimensional sets such as balls, boxes, 
and pyramids.

Suppose P01a, b2 is a boundary point of the domain of ƒ. The limit lim
1x, y2S1a, b2

 ƒ1x, y2 
exists, even if P0 is not in the domain of ƒ, provided ƒ1x, y2 approaches the same value as  
1x, y2 approaches 1a, b2 along all paths that lie in the domain (Figure 15.23).

Consider the function ƒ1x, y2 = x2 - y2

x - y
 whose domain is 51x, y2: x ≠ y6. Provided 

x ≠ y, we may cancel the factor 1x - y2 from the numerator and denominator and write

ƒ1x, y2 = x2 - y2

x - y
=
1x - y21x + y2

x - y
= x + y.

The graph of ƒ (Figure 15.24) is the plane z = x + y, with points corresponding to the 
line x = y removed.

➤ Recall that this same method was used 
with functions of one variable. For 
example, after the common factor x - 2 
is canceled, the function

g1x2 = x2 - 4
x - 2

becomes g1x2 = x + 2, provided x ≠ 2. 
In this case, 2 plays the role of a boundary 
point.

P must approach P0
along all paths in
the domain D of f.

P0P

P
D P

Figure 15.23

z

y

x

All points with y 5 x
are excluded from graph.

f (x, y) 5
x2 2 y2

x 2 y

Figure 15.24
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Now we examine lim
1x, y2S14, 42

x2 - y2

x - y
 , where 14, 42 is a boundary point of the domain  

of ƒ but does not lie in the domain. For this limit to exist, ƒ1x, y2 must approach the same  
value along all paths to 14, 42 that lie in the domain of ƒ—that is, all paths approaching 
14, 42 that do not intersect x = y. To evaluate the limit, we proceed as follows:

 lim
1x, y2S14, 42

 
x2 - y2

x - y
= lim
1x, y2S14, 42 

1x + y2 Assume x ≠ y, cancel x - y.

 = 4 + 4 = 8.  Same limit along all paths in the domain

To emphasize, we let 1x, y2S 14, 42 along all paths that do not intersect x = y, which 
lies outside the domain of ƒ. Along all admissible paths, the function approaches 8.

QUICK CHECK 3 Can the limit 

lim
1x, y2S10, 02

x2 - xy
x

 be evaluated by  

direct substitution? 

EXAMPLE 2 Limits at boundary points Evaluate lim
1x, y2S14, 12

 
xy - 4y21x - 21y

 .

SOLUTION Points in the domain of this function satisfy x Ú 0 and y Ú 0 (because of the 
square roots) and x ≠ 4y (to ensure the denominator is nonzero). We see that the point 
14, 12 lies on the boundary of the domain. Multiplying the numerator and denominator by 
the algebraic conjugate of the denominator, the limit is computed as follows:

 lim
1x, y2S14, 12

 
xy - 4y21x - 21y

= lim
1x, y2S14, 12

 
1xy - 4y2211x + 21y2
11x - 21y211x + 21y2 Multiply by conjugate.

 = lim
1x, y2S14, 12

y1x - 4y211x + 21y2
x - 4y

 Simplify.

 = lim
1x, y2S14, 12

 y11x + 21y2   Cancel x - 4y,  
assumed to be nonzero.

 = 4.  Evaluate limit.

Because points on the line x = 4y are outside the domain of the function, we assume 
x - 4y ≠ 0. Along all other paths to 14, 12, the function values approach 4  
(Figure 15.25).

Related Exercises 26–27 

1

y

x4

(x, y) $ (4, 1) along
paths in domain of f.

Line x 5 4y is not
in the domain of f.

(4, 1)

Figure 15.25

EXAMPLE 3 Nonexistence of a limit Investigate the limit lim
1x, y2S10, 02 

1x + y22

x2 + y2 .

SOLUTION The domain of the function is 51x, y2: 1x, y2 ≠ 10, 026; therefore, the limit 
is at a boundary point outside the domain. Suppose we let 1x, y2 approach 10, 02 along 
the line y = mx for a fixed constant m. Substituting y = mx and noting that y S 0 as 
x S 0, we have

 lim
1x, y2S10, 02 

1x + y22

x2 + y2 = lim
xS0

 
1x + mx22

x2 + m2x2 = lim
xS0

 
x211 + m22

x211 + m22 =
11 + m22

1 + m2 .

1along y = mx2
The constant m determines the direction of approach to 10, 02. Therefore, depending on 
m, the function approaches different values as 1x, y2 approaches 10, 02 (Figure 15.26). 
For example, if m = 0, the corresponding limit is 1, and if m = -1, the limit is 0. The 
reason for this behavior is revealed if we plot the surface and look at two level curves. 
The lines y = x and y = -x (excluding the origin) are level curves of the function 
for z = 2 and z = 0, respectively. (Figure 15.27). Therefore, as 1x, y2S 10, 02 along 
y = x, ƒ1x, y2S 2, and as 1x, y2S 10, 02 along y = -x, ƒ1x, y2S 0. Because the 
function approaches different values along different paths, we conclude that the limit does 
not exist.

y

x

Straight-line paths
to (0, 0): y 5 mx

m 5 21:
limit 5 0

m 5 1:
limit 5 2

m 5 0:
limit 5 1

m undefined:
limit 5 1

Figure 15.26

➤ Notice that if we choose any path of 
the form y = mx, then y S 0 as x S 0. 
Therefore, lim

1x, y2S10, 02
 can be replaced by 

lim
xS0

 along this path. A similar argument 

applies to paths of the form y = mxp, for 
p 7 0.
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Related Exercise 30 

z

y
x

z 5 
(x 1 y)2

x2 1 y2

y 5 2x is level curve for z 5 0.

y 5 x is level curve for z 5 2.

Figure 15.27

The strategy used in Example 3 is an effective way to prove the nonexistence of a limit.

Continuity of Functions of Two Variables
The following definition of continuity for functions of two variables is analogous to the 
continuity definition for functions of one variable.

PROCEDURE Two-Path Test for Nonexistence of Limits

If ƒ1x, y2 approaches two different values as 1x, y2 approaches 1a, b2 along two 
different paths in the domain of ƒ, then lim

1x, y2S1a, b2
 ƒ1x, y2 does not exist.

QUICK CHECK 4 What is the analog of 
the Two-Path Test for functions of a 
single variable? 

DEFINITION Continuity

The function ƒ is continuous at the point 1a, b2 provided

1. ƒ is defined at 1a, b2,
2. lim
1x, y2S1a, b2

 ƒ1x, y2 exists, and

3. lim
1x, y2S1a, b2 

ƒ1x, y2 = ƒ1a, b2.

A function of two (or more) variables is continuous at a point, provided its limit 
equals its value at that point (which implies the limit and the value both exist). The defini-
tion of continuity applies at boundary points of the domain of ƒ, provided the limits in the 
definition are taken along all paths that lie in the domain. Because limits of polynomials 
and rational functions can be evaluated by substitution at points of their domains (that is, 

lim
1x, y2S1a, b2

 ƒ1x, y2 = ƒ1a, b2), it follows that polynomials and rational functions are con-

tinuous at all points of their domains.

EXAMPLE 4 Checking continuity Determine the points at which the following func-
tion is continuous.

ƒ1x, y2 = c 3xy2

x2 + y4 if 1x, y2 ≠ 10, 02
0 if 1x, y2 = 10, 02

SOLUTION The function 
3xy2

x2 + y4 is a rational function, so it is continuous at all points of  

its domain, which consists of all points of ℝ2 except 10, 02. To determine whether ƒ is  
continuous at 10, 02, we must show that

lim
1x, y2S10, 02 

3xy2

x2 + y4

exists and equals ƒ10, 02 = 0 along all paths that approach 10, 02.
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You can verify that as 1x, y2 approaches 10, 02 along paths of the form y = mx, 
where m is any constant, the function values approach ƒ10, 02 = 0. However, along 
parabolic paths of the form x = my2 (where m is a nonzero constant), the limit behaves 
differently (Figure 15.28). This time we substitute x = my2 and note that x S 0 as y S 0:

 lim
1x, y2S10, 02

 
3xy2

x2 + y4 = lim
yS0

 
31my22y2

1my222 + y4 Substitute x = my2.

1along x = my22

 = lim
yS0

 
3my4

m2y4 + y4  Simplify.

 = lim
yS0

 
3m

m2 + 1
 Cancel y4.

 =
3m

m2 + 1
 .

We see that along parabolic paths, the limit depends on the approach path. For ex-
ample, with m = 1, along the path x = y2 the function values approach 32; with m = -1, 
along the path x = -y2 the function values approach -3

2 (Figure 15.29). Because ƒ1x, y2 
approaches two different numbers along two different paths, the limit at 10, 02 does not 
exist, and ƒ is not continuous at 10, 02.

y

x

Parabolic paths
to (0, 0): x 5 my2

m 5 1: limit 5

m 5 21: limit 5 2

2
3

2
3

Figure 15.28

➤ The choice of x = my2 for paths to 10, 02 
is not obvious. Notice that if x is replaced 
with my2 in ƒ, the result involves the 
same power of y (in this case, y4) in the 
numerator and denominator, which may 
be canceled.

z

x

y

z 5 
3xy2

x2 1 y4

x 5 y2 is a level curve

for z 5    .

z

x

y

x 5 2y2 is a level

curve for z 5 2   .

3
2

3
2

2
3
2

3
2

Figure 15.29 Related Exercises 41–42 

Composite Functions Recall that for functions of a single variable, compositions of 
continuous functions are also continuous. The following theorem gives the analogous result 
for functions of two variables; it is proved in Appendix A.

QUICK CHECK 5 Which of the following 
functions are continuous at 10, 02?
a. ƒ1x, y2 = 2x2y5

b. ƒ1x, y2 = 2x2y5

x - 1

c. ƒ1x, y2 = 2x-2y5 

THEOREM 15.3 Continuity of Composite Functions
If u = g1x, y2 is continuous at 1a, b2 and z = ƒ1u2 is continuous at g1a, b2, then 
the composite function z = ƒ1g1x, y22 is continuous at 1a, b2.

With Theorem 15.3, we can easily analyze the continuity of many functions. For example, 
sin x, cos x, and ex are continuous functions of a single variable, for all real values of x. 
Therefore, compositions of these functions with polynomials in x and y (for example, 
sin 1x2y2 and ex4-y2

) are continuous for all real numbers x and y. Similarly, 1x is a contin-
uous function of a single variable, for x Ú 0. Therefore, 1u1x, y2 is continuous at 1x, y2 
provided u is continuous at 1x, y2 and u1x, y2 Ú 0. As long as we observe restrictions on 
domains, then compositions of continuous functions are also continuous.

EXAMPLE 5 Continuity of composite functions. Determine the points at which the 
following functions are continuous.

a. h1x, y2 = ln 1x2 + y2 + 42  b. h1x, y2 = ex>y
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SOLUTION

a. This function is the composition ƒ1g1x, y22, where

ƒ1u2 = ln u and u = g1x, y2 = x2 + y2 + 4.

As a polynomial, g is continuous for all 1x, y2 in ℝ2. The function ƒ is continuous for 
u 7 0. Because u = x2 + y2 + 4 7 0 for all 1x, y2, it follows that h is continuous at 
all points of ℝ2.

b. Letting ƒ1u2 = eu and u = g1x, y2 = x>y, we have h1x, y2 = ƒ1g1x, y22. Note that ƒ 
is continuous at all points of ℝ and g is continuous at all points of ℝ2 provided y ≠ 0. 
Therefore, h is continuous on the set 51x, y2: y ≠ 06.

Related Exercises 48–49 

Functions of Three Variables
The work we have done with limits and continuity of functions of two variables extends to 
functions of three or more variables. Specifically, the limit laws of Theorem 15.2 apply to 
functions of the form w = ƒ1x, y, z2. Polynomials and rational functions are continuous at 
all points of their domains, and limits of these functions may be evaluated by direct sub-
stitution at all points of their domains. Compositions of continuous functions of the form 
ƒ1g1x, y, z22 are also continuous at points at which g1x, y, z2 is in the domain of ƒ.

EXAMPLE 6 Functions of three variables

a. Evaluate lim
1x, y, z2S12, p>2, 02

 
x2 sin y

z2 + 4
 .

b. Find the points at which h1x, y, z2 = 2x2 + y2 + z2 - 1 is continuous.

SOLUTION

a. This function consists of products and quotients of functions that are continuous at 
12, p>2, 02. Therefore, the limit is evaluated by direct substitution:

lim
1x, y, z2S12, p>2, 02

 
x2 sin y

z2 + 4
=

22
  sin 1p>22
02 + 4

= 1.

b. This function is a composition in which the outer function ƒ1u2 = 1u is continuous 
for u Ú 0. The inner function

g1x, y, z2 = x2 + y2 + z2 - 1

is nonnegative provided x2 + y2 + z2 Ú 1. Therefore, h is continuous at all points on 
or outside the unit sphere in ℝ3.

Related Exercise 55 

Getting Started
1. Explain what lim

1x, y2S1a, b2
ƒ1x, y2 = L means.

2. Explain why ƒ1x, y2 must approach a unique number L as 1x, y2 
approaches 1a, b2 along all paths in the domain in order for 

lim
1x, y2S1a, b2

ƒ1x, y2 to exist.

3. What does it means to say that limits of polynomials may be 
evaluated by direct substitution?

4. Suppose 1a, b2 is on the boundary of the domain of ƒ. Explain 
how you would determine whether lim

1x, y2S1a, b2
ƒ1x, y2 exists.

5. Explain how examining limits along multiple paths may prove the 
nonexistence of a limit.

SECTION 15.2 EXERCISES
6. Explain why evaluating a limit along a finite number of paths does 

not prove the existence of a limit of a function of several variables.

7. What three conditions must be met for a function ƒ to be continu-
ous at the point 1a, b2?

8. Let R be the unit disk 51x, y2: x2 + y2 … 16 with 10, 02  
removed. Is 10, 02 a boundary point of R? Is R open or closed?

9. At what points of ℝ2 is a rational function of two variables  
continuous?

10. Evaluate lim
1x, y, z2S11, 1, -12

xy2z3.

11. Evaluate lim
1x, y2S15, -52

x2 - y2

x + y
 .
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12. Let ƒ1x2 = x2 - 2x - y2 + 1

x2 - 2x + y2 + 1
 . Use the Two-Path Test to  

show that lim
1x, y2S11, 02

 ƒ1x2 does not exist. (Hint: Examine  

lim
1x, y2S11, 02

 ƒ1x2 and lim
1x, y2S11, 02

 ƒ1x2 first.)

        1along y = 02     1along x = 12

Practice Exercises
13–28. Limits of functions Evaluate the following limits.

13. lim
1x, y2S12, 92

 101 14. lim
1x, y2S11, -32

 13x + 4y - 22

15. lim
1x, y2S1-3, 32

 14x2 - y22 16. lim
1x, y2S12, -12

 1xy8 - 3x2y32

17. lim
1x, y2S10, p2

 
cos xy + sin xy

2y
 18. lim

1x, y2S1e2, 42
ln 1xy

19. lim
1x, y2S12, 02

 
x2 - 3xy2

x + y
 20. lim

1u, v2S11, -12
 
10uv - 2v2

u2 + v2

21. lim
1x, y2S16, 22

 
x2 - 3xy

x - 3y
 22. lim

1x, y2S11, -22
 
y2 + 2xy

y + 2x

23. lim
1x, y2S13, 12

 
x2 - 7xy + 12y2

x - 3y
 24. lim

1x, y2S1-1, 12
 
2x2 - xy - 3y2

x + y

25. lim
1x, y2S12, 22

 
y2 - 4

xy - 2x
 26. lim

1x, y2S14, 52
 
1x + y - 3

x + y - 9

27. lim
1x, y2S11, 22

 
1y - 1x + 1

y - x - 1
 28. lim

1u, v2S18, 82
 
u1>3 - v1>3

u2>3 - v2>3

29–34. Nonexistence of limits Use the Two-Path Test to prove that the 
following limits do not exist.

29. lim
1x, y2S10, 02

 
x + 2y

x - 2y

 

x

y

z

z 5
x 1 2y
x 2 2y

30. lim
1x, y2S10, 02

 
4xy

3x2 + y2

 

z

y

x

z 5 
4xy

3x2 1 y2

31. lim
1x, y2S10, 02

 
y4 - 2x2

y4 + x2  32. lim
1x, y2S10, 02

 
x3 - y2

x3 + y2

33. lim
1x, y2S10, 02

 
y3 + x3

xy2  34. lim
1x, y2S10, 02

 
y2x2 - y2

35–54. Continuity At what points of ℝ2 are the following functions 
continuous?

35. ƒ1x, y2 = x2 + 2xy - y3 36. ƒ1x, y2 = xy

x2y2 + 1

37. p1x, y2 = 4x2y2

x4 + y2 38. S1x, y2 = 2xy

x2 - y2

39. ƒ1x, y2 = 2

x1y2 + 12 40. ƒ1x, y2 = x2 + y2

x1y2 - 12

41. ƒ1x, y2 = •
xy

x2 + y2 if 1x, y2 ≠ 10, 02
0 if 1x, y2 = 10, 02

42. ƒ1x, y2 = •
y4 - 2x2

y4 + x2 if 1x, y2 ≠ 10, 02
0 if 1x, y2 = 10, 02

43. ƒ1x, y2 = 2x2 + y2 44. ƒ1x, y2 = ex2 + y2

45. ƒ1x, y2 = sin xy 46. g1x, y2 = ln 1x - y2
47. h1x, y2 = cos 1x + y2 48. p1x, y2 = ex - y

49. ƒ1x, y2 = ln 1x2 + y22 50. ƒ1x, y2 = 24 - x2 - y2

51. g1x, y2 = 23 x2 + y2 - 9 52. h1x, y2 = 1x - y

4

53. ƒ1x, y2 = •
sin 1x2 + y22

x2 + y2 if 1x, y2 ≠ 10, 02
1 if 1x, y2 = 10, 02

54. ƒ1x, y2 = c 1 - cos 1x2 + y22
x2 + y2 if 1x, y2 ≠ 10, 02

0 if 1x, y2 = 10, 02
55–60. Limits of functions of three variables Evaluate the following 
limits.

55. lim
1x, y, z2S11, ln 2, 32

 zexy

56. lim
1x, y, z2S10, 1, 02

 ln11 + y2 exz

57. lim
1x, y, z2S11, 1, 12

 
yz - xy - xz - x2

yz + xy + xz - y2

58. lim
1x, y, z2S11, 1, 12

 
x - 1xz - 1xy + 1yz

x - 1xz + 1xy - 1yz

59. lim
1x, y, z2S11, 1, 12

 
x2 + xy - xz - yz

x - z

60. lim
1x, y, z2S11, -1, 12

 
xz + 5x + yz + 5y

x + y
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61. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. If the limits lim
1x, 02S10, 02

 ƒ1x, 02 and lim
10, y2S10, 02

 ƒ10, y2 exist 

and equal L, then lim
1x, y2S10, 02

 ƒ1x, y2 = L.

b. If lim
1x, y2S1a, b2

 ƒ1x, y2 equals a finite number L, then ƒ is  

continuous at 1a, b2.
c. If ƒ is continuous at 1a, b2, then lim

1x, y2S1a, b2
 ƒ1x, y2 exists.

d. If P is a boundary point of the domain of ƒ, then P is in the 
domain of ƒ.

62–76. Miscellaneous limits Use the method of your choice to  
evaluate the following limits.

62. lim
1x, y2S10, 02

 
y2

x8 + y2 63. lim
1x, y2S10, 12

 
y sin x

x1y + 12

64. lim
1x, y2S11, 12

 
x2 + xy - 2y2

2x2 - xy - y2 65. lim
1x, y2S11, 02

 
y ln y

x

66. lim
1x, y2S10, 02

 
� xy �
xy

 67. lim
1x, y2S10, 02

 
� x - y �
� x + y �

68. lim
1u, v2S1-1, 02

 
uve-v

u2 + v2 69. lim
1x, y2S12, 02

 
1 - cos y

xy2

70. lim
1x, y2S14, 02

 x2y ln xy 71. lim
1x, y2S11, 02

 
sin xy

xy

72. lim
1x, y2S10, p>22

 
1 - cos xy

4x2y3  73. lim
1x, y2S10, 22

 12xy2xy

74. lim
1x, y2S13, 32

 
x2 + 2xy - 6x + y2 - 6y

x + y - 6

75. lim
1x, y2S11, 22

 
x2 + 2xy - x + y2 - y - 6

x + y - 3

76. lim
1x, y2S10, 02

 tan-1 
12 + 1x + y22 + 1x - y222

2ex2 + y2

77. Piecewise function Let

ƒ1x, y2 = •
sin 1x2 + y2 - 12

x2 + y2 - 1
if x2 + y2 ≠ 1

b if x2 + y2 = 1.

Find the value of b for which ƒ is continuous at all points in ℝ2.

78. Piecewise function Let

ƒ1x, y2 = •
1 + 2xy - cos xy

xy
if xy ≠ 0

a if xy = 0.

Find the value of a for which ƒ is continuous at all points in ℝ2.

79–81. Limits using polar coordinates Limits at 10, 02 may be easier 
to evaluate by converting to polar coordinates. Remember that the 
same limit must be obtained as r S 0 along all paths in the domain to 
10, 02. Evaluate the following limits or state that they do not exist.

79. lim
1x, y2S10, 02

 
x2y

x2 + y2 80. lim
1x, y2S10, 02

 
x - y2x2 + y2

81. lim
1x, y2S10, 02

 
x2 + y2 + x2y2

x2 + y2

Explorations and Challenges

82. Sine limits Verify that lim
1x, y2S10, 02

 
sin x + sin y

x + y
= 1.

83. Nonexistence of limits Show that lim
1x, y2S10, 02

 
axmyn

bxm + n + cym + n  

does not exist when a, b, and c are nonzero real numbers and m  
and n are positive integers.

84. Nonexistence of limits Show that lim
1x, y2S10, 02

 
ax21p - n2yn

bx2p + cyp does  

not exist when a, b, and c are nonzero real numbers and n and p  
are positive integers with p Ú n.

85. Filling in a function value The domain of ƒ1x, y2 = e-1>1x2 + y22 
excludes 10, 02. How should ƒ be defined at 10, 02 to make it con-
tinuous there?

86. Limit proof Use the formal definition of a limit to prove that 
lim

1x, y2S1a, b2
 y = b. (Hint: Take d = e.)

87. Limit proof Use the formal definition of a limit to prove that 

lim
1x, y2S1a, b2

 1x + y2 = a + b. (Hint: Take d = e>2 .)

88. Proof of Limit Law 1 Use the formal definition of a limit to 
prove that 

 lim
1x, y2S1a, b2

 1ƒ1x, y2 + g1x, y22 = lim
1x, y2S1a, b2

 ƒ1x, y2
                + lim

1x, y2S1a, b2
 g1x, y2.

89. Proof of Limit Law 3 Use the formal definition of a limit to 
prove that lim

1x, y2S1a, b2
 cƒ1x, y2 = c lim

1x, y2S1a, b2
 ƒ1x, y2.

QUICK CHECK ANSWERS

1. The limit exists only for (a). 2. 51x, y2: x2 + y2 6 26
3. If a factor of x is first canceled, then the limit may be 
evaluated by substitution. 4. If the left and right limits at a 
point are not equal, then the two-sided limit does not exist.
5. (a) and (b) are continuous at 10, 02. 
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The answer to this question involves partial derivatives, which arise when we hold all 
but one independent variable fixed and then compute an ordinary derivative with respect 
to the remaining variable. Suppose we move along the surface z = ƒ1x, y2, starting at the 
point 1a, b, ƒ1a, b22 in such a way that y = b is fixed and only x varies. The resulting 
path is a curve (a trace) on the surface that varies in the x-direction (Figure 15.31). This 
curve is the intersection of the surface with the vertical plane y = b; it is described by 
z = ƒ1x, b2, which is a function of the single variable x. We know how to compute the 
slope of this curve: It is the ordinary derivative of ƒ1x, b2 with respect to x. This derivative 
is called the partial derivative of ƒ with respect to x, denoted 0ƒ>0x or ƒx. When evaluated 
at 1a, b2, its value is defined by the limit

ƒx1a, b2 = lim
hS0

 
ƒ1a + h, b2 - ƒ1a, b2

h
 ,

provided this limit exists. Notice that the y-coordinate is fixed at y = b in this limit. If we 
replace 1a, b2 with the variable point 1x, y2, then ƒx becomes a function of x and y.

In a similar way, we can move along the surface z = ƒ1x, y2 from the point 
1a, b, ƒ1a, b22 in such a way that x = a is fixed and only y varies. Now the result is 

y, North

x, East

z

P(0, 0, f (0, 0))

NorthEast

(a) (b)

Figure 15.30

15.3 Partial Derivatives
The derivative of a function of one variable, y = ƒ1x2, measures the rate of change of y 
with respect to x, and it gives slopes of tangent lines. The analogous idea for functions of 
several variables presents a new twist: Derivatives may be defined with respect to any of 
the independent variables. For example, we can compute the derivative of ƒ1x, y2 with re-
spect to x or y. The resulting derivatives are called partial derivatives; they still represent 
rates of change and they are associated with slopes of tangents. Therefore, much of what 
you have learned about derivatives applies to functions of several variables. However, 
much is also different.

Derivatives with Two Variables
Consider a function ƒ defined on a domain D in the xy@plane. Suppose ƒ represents the ele-
vation of the land (above sea level) over D. Imagine that you are on the surface z = ƒ1x, y2 
at the point 1a, b, ƒ1a, b22 and you are asked to determine the slope of the surface where 
you are standing. Your answer should be, it depends!

Figure 15.30a shows a function that resembles the landscape in Figure 15.30b. Sup-
pose you are standing at the point P10, 0, ƒ10, 022, which lies on the pass or the saddle. 
The surface behaves differently depending on the direction in which you walk. If you 
walk east (positive x-direction), the elevation increases and your path takes you upward on 
the surface. If you walk north (positive y-direction), the elevation decreases and your path 
takes you downward on the surface. In fact, in every direction you walk from the point P, 
the function values change at different rates. So how should the slope or the rate of change 
at a given point be defined?
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 15.3 Partial Derivatives 941

a trace described by z = ƒ1a, y2, which is the intersection of the surface and the plane 
x = a (Figure 15.32). The slope of this curve at 1a, b2 is given by the ordinary deriva-
tive of ƒ1a, y2 with respect to y. This derivative is called the partial derivative of ƒ with  
respect to y, denoted 0ƒ>0y or ƒy. When evaluated at 1a, b2, it is defined by the limit

ƒy1a, b2 = lim
hS0

 
ƒ1a, b + h2 - ƒ1a, b2

h
 ,

provided this limit exists. If we replace 1a, b2 with the variable point 1x, y2, then ƒy  
becomes a function of x and y.

y

x

y

x

z 5 f (x, y)

y

x

a

a

b

y

x

This is the vertical
plane y 5 b and ...

a 1 h

(a, b, f (a, b))

bb

a

The limit

lim

equals ...
h$0

f (a 1 h, b) 2 f (a, b)
h

z

z

z

z

... this is the
curve z 5 f (x, b).

... the slope of the curve z 5 f (x, b)
at (a, b, f (a, b)), which is fx(a, b).

Figure 15.31

h$0

y

b a
x

z

(a, b, f (a, b)) y

b a

z

b 1 h

This is the vertical
plane x 5 a and ...

... this is the curve z 5 f (a, y).

f (a, b 1 h) 2 f (a, b)The limit lim

equals ...
h

y

b a
x

z

... the slope of the curve
z 5 f (a, y) at (a, b, f (a, b)),
which is fy(a, b).

x

Figure 15.32

DEFINITION Partial Derivatives

The partial derivative of ƒ with respect to x at the point 1a, b 2  is

ƒx1a, b2 = lim
hS0

 
ƒ1a + h, b2 - ƒ1a, b2

h
 .

The partial derivative of ƒ with respect to y at the point 1a, b 2  is

ƒy1a, b2 = lim
hS0

 
ƒ1a, b + h2 - ƒ1a, b2

h
 ,

provided these limits exist.
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942 Chapter 15  •  Functions of Several Variables

Notation The partial derivatives evaluated at a point 1a, b2 are denoted in any of the fol-
lowing ways:

0ƒ
0x

  1a, b2 = 0ƒ
0x
`
1a, b2

= ƒx1a, b2 and 
0ƒ
0y

  1a, b2 = 0ƒ
0y
`
1a, b2

= ƒy1a, b2.

Notice that the d in the ordinary derivative dƒ>dx has been replaced with 0 in the partial 
derivatives 0ƒ>0x and 0ƒ>0y. The notation 0>0x is an instruction or operator: It says, “Take 
the partial derivative with respect to x of the function that follows.”

Calculating Partial Derivatives We begin by calculating partial derivatives using the 
limit definition. The procedure in Example 1 should look familiar. It echoes the method 
used in Chapter 3 when we first introduced ordinary derivatives.

➤ Recall that ƒ′ is a function, while ƒ′1a2 
is the value of the derivative at x = a. In 
the same way, ƒx and ƒy are functions of 
x and y, while ƒx1a, b2 and ƒy1a, b2 are 
their values at 1a, b2.

EXAMPLE 1 Partial derivatives from the definition Suppose ƒ1x, y2 = x2y. Use the 
limit definition of partial derivatives to compute ƒx1x, y2 and ƒy1x, y2.
SOLUTION We compute the partial derivatives at an arbitrary point 1x, y2 in the domain. 
The partial derivative with respect to x is

 ƒx1x, y2 = lim
hS0

ƒ1x + h, y2 - ƒ1x, y2
h

 Definition of ƒx at 1x, y2

 = lim
hS0

1x + h22y - x2y

h
 Substitute for ƒ1x + h, y2 and ƒ1x, y2 .

 = lim
hS0

1x2 + 2xh + h2 - x22y
h

 Factor and expand.

 = lim
hS0
12x + h2y  Simplify and cancel h.

 = 2xy.  Evaluate limit.

In a similar way, the partial derivative with respect to y is

 ƒy1x, y2 = lim
hS0

ƒ1x, y + h2 - ƒ1x, y2
h

 Definition of ƒy at 1x, y2

 = lim
hS0

x21y + h2 - x2y

h
 Substitute for ƒ1x, y + h2 and ƒ1x, y2 .

 = lim
hS0

x21y + h - y2
h

 Factor.

 = x2.  Simplify and evaluate limit.
Related Exercise 11 

A careful examination of Example 1 reveals a shortcut for evaluating partial derivatives. 
To compute the partial derivative of ƒ with respect to x, we treat y as a constant and take 
an ordinary derivative with respect to x:

0
0x

 1x2y2 = y 
0
0x

 1x22 = 2xy. Treat y as a constant.
      (1)1*
       2x

Similarly, we treat x (and therefore x2) as a constant to evaluate the partial derivative of ƒ 
with respect to y:

0
0y

 1x2y2 = x2 
0
0y

 1y2 = x2. Treat x as a constant.
(1)1*
  1

The next two examples illustrate the process.
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EXAMPLE 2 Partial derivatives Let ƒ1x, y2 = x3 - y2 + 4.

a. Compute 
0ƒ
0x

 and 
0ƒ
0y

 .

b. Evaluate each derivative at 12, -42.
SOLUTION

a. We compute the partial derivative with respect to x assuming y is a constant; the Power 
Rule gives

0ƒ
0x

=
0
0x

 1x3 - y2 + 42 = 3x2 + 0 = 3x2.
    "  (1)1*
 variable constant with  
  respect to x

The partial derivative with respect to y is computed by treating x as a constant; using 
the Power Rule gives

0ƒ
0y

=
0
0y

  1x3 -  y2 + 42 = -2y.
    "    "    "
 constant  variable constant 
 with respect    
 to y 

b. It follows that ƒx12, -42 = 13x22 0 12, -42 = 12 and ƒy12, -42 = 1-2y2 0 12, -42 = 8.

Related Exercise 16 

QUICK CHECK 1 Compute ƒx and ƒy for 
ƒ1x, y2 = 2xy. 

EXAMPLE 3 Partial derivatives Compute the partial derivatives of the following 
functions.

a. ƒ1x, y2 = sin  xy b. g1x, y2 = x2exy

SOLUTION

a. Treating y as a constant and differentiating with respect to x, we have

0ƒ
0x

=
0
0x

 1sin xy2 = y cos xy.

Holding x fixed and differentiating with respect to y, we have

0ƒ
0y

=
0
0y

 1sin xy2 = x cos xy.

b. To compute the partial derivative with respect to x, we call on the Product Rule.

Holding y fixed, we have

 
0g
0x

=
0
0x

  1x2exy2

 =
0
0x

 1x22exy + x2 
0
0x

  1exy2 Product Rule

 = 2xexy + x2yexy  Evaluate partial derivatives.

 = xexy12 + xy2.  Simplify.

Treating x as a constant, the partial derivative with respect to y is

0g
0y

=
0
0y

 1x2exy2 = x2 
0
0y

 1exy2 = x3exy.
(1)1*
  xexy

Related Exercises 17, 21 

➤ Recall that

d
dx

 1sin 2x2 = 2 cos 2x.

Replacing 2 with the constant y, we have

0
0x

 1sin xy2 = y cos xy.

➤ Because x and y are independent 
variables,

0
0x

  1y2 = 0 and 
0
0y

  1x2 = 0.
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Higher-Order Partial Derivatives
Just as we have higher-order derivatives of functions of one variable, we also have higher-
order partial derivatives. For example, given a function ƒ and its partial derivative ƒx, we 
can take the derivative of ƒx with respect to x or with respect to y, which accounts for two 
of the four possible second-order partial derivatives. Table 15.3 summarizes the notation 
for second partial derivatives. 

Table 15.3

Notation 1 Notation 2 What we sayN

0
0x

 a 0ƒ
0x
b =

02ƒ

0x2
1ƒx2x = ƒxx d squared ƒ dx squared or ƒ@x@x

0
0y

 a 0ƒ
0y
b =

02ƒ

0y2
1ƒy2y = ƒyy d squared ƒ dy squared or ƒ@y@y

0
0x

 a 0ƒ
0y
b =

02ƒ

0x0y
1ƒy2x = ƒyx ƒ@y@x

0
0y

 a 0ƒ
0x
b =

02ƒ

0y0x
1ƒx2y = ƒxy ƒ@x@y

The order of differentiation can make a difference in the mixed partial derivatives 
ƒxy and ƒyx. So it is important to use the correct notation to reflect the order in which  

derivatives are taken. For example, the notations 
02ƒ

0x0y
 and ƒyx both mean 

0
0x

 a 0ƒ
0y
b ; that is,  

differentiate first with respect to y, then with respect to x.

QUICK CHECK 2 Which of the following 
expressions are equivalent to each 

other: (a) ƒxy, (b) ƒyx, or (c) 
02ƒ

0y0x
?  

Write 
02ƒ

0p0q
 in subscript notation. 

EXAMPLE 4 Second partial derivatives Find the four second partial derivatives of 
ƒ1x, y2 = 3x4 y - 2xy + 5xy3.

SOLUTION First, we compute

0ƒ
0x

=
0
0x

 13x4y - 2xy + 5xy32 = 12x3y - 2y + 5y3

and
0ƒ
0y

=
0
0y

 13x4y - 2xy + 5xy32 = 3x4 - 2x + 15xy2.

For the second partial derivatives, we have

 
02ƒ

0x2 =
0
0x

 a 0ƒ
0x
b =

0
0x

 112x3y - 2y + 5y32 = 36x2y,

 
02ƒ

0y2 =
0
0y

 a 0ƒ
0y
b =

0
0y

 13x4 - 2x + 15xy22 = 30xy,

 
02ƒ

0x0y
=

0
0x

 a 0ƒ
0y
b =

0
0x

 13x4 - 2x + 15xy22 = 12x3 - 2 + 15y2, and

 
02ƒ

0y0x
=

0
0y

 a 0ƒ
0x
b =

0
0y

 112x3y - 2y + 5y32 = 12x3 - 2 + 15y2.

Related Exercises 39–40 

QUICK CHECK 3 Compute ƒxxx and ƒxxy 
for ƒ1x, y2 = x3y. 

Equality of Mixed Partial Derivatives Notice that the two mixed partial derivatives in 
Example 4 are equal; that is, ƒxy = ƒyx. It turns out that most of the functions we encounter 
in this text have this property. Sufficient conditions for equality of mixed partial derivatives 
are given in a theorem attributed to the French mathematician Alexis Clairaut (1713–1765). 
The proof is found in advanced texts.
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Assuming sufficient continuity, Theorem 15.4 can be extended to higher derivatives 
of ƒ. For example, ƒxyx = ƒxxy = ƒyxx.

Functions of Three Variables
Everything we learned about partial derivatives of functions with two variables carries 
over to functions of three or more variables, as illustrated in Example 5.

THEOREM 15.4 (Clairaut) Equality of Mixed Partial Derivatives
Assume ƒ is defined on an open set D of ℝ2, and that ƒxy and ƒyx are continuous 
throughout D. Then ƒxy = ƒyx at all points of D.

EXAMPLE 5 Partial derivatives with more than two variables Find ƒx, ƒy, and ƒz 
when ƒ1x, y, z2 = e-xy cos z.

SOLUTION To find ƒx, we treat y and z as constants and differentiate with respect to x:

 
0ƒ
0x

=
0
0x

  1e-xy #  cos z2 = -ye-xy cos z.()*    ()*
 y is constant  
 constant

Holding x and z constant and differentiating with respect to y, we have

0ƒ
0y

=
0
0y

  1e-xy # cos z2 = -xe-xy cos z.
     ()*    ()*
 x is constant  
 constant

To find ƒz, we hold x and y constant and differentiate with respect to z:

0ƒ
0z

=
0
0z

  1e-xy cos z2 = -e-xy sin z. ()*
constant

Related Exercises 55–56 

QUICK CHECK 4 Compute ƒxz and ƒzz for 
ƒ1x, y, z2 = xyz - x2 z + yz2. 

Applications of Partial Derivatives When functions are used in realistic applications 
(for example, to describe velocity, pressure, investment fund balance, or population), they 
often involve more than one independent variable. For this reason, partial derivatives appear 
frequently in mathematical modeling.

EXAMPLE 6 Ideal Gas Law The pressure P, volume V, and temperature T  of an ideal 
gas are related by the equation PV = kT, where k 7 0 is a constant depending on the 
amount of gas.

a. Determine the rate of change of the pressure with respect to the volume at constant 
temperature. Interpret the result.

b. Determine the rate of change of the pressure with respect to the temperature at con-
stant volume. Interpret the result.

c. Explain these results using level curves.

SOLUTION Expressing the pressure as a function of volume and temperature, we have 

P = k 
T
V

 .

a. We find the partial derivative 0P>0V by holding T  constant and differentiating P with 
respect to V:

0P
0V

=
0
0V

 ak  

T
V
b = kT 

0
0V

 1V-12 = -  
kT

V2 .

Recognizing that P, V, and T  are always positive, we see that 
0P
0V

6 0, which means 

that the pressure is a decreasing function of volume at a constant temperature.

➤ Implicit differentiation can also be 
used with partial derivatives. Instead 
of solving for P, we could differentiate 
both sides of PV = kT  with respect to 
V  holding T  fixed. Using the Product 
Rule, PV V + P = 0, which implies that 
PV = -P>V. Substituting P = kT>V, we 
have PV = -kT>V2.

➤ In the Ideal Gas Law, temperature is a 
positive variable because it is measured 
in kelvins.

M15_BRIG3644_03_SE_C15_919-1007.indd   945 25/10/17   2:12 PM



946 Chapter 15  •  Functions of Several Variables

b. The partial derivative 0P>0T  is found by holding V constant and differentiating P with 
respect to T:

0P
0T

=
0
0T

 ak  

T
V
b =

k
V

 .

In this case, 0P>0T 7 0, which says that the pressure is an increasing function of tem-
perature at constant volume.

c. The level curves (Section 15.1) of the pressure function are curves in the VT@plane  

that satisfy k  

T
V

= P0, where P0 is a constant. Solving for T, the level curves are given  

by T =
1
k

 P0V. Because 
P0

k
 is a positive constant, the level curves are lines in the first  

quadrant (Figure 15.33) with slope P0>k. The fact that 
0P
0V

6 0 (from part (a)) means  

that if we hold T 7 0 fixed and move in the direction of increasing V on a horizontal 

line, we cross level curves corresponding to decreasing pressures. Similarly, 
0P
0T

7 0  

(from part (b)) means that if we hold V 7 0 fixed and move in the direction of increas-
ing T  on a vertical line, we cross level curves corresponding to increasing pressures.

Related Exercise 69 

T

V

P 5 10

P 5 20

P 5 30

P 5 40

On a line of
constant T, P
decreases as
V increases.

On a line of
constant V, P
increases as
T increases.

Figure 15.33

QUICK CHECK 5 Explain why, in  
Figure 15.33, the slopes of the level 
curves increase as the pressure 
increases. 

Differentiability
We close this section with a technical matter that bears on the remainder of the chapter.  
Although we know how to compute partial derivatives of a function of several variables, 
we have not said what it means for such a function to be differentiable at a point. It is 
tempting to conclude that if the partial derivatives ƒx and ƒy exist at a point, then ƒ is dif-
ferentiable there. However, it is not so simple.

Recall that a function ƒ of one variable is differentiable at x = a provided the limit

ƒ′1a2 = lim
∆xS0

 
ƒ1a + ∆x2 - ƒ1a2

∆x

exists. If ƒ is differentiable at a, it means that the curve is smooth at the point 1a, ƒ1a22 
(no jumps, corners, or cusps); furthermore, the curve has a unique tangent line at that 
point with slope ƒ′1a2. Differentiability for a function of several variables should carry 
the same properties: The surface should be smooth at the point in question, and something 
analogous to a unique tangent line should exist at the point.

Staying with the one-variable case, we define the quantity

e =
ƒ1a + ∆x2 - ƒ1a2

∆x
- ƒ′1a2,

  (+++1)1+++*  ()*
 slope of secant line slope of  
  tangent line

where e is viewed as a function of ∆x. Notice that e is the difference between the slopes 
of secant lines and the slope of the tangent line at the point 1a, ƒ1a22. If ƒ is differentiable 
at a, then this difference approaches zero as ∆x S 0; therefore, lim

∆xS0
 e = 0. Multiplying 

both sides of the definition of e by ∆x gives

e∆x = ƒ1a + ∆x2 - ƒ1a2 - ƒ′1a2  ∆x.

Rearranging, we have the change in the function y = ƒ1x2:
∆y = ƒ1a + ∆x2 - ƒ1a2 = ƒ′1a2  ∆x + e ∆x." 

e S 0 as ∆x S 0

This expression says that in the one-variable case, if ƒ is differentiable at a, then the 
change in ƒ between a and a nearby point a + ∆x is represented by ƒ′1a2  ∆x plus a quan-
tity e ∆x, where lim

∆xS0
e = 0.

➤ Notice that ƒ′1a2  ∆x is the approximate 
change in the function given by a linear 
approximation.
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The analogous requirement with several variables is the definition of differentiability 
for functions of two (or more) variables.

DEFINITION Differentiability

The function z = ƒ1x, y2 is differentiable at 1a, b 2  provided ƒx1a, b2 and ƒy1a, b2 
exist and the change ∆z = ƒ1a + ∆x, b + ∆y2 - ƒ1a, b2 equals

∆z = ƒx1a, b2  ∆x + ƒy1a, b2  ∆y + e1∆x + e2∆y,

where for fixed a and b, e1 and e2 are functions that depend only on ∆x and ∆y, 
with 1e1, e22S 10, 02 as 1∆x, ∆y2S 10, 02. A function is differentiable on an 
open set R if it is differentiable at every point of R.

Several observations are needed here. First, the definition extends to functions 
of more than two variables. Second, we show how differentiability is related to linear  
approximation and the existence of a tangent plane in Section 15.6. Finally, the conditions 
of the definition are generally difficult to verify. The following theorem may be useful in 
checking differentiability.

As shown in Example 7, the existence of ƒx and ƒy at 1a, b2 is not enough to ensure 
differentiability of ƒ at 1a, b2. However, by Theorem 15.5, if ƒx and ƒy are continuous at 
1a, b2 (and defined in an open set containing 1a, b2), then we can conclude ƒ is differ-
entiable there. Polynomials and rational functions are differentiable at all points of their  
domains, as are compositions of exponential, logarithmic, and trigonometric functions 
with other differentiable functions. The proof of this theorem is given in Appendix A.

We close with the analog of Theorem 3.1, which states that differentiability implies 
continuity.

THEOREM 15.5 Conditions for Differentiability
Suppose the function ƒ has partial derivatives ƒx and ƒy defined on an open set con-
taining 1a, b2, with ƒx and ƒy continuous at 1a, b2. Then ƒ is differentiable at 1a, b2.

THEOREM 15.6 Differentiable Implies Continuous
If a function ƒ is differentiable at 1a, b2, then it is continuous at 1a, b2.

Proof: By the definition of differentiability,

∆z = ƒx1a, b2  ∆x + ƒy1a, b2  ∆y + e1∆x + e2∆y,

where 1e1, e22S 10, 02 as 1∆x, ∆y2S 10, 02. Because ƒ is assumed to be differentiable, 
we see that as ∆x and ∆y approach 0,

lim
1∆x, ∆y2S10, 02

∆z = 0.

Also, because ∆z = ƒ1a + ∆x, b + ∆y2 - ƒ1a, b2, it follows that

lim
1∆x, ∆y2S10, 02 

ƒ1a + ∆x, b + ∆y2 = ƒ1a, b2,

which implies continuity of ƒ at 1a, b2. 

➤ Recall that continuity requires that 
lim

1x, y2S1a, b2
 ƒ1x, y2 = ƒ1a, b2,  

which is equivalent to  
lim

1∆x, ∆y2S10, 02
 ƒ1a + ∆x, b + ∆y2 =

ƒ1a, b2.

EXAMPLE 7 A nondifferentiable function Discuss the differentiability and continuity 
of the function

ƒ1x, y2 = c 3xy

x2 + y2 if 1x, y2 ≠ 10, 02
0 if 1x, y2 = 10, 02.
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948 Chapter 15  •  Functions of Several Variables

SOLUTION As a rational function, ƒ is continuous and differentiable at all points 
1x, y2 ≠ 10, 02. The interesting behavior occurs at the origin. Using calculations similar 
to those in Example 4 in Section 15.2, it can be shown that if the origin is approached 
along the line y = mx, then

lim
1x, y2S10, 02

 
3xy

x2 + y2 =
3m

m2 + 1
 .

1along y = mx2
Therefore, the value of the limit depends on the direction of approach, which implies that 
the limit does not exist, and ƒ is not continuous at 10, 02. By Theorem 15.6, it follows that 
ƒ is not differentiable at 10, 02. Figure 15.34 shows the discontinuity of ƒ at the origin.

Let’s look at the first partial derivatives of ƒ at 10, 02. A short calculation shows that

 ƒx10, 02 = lim
hS0

 
ƒ10 + h, 02 - ƒ10, 02

h
= lim

hS0
 
0 - 0

h
= 0,

 ƒy10, 02 = lim
hS0

 
ƒ10, 0 + h2 - ƒ10, 02

h
= lim

hS0
 
0 - 0

h
= 0.

Despite the fact that its first partial derivatives exist at 10, 02, ƒ is not differentiable at 
10, 02. As noted earlier, the existence of first partial derivatives at a point is not enough to 
ensure differentiability at that point.

Related Exercises 77–78 

3xy
x2 1 y2f (x, y) 5

f is not continuous
at (0, 0), even though
fx(0, 0) 5 fy(0, 0) 5 0.

z

y

x

Figure 15.34

➤ The relationships between the existence 
and continuity of partial derivatives and 
whether a function is differentiable are 
further explored in Exercises 96–97.

Getting Started
1. Suppose you are standing on the surface z = ƒ1x, y2 at the point 
1a, b, ƒ1a, b22. Interpret the meaning of ƒx1a, b2 and ƒy1a, b2 in 
terms of slopes or rates of change.

2. Let ƒ1x, y2 = 3x2 + y3.

a. Compute ƒx and ƒy.
b. Evaluate each derivative at 11, 32.
c. Find the four second partial derivatives of ƒ.

3. Given the graph of a function z = ƒ1x, y2 and its traces in the 
planes x = 4, y = 1, and y = 3 (see figure), determine whether 
the following partial derivatives are positive or negative.

y

x

z

z 5 f (x, y)

4

4

3
111

a. ƒx14, 12  b. ƒy14, 12  c. ƒx14, 32  d. ƒy14, 32
4. Find ƒx and ƒy when ƒ1x, y2 = y8 + 2x6 + 2xy.

5. Find ƒx and ƒy when ƒ1x, y2 = 3x2y + 2.

6. Find the four second partial derivatives of ƒ1x, y2 = x2y3.

SECTION 15.3 EXERCISES

7. Verify that ƒxy = ƒyx, for ƒ1x, y2 = 2x3 + 3y2 + 1.

8. Verify that ƒxy = ƒyx, for ƒ1x, y2 = xey.

9. Find ƒx, ƒy, and ƒz, for ƒ1x, y, z2 = xy + xz + yz.

10. The volume of a right circular cylinder with radius r and height h 
is V = pr2h. Is the volume an increasing or decreasing function 
of the radius at a fixed height (assume r 7 0 and h 7 0)?

Practice Exercises
11–14. Evaluating partial derivatives using limits Use the limit defi-
nition of partial derivatives to evaluate ƒx1x, y2 and ƒy1x, y2 for the 
following functions.

11. ƒ1x, y2 = 5xy 12. ƒ1x, y2 = x + y2 + 4

13. ƒ1x, y2 = x
y
 14. ƒ1x, y2 = 1xy

15–37. Partial derivatives Find the first partial derivatives of the  
following functions.

15. ƒ1x, y2 = xey 16. ƒ1x, y2 = 4x3y2 + 3x2y3 + 10

17. ƒ1x, y2 = ex2y 18. ƒ1x, y2 = 13xy + 4y2 + 125

19. ƒ1w, z2 = w

w2 + z2 20. ƒ1s, t2 = s - t
s + t

21. ƒ1x, y2 = x cos xy 22. ƒ1x, y2 = tan-1 
x2

y2

23. s1y, z2 = z2 tan yz 24. g1x, z2 = x ln 1z2 + x22

25. G1s, t2 = 1st
s + t

 26. F1p, q2 = 2p2 + pq + q2
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27. ƒ1x, y2 = x2y 28. g1x, y2 = cos5 1x2y32

29. h1x, y2 = x - 2x2 - 4y 30. h1u, v2 = A uv
u - v

31. ƒ1x, y2 = ∫ y3

x
et2dt 32. g1x, y2 = y sin-11xy

33. ƒ1x, y2 = 1 - tan-11x2 + y22
34. ƒ1x, y2 = ln 11 + e-xy2
35. h1x, y2 = 11 + 2y2x

36. ƒ1x, y2 = 1 - cos 121x + y22 + cos2 1x + y2

37. ƒ1x, y2 = ∫ y

x
 h1s2 ds, where h is continuous for all real numbers

38–47. Second partial derivatives Find the four second partial  
derivatives of the following functions.

38. ƒ1x, y2 = x2 sin y 39. h1x, y2 = x3 + xy2 + 1

40. ƒ1x, y2 = 2x5y2 + x2y 41. ƒ1x, y2 = y3 sin 4x

42. ƒ1x, y2 = sin21x3y2 43. p1u, v2 = ln 1u2 + v2 + 42

44. Q1r, s2 = er3s

s
 45. F1r, s2 = res

46. H1x, y2 = 24 + x2 + y2 47. ƒ1x, y2 = tan-11x3y22
48–53. Equality of mixed partial derivatives Verify that ƒxy = ƒyx  for 
the following functions.

48. ƒ1x, y2 = 3x2y-1 - 2x-1y2 49. ƒ1x, y2 = ex + y

50. ƒ1x, y2 = 1xy 51. ƒ1x, y2 = cos xy

52. ƒ1x, y2 = esin xy 53. ƒ1x, y2 = 12x - y324

54–62. Partial derivatives with more than two variables Find the 
first partial derivatives of the following functions.

54. G1r, s, t2 = 1rs + rt + st

55. h1x, y, z2 = cos 1x + y + z2
56. g1x, y, z2 = 2x2y - 3xz4 + 10y2z2

57. F1u, v, w2 = u
v + w

58. Q1x, y, z2 = tan xyz

59. G1r, s, t2 = 2rs3t5

60. g1w, x, y, z2 = cos 1w + x2 sin 1y - z2

61. h1w, x, y, z2 = wz
xy

62. F1w, x, y, z2 = w1x + 2y + 3z

63. Exploiting patterns Let R1t2 = at + b
ct + d

 and 

g1x, y, z2 = 4x - 2y - 2z

-6x + 3y - 3z
 .

a. Verify that R′1t2 = ad - bc

1ct + d22 .

b. Use the derivative R′1t2 to find the first partial derivatives of g.

64–67. Estimating partial derivatives from a table The following 
table shows values of a function ƒ1x, y2 for values of x from 2 to 2.5 
and values of y from 3 to 3.5. Use this table to estimate the values of 
the following partial derivatives.

y  x 2 2.1 2.2 2.3 2.4 2.5

3 4.243 4.347 4.450 4.550 4.648 4.743

3.1 4.384 4.492 4.598 4.701 4.802 4.902

3.2 4.525 4.637 4.746 4.853 4.957 5.060

3.3 4.667 4.782 4.895 5.005 5.112 5.218

3.4 4.808 4.930 5.043 5.156 5.267 5.376

3.5 4.950 5.072 5.191 5.308 5.422 5.534

64. ƒx12, 32 65. ƒy12, 32
66. ƒx12.2, 3.42 67. ƒy12.4, 3.32
68. Estimating partial derivatives from a graph Use the level 

curves of ƒ (see figure) to estimate the values of ƒx and ƒy at 
A10.42, 0.52.

0.2

0.4

0.6

0.4 0.80.6

y

x0

1.75

2.5

1

2.25

1.5

A

69. Gas law calculations Consider the Ideal Gas Law PV = kT, 
where k 7 0 is a constant. Solve this equation for V in terms of  
P and T.

a. Determine the rate of change of the volume with respect to the 
pressure at constant temperature. Interpret the result.

b. Determine the rate of change of the volume with respect to the 
temperature at constant pressure. Interpret the result.

c. Assuming k = 1, draw several level curves of the volume 
function, and interpret the results as in Example 6.

70. Body mass index The body mass index (BMI) for an adult human 

is given by the function B =
w

h2 , where w is the weight measured 

in kilograms and h is the height measured in meters.

a. Find the rate of change of the BMI with respect to weight at a 
constant height.

b. For fixed h, is the BMI an increasing or decreasing function of 
w? Explain.

c. Find the rate of change of the BMI with respect to height at a 
constant weight.

d. For fixed w, is the BMI an increasing or decreasing function of 
h? Explain.
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71. Resistors in parallel Two resistors in an electrical circuit with 
resistance R1 and R2 wired in parallel with a constant voltage give 

an effective resistance of R, where 
1
R

=
1
R1

+
1
R2

 .

R1

R2

a. Find 
0R
0R1

 and 
0R
0R2

 by solving for R and differentiating.

b. Find 
0R
0R1

 and 
0R
0R2

 by differentiating implicitly.

c. Describe how an increase in R1 with R2 constant affects R.
d. Describe how a decrease in R2 with R1 constant affects R.

72. Spherical caps The volume of the cap of a sphere of radius r and 

thickness h is V =
p

3
 h213r - h2, for 0 … h … 2r.

V 5   h2(3r 2 h)

r

h

p

3

a. Compute the partial derivatives Vh and Vr.
b. For a sphere of any radius, is the rate of change of volume with 

respect to r greater when h = 0.2r or when h = 0.8r?
c. For a sphere of any radius, for what value of h is the rate of 

change of volume with respect to r equal to 1?
d. For a fixed radius r, for what value of h (0 … h … 2r) is the 

rate of change of volume with respect to h the greatest?

73–76. Heat equation The flow of heat along a thin conducting  
bar is governed by the one-dimensional heat equation (with  
analogs for thin plates in two dimensions and for solids in three  
dimensions):

0u
0t

= k 
02u

0x2 ,

where u is a measure of the temperature at a location x on the bar at 
time t and the positive constant k is related to the conductivity of the 
material. Show that the following functions satisfy the heat equation 
with k = 1.

73. u1x, t2 = 4e-4t cos 2x 74. u1x, t2 = 10e-t sin x

75. u1x, t2 = Ae-a2t cos ax, for any real numbers a and A

76. u1x, t2 = e-t12 sin x + 3 cos x2
77–78. Nondifferentiability? Consider the following functions ƒ.

a. Is ƒ continuous at 10, 02?
b. Is ƒ differentiable at 10, 02?
c. If possible, evaluate ƒx10, 02 and ƒy10, 02.
d. Determine whether ƒx and ƒy are continuous at 10, 02.
e. Explain why Theorems 15.5 and 15.6 are consistent with the results 

in parts (a)–(d).

77. ƒ1x, y2 = c -  
xy

x2 + y2 if 1x, y2 ≠ 10, 02
0 if 1x, y2 = 10, 02

78. ƒ1x, y2 = c 2xy2

x2 + y4 if 1x, y2 ≠ 10, 02
0 if 1x, y2 = 10, 02

79. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. 
0
0x

 1y102 = 10y9.

b. 
02

0x 0y
 11xy2 = 11xy

 .

c. If ƒ has continuous partial derivatives of all orders, then 
ƒxxy = ƒyxx.

80. Mixed partial derivatives

a. Consider the function w = ƒ1x, y, z2. List all possible second 
partial derivatives that could be computed.

b. Let ƒ1x, y, z2 = x2y + 2xz2 - 3y2z and determine which  
second partial derivatives are equal.

c. How many second partial derivatives does p = g1w, x, y, z2 
have?

Explorations and Challenges
81. Partial derivatives and level curves Consider the function 

z = x>y2 .

a. Compute zx and zy.
b. Sketch the level curves for z = 1, 2, 3, and 4.
c. Move along the horizontal line y = 1 in the xy-plane and  

describe how the corresponding z-values change. Explain how 
this observation is consistent with zx as computed in part (a).

d. Move along the vertical line x = 1 in the xy-plane and  
describe how the corresponding z-values change. Explain how 
this observation is consistent with zy as computed in part (a).

82. Volume of a box A box with a square base of length x and height 
h has a volume V = x2 h.

a. Compute the partial derivatives Vx and Vh.
b. For a box with h = 1.5 m, use linear approximation to esti-

mate the change in volume if x increases from x = 0.5 m to 
x = 0.51 m.

c. For a box with x = 0.5 m, use linear approximation to esti-
mate the change in volume if h decreases from h = 1.5 m to 
h = 1.49 m.

d. For a fixed height, does a 10% change in x always produce 
(approximately) a 10% change in V? Explain.

e. For a fixed base length, does a 10% change in h always pro-
duce (approximately) a 10% change in V? Explain.

83. Electric potential function The electric potential in the xy-plane 
associated with two positive charges, one at 10, 12 with twice the 
magnitude of the charge at 10, -12, is

w1x, y2 = 22x2 + 1y - 122
+

12x2 + 1y + 122
 .

a. Compute wx and wy.
b. Describe how wx and wy behave as x, y S {∞ .
c. Evaluate wx10, y2, for all y ≠ { 1. Interpret this result.
d. Evaluate wy1x, 02, for all x. Interpret this result.
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84. Cobb-Douglas production function The output Q of an eco-
nomic system subject to two inputs, such as labor L and capital 
K, is often modeled by the Cobb-Douglas production function 

Q1L, K2 = cLa Kb. Suppose a =
1
3

 , b =
2
3

 , and c = 1.

a. Evaluate the partial derivatives QL and QK.
b. Suppose L = 10 is fixed and K increases from K = 20 to 

K = 20.5. Use linear approximation to estimate the change  
in Q.

c. Suppose K = 20 is fixed and L decreases from L = 10 to 
L = 9.5. Use linear approximation to estimate the change  
in Q.

d. Graph the level curves of the production function in the first 
quadrant of the LK-plane for Q = 1, 2, and 3.

e. Use the graph of part (d). If you move along the vertical line 
L = 2 in the positive K-direction, how does Q change? Is this 
consistent with QK computed in part (a)?

f. Use the graph of part (d). If you move along the horizontal line 
K = 2 in the positive L-direction, how does Q change? Is this 
consistent with QL computed in part (a)?

85. An identity Show that if ƒ1x, y2 = ax + by

cx + dy
, where a, b, c, and d 

are real numbers with ad - bc = 0, then ƒx = ƒy = 0, for all x 
and y in the domain of ƒ. Give an explanation.

86. Wave on a string Imagine a string that is fixed at both ends  
(for example, a guitar string). When plucked, the string  
forms a standing wave. The displacement u of the string  
varies with position x and with time t. Suppose it is given by 
u = ƒ1x, t2 = 2 sin 1px2 sin 1pt>22, for 0 … x … 1 and t Ú 0  
(see figure). At a fixed point in time, the string forms a wave  
on 30, 14. Alternatively, if you focus on a point on the string (fix a 
value of x), that point oscillates up and down in time.

a. What is the period of the motion in time?
b. Find the rate of change of the displacement with respect to 

time at a constant position (which is the vertical velocity of a 
point on the string).

c. At a fixed time, what point on the string is moving fastest?
d. At a fixed position on the string, when is the string moving 

fastest?
e. Find the rate of change of the displacement with respect to  

position at a constant time (which is the slope of the string).
f. At a fixed time, where is the slope of the string greatest?

x

y

u(x1, t1)

u(x1, t2)

u(x2, t1)

u(x2, t2)

x 5 1x 5 0
x1 x2

87–89. Wave equation Traveling waves (for example, water waves or 
electromagnetic waves) exhibit periodic motion in both time and  
position. In one dimension, some types of wave motion are governed by 
the one-dimensional wave equation

02u

0t2 = c2 
02u

0x2 ,

T where u1x, t2 is the height or displacement of the wave surface at posi-
tion x and time t, and c is the constant speed of the wave. Show that the 
following functions are solutions of the wave equation.

87. u1x, t2 = cos 121x + ct22
88. u1x, t2 = 5 cos 121x + ct22 + 3 sin 1x - ct2
89. u1x, t2 = Aƒ1x + ct2 + Bg1x - ct2, where A and B are  

constants, and ƒ and g are twice differentiable functions of one 
variable.

90–93. Laplace’s equation A classical equation of mathematics is 
Laplace’s equation, which arises in both theory and applications. It 
governs ideal fluid flow, electrostatic potentials, and the steady-state 
distribution of heat in a conducting medium. In two dimensions,  
Laplace’s equation is

02u

0x2 +
02u

0y2 = 0.

Show that the following functions are harmonic; that is, they satisfy 
Laplace’s equation.

90. u1x, y2 = e-x sin y

91. u1x, y2 = x1x2 - 3y22
92. u1x, y2 = eax cos ay, for any real number a

93. u1x, y2 = tan-1a y

x - 1
b - tan-1a y

x + 1
b

94–95. Differentiability Use the definition of differentiability to prove 
that the following functions are differentiable at 10, 02. You must pro-
duce functions e1 and e2 with the required properties.

94. ƒ1x, y2 = x + y 95. ƒ1x, y2 = xy

96–97. Nondifferentiability? Consider the following functions ƒ.

a. Is ƒ continuous at 10, 02?
b. Is ƒ differentiable at 10, 02?
c. If possible, evaluate ƒx10, 02 and ƒy10, 02.
d. Determine whether ƒx and ƒy are continuous at 10, 02.
e. Explain why Theorems 15.5 and 15.6 are consistent with the results 

in parts (a)–(d).

96. ƒ1x, y2 = 1 - � xy �  97. ƒ1x, y2 = 2 � xy �

98. Cauchy-Riemann equations In the advanced subject 
of complex variables, a function typically has the form 
ƒ1x, y2 = u1x, y2 + iv1x, y2, where u and v are real-valued func-
tions and i = 1-1 is the imaginary unit. A function ƒ = u + iv 
is said to be analytic (analogous to differentiable) if it satisfies the 
Cauchy-Riemann equations: ux = vy and uy = -vx.

a. Show that ƒ1x, y2 = 1x2 - y22 + i12xy2 is analytic.
b. Show that ƒ1x, y2 = x1x2 - 3y22 + iy13x2 - y22 is analytic.
c. Show that if ƒ = u + iv is analytic, then uxx + uyy = 0 and 

vxx + vyy = 0. Assume u and v satisfy the conditions in  
Theorem 15.4.

99. Derivatives of an integral Let h be continuous for all real  
numbers. Find ƒx and ƒy when ƒ1x, y2 = #xy

1 h1s2 ds.

QUICK CHECK ANSWERS

1. ƒx = 2y; ƒy = 2x 2. (a) and (c) are the same; ƒqp

3. ƒxxx = 6y; ƒxxy = 6x 4. ƒxz = y - 2x; ƒzz = 2y

5. The equations of the level curves are T =
1
k

 P0V. As the 

pressure P0 increases, the slopes of these lines increase. 
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15.4 The Chain Rule
In this section, we combine ideas based on the Chain Rule (Section 3.7) with what we 
know about partial derivatives (Section 15.3) to develop new methods for finding deriv-
atives of functions of several variables. To illustrate the importance of these methods,  
consider the following situation.

Economists modeling manufacturing systems often work with production functions 
that relate the productivity (output) of the system to all the variables on which it depends 
(input). A simplified production function might take the form P = F1L, K, R2, where 
L, K, and R represent the availability of labor, capital, and natural resources, respectively. 
However, the variables L, K, and R may be intermediate variables that depend on other 
variables. For example, it might be that L is a function of the unemployment rate u, K is a 
function of the prime interest rate i, and R is a function of time t (seasonal availability of 
resources). Even in this simplified model, we see that productivity, which is the dependent 
variable, is ultimately related to many other variables (Figure 15.35). Of critical interest 
to an economist is how changes in one variable determine changes in other variables. For 
instance, if the unemployment rate increases by 0.1% and the interest rate decreases by 
0.2%, what is the effect on productivity? In this section, we develop the tools needed to 
answer such questions.

Unemployment (u) Interest rate (i) Time (t)

Labor (L) Capital (K)

Productivity (P)

Resources (R)

Figure 15.35

The Chain Rule with One Independent Variable

Recall the basic Chain Rule: If y is a function of u and u is a function of t, then 
dy

dt
=

dy

du
  
du
dt

 . 

We first extend the Chain Rule to composite functions of the form z = ƒ1x, y2, where x 

and y are functions of t. What is 
dz
dt

 ?

We illustrate the relationships among the variables t, x, y, and z using a tree diagram 
(Figure 15.36). To find dz>dt, first notice that z depends on x, which in turn depends on t. 
The change in z with respect to x is the partial derivative 0z>0x, and the change in x with 
respect to t is the ordinary derivative dx>dt. These derivatives appear on the correspond-
ing branches of the tree diagram. Using the Chain Rule idea, the product of these deriva-
tives gives the change in z with respect to t through x.

Similarly, z also depends on y. The change in z with respect to y is 0z>0y, and the 
change in y with respect to t is dy>dt. The product of these derivatives, which appear on 
the corresponding branches of the tree, gives the change in z with respect to t through y. 
Summing the contributions to dz>dt along each branch of the tree leads to the following 
theorem, the proof of which is found in Appendix A.

x y

t t

z

dz
dt

∂z
∂x

dx
dt

∂z
∂y

dy
dt

5 1

dx
dt

dy
dt

∂z
∂x

∂z
∂y

Figure 15.36

➤ A subtle observation about notation 
should be made. If z = ƒ1x, y2, where x 
and y are functions of another variable t, 
it is common to write z = ƒ1t2 to show 
that z ultimately depends on t. However, 
these two functions denoted ƒ are 
actually different. We should write (or 
at least remember) that in fact z = F1t2, 
where F is a function other than ƒ. This 
distinction is often overlooked for the 
sake of convenience.

THEOREM 15.7 Chain Rule (One Independent Variable)
Let z be a differentiable function of x and y on its domain, where x and y are differ-
entiable functions of t on an interval I. Then

dz
dt

=
0z
0x

 
dx
dt

+
0z
0y

 
dy

dt
 .

QUICK CHECK 1 Explain why Theorem 
15.7 reduces to the Chain Rule for a 
function of one variable in the case 
that z = ƒ1x2 and x = g1t2. 
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Before presenting examples, several comments are in order.

• With z = ƒ1x1t2, y1t22, the dependent variable is z and the sole independent variable is 
t. The variables x and y are intermediate variables.

• The choice of notation for partial and ordinary derivatives in the Chain Rule is impor-
tant. We write the ordinary derivatives dx>dt and dy>dt because x and y depend only  
on t. We write the partial derivatives 0z>0x and 0z>0y because z is a function of both x 
and y. Finally, we write dz>dt as an ordinary derivative because z ultimately depends  
only on t.

• Theorem 15.7 generalizes directly to functions of more than two intermediate variables 
(Figure 15.37). For example, if w = ƒ1x, y, z2, where x, y, and z are functions of the 
single independent variable t, then

dw
dt

=
0w
0x

 
dx
dt

+
0w
0y

 
dy

dt
+

0w
0z

 
dz
dt

 .

x z

t t

w

y

t

dx
dt

dz
dt

dy
dt

∂w
∂z

∂w
∂x ∂w

∂y

dw
dt

∂w
∂x

dx
dt

∂w
∂y

dy
dt

∂w
∂z

dz
dt

5 11

Figure 15.37

EXAMPLE 1 Chain Rule with one independent variable Let z = x2 - 3y2 + 20, 
where x = 2 cos t and y = 2 sin t.

a. Find 
dz
dt

 and evaluate it at t = p>4.

b. Interpret the result geometrically.

SOLUTION

a. Computing the intermediate derivatives and applying the Chain Rule (Theorem 15.7), 
we find that

 
dz
dt

=
0z
0x

 
dx
dt

+
0z
0y

 
dy

dt

 = 12x2 1-2 sin t2 + 1-6y2 12 cos t2 Evaluate derivatives.
   ()*  (+)+*   ()*  (11)11*
 

0z
0x

 
dx
dt

 
0z
0y

 
dy

dt

 = -4x sin t - 12y cos t  Simplify.

 = -8 cos t sin t - 24 sin t cos t  Substitute x = 2 cos t, y = 2 sin t.

 = -16 sin 2t.  Simplify; sin 2t = 2 sin t cos t.

Substituting t = p>4 gives 
dz
dt
`
t=p>4

= -16.

b. The parametric equations x = 2 cos t, y = 2 sin t, for 0 … t … 2p, describe a circle C 
of radius 2 in the xy@plane. Imagine walking on the surface z = x2 - 3y2 + 20  
directly above the circle C consistent with positive (counterclockwise) orientation of C.  
Your path rises and falls as you walk (Figure 15.38); the rate of change of your eleva-
tion z with respect to t is given by dz>dt. For example, when t = p>4, the correspond-
ing point on the surface is 112, 12, 162. At that point, z decreases at a rate of -16 
(by part (a)) as you walk on the surface above C.

Related Exercises 10, 12 

y
x

z

C: , 2 cos t, 2 sin t .

dz
dt
    is the rate of

change of z as C
is traversed.

z 5 x2 2 3y2 1 20

dz
dt

At (    2,    2, 16),

5 216.

Figure 15.38

➤ If ƒ, x, and y are simple, as in Example 
1, it is possible to substitute x1t2 and 
y1t2 into ƒ, producing a function of t 
only, and then differentiate with respect 
to t. But this approach quickly becomes 
impractical with more complicated 
functions, and the Chain Rule offers a 
great advantage.

The Chain Rule with Several Independent Variables
The ideas behind the Chain Rule of Theorem 15.7 can be modified to cover a variety of 
situations in which functions of several variables are composed with one another. For ex-
ample, suppose z depends on two intermediate variables x and y, each of which depends 
on the independent variables s and t. Once again, a tree diagram (Figure 15.39) helps orga-
nize the relationships among variables. The dependent variable z now ultimately depends 
on the two independent variables s and t, so it makes sense to ask about the rates of change 
of z with respect to either s or t, which are 0z>0s and 0z>0t, respectively.

To compute 0z>0s, we note that there are two paths in the tree (in red in Figure 15.39) 
that connect z to s and contribute to 0z>0s. Along one path, z changes with respect to x 

x y

s t

z

st

∂x
∂s

∂x
∂t

∂y
∂t

∂y
∂s

∂z
∂x

∂z
∂y

∂x
∂s

∂z
∂s

∂z
∂x

∂z
∂y

∂y
∂s

5 1

Figure 15.39
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(with rate of change 0z>0x) and x changes with respect to s (with rate of change 0x>0s). 
Along the other path, z changes with respect to y (with rate of change 0z>0y) and y changes 
with respect to s (with rate of change 0y>0s). We use a Chain Rule calculation along each 
path and combine the results. A similar argument leads to 0z>0t (Figure 15.40).x y

s t

z

st

∂x
∂s

∂x
∂t

∂y
∂t

∂y
∂s

∂z
∂x

∂z
∂y

∂x
∂t

∂z
∂t

∂z
∂x

∂z
∂y

∂y
∂t

5 1

Figure 15.40

THEOREM 15.8 Chain Rule (Two Independent Variables)
Let z be a differentiable function of x and y, where x and y are differentiable func-
tions of s and t. Then

0z
0s

=
0z
0x

 
0x
0s

+
0z
0y

 
0y
0s
 and 

0z
0t

=
0z
0x

 
0x
0t

+
0z
0y

 
0y
0t

 .

QUICK CHECK 2 Suppose w = ƒ1x, y, z2, 
where x = g1s, t2, y = h1s, t2, and 
z = p1s, t2. Extend Theorem 15.8 to 
write a formula for 0w>0t. 

EXAMPLE 2 Chain Rule with two independent variables Let z = sin 2x cos 3y, 
where x = s + t and y = s - t. Evaluate 0z>0s and 0z>0t.
SOLUTION The tree diagram in Figure 15.39 gives the Chain Rule formula for 0z>0s: We 
form products of the derivatives along the red branches connecting z to s and add the  
results. The partial derivative is

 
0z
0s

=
0z
0x

 
0x
0s

+
0z
0y

 
0y
0s

 = 2 cos 2x cos 3y # 1 + 1-3 sin 2x sin 3y2 # 1(1++)+1+* "  (1++1)1+1+*  "

 
0z
0x

 
0x
0s

 
0z
0y

 
0y
0s

 = 2 cos 121s + t22 cos 131s - t22 - 3 sin 121s + t22 sin 131s - t22.(1)1*    (1)1*      (1)1*    (1)1*
 x y x y

Following the branches of Figure 15.40 connecting z to t, we have

 
0z
0t

=
0z
0x

 
0x
0t

+
0z
0y

 
0y
0t

 = 2 cos 2x cos 3y # 1 + 1-3 sin 2x sin 3y2 # -1
   (1++)+1+* "  (1++1)1+1+* "
 

0z
0x

 
0x
0t

 
0z
0y

 
0y
0t

 = 2 cos 121s + t22 cos 131s - t22 + 3 sin 121s + t22 sin 131s - t22.
 (1)1*     (1)1*       (1)1*     (1)1*
 x y x y

Related Exercise 22 

EXAMPLE 3 More variables Let w be a function of x, y, and z, each of which is a 
function of s and t.

a. Draw a labeled tree diagram showing the relationships among the variables.

b. Write the Chain Rule formula for 
0w
0s

 .

SOLUTION

a. Because w is a function of x, y, and z, the upper branches of the tree (Figure 15.41) are 
labeled with the partial derivatives wx, wy, and wz. Each of x, y, and z is a function of 
two variables, so the lower branches of the tree also require partial derivative labels.

b. Extending Theorem 15.8, we take the three paths through the tree that connect w to s 
(red branches in Figure 15.41). Multiplying the derivatives that appear on each path 
and adding gives the result

0w
0s

=
0w
0x

 
0x
0s

+
0w
0y

 
0y
0s

+
0w
0z

 
0z
0s

 .

Related Exercises 25–26 

x z

s t

w

st

∂x
∂s

∂x
∂t

∂z
∂t

∂z
∂s

∂w
∂x

∂w
∂z∂w

∂y
y

ts

∂y
∂t

∂y
∂s

Figure 15.41

QUICK CHECK 3 If Q is a function of 
w, x, y, and z, each of which is a 
function of r, s, and t, how many 
dependent variables, intermediate 
variables, and independent variables 
are there? 
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It is probably clear by now that we can create a Chain Rule for any set of relationships 
among variables. The key is to draw an accurate tree diagram and label the branches of the 
tree with the appropriate derivatives.

EXAMPLE 4 A different kind of tree Let w be a function of z, where z is a function of 
x and y, and each of x and y is a function of t. Draw a labeled tree diagram and write the 
Chain Rule formula for dw>dt.

SOLUTION The dependent variable w is related to the independent variable t through two 
paths in the tree: w S z S x S t and w S z S y S t (Figure 15.42). At the top of the 
tree, w is a function of the single variable z, so the rate of change is the ordinary deriva-
tive dw>dz. The tree below z looks like Figure 15.36. Multiplying the derivatives on each 
of the two branches connecting w to t and adding the results, we have

dw
dt

=
dw
dz

 
0z
0x

 
dx
dt

+
dw
dz

 
0z
0y

 
dy

dt
=

dw
dz

 a 0z
0x

 
dx
dt

+
0z
0y

 
dy

dt
b .

Related Exercise 31 

x y

z

t t

w

dx
dt

dw
dz

dy
dt

∂z
∂x

∂z
∂y

Figure 15.42

Implicit Differentiation
Using the Chain Rule for partial derivatives, the technique of implicit differentiation can be put 
in a larger perspective. Recall that if x and y are related through an implicit relationship, such 
as sin xy + py2 = x,  then dy>dx is computed using implicit differentiation (Section 3.8). 
Another way to compute dy>dx is to define the function F1x, y2 = sin xy + py2 - x. 
Notice that the original relationship sin xy + py2 = x is F1x, y2 = 0.

To find dy>dx, we treat x as the independent variable and differentiate both sides of 
F1x, y1x22 = 0 with respect to x. The derivative of the right side is 0. On the left side, we 
use the Chain Rule of Theorem 15.7:

0F
0x

 
dx
dx

+
0F
0y

 
dy

dx
= 0.

"
  1

Noting that dx>dx = 1 and solving for dy>dx, we obtain the following theorem.

THEOREM 15.9 Implicit Differentiation
Let F be differentiable on its domain and suppose F1x, y2 = 0 defines y as a differ-
entiable function of x. Provided Fy ≠ 0,

dy

dx
= -  

Fx

Fy

 .

➤ The question of whether a relationship of 
the form F1x, y2 = 0 or F1x, y, z2 = 0 
determines one or more functions is 
addressed by a theorem of advanced 
calculus called the Implicit Function 
Theorem.

EXAMPLE 5 Implicit differentiation Find dy>dx when 
F1x, y2 = sin xy + py2 - x = 0.

SOLUTION Computing the partial derivatives of F with respect to x and y, we find that

Fx = y cos xy - 1 and Fy = x cos xy + 2py.

Therefore,

dy

dx
= -  

Fx

Fy

= -
y cos xy - 1

x cos xy + 2py
 .

As with many implicit differentiation calculations, the result is left in terms of both x  
and y. The same result is obtained using the methods of Section 3.8.

Related Exercises 37 

➤ The method of Theorem 15.9 generalizes 

to computing 
0z
0x

 and 
0z
0y

 with functions of 

the form F1x, y, z2 = 0 (Exercise 56).

QUICK CHECK 4 Use the method of 
Example 5 to find dy>dx when 
F1x, y2 = x2 + xy - y3 - 7 = 0. 
Compare your solution to Example 3  
in Section 3.8. Which method is 
easier? 
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956 Chapter 15  •  Functions of Several Variables

EXAMPLE 6 Fluid flow A basin of circulating water is represented by the square  
region 51x, y2: 0 … x … 1, 0 … y … 16, where x is positive in the eastward direction 
and y is positive in the northward direction. The velocity components of the water are

 the east@west velocity u1x, y2 = 2 sin px cos py and

 the north@south velocity v1x, y2 = -2 cos px sin py; 

these velocity components produce the flow pattern shown in Figure 15.43. The stream-
lines shown in the figure are the paths followed by small parcels of water. The speed of 

the water at a point 1x, y2 is given by the function s1x, y2 = 2u1x, y22 + v1x, y22.  
Find 0s>0x and 0s>0y, the rates of change of the water speed in the x@ and y@directions,  
respectively.

SOLUTION The dependent variable s depends on the independent variables x and y 
through the intermediate variables u and v (Figure 15.44). Theorem 15.8 applies here in 
the form

0s
0x

=
0s
0u

 
0u
0x

+
0s
0v

 
0v
0x
 and 

0s
0y

=
0s
0u

 
0u
0y

+
0s
0v

 
0v
0y

 .

The derivatives 0s>0u and 0s>0v are easier to find if we square the speed function to obtain 
s2 = u2 + v2 and then use implicit differentiation. To compute 0s>0u, we differentiate 
both sides of s2 = u2 + v2 with respect to u:

2s 
0s
0u

= 2u,  which implies that 
0s
0u

=
u
s

 .

Similarly, differentiating s2 = u2 + v2 with respect to v gives

2s 
0s
0v

= 2v, which implies that 
0s
0v

=
v
s

 .

Now the Chain Rule leads to 
0s
0x

 :

 
0s
0x

=
0s
0u

 
0u
0x

+
0s
0v

 
0v
0x

 =
u
s

 12p cos px cos py2 +
v
s

 12p sin px sin py2
" (++++)++++*   " (++++)++++*

 
0s
0u

 
0u
0x

 
0s
0v

 
0v
0x

 =
2p
s

 1u cos px cos py + v sin px sin py2.

A similar calculation shows that

0s
0y

= -
2p
s

 1u sin px sin py + v cos px cos py2.

As a final step, you could replace s, u, and v with their definitions in terms of x and y.
Related Exercises 41–42 

1.0

0.8

0.6

0.4

0.2

0

y

x1.00.80.60.40.2

Figure 15.43

u v

x y

s

xy

∂u
∂x

∂u
∂y

∂v
∂y

∂v
∂x

∂s
∂u

∂s
∂v

Figure 15.44

EXAMPLE 7 Second derivatives Let z = ƒ1x, y2 = x
y
, where x = s + t2 and 

y = s2 - t. Compute 
02z

0s2 = zss, 
02z
0t0s

= zst, and 
02z

0t2 = ztt, and express the results in  

terms of s and t. We use subscripts for partial derivatives in this example to simplify the 
notation.

SOLUTION First, we need some ground rules. In this example, it is possible to express ƒ 
in terms of s and t by substituting, after which the result could be differentiated directly to 
find the required partial derivatives. Unfortunately, this maneuver is not always possible 
in practice (see Exercises 72 and 73). Therefore, to make this example as useful as  
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 15.4 The Chain Rule 957

possible, we develop general formulas for the second partial derivatives and make substi-
tutions only in the last step.

Figures 15.39 and 15.40 show the relationships among the variables, and Example 2  
demonstrates the calculation of the first partial derivatives. Throughout these calcula-
tions, it is important to remember the meaning of differentiation with respect to s and t:

1 2s = 1 2x xs + 1 2y ys and 1 2t = 1 2x xt + 1 2y yt.

Let’s compute the first partial derivatives:

zs = zxxs + zyys and zt = zxxt + zyyt.

Differentiating zs with respect to s, we have

 zss = 1zxxs + zyys2s
 = 1zx2s xs + zxxss + 1zy2s ys + zyyss  Product Rule (twice)

 = 1zxxxs + zxyys2xs + zxxss   Differentiate zx and zy with  
respect to s.(++)++*

   1zx2s
 +  1zyxxs + zyyys2ys + zyyss

     (++)++* 
       1zy2s

 = zxxxs
2 + 2zxyxsys + zyyys

2 + zxxss + zyyss. Simplify with zxy = zyx.

At this point, we substitute

zx =
1
y

, zy = -
x

y2, zxx = 0, zxy = -
1

y2, zyy =
2x

y3 , xs = 1, xss = 0, ys = 2s, and yss = 2

and simplify to find that

zss =
21s3 + 3st + 3s2t2 + t32

1s2 - t23  .

Differentiating zs with respect to t, a similar procedure produces zst:

 zst = 1zxxs + zyys2t
 = 1zx2t xs + zxxst + 1zy2t ys + zyyst  Product Rule (twice)

 = 1zxxxt + zxyyt2xs + zxxst   Differentiate zx and zy  
with respect to t.    (++)++* 

     1zx2t
 +  1zyxxt + zyyyt2ys + zyyst

     (++)++* 
      1zy2t

 = zxxxsxt + zxyxsyt + zxyxtys + zyyysyt + zxxst + zyyst. Simplify with zxy = zyx.

Substituting in terms of s and t with xst = 0 and yst = 0, we have

zst = -
3s2 + t + 4s3t

1s2 - t23  .

An analogous calculation gives

ztt =
2s11 + s32
1s2 - t23  .

Related Exercise 45 

Getting Started
1. Suppose z = ƒ1x, y2, where x and y are functions of t. How many 

dependent, intermediate, and independent variables are there?

2. Let z be a function of x and y, while x and y are functions of t.  
Explain how to find dz>dt.

SECTION 15.4 EXERCISES
3. Suppose w is a function of x, y, and z, which are each functions  

of t. Explain how to find dw>dt.

4. Let z = ƒ1x, y2, x = g1s, t2, and y = h1s, t2. Explain how to find 
0z>0t.
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958 Chapter 15  •  Functions of Several Variables

5. Given that w = F1x, y, z2, and x, y, and z are functions of r and s,  
sketch a Chain Rule tree diagram with branches labeled with the 
appropriate derivatives.

6. Suppose F1x, y2 = 0 and y is a differentiable function of x.  
Explain how to find dy>dx.

7. Evaluate dz>dt, where z = x2 + y3, x = t2, and y = t, using 
Theorem 15.7. Check your work by writing z as a function of t 
and evaluating dz>dt.

8. Evaluate dz>dt, where z = xy2, x = t2, and y = t, using  
Theorem 15.7. Check your work by writing z as a function of t 
and evaluating dz>dt.

Practice Exercises
9–18. Chain Rule with one independent variable Use Theorem 15.7 
to find the following derivatives.

9. dz>dt, where z = x sin y, x = t2, and y = 4t3

10. dz>dt, where z = x2y - xy3, x = t2, and y = t-2

11. dw>dt, where w = cos 2x sin 3y, x = t>2, and y = t4

12. dz>dt, where z = 2r2 + s2, r = cos 2t, and s = sin 2t

13. dz>dt, where z = 1x + 2y210, x = sin2 t, y = 13t + 425

14. 
dz
dt

 , where z =
x20

y10 , x = tan-1 t, y = ln 1t2 + 12

15. dw>dt, where w = xy sin z, x = t2, y = 4t3, and z = t + 1

16. dQ>dt, where Q = 2x2 + y2 + z2, x = sin t, y = cos t, and 
z = cos t

17. dV>dt, where V = xyz, x = et, y = 2t + 3, and z = sin t

18. 
dU
dt

 , where U =
xy2

z8  , x = et, y = sin 3t, and z = 4t + 1

19–26. Chain Rule with several independent variables Find the  
following derivatives.

19. zs and zt, where z = x2 sin y, x = s - t, and y = t2

20. zs and zt, where z = sin 12x + y2, x = s2 - t2, and  
y = s2 + t2

21. zs and zt, where z = xy - x2y, x = s + t, and y = s - t

22. zs and zt, where z = sin x cos 2y, x = s + t, and y = s - t

23. zs and zt, where z = ex + y, x = st, and y = s + t

24. zs and zt, where z = sin xy, x = s2t, and y = 1s + t210

25. ws and wt, where w =
x - z
y + z

 , x = s + t, y = st, and  

z = s - t

26. wr, ws, and wt, where w = 2x2 + y2 + z2, x = st, y = rs, and 
z = rt

27. Changing cylinder The volume of a right circular cylinder with 
radius r and height h is V = pr2h.

a. Assume r and h are functions of t. Find V′1t2.
b. Suppose r = et and h = e-2t, for t Ú 0. Use part (a) to find 

V′1t2.
c. Does the volume of the cylinder in part (b) increase or decrease 

as t increases?

28. Changing pyramid The volume of a pyramid with a square base 

x units on a side and a height of h is V =
1
3

 x2 h.

a. Assume x and h are functions of t. Find V′1t2.
b. Suppose x =

t
t + 1

 and h =
1

t + 1
, for t Ú 0.  

Use part (a) to find V′1t2.
c. Does the volume of the pyramid in part (b) increase or  

decrease as t increases?

29–30. Derivative practice two ways Find the indicated derivative in 
two ways:

a. Replace x and y to write z as a function of t, and differentiate.
b. Use the Chain Rule.

29. z′1t2, where z =
1
x

+
1
y

 , x = t2 + 2t, and y = t3 - 2

30. z′1t2, where z = ln 1x + y2, x = tet, and y = et

31–34. Making trees Use a tree diagram to write the required Chain 
Rule formula.

31. w is a function of z, where z is a function of p, q, and r, each of 
which is a function of t. Find dw>dt.

32. w = ƒ1x, y, z2, where x = g1t2, y = h1s, t2, and z = p1r, s, t2. 
Find 0w>0t.

33. u = ƒ1v2, where v = g1w, x, y2, w = h1z2, x = p1t, z2, and 
y = q1t, z2. Find 0u>0z.

34. u = ƒ1v, w, x2, where v = g1r, s, t2, w = h1r, s, t2, 
x = p1r, s, t2, and r = F1z2. Find 0u>0z.

35–40. Implicit differentiation Use Theorem 15.9 to evaluate  
dy>dx. Assume each equation implicitly defines y as a differentiable 
function of x.

35. x2 - 2y2 - 1 = 0 36. x3 + 3xy2 - y5 = 0

37. 2 sin xy = 1 38. yexy - 2 = 0

39. 2x2 + 2xy + y4 = 3 40. y ln 1x2 + y2 + 42 = 3

41–42. Fluid flow The x- and y-components of a fluid moving in two 
dimensions are given by the following functions u and v. The speed of 

the fluid at 1x, y2 is s1x, y2 = 2u1x, y22 + v1x, y22. Use the Chain 
Rule to find 0s>0x and 0s>0y.

41. u1x, y2 = 2y and v1x, y2 = -2x; x Ú 0 and y Ú 0

42. u1x, y2 = x11 - x211 - 2y2 and v1x, y2 = y1y - 1211 - 2x2; 
0 … x … 1, 0 … y … 1

43–48. Second derivatives For the following sets of variables, find all 
the relevant second derivatives. In all cases, first find general expressions 
for the second derivatives and then substitute variables at the last step.

43. ƒ1x, y2 = x2y, where x = s + t and y = s - t

44. ƒ1x, y2 = x2y - xy2, where x = st and y = s>t

45. ƒ1x, y2 = y>x , where x = s2 + t2 and y = s2 - t2

46. ƒ1x, y2 = ex - y, where x = s2 and y = 3t2

47. ƒ1x, y, z2 = xy + xz - yz, where x = s2 - 2s, y = 2>s2 , and 
z = 3s2 - 2

48. ƒ1x, y2 = xy, where x = s + 2t - u and y = s + 2t + u
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49. Explain why or why not Determine whether the following  
statements are true and give an explanation or counterexample. 
Assume all partial derivatives exist.

a. If z = 1x + y2 sin xy, where x and y are functions of s, then 
0z
0s

=
dz
dx

 
dx
ds

 .

b. Given that w = ƒ1x1s, t2, y1s, t2, z1s, t22, the rate of change  
of w with respect to t is dw>dt.

50–54. Derivative practice Find the indicated derivative for the  
following functions.

50. 0z>0p, where z = x>y, x = p + q, and y = p - q

51. dw>dt, where w = xyz, x = 2t4, y = 3t-1, and z = 4t-3

52. 0w>0x, where w = cos z - cos x cos y + sin x sin y, and 
z = x + y

53. 
0z
0x

, where 
1
x

+
1
y

+
1
z
= 1

54. 0z>0x, where xy - z = 1

55. Change on a line Suppose w = ƒ1x, y, z2 and / is the line 
r1t2 = 8at, bt, ct9 , for -∞ 6 t 6 ∞ .

a. Find w′1t2 on / (in terms of a, b, c, wx, wy, and wz).
b. Apply part (a) to find w′1t2 when ƒ1x, y, z2 = xyz.

c. Apply part (a) to find w′1t2 when ƒ1x, y, z2 = 2x2 + y2 + z2 .
d. For a general twice differentiable function w = ƒ1x, y, z2, find 

w″1t2.
56. Implicit differentiation rule with three variables Assume 

F1x, y, z1x, y22 = 0 implicitly defines z as a differentiable func-
tion of x and y. Extend Theorem 15.9 to show that

0z
0x

= -  
Fx

Fz

 and 
0z
0y

= -  
Fy

Fz

.

57–59. Implicit differentiation with three variables Use the result of 
Exercise 56 to evaluate 0z>0x and 0z>0y for the following relations.

57. xy + xz + yz = 3 58. x2 + 2y2 - 3z2 = 1

59. xyz + x + y - z = 0

60. More than one way Let exyz = 2. Find zx and zy in three ways 
(and check for agreement).

a. Use the result of Exercise 56.
b. Take logarithms of both sides and differentiate xyz = ln 2.

c. Solve for z and differentiate z =
ln 2
xy

 .

61–64. Walking on a surface Consider the following surfaces speci-
fied in the form z = ƒ1x, y2 and the oriented curve C in the xy-plane.

a. In each case, find z′1t2.
b. Imagine that you are walking on the surface directly above the 

curve C in the direction of positive orientation. Find the values of t 
for which you are walking uphill (that is, z is increasing).

61. z = x2 + 4y2 + 1, C: x = cos t, y = sin t; 0 … t … 2p

62. z = 4x2 - y2 + 1, C: x = cos t, y = sin t; 0 … t … 2p

63. z = 21 - x2 - y2, C: x = e-t, y = e-t; t Ú
1
2

 ln 2

64. z = 2x2 + y2 + 1, C: x = 1 + cos t, y = sin t; 0 … t … 2p

65. Conservation of energy A projectile with mass m is launched 
into the air on a parabolic trajectory. For t Ú 0, its horizontal and 

vertical coordinates are x1t2 = u0t and y1t2 = -  
1
2

 gt2 + v0t,  

respectively, where u0 is the initial horizontal velocity, v0 is the 
initial vertical velocity, and g is the acceleration due to gravity.  
Recalling that u1t2 = x′1t2 and v1t2 = y′1t2 are the components 
of the velocity, the energy of the projectile (kinetic plus potential) is

E1t2 = 1
2

 m1u2 + v22 + mgy.

Use the Chain Rule to compute E′1t2 and show that E′1t2 = 0, 
for all t Ú 0. Interpret the result.

66. Utility functions in economics Economists use utility functions to 
describe consumers’ relative preference for two or more commod-
ities (for example, vanilla vs. chocolate ice cream or leisure time 
vs. material goods). The Cobb-Douglas family of utility functions 
has the form U1x, y2 = xay1 - a, where x and y are the amounts 
of two commodities and 0 6 a 6 1 is a parameter. Level curves 
on which the utility function is constant are called indifference 
curves; the preference is the same for all combinations of x and y 
along an indifference curve (see figure).

y

x

Indi�erence
curves

U(x, y) 5 c1

U(x, y) 5 c2

a. The marginal utilities of the commodities x and y are defined 
to be 0U>0x and 0U>0y, respectively. Compute the marginal 
utilities for the utility function U1x, y2 = xay1 - a.

b. The marginal rate of substitution (MRS) is the slope of the 
indifference curve at the point 1x, y2. Use the Chain Rule to 

show that for U1x, y2 = xay1 - a, the MRS is -  
a

1 - a
 
y

x
 .

c. Find the MRS for the utility function U1x, y2 = x0.4y0.6 at 
1x, y2 = 18, 122.

67. Constant volume tori The volume of a solid torus is given by 

V =
p2

4
 1R + r21R - r22, where r and R are the inner and outer 

radii and R 7 r (see figure).

R

r

a. If R and r increase at the same rate, does the volume of the  
torus increase, decrease, or remain constant?

b. If R and r decrease at the same rate, does the volume of the 
torus increase, decrease, or remain constant?
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68. Body surface area One of several empirical formulas that relates 
the surface area S of a human body to the height h and weight w of 

the body is the Mosteller formula S1h, w2 = 1
60

 1hw, where h is  

measured in cm, w is measured in kg, and S is measured in square 
meters. Suppose h and w are functions of t.

a. Find S′1t2.
b. Show that the condition under which the surface area remains 

constant as h and w change is wh′1t2 + hw′1t2 = 0.
c. Show that part (b) implies that for constant surface area, h and 

w must be inversely related; that is, h = C>w, where C is a 
constant.

69. The Ideal Gas Law The pressure, temperature, and volume of an 
ideal gas are related by PV = kT, where k 7 0 is a constant. Any 
two of the variables may be considered independent, which deter-
mines the dependent variable.

a. Use implicit differentiation to compute the partial derivatives 
0P
0V

 , 
0T
0P

 , and 
0V
0T

 .

b. Show that 
0P
0V

 
0T
0P

 
0V
0T

= -1. (See Exercise 75 for a  

generalization.)

70. Variable density The density of a thin circular plate of radius  
2 is given by r1x, y2 = 4 + xy. The edge of the plate is  
described by the parametric equations x = 2 cos t, y = 2 sin t,  
for 0 … t … 2p.

a. Find the rate of change of the density with respect to t on the 
edge of the plate.

b. At what point(s) on the edge of the plate is the density a  
maximum?

71. Spiral through a domain Suppose you follow the helical path 
C: x = cos t, y = sin t, z = t, for t Ú 0, through the domain of 

the function w = ƒ1x, y, z2 = xyz

z2 + 1
 .

a. Find w′1t2 along C.
b. Estimate the point 1x, y, z2 on C at which w has its maximum 

value.

Explorations and Challenges
72. Change of coordinates Recall that Cartesian and polar coordi-

nates are related through the transformation equations

e x = r cos u
y = r sin u

 or e r2 = x2 + y2

tan u = y>x.

a. Evaluate the partial derivatives xr, yr, xu, and yu.
b. Evaluate the partial derivatives rx, ry, ux, and uy.
c. For a function z = ƒ1x, y2, find zr and zu, where x and y are 

expressed in terms of r and u.
d. For a function z = g1r, u2, find zx and zy, where r and u are 

expressed in terms of x and y.

e. Show that a 0z
0x
b

2

+ a 0z
0y
b

2

= a 0z
0r
b

2

+
1

r2 a
0z
0u
b

2

.

73. Change of coordinates continued An important derivative op-
eration in many applications is called the Laplacian; in Cartesian 
coordinates, for z = ƒ1x, y2, the Laplacian is zxx + zyy. Determine 
the Laplacian in polar coordinates using the following steps.

a. Begin with z = g1r, u2 and write zx and zy in terms of polar 
coordinates (see Exercise 72).

T

b. Use the Chain Rule to find zxx =
0
0x

 1zx2. There should be two 

major terms, which, when expanded and simplified, result in  
five terms.

c. Use the Chain Rule to find zyy =
0
0y

 1zy2. There should be two  

major terms, which, when expanded and simplified, result in 
five terms.

d. Combine parts (b) and (c) to show that

zxx + zyy = zrr +
1
r
 zr +

1

r2 zuu.

74. Geometry of implicit differentiation Suppose x and y are related 
by the equation F1x, y2 = 0. Interpret the solution of this equa-
tion as the set of points 1x, y2 that lie on the intersection of the 
surface z = F1x, y2 with the xy-plane (z = 0).

a. Make a sketch of a surface and its intersection with the 
xy-plane. Give a geometric interpretation of the result that 
dy

dx
= -  

Fx

Fy

 .

b. Explain geometrically what happens at points where Fy = 0.

75. General three-variable relationship In the implicit relationship 
F1x, y, z2 = 0, any two of the variables may be considered inde-
pendent, which then determines the dependent variable. To avoid 
confusion, we may use a subscript to indicate which variable is 

held fixed in a derivative calculation; for example, a 0z
0x
b

y

 means 

that y is held fixed in taking the partial derivative of z with respect 
to x. (In this context, the subscript does not mean a derivative.)

a. Differentiate F1x, y, z2 = 0 with respect to x, holding y fixed, 

to show that a 0z
0x
b

y

= -  
Fx

Fz

 .

b. As in part (a), find a 0y
0z
b

x

 and a 0x
0y
b

z

.

c. Show that a 0z
0x
b

y

a 0y
0z
b

x

a 0x
0y
b

z

= -1.

d. Find the relationship analogous to part (c) for the case 
F1w, x, y, z2 = 0.

76. Second derivative Let ƒ1x, y2 = 0 define y as a twice differen-
tiable function of x.

a. Show that y″1x2 = -
ƒxxƒy

2 - 2ƒxƒyƒxy + ƒyyƒx
2

ƒy
3  .

b. Verify part (a) using the function ƒ1x, y2 = xy - 1.

77. Subtleties of the Chain Rule Let w = ƒ1x, y, z2 = 2x + 3y + 4z, 
which is defined for all 1x, y, z2 in ℝ3. Suppose we are interested 
in the partial derivative wx on a subset of ℝ3, such as the plane P 
given by z = 4x - 2y. The point to be made is that the result is 
not unique unless we specify which variables are considered  
independent.

a. We could proceed as follows. On the plane P, consider x and y 
as the independent variables, which means z depends on x and 
y, so we write w = ƒ1x, y, z1x, y22. Differentiate with respect 

to x, holding y fixed, to show that a 0w
0x
b

y

= 18, where the  

subscript y indicates that y is held fixed.
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b. Alternatively, on the plane P, we could consider x and z as the 
independent variables, which means y depends on x and z, so 
we write w = ƒ1x, y1x, z2, z2 and differentiate with respect to 

x, holding z fixed. Show that a 0w
0x
b

z

= 8, where the subscript 

z indicates that z is held fixed.
c. Make a sketch of the plane z = 4x - 2y and interpret the  

results of parts (a) and (b) geometrically.

d. Repeat the arguments of parts (a) and (b) to find a 0w
0y
b

x

, 

a 0w
0y
b

z

, a 0w
0z
b

x

, and a 0w
0z
b

y

.

QUICK CHECK ANSWERS

1. If z = ƒ1x1t22, then 
0z
0y

= 0, and the original Chain Rule 

results. 2. 
0w
0t

=
0w
0x

 
0x
0t

+
0w
0y

 
0y
0t

+
0w
0z

 
0z
0t

3. One dependent variable, four intermediate variables, and 

three independent variables 4. 
dy

dx
=

2x + y

3y2 - x
; in this case, 

using 
dy

dx
= -  

Fx

Fy

 is more efficient. 

15.5  Directional Derivatives  
and the Gradient

Partial derivatives tell us a lot about the rate of change of a function on its domain. How-
ever, they do not directly answer some important questions. For example, suppose you 
are standing at a point 1a, b, ƒ1a, b22 on the surface z = ƒ1x, y2. The partial derivatives 
ƒx and ƒy tell you the rate of change (or slope) of the surface at that point in the directions 
parallel to the x-axis and y-axis, respectively. But you could walk in an infinite number of 
directions from that point and find a different rate of change in every direction. With this 
observation in mind, we pose several questions.

• Suppose you are standing on a surface and you walk in a direction other than a coor-
dinate direction—say, northwest or south-southeast. What is the rate of change of the 
function in such a direction?

• Suppose you are standing on a surface and you release a ball at your feet and let it roll. 
In which direction will it roll?

• If you are hiking up a mountain, in what direction should you walk after each step if 
you want to follow the steepest path?

These questions are answered in this section by introducing the directional derivative, fol-
lowed by one of the central concepts of calculus—the gradient.

Directional Derivatives
Let 1a, b, ƒ1a, b22 be a point on the surface z = ƒ1x, y2 and let u be a unit vector in the 
xy-plane (Figure 15.45). Our aim is to find the rate of change of ƒ in the direction u at 
P01a, b2. In general, this rate of change is neither ƒx1a, b2 nor ƒy1a, b2 (unless u = 81, 09  
or u = 80, 19), but it turns out to be a combination of ƒx1a, b2 and ƒy1a, b2.

Figure 15.46a shows the unit vector u = 8u1, u29 ;  its x- and y-components are u1 and 
u2, respectively. The derivative we seek must be computed along the line / in the xy-plane 
through P0 in the direction of u. A neighboring point P, which is h units from P0 along /, 
has coordinates P1a + hu1, b + hu22 (Figure 15.46b).

Now imagine the plane Q perpendicular to the xy-plane, containing /. This plane cuts 
the surface z = ƒ1x, y2 in a curve C. Consider two points on C corresponding to P0 and P; 
they have z-coordinates ƒ1a, b2 and ƒ1a + hu1, b + hu22 (Figure 15.47). The slope of the 
secant line between these points is

ƒ1a + hu1, b + hu22 - ƒ1a, b2
h

 .

We seek the
rate of change
of f at P0 in the
direction of u.

Unit vector u

P0(a, b)

z 5 f (x, y)

ux

z

y

(a, b, f (a, b))

Figure 15.45

y-component

x-component

(b)

y

(a)

x

,

uuu 5 1
u

u

u1

u2

hu2

P0(a, b)

P(a 1 hu1, b 1 hu2)

u 5 ku1, u2l

hu1

h

Figure 15.46
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The derivative of ƒ in the direction of u is obtained by letting h S 0; when the limit exists, 
it is called the directional derivative of ƒ at 1a, b2 in the direction of u. It gives the slope 
of the line tangent to the curve C in the plane Q.

x

y
z

b 1 hu2

z 5 f (x, y)

b

a 1 hu1

a

C

 h

 u

Plane Q

f (a 1 hu1, b 1 hu2) 2 f (a, b)

h

Slope of tangent line

5 lim

Plane Q cuts surface
to form the curve C.

,

Slope of secant line 5
f (a 1 hu1, b 1 hu2) 2 f (a, b)

h
h$0

f (a 1 hu1, b 1 hu2) 2 f (a, b)

Figure 15.47

As motivation, it is instructive to see how the directional derivative includes the ordinary 
derivative in one variable. Setting u2 = 0 in the definition of the directional derivative 
and ignoring the second variable gives the rate of change of ƒ in the x-direction. The direc-
tional derivative then becomes

lim
hS0

ƒ1a + hu12 - ƒ1a2
h

 .

Multiplying the numerator and denominator of this quotient by u1, we have

u1 lim
hS0

ƒ1a + hu12 - ƒ1a2
hu1

= u1ƒ′1a2.
  (++++1)1++++*
       ƒ′1a2

Only because u is a unit vector and u1 = 1 does the directional derivative reduce to 
the ordinary derivative ƒ′1a2 in the x-direction. A similar argument may be used in the  
y-direction. Choosing u to be a unit vector gives the simplest formulas for the directional 
derivative.

As with ordinary derivatives, we would prefer to evaluate directional derivatives 
without taking limits. Fortunately, there is an easy way to express a directional derivative 
in terms of partial derivatives.

The key is to define a function that is equal to ƒ along the line / through 1a, b2 in the 
direction of the unit vector u = 8u1, u29 . The points on / satisfy the parametric equations

x = a + su1 and y = b + su2,

DEFINITION Directional Derivative

Let ƒ be differentiable at 1a, b2 and let u = 8u1, u29  be a unit vector in the  
xy-plane. The directional derivative of ƒ at 1a, b 2  in the direction of u is

Du ƒ1a, b2 = lim
hS0

 
ƒ1a + hu1, b + hu22 - ƒ1a, b2

h
 ,

provided the limit exists.

➤ The definition of the directional 
derivative looks like the definition of the 
ordinary derivative if we write it as

lim
PSP0

 
ƒ1P2 - ƒ1P02
0P - P0 0

 ,

where P approaches P0 along the line /.

QUICK CHECK 1 Explain why, when 
u = 81, 09  in the definition of the 
directional derivative, the result is 
ƒx1a, b2, and when u = 80, 19 ,  the 
result is ƒy1a, b2. 
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where -∞ 6 s 6 ∞ . Because u is a unit vector, the parameter s corresponds to arc 
length. As s increases, the points 1x, y2 move along / in the direction of u with s = 0 cor-
responding to 1a, b2. Now we define the function

g1s2 = ƒ1a + su1, b + su22,    (+)+*  (+)+*
       x     y

which gives the values of ƒ along /. The derivative of ƒ along / is g′1s2 (see margin 
note), and when evaluated at s = 0, it is the directional derivative of ƒ at 1a, b2; that is, 
g′102 = Du ƒ1a, b2.

Noting that 
dx
ds

= u1 and 
dy

ds
= u2, we apply the Chain Rule to find that

 Du ƒ1a, b2 = g′102 = a 0ƒ
0x

 
dx
ds

+
0ƒ
0y

 
dy

ds
b `

s=0
 Chain Rule

 " "
 u1 u2

 = ƒx1a, b2u1 + ƒy1a, b2u2  s = 0 corresponds to 1a, b2.
 = 8ƒx1a, b2, ƒy1a, b29 # 8u1, u29 .  Identify dot product.

We see that the directional derivative is a weighted average of the partial derivatives 
ƒx1a, b2 and ƒy1a, b2, with the components of u serving as the weights. In other words, 
knowing the slope of the surface in the x- and y-directions allows us to find the slope in 
any direction. Notice that the directional derivative can be written as a dot product, which 
provides a practical formula for computing directional derivatives.

➤ To see that s is an arc length parameter, 
note that the line / may be written in the 
form

r1s2 = 8a + su1, b + su29 .
Therefore, r′1s2 = 8u1, u29  and 
0 r′1s2 0 = 1. It follows by the discus-
sion in Section 14.4 that s is an arc length 
parameter.

➤ Note that g′1s2 does not correctly 
measure the slope of ƒ along / unless u is 
a unit vector.

THEOREM 15.10 Directional Derivative
Let ƒ be differentiable at 1a, b2 and let u = 8u1, u29  be a unit vector in the  
xy-plane. The directional derivative of ƒ at 1a, b 2  in the direction of u is

Du ƒ1a, b2 = 8ƒx1a, b2, ƒy1a, b29 # 8u1, u29 .

QUICK CHECK 2 In the parametric 
description x = a + su1 and 
y = b + su2, where u = 8u1, u29  is 
a unit vector, show that any positive 
change ∆s in s produces a line 
segment of length ∆s. 

EXAMPLE 1 Computing directional derivatives Consider the paraboloid 
z = ƒ1x, y2 = 1

4 1x2 + 2y22 + 2. Let P0 be the point 13, 22 and consider the unit vectors

u = h 112
 , 

112
i and v = h 1

2
 , -  
13
2
i.

a. Find the directional derivative of ƒ at P0 in the directions of u and v.

b. Graph the surface and interpret the directional derivatives.

SOLUTION

a. We see that ƒx = x>2 and ƒy = y; evaluated at 13, 22, we have ƒx  13, 22 = 3>2 and 
ƒy  13, 22 = 2. The directional derivatives in the directions u and v are

 Du ƒ13, 22 = 8  ƒx  13, 22, ƒy  13, 229 # 8u1, u29

 =
3
2
# 112

+ 2 # 112
=

7

212
≈ 2.47 and

 Dv ƒ13, 22 = 8  ƒx  13, 22, ƒy  13, 229 # 8v1, v29

 =
3
2
# 1
2

+ 2a -13
2
b =

3
4

- 13 ≈ -0.98.

b. In the direction of u,  the directional derivative is approximately 2.47. Because it is 
positive, the function is increasing at 13, 22 in this direction. Equivalently, if Q is the 
vertical plane containing u, and C is the curve along which the surface intersects Q, 
then the slope of the line tangent to C is approximately 2.47 (Figure 15.48a). In the  
direction of v,  the directional derivative is approximately -0.98. Because it is nega-
tive, the function is decreasing in this direction. In this case, the vertical plane Q con-
tains v and again C is the curve along which the surface intersects Q; the slope of the 
line tangent to C is approximately -0.98 (Figure 15.48b).

➤ It is understood that the line tangent to 
C in the direction of u lies in the vertical 
plane Q containing u.
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Related Exercises 11–12 

x

y

z

x

y

z

The line in Q tangent to the
intersection curve C in the direction
of u has slope Du f < 2.47.

The line in Q tangent to the
intersection curve C in the direction
of v has slope Dv f < 20.98.

v 5 k , 2 l1
2 2

25
4(3, 2, )

25
4(3, 2, )

(3, 2) (3, 2)

z 5    (x2 1 2y2) 1 21
4 z 5    (x2 1 2y2) 1 21

4

Q Q

(a) (b)

Plane Q
containing

u or v
perpendicular

to xy-plane

u 5 k , l1
2

1
2

3
P0 P0

Figure 15.48
QUICK CHECK 3 In Example 1, evaluate 
D-u ƒ13, 22 and D-v ƒ13, 22. 

The Gradient Vector
We have seen that the directional derivative can be written as a dot product:  
Du ƒ1a, b2 = 8  ƒx1a, b2, ƒy1a, b29 # 8u1, u29 . The vector 8  ƒx1a, b2, ƒy1a, b29  that appears 
in the dot product is important in its own right and is called the gradient of ƒ.

DEFINITION Gradient (Two Dimensions)

Let ƒ be differentiable at the point 1x, y2. The gradient of ƒ at 1x, y2 is the vector-
valued function

∇ƒ1x, y2 = 8  ƒx1x, y2, ƒy1x, y29 = ƒx1x, y2 i + ƒy1x, y2 j.

➤ Recall that the unit coordinate vectors in 
ℝ2 are i = 81, 09  and j = 80, 19 . The 
gradient of ƒ is also written grad ƒ, read 
grad ƒ.

With the definition of the gradient, the directional derivative of ƒ at 1a, b2 in the  
direction of the unit vector u can be written

Du ƒ1a, b2 = ∇ƒ1a, b2 # u.

The gradient satisfies sum, product, and quotient rules analogous to those for ordinary 
derivatives (Exercise 85).

EXAMPLE 2 Computing gradients Find ∇ƒ13, 22 for ƒ1x, y2 = x2 + 2xy - y3.

SOLUTION Computing ƒx = 2x + 2y and ƒy = 2x - 3y2, we have

∇ƒ1x, y2 = 821x + y2, 2x - 3y29 = 21x + y2 i + 12x - 3y22 j.
Substituting x = 3 and y = 2 gives

∇ƒ13, 22 = 810, -69 = 10i - 6j.

Related Exercises 13–15 

EXAMPLE 3 Computing directional derivatives with gradients Let 

ƒ1x, y2 = 3 -
x2

10
+

xy2

10
 .

a. Compute ∇ƒ13, -12.
b. Compute Du ƒ13, -12, where u = h 112

 , -  
112
i.

c. Compute the directional derivative of ƒ at 13, -12 in the direction of the vector 
83, 49 .
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SOLUTION

a. Note that ƒx = -x>5 + y2>10 and ƒy = xy>5. Therefore,

∇ƒ13, -12 = h -  
x
5

+
y2

10
 , 

xy

5
i `
13, -12

= h -  
1
2

 , -  
3
5
i.

b. Before computing the directional derivative, it is important to verify that u is a unit 
vector (in this case, it is). The required directional derivative is

Du ƒ13, -12 = ∇ƒ13, -12 # u = h -  
1
2

 , -  
3
5
i # h 112

 , -  
112
i =

1

1012
 .

Figure 15.49 shows the line tangent to the intersection curve in the plane corresponding 
to u; its slope is Du ƒ13, -12.

c. In this case, the direction is given in terms of a nonunit vector. The vector 83, 49  has 
length 5, so the unit vector in the direction of 83, 49  is u = 83

5, 45 9 . The directional 
derivative at 13, -12 in the direction of u is

Du ƒ13, -12 = ∇ƒ13, -12 # u = h -
1
2

 , -
3
5
i # h 3

5
 , 

4
5
i = -

39
50

 ,

which gives the slope of the surface in the direction of 83, 49  at 13, -12.
Related Exercises 22, 27 

z

y
x

x2

10
xy2

10

1
10

Slope of curve

at (3, 21,     ) in the

direction of u
is Du f (3, 21) 5 .

z 5 3 2 1

u 5 k , l1
2

12
5(3, 21, )

12
5

3

21

2

2

1
2

Figure 15.49

Interpretations of the Gradient
The gradient is important not only in calculating directional derivatives; it plays many 
other roles in multivariable calculus. Our present goal is to develop some intuition about 
the meaning of the gradient.

We have seen that the directional derivative of ƒ at 1a, b2 in the direction of the unit 
vector u is Du ƒ1a, b2 = ∇ƒ1a, b2 # u. Using properties of the dot product, we have

 Du ƒ1a, b2 = ∇ƒ1a, b2 # u
 = 0 ∇ƒ1a, b2 0 0 u 0 cos u

 = 0 ∇ƒ1a, b2 0  cos u,  0 u 0 = 1

where u is the angle between ∇ƒ1a, b2 and u. It follows that Du ƒ1a, b2 has its maximum 
value when cos u = 1, which corresponds to u = 0. Therefore, Du ƒ1a, b2 has its maxi-
mum value and ƒ has its greatest rate of increase when ∇ƒ1a, b2 and u point in the same di-
rection. Note that when cos u = 1, the actual rate of increase is Du ƒ1a, b2 = 0 ∇ƒ1a, b2 0  
(Figure 15.50).

Similarly, when u = p, we have cos u = -1, and ƒ has its greatest rate of de-
crease when ∇ƒ1a, b2 and u point in opposite directions. The actual rate of decrease is 
Du ƒ1a, b2 = - 0 ∇ƒ1a, b2 0 . These observations are summarized as follows: The gradient 
∇ƒ1a, b2 points in the direction of steepest ascent at 1a, b2, while -∇ƒ1a, b2 points in the 
direction of steepest descent.

Notice that Du ƒ1a, b2 = 0 when the angle between ∇ƒ1a, b2 and u is p>2, which 
means ∇ƒ1a, b2 and u are orthogonal (Figure 15.50). These observations justify the fol-
lowing theorem.

y

x

z

z 5 f (x, y)

=f (a, b) lies
in the same plane
as the domain of f.

Direction of
zero change

(a, b, f (a, b))

=f (a, b) points in the direction
of steepest ascent on surface.

2=f (a, b) points
in the direction of
steepest descent
on surface.

Figure 15.50

➤ Recall that u # v = 0 u 0 0 v 0  cos u, where u 
is the angle between u and v.

➤ It is important to remember (but easy 
to forget) that ∇ƒ1a, b2 lies in the same 
plane as the domain of ƒ.

THEOREM 15.11 Directions of Change
Let ƒ be differentiable at 1a, b2 with ∇ƒ1a, b2 ≠ 0.

1. ƒ has its maximum rate of increase at 1a, b2 in the direction of the gradient 
∇ƒ1a, b2. The rate of change in this direction is 0 ∇ƒ1a, b2 0 .

2. ƒ has its maximum rate of decrease at 1a, b2 in the direction of -∇ƒ1a, b2. 
The rate of change in this direction is - 0 ∇ƒ1a, b2 0 .

3. The directional derivative is zero in any direction orthogonal to ∇ƒ1a, b2.
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966 Chapter 15  •  Functions of Several Variables

EXAMPLE 4 Steepest ascent and descent Consider the bowl-shaped paraboloid 
z = ƒ1x, y2 = 4 + x2 + 3y2.

a. If you are located on the paraboloid at the point 12, -  12 , 
35
4 2, in which direction should 

you move in order to ascend on the surface at the maximum rate? What is the rate of 
change?

b. If you are located at the point 12, -  12 , 
35
4 2, in which direction should you move in  

order to descend on the surface at the maximum rate? What is the rate of change?

c. At the point 13, 1, 162, in what direction(s) is there no change in the function values?

SOLUTION

a. At the point 12, -  122, the value of the gradient is

∇ƒ12, -1
22 = 82x, 6y9 0 12, -1>22 = 84, -39 .

Therefore, the direction of steepest ascent in the xy-plane is in the direction of the 
gradient vector 84, -39  (or u = 1

5 84, -39 , as a unit vector). The rate of change is 
0 ∇ƒ12, -  122 0 = 0 84, -39 0 = 5 (Figure 15.51a).

x
y

z

Steepest
ascent

(2, 2  ,

z 5 4 1 x2 1 3y2

=f (2, 2  ) direction
of steepest ascent.

2=f (2, 2  ) direction
of steepest descent.

(a)

Steepest
descent

35
4 )2

1

2
1

2
1

  (b)

y
x

z z 5 4 1 x2 1 3y2

Direction of
zero change in z

Direction of
zero change in z

z 5 16
No change in z
along this
curve

=f (3, 1)

(3, 1)

(3, 1, 16)

Level curve
along which
z 5 16

Figure 15.51

b. The direction of steepest descent is the direction of -∇ƒ12, -  122 = 8 -4, 39  (or 

u = 1
5 8 -4, 39 , as a unit vector). The rate of change is - 0 ∇ƒ12, -  122 0 = -5.

c. At the point 13, 12, the value of the gradient is ∇ƒ13, 12 = 86, 69 . The function has 
zero change if we move in either of the two directions orthogonal to 86, 69 ; these two 
directions are parallel to 86, -69 . In terms of unit vectors, the directions of no change 

are u =
112
8 -1, 19  and u =

112
81, -19  (Figure 15.51b).

Related Exercises 31–32 

➤ Note that 86, 69  and 86, -69  
are orthogonal because 
86, 69 # 86, -69 = 0.

EXAMPLE 5 Interpreting directional derivatives Consider the function 
ƒ1x, y2 = 3x2 - 2y2.

a. Compute ∇ƒ1x, y2 and ∇ƒ12, 32.
b. Let u = 8cos u, sin u9  be a unit vector. At 12, 32, for what values of u (measured  

relative to the positive x-axis), with 0 … u 6 2p, does the directional derivative have 
its maximum and minimum values? What are those values?
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SOLUTION

a. The gradient is ∇ƒ1x, y2 = 8  ƒx, ƒy9 = 86x, -4y9 , and at 12, 32 we have 
∇ƒ12, 32 = 812, -129 .

b. The gradient ∇ƒ12, 32 = 812, -129  makes an angle of 7p>4 with the positive  
x-axis. So the maximum rate of change of ƒ occurs in this direction, and that 
rate of change is 0 ∇ƒ12, 32 0 = 0 812, -129 0 = 1212 ≈ 17. The direction of 
maximum decrease is opposite the direction of the gradient, which corresponds to 
u = 3p>4. The maximum rate of decrease is the negative of the maximum rate of 
increase, or -1212 ≈ -17. The function has zero change in the directions or-
thogonal to the gradient, which correspond to u = p>4 and u = 5p>4.

Figure 15.52 summarizes these conclusions. Notice that the gradient at 12, 32  
appears to be orthogonal to the level curve of ƒ passing through 12, 32. We next 
see that this is always the case.

Related Exercises 37–38 
x

u
(2, 3)

maximum decrease

zero change

zero change

maximum
increase

Level curve of f
passing through

(2, 3)

3

2

3p
u 5      , Du f (2, 3) < 2174

p
u 5      , Du f (2, 3) 5 0

5
4

p
u 5    , Du f (2, 3) < 17

7
4

p
u 5     , Du f (2, 3) 5 04

y

Figure 15.52 The Gradient and Level Curves
Theorem 15.11 states that in any direction orthogonal to the gradient ∇ƒ1a, b2, the func-
tion ƒ does not change at 1a, b2. Recall from Section 15.1 that the curve ƒ1x, y2 = z0, 
where z0 is a constant, is a level curve, on which function values are constant. Combining 
these two observations, we conclude that the gradient ∇ƒ1a, b2 is orthogonal to the line 
tangent to the level curve through 1a, b2.

THEOREM 15.12 The Gradient and Level Curves
Given a function ƒ differentiable at 1a, b2, the line tangent to the level curve of ƒ at 
1a, b2 is orthogonal to the gradient ∇ƒ1a, b2, provided ∇ƒ1a, b2 ≠ 0.

Proof: Consider the function z = ƒ1x, y2 and its level curve ƒ1x, y2 = z0, where the con-
stant z0 is chosen so that the curve passes through the point 1a, b2. Let r1t2 = 8x1t2, y1t29  
be a parameterization for the level curve near 1a, b2 (where it is smooth), and let r1t02 
correspond to the point 1a, b2. We now differentiate ƒ1x, y2 = z0 with respect to t. The 
derivative of the right side is 0. Applying the Chain Rule to the left side results in

 
d
dt

 1ƒ1x, y22 = 0ƒ
0x

 
dx
dt

+
0ƒ
0y

 
dy

dt

 = h 0ƒ
0x

, 
0ƒ
0y
i # h dx

dt
, 

dy

dt
i

       (+)+*  (+)+*
 ∇ƒ1x, y2 r′1t2

 = ∇ƒ1x, y2 # r′1t2.
Substituting t = t0, we have ∇ƒ1a, b2 # r′1t02 = 0, which implies that r′1t02 (the tangent 
vector at 1a, b2) is orthogonal to ∇ƒ1a, b2. Figure 15.53 illustrates the geometry of the 
theorem. 

An immediate consequence of Theorem 15.12 is an alternative equation of the tan-
gent line. The curve described by ƒ1x, y2 = z0 can be viewed as a level curve in the xy-
plane for the surface z = ƒ1x, y2. By Theorem 15.12, the line tangent to the curve at 
1a, b2 is orthogonal to ∇ƒ1a, b2. Therefore, if 1x, y2 is a point on the tangent line, then 
∇ƒ1a, b2 # 8x - a, y - b9 = 0, which, when simplified, gives an equation of the line 
tangent to the curve ƒ1x, y2 = z0 at 1a, b2:

ƒx1a, b21x - a2 + ƒy1a, b21y - b2 = 0.

y

x

=f (a, b)r'(t0)

(a, b)

Level curve: f (x, y) 5 z0,
with parameterization r(t) 5 kx(t), y(t)l

Figure 15.53

QUICK CHECK 4 Draw a circle in the  
xy-plane centered at the origin and 
regard it is as a level curve of the 
surface z = x2 + y2. At the point 
1a, a2 of the level curve in the xy-
plane, the slope of the tangent line is 
-1. Show that the gradient at 1a, a2 is 
orthogonal to the tangent line. 

EXAMPLE 6 Gradients and level curves Consider the upper sheet 
z = ƒ1x, y2 = 21 + 2x2 + y2 of a hyperboloid of two sheets.

a. Verify that the gradient at 11, 12 is orthogonal to the corresponding level curve at that 
point.

b. Find an equation of the line tangent to the level curve at 11, 12.

M15_BRIG3644_03_SE_C15_919-1007.indd   967 25/10/17   2:14 PM



968 Chapter 15  •  Functions of Several Variables

SOLUTION

a. You can verify that 11, 1, 22 is on the surface; therefore, 11, 12 is on the level curve 
corresponding to z = 2. Setting z = 2 in the equation of the surface and squaring 
both sides, the equation of the level curve is 4 = 1 + 2x2 + y2, or 2x2 + y2 = 3, 
which is the equation of an ellipse (Figure 15.54). Differentiating 2x2 + y2 = 3 with 
respect to x gives 4x + 2yy′1x2 = 0, which implies that the slope of the level curve is 

y′1x2 = -  
2x
y

 . Therefore, at the point 11, 12, the slope of the tangent line is -2. Any  

vector proportional to t = 81, -29  has slope -2 and points in the direction of the 
tangent line.

We now compute the gradient:

∇ƒ1x, y2 = 8  ƒx, ƒy9 = h 2x21 + 2x2 + y2
 , 

y21 + 2x2 + y2
i.

It follows that ∇ƒ11, 12 = 81, 12 9  (Figure 15.54). The tangent vector t and the gradi-
ent are orthogonal because

t # ∇ƒ11, 12 = 81, -29 # 81, 12 9 = 0.

b. An equation of the line tangent to the level curve at 11, 12 is
ƒx11, 121x - 12 + ƒy11, 121y - 12 = 0,(1)1*     (1)1*
 1 1

2

or y = -2x + 3.
Related Exercises 49, 52 

z 5 Ï1 1 2x2 1 y2

t ? =f 5 0
=f is orthogonal to level curves.

Tangent to
level curve

at (1, 1)
1

1

(1, 1, 2)

Level curve
for z 5 2

=f (1, 1) 5 k1,   l
t 5 k1, 22l

x

y

z

z 5 2

1
2

Figure 15.54

EXAMPLE 7 Path of steepest descent The paraboloid z = ƒ1x, y2 = 4 + x2 + 3y2 is 
shown in Figure 15.55. A ball is released at the point 13, 4, 612 on the surface, and it fol-
lows the path of steepest descent C to the vertex of the paraboloid.

a. Find an equation of the projection of C in the xy-plane.

b. Find an equation of C on the paraboloid.

SOLUTION

a. The projection of C in the xy-plane points in the direction of -∇ƒ1x, y2 = 8 -2x, -6y9 , 
which means that at the point 1x, y2, the line tangent to the path has slope 
y′1x2 = 1-6y2>1-2x2 = 3y>x. Therefore, the path in the xy-plane satisfies 
y′1x2 = 3y>x and passes through the initial point 13, 42. You can verify that the solu-
tion to this differential equation is y = 4x3>27. Therefore, the projection of the path of 
steepest descent in the xy-plane is the curve y = 4x3>27. The descent ends at 10, 02, 
which corresponds to the vertex of the paraboloid (Figure 15.55). At all points of the 
descent, the projection curve in the xy-plane is orthogonal to the level curves of the 
paraboloid.

b. To find a parametric description of C, it is easiest to define the parameter t = x. Using 
part (a), we find that

y =
4x3

27
=

4t3

27
 and z = 4 + x2 + 3y2 = 4 + t2 +

16
243

 t6.

Because 0 … x … 3, the parameter t varies over the interval 0 … t … 3. A parametric 
description of C is

C: r1t2 = h t, 
4t3

27
, 4 + t2 +

16
243

 t6i, for 0 … t … 3.

With this parameterization, C is traced from r102 = 80, 0, 49  to r132 = 83, 4, 619— 
in the direction opposite to that of the ball’s descent.

Related Exercise 57 

z

x Projection of path of
steepest descent on

xy-plane, y 5
4x3

27

Ball is released
at (3, 4, 61).

z 5 4 1 x2 1 3y2

C: path of
steepest
descent on
surface

Level
curves

,

is orthogonal to
level curves.

y

Figure 15.55

QUICK CHECK 5 Verify that y = 4x3>27 
satisfies the equation y′1x2 = 3y>x, 
with y132 = 4. 

➤ The fact that y′ = -2x>y may also 
be obtained using Theorem 15.9: If 
F1x, y2 = 0, then y′1x2 = -Fx>Fy.
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The Gradient in Three Dimensions
The directional derivative, the gradient, and the idea of a level curve extend immediately 
to functions of three variables of the form w = ƒ1x, y, z2. The main differences are that 
the gradient is a vector in ℝ3, and level curves become level surfaces (Section 15.1). Here 
is how the gradient looks when we step up one dimension.

The easiest way to visualize the surface w = ƒ1x, y, z2 is to picture its level surfaces— 
the surfaces in ℝ3 on which ƒ has a constant value. The level surfaces are given by the 
equation ƒ1x, y, z2 = C, where C is a constant (Figure 15.56). The level surfaces can be 
graphed, and they may be viewed as layers of the full four-dimensional surface (like lay-
ers of an onion). With this image in mind, we now extend the concepts of directional de-
rivative and gradient to three dimensions.

Given the function w = ƒ1x, y, z2, we begin just as we did in the two-variable case 
and define the directional derivative and the gradient.

x
y

z

Gradient vector at (a, b, c) is
orthogonal to level surface.

=f (a, b, c)

Figure 15.56

DEFINITION Directional Derivative and Gradient in Three Dimensions

Let ƒ be differentiable at 1a, b, c2 and let u = 8u1, u2, u39  be a unit vector. The 
directional derivative of ƒ at 1a, b, c 2  in the direction of u is

Duƒ1a, b, c2 = lim
hS0

 
ƒ1a + hu1, b + hu2, c + hu32 - ƒ1a, b, c2

h
 ,

provided this limit exists.

The gradient of ƒ at the point (x, y, z) is the vector-valued function

 ∇ƒ1x, y, z2 = 8  ƒx1x, y, z2, ƒy1x, y, z2, ƒz1x, y, z29
 = ƒx1x, y, z2 i + ƒy1x, y, z2 j + ƒz1x, y, z2 k.

An argument similar to that given in two dimensions leads from the definition of the 
directional derivative to a computational formula. Given a unit vector u = 8u1, u2, u39 , 
the directional derivative of ƒ in the direction of u at the point 1a, b, c2 is

Du ƒ1a, b, c2 = ƒx1a, b, c2 u1 + ƒy1a, b, c2 u2 + ƒz1a, b, c2 u3.

As before, we recognize this expression as a dot product of the vector u and the vector  
∇ƒ1a, b, c2 = 8ƒx1a, b, c2 , ƒy1a, b, c2, ƒz1a, b, c29 , which is the gradient evaluated at 
1a, b, c2. These observations lead to Theorem 15.13, which mirrors Theorems 15.10 and 15.11.

THEOREM 15.13 Directional Derivative and Interpreting the Gradient
Let ƒ be differentiable at 1a, b, c2 and let u = 8u1, u2, u39  be a unit vector. The 
directional derivative of ƒ at 1a, b, c2 in the direction of u is

 Duƒ1a, b, c2 = ∇ƒ1a, b, c2 # u
 = 8ƒx1a, b, c2, ƒy1a, b, c2, ƒz1a, b, c29 # 8u1, u2, u39 . 

Assuming ∇ƒ1a, b, c2 ≠ 0, the gradient in three dimensions has the following 
properties.

1. ƒ has its maximum rate of increase at 1a, b, c2 in the direction of the gradient 
∇ƒ1a, b, c2, and the rate of change in this direction is 0 ∇ƒ1a, b, c2 0 .

2. ƒ has its maximum rate of decrease at 1a, b, c2 in the direction of 
-∇ƒ1a, b, c2, and the rate of change in this direction is - 0 ∇ƒ1a, b, c2 0 .

3. The directional derivative is zero in any direction orthogonal to ∇ƒ1a, b, c2.

➤ When we introduce the tangent plane 
in Section 15.6, we can also claim that 
∇ƒ1a, b, c2 is orthogonal to the level 
surface that passes through 1a, b, c2.

QUICK CHECK 6 Compute ∇ƒ1-1, 2, 12, 
where ƒ1x, y, z2 = xy>z. 

EXAMPLE 8 Gradients in three dimensions Consider the function 
ƒ1x, y, z2 = x2 + 2y2 + 4z2 - 1 and its level surface ƒ1x, y, z2 = 3.

a. Find and interpret the gradient at the points P12, 0, 02, Q10, 12, 02, R10, 0, 12, and 
S11, 1, 122 on the level surface.

b. What are the actual rates of change of ƒ in the directions of the gradients in part (a)?
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SOLUTION

a. The gradient is

∇ƒ = 8  ƒx, ƒy, ƒz9 = 82x, 4y, 8z9 .
Evaluating the gradient at the four points, we find that

 ∇ƒ12, 0, 02 = 84, 0, 09 ,   ∇ƒ10, 12, 02 = 80, 412, 09 ,
 ∇ƒ10, 0, 12 = 80, 0, 89 , and  ∇ƒ11, 1, 122 = 82, 4, 49 .

The level surface ƒ1x, y, z2 = 3 is an ellipsoid (Figure 15.57), which is one layer of a 
four-dimensional surface. The four points P, Q, R, and S are shown on the level sur-
face with the respective gradient vectors. In each case, the gradient points in the direc-
tion that ƒ has its maximum rate of increase. Of particular importance is the fact—to 
be made clear in the next section—that at each point, the gradient is orthogonal to the 
level surface.

b. The actual rate of increase of ƒ at 1a, b, c2 in the direction of the gradient is 
0 ∇ƒ1a, b, c2 0 . At P, the rate of increase of ƒ in the direction of the gradient is 
0 84, 0, 09 0 = 4; at Q, the rate of increase is 0 80, 412, 09 0 = 412; at R, the rate of 
increase is 0 80, 0, 89 0 = 8; and at S, the rate of increase is 0 82, 4, 49 0 = 6.

Related Exercises 59–60 

=f (1, 1,    ) 5 k2, 4, 4l

=f (2, 0, 0) 5 k4, 0, 0l

1
2

x

y

z

=f (0, 0, 1) 5 k0, 0, 8l

=f (0,    2, 0) 5 k0, 4    2, 0l

Level surface of f (x, y, z) 5 x2 1 2y2 1 4z2 2 1
f (x, y, z) 5 3

Figure 15.57

Getting Started
1. Explain how a directional derivative is formed from the two  

partial derivatives ƒx and ƒy.

2. How do you compute the gradient of the functions ƒ1x, y2 and 
ƒ1x, y, z2?

3. Interpret the direction of the gradient vector at a point.

4. Interpret the magnitude of the gradient vector at a point.

5. Given a function ƒ, explain the relationship between the gradient 
and the level curves of ƒ.

6. The level curves of the surface z = x2 + y2 are circles in the  
xy-plane centered at the origin. Without computing the gradient, 
what is the direction of the gradient at 11, 12 and 1-1, -12 (deter-
mined up to a scalar multiple)?

7. Suppose ƒ is differentiable at 13, 42, ∇ƒ13, 42 = 8 -13, 19 ,  
and u = h 13

2
 , -  

1
2
i. Compute Duƒ13, 42.

8. Suppose ƒ is differentiable at 19, 92, ∇ƒ19, 92 = 83, 19 , and 
w = 81, -19 . Compute the directional derivative of ƒ at 19, 92  
in the direction of the vector w.

9. Suppose ƒ is differentiable at 13, 42. Assume u, v, and w are unit 
vectors, v = -u, w # ∇ƒ13, 42 = 0, and Duƒ13, 42 = 7. Find 
Dvƒ13, 42 and Dwƒ13, 42.

10. Suppose ƒ is differentiable at 11, 22 and ∇ƒ11, 22 = 83, 49 . Find 
the slope of the line tangent to the level curve of ƒ at 11, 22.

SECTION 15.5 EXERCISES

Practice Exercises
11. Directional derivatives Consider the function 

ƒ1x, y2 = 8 -
x2

2
- y2, whose graph is a paraboloid (see figure).

z

x y

x2

2
z 5 8 2 2 y2

1a, b 2 = 12, 0 2 1a, b 2 = 10, 2 2 1a, b 2 = 11, 1 2
u = 8 12

2  , 
12
2 9

v = 8− 12
2  , 

12
2 9

w = 8− 12
2 , − 12

2 9
a. Fill in the table with the values of the directional derivative at 

the points 1a, b2 in the directions given by the unit vectors u, v,  
and w.

b. Interpret each of the directional derivatives computed in  
part (a) at the point 12, 02.
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12. Directional derivatives Consider the function 
ƒ1x, y2 = 2x2 + y2, whose graph is a paraboloid (see figure).

y

x

3
3

8

z

z 5 2x2 1 y2

1a, b 2 = 11, 0 2 1a, b 2 = 11, 1 2 1a, b 2 = 11, 2 2
u = 81, 09

v = 8 12
2 , 12

2 9
w = 80, 19

a. Fill in the table with the values of the directional derivative at 
the points 1a, b2 in the directions given by the unit vectors u,  
v, and w.

b. Interpret each of the directional derivatives computed in part 
(a) at the point 11, 02.

13–20. Computing gradients Compute the gradient of the following 
functions and evaluate it at the given point P.

13. ƒ1x, y2 = 2 + 3x2 - 5y2; P12, -12
14. ƒ1x, y2 = 4x2 - 2xy + y2; P1-1, -52
15. g1x, y2 = x2 - 4x2y - 8xy2; P1-1, 22
16. p1x, y2 = 212 - 4x2 - y2; P1-1, -12
17. ƒ1x, y2 = xe2xy; P11, 02
18. ƒ1x, y2 = sin 13x + 2y2; P1p, 3p>22
19. F1x, y2 = e-x2 - 2y2

; P1-1, 22
20. h1x, y2 = ln 11 + x2 + 2y22; P12, -32
21–30. Computing directional derivatives with the gradient Com-
pute the directional derivative of the following functions at the given 
point P in the direction of the given vector. Be sure to use a unit vector 
for the direction vector.

21. ƒ1x, y2 = x2 - y2; P1-1, -32; h 3
5

 , -  
4
5
i

22. ƒ1x, y2 = 3x2 + y3; P13, 22; h 5
13

 , 
12
13
i

23. ƒ1x, y2 = 10 - 3x2 +
y4

4
 ; P12, -32; h 13

2
 , -  

1
2
i

24. g1x, y2 = sin p12x - y2; P1-1, -12; h 5
13

 , -  
12
13
i

25. ƒ1x, y2 = 24 - x2 - 2y ; P12, -22; h 115
 , 

215
i

26. ƒ1x, y2 = 13exy; P11, 02; 85, 129
27. ƒ1x, y2 = 3x2 + 2y + 5; P11, 22; 8 -3, 49
28. h1x, y2 = e-x - y; P1ln 2, ln 32; 81, 19
29. g1x, y2 = ln 14 + x2 + y22; g1-1, 22; 82, 19

30. ƒ1x, y2 = x
x - y

 ; P14, 12; 8 -1, 29

31–36. Direction of steepest ascent and descent Consider the follow-
ing functions and points P.

a. Find the unit vectors that give the direction of steepest ascent and 
steepest descent at P.

b. Find a vector that points in a direction of no change in the function at P.

31. ƒ1x, y2 = x2 - 4y2 - 9; P11, -22
32. ƒ1x, y2 = x2 + 4xy - y2; P12, 12
33. ƒ1x, y2 = x4 - x2y + y2 + 6; P1-1, 12
34. p1x, y2 = 220 + x2 + 2xy - y2; P11, 22
35. F1x, y2 = e-x2>2 - y2>2; P1-1, 12
36. ƒ1x, y2 = 2 sin 12x - 3y2; P10, p2
37–42. Interpreting directional derivatives A function ƒ and a  
point P are given. Let u correspond to the direction of the directional 
derivative.

a. Find the gradient and evaluate it at P.
b. Find the angles u (with respect to the positive x-axis) associated 

with the directions of maximum increase, maximum decrease, and 
zero change.

c. Write the directional derivative at P as a function of u; call this 
function g.

d. Find the value of u that maximizes g1u2 and find the maximum 
value.

e. Verify that the value of u that maximizes g corresponds to the  
direction of the gradient. Verify that the maximum value of g equals 
the magnitude of the gradient.

37. ƒ1x, y2 = 10 - 2x2 - 3y2; P13, 22
38. ƒ1x, y2 = 8 + x2 + 3y2; P1-3, -12
39. ƒ1x, y2 = 22 + x2 + y2 ; P113, 12
40. ƒ1x, y2 = 212 - x2 - y2; P1-1, -1>132
41. ƒ1x, y2 = e-x2 - 2y2

; P1-1, 02
42. ƒ1x, y2 = ln 11 + 2x2 + 3y22; P13>4, -132
43–46. Directions of change Consider the following functions ƒ and 
points P. Sketch the xy-plane showing P and the level curve through 
P. Indicate (as in Figure 15.52) the directions of maximum increase, 
maximum decrease, and no change for ƒ.

43. ƒ1x, y2 = 8 + 4x2 + 2y2; P12, -42
44. ƒ1x, y2 = -4 + 6x2 + 3y2; P1-1, -22
45. ƒ1x, y2 = x2 + xy + y2 + 7; P1-3, 32
46. ƒ1x, y2 = tan 12x + 2y2; P1p>16, p>162

T

T

T
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47–50. Level curves Consider the paraboloid ƒ1x, y2 = 16 -
x2

4
-

y2

16
  

and the point P on the given level curve of ƒ. Compute the slope of the  
line tangent to the level curve at P, and verify that the tangent line is 
orthogonal to the gradient at that point.

47. ƒ1x, y2 = 0; P10, 162 48. ƒ1x, y2 = 0; P18, 02
49. ƒ1x, y2 = 12; P14, 02 50. ƒ1x, y2 = 12; P1213, 42
51–54. Level curves Consider the upper half of the ellipsoid  

ƒ1x, y2 = B1 -
x2

4
-

y2

16
 and the point P on the given level curve  

of ƒ. Compute the slope of the line tangent to the level curve at P, and  
verify that the tangent line is orthogonal to the gradient at that point.

51. ƒ1x, y2 = 13
2

 ; P a1
2

 , 13b  52. ƒ1x, y2 = 112
 ; P10, 182

53. ƒ1x, y2 = 112
 ; P112, 02 54. ƒ1x, y2 = 112

 ; P11, 22

55–58. Path of steepest descent Consider each of the following  
surfaces and the point P on the surface.

a. Find the gradient of ƒ.
b. Let C′ be the path of steepest descent on the surface beginning  

at P, and let C be the projection of C′ on the xy-plane. Find an 
equation of C in the xy-plane.

c. Find parametric equations for the path C′ on the surface.

55. ƒ1x, y2 = 4 + x (a plane); P14, 4, 82
56. ƒ1x, y2 = y + x (a plane); P12, 2, 42
57. ƒ1x, y2 = 4 - x2 - 2y2 (a paraboloid); P11, 1, 12
58. ƒ1x, y2 = y + x-1; P11, 2, 32
59–66. Gradients in three dimensions Consider the following  
functions ƒ, points P, and unit vectors u.

a. Compute the gradient of ƒ and evaluate it at P.
b. Find the unit vector in the direction of maximum increase of ƒ at P.
c. Find the rate of change of the function in the direction of maximum 

increase at P.
d. Find the directional derivative at P in the direction of the given  

vector.

59. ƒ1x, y, z2 = x2 + 2y2 + 4z2 + 10; P11, 0, 42; h 112
 , 0, 

112
i

60. ƒ1x, y, z2 = 4 - x2 + 3y2 +
z2

2
 ; P10, 2, -12; h0, 

112
 , -  

112
i

61. ƒ1x, y, z2 = 1 + 4xyz; P11, -1, -12; h 113
 , 

113
 , -  

113
i

62. ƒ1x, y, z2 = xy + yz + xz + 4; P12, -2, 12; h0, -  
112

 , -  
112
i

63. ƒ1x, y, z2 = 1 + sin 1x + 2y - z2; Pap
6

 , 
p

6
 , -  

p

6
b ; h 1

3
 , 

2
3

 , 
2
3
i

64. ƒ1x, y, z2 = exyz - 1; P10, 1, -12; h -  
2
3

 , 
2
3

 , -  
1
3
i

65. ƒ1x, y, z2 = ln 11 + x2 + y2 + z22; P11, 1, -12; h 2
3

 , 
2
3

 , -  
1
3
i

66. ƒ1x, y, z2 = x - z
y - z

 ; P13, 2, -12; h 1
3

 , 
2
3

 , -  
2
3
i

67. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. If ƒ1x, y2 = x2 + y2 - 10, then ∇ƒ1x, y2 = 2x + 2y.
b. Because the gradient gives the direction of maximum increase 

of a function, the gradient is always positive.
c. The gradient of ƒ1x, y, z2 = 1 + xyz has four components.
d. If ƒ1x, y, z2 = 4, then ∇ƒ = 0.

68. Gradient of a composite function Consider the function 
F1x, y, z2 = exyz.

a. Write F as a composite function ƒ ∘ g, where ƒ is a function of 
one variable and g is a function of three variables.

b. Relate ∇F to ∇g.

69–72. Directions of zero change Find the directions in the xy-plane 
in which the following functions have zero change at the given point. 
Express the directions in terms of unit vectors.

69. ƒ1x, y2 = 12 - 4x2 - y2; P11, 2, 42
70. ƒ1x, y2 = x2 - 4y2 - 8; P14, 1, 42
71. ƒ1x, y2 = 23 + 2x2 + y2; P11, -2, 32
72. ƒ1x, y2 = e1 - xy; P11, 0, e2
73. Steepest ascent on a plane Suppose a long sloping hillside is 

described by the plane z = ax + by + c, where a, b, and c are 
constants. Find the path in the xy-plane, beginning at 1x0, y02, that 
corresponds to the path of steepest ascent on the hillside.

74. Gradient of a distance function Let 1a, b2 be a given point in ℝ2,  
and let d = ƒ1x, y2 be the distance between 1a, b2 and the vari-
able point 1x, y2.
a. Show that the graph of ƒ is a cone.
b. Show that the gradient of ƒ at any point other than 1a, b2 is a 

unit vector.
c. Interpret the direction and magnitude of ∇ƒ.

75–78. Looking ahead—tangent planes Consider the following sur-
faces ƒ1x, y, z2 = 0, which may be regarded as a level surface of the 
function w = ƒ1x, y, z2. A point P1a, b, c2 on the surface is also given.

a. Find the (three-dimensional) gradient of ƒ and evaluate it at P.
b. The set of all vectors orthogonal to the gradient with their tails at P 

form a plane. Find an equation of that plane (soon to be called the 
tangent plane).

75. ƒ1x, y, z2 = x2 + y2 + z2 - 3 = 0; P11, 1, 12
76. ƒ1x, y, z2 = 8 - xyz = 0; P12, 2, 22
77. ƒ1x, y, z2 = ex + y - z - 1 = 0; P11, 1, 22
78. ƒ1x, y, z2 = xy + xz - yz - 1 = 0; P11, 1, 12
79. A traveling wave A snapshot (frozen in time) of a set of water 

waves is described by the function z = 1 + sin 1x - y2, where 
z gives the height of the waves and 1x, y2 are coordinates in the 
horizontal plane z = 0.

a. Use a graphing utility to graph z = 1 + sin 1x - y2.
b. The crests and the troughs of the waves are aligned in the  

direction in which the height function has zero change. Find 
the direction in which the crests and troughs are aligned.

c. If you were surfing on one of these waves and wanted the 
steepest descent from the crest to the trough, in which direc-
tion would you point your surfboard (given in terms of a unit 
vector in the xy-plane)?

d. Check that your answers to parts (b) and (c) are consistent with 
the graph of part (a).

T
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80. Traveling waves in general Generalize Exercise 79 by 
considering a set of waves described by the function 
z = A + sin 1ax - by2, where a, b, and A are real numbers.

a. Find the direction in which the crests and troughs of the waves 
are aligned. Express your answer as a unit vector in terms of a 
and b.

b. Find the surfer’s direction—that is, the direction of steepest 
descent from a crest to a trough. Express your answer as a unit 
vector in terms of a and b.

Explorations and Challenges
81–83. Potential functions Potential functions arise frequently in 
physics and engineering. A potential function has the property that a 
field of interest (for example, an electric field, a gravitational field, or 
a velocity field) is the gradient of the potential (or sometimes the nega-
tive of the gradient of the potential). (Potential functions are considered 
in depth in Chapter 17.)

81. Electric potential due to a point charge The electric field due to 
a point charge of strength Q at the origin has a potential function 
w = kQ>r, where r2 = x2 + y2 + z2 is the square of the distance 
between a variable point P1x, y, z2 and the charge, and k 7 0 is a 
physical constant. The electric field is given by E = -∇w, where 
∇w is the gradient in three dimensions.

a. Show that the three-dimensional electric field due to a point 
charge is given by

E1x, y, z2 = kQ h x

r3 , 
y

r3 , 
z

r3 i  .

b. Show that the electric field at a point has a magnitude 

0E 0 = kQ

r2  . Explain why this relationship is called an inverse  

square law.

82. Gravitational potential The gravitational potential associated 
with two objects of mass M and m is w = -GMm>r , where G 
is the gravitational constant. If one of the objects is at the origin 
and the other object is at P1x, y, z2, then r2 = x2 + y2 + z2 is the 
square of the distance between the objects. The gravitational field 
at P is given by F = -∇w, where ∇w is the gradient in three  
dimensions. Show that the force has a magnitude 0F 0 = GMm>r2 . 
Explain why this relationship is called an inverse square law.

83. Velocity potential In two dimensions, the motion of an ideal fluid 
(an incompressible and irrotational fluid) is governed by a veloc-
ity potential w. The velocity components of the fluid, u in the  
x-direction and v in the y-direction, are given by 8u, v9=∇w. Find 
the velocity components associated with the velocity potential 
w1x, y2 = sin px sin 2py.

84. Gradients for planes Prove that for the plane described by 
ƒ1x, y2 = Ax + By, where A and B are nonzero constants, the 
gradient is constant (independent of 1x, y2). Interpret this result.

85. Rules for gradients Use the definition of the gradient (in two or 
three dimensions), assume ƒ and g are differentiable functions 
on ℝ2 or ℝ3, and let c be a constant. Prove the following gradient 
rules.

a. Constants Rule: ∇1cƒ2 = c∇ƒ
b. Sum Rule: ∇1ƒ + g2 = ∇ƒ + ∇g
c. Product Rule: ∇1ƒg2 = 1∇ƒ2g + ƒ∇g

d. Quotient Rule: ∇ aƒ

g
b =

g∇ƒ - ƒ∇g

g2

e. Chain Rule: ∇1ƒ ∘ g2 = ƒ′1g2∇g, where ƒ is a function of one 
variable

86–91. Using gradient rules Use the gradient rules of Exercise 85 to 
find the gradient of the following functions.

86. ƒ1x, y2 = xy cos 1xy2 87. ƒ1x, y2 = x + y

x2 + y2

88. ƒ1x, y2 = ln 11 + x2 + y22
89. ƒ1x, y, z2 = 225 - x2 - y2 - z2

90. ƒ1x, y, z2 = 1x + y + z2 exyz

91. ƒ1x, y, z2 = x + yz

y + xz

QUICK CHECK ANSWERS

1. If u = 8u1, u29 = 81, 09  then

 Du ƒ1a, b2 = lim
hS0

 
ƒ1a + hu1, b + hu22 - ƒ1a, b2

h

 = lim
hS0

 
ƒ1a + h, b2 - ƒ1a, b2

h
= ƒx 1a, b2.

Similarly, when u = 80, 19 , the partial derivative ƒy 1a, b2  
results. 2. The vector from 1a, b2 to 1a + ∆su1, b + ∆su22  
is 8∆su1, ∆su29 = ∆s8u1, u29 = ∆su. Its length is 
0 ∆su 0 = ∆s 0 u 0 = ∆s. Therefore, s measures arc length.
3. Reversing (negating) the direction vector negates the direc-
tional derivative, so the respective values are approximately  
-2.47 and 0.98. 4. The gradient is 82x, 2y9 , which, evalu-
ated at 1a, a2, is 82a, 2a9 . Taking the dot product of the 
 gradient and the vector 8 -1, 19  (a vector parallel to a line of 
slope -1), we see that 82a, 2a9 ~ 8 -1, 19 = 0.
6. 82, -1, 29  

15.6  Tangent Planes and Linear 
Approximation

In Section 4.6, we saw that if we zoom in on a point on a smooth curve (one described by 
a differentiable function), the curve looks more and more like the tangent line at that point. 
Once we have the tangent line at a point, it can be used to approximate function values 
and to estimate changes in the dependent variable. In this section, the analogous story is 
developed in three dimensions. Now we see that differentiability at a point (as discussed 
in Section 15.3) implies the existence of a tangent plane at that point (Figure 15.58).
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974 Chapter 15  •  Functions of Several Variables

Consider a smooth surface described by a differentiable function ƒ, and focus on 
a single point on the surface. As we zoom in on that point (Figure 15.59), the surface  
appears more and more like a plane. The first step is to define this plane carefully; it is 
called the tangent plane. Once we have the tangent plane, we can use it to approximate 
function values and to estimate changes in the dependent variable.

Tangent Planes
Recall that a surface in ℝ3 may be defined in at least two different ways:

• Explicitly in the form z = ƒ1x, y2 or

• Implicitly in the form F1x, y, z2 = 0.

It is easiest to begin by considering a surface defined implicitly by F1x, y, z2 = 0, where 
F is differentiable at a particular point. Such a surface may be viewed as a level surface of 
a function w = F1x, y, z2; it is the level surface for w = 0.

QUICK CHECK 1 Write the function z = xy + x - y in the form F1x, y, z2 = 0. 

Tangent Planes for F 1x, y, z 2 = 0 To find an equation of the tangent plane, con-
sider a smooth curve C: r1t2 = 8x1t2, y1t2, z1t29  that lies on the surface F1x, y, z2 = 0  
(Figure 15.60a). Because the points of C lie on the surface, we have F1x1t2, y1t2, z1t22 = 0. 

xa xb

y y

f di�erentiable at
a 1 tangent line
at (a, f (a))

g not di�erentiable at
b 1 no tangent
line at (b, g(b))

f di�erentiable at
(a, b) 1 tangent
plane at (a, b, f (a, b))

g not di�erentiable at
(c, d) 1 no tangent
plane at (c, d, g(c, d))

y 5 f (x)

z 5 f (x, y)

z 5 g(x, y)

y 5 g(x)

(a, b) (c, d)

x

z

y
x

z

y

Figure 15.58

x

z

y

As we
zoom
in on a
smooth
surface ...

... it appears more 
like a plane.

Figure 15.59

Vector tangent to C
at P0 is orthogonal
to =F(P0).

Tangent plane formed
by tangent vectors for
all curves C on the
surface passing through P0

C

C

C

=F(P0) =F(P0) normal to tangent plane

P0P0

Tangent vector r9(t)

C: r(t) 5 kx(t), y(t), z(t)l

F(x, y, z) 5 0

(a) (b)

F(x, y, z) 5 0

Figure 15.60
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Differentiating both sides of this equation with respect to t reveals a useful relationship. The 
derivative of the right side is 0. The Chain Rule applied to the left side yields

 
d
dt

 1F1x1t2, y1t2, z1t222 =
0F
0x

 
dx
dt

+
0F
0y

 
dy

dt
+

0F
0z

 
dz
dt

 = h 0F
0x

 , 
0F
0y

 , 
0F
0z
i # h dx

dt
 , 

dy

dt
 , 

dz
dt
i

            (+1)1+*  (+1)1+*
 ∇F1x, y, z2 r′1t2

 = ∇F1x, y, z2 # r′1t2.
Therefore, ∇F1x, y, z2 # r′1t2 = 0 and at any point on the curve, the tangent vector r′1t2 
is orthogonal to the gradient.

Now fix a point P01a, b, c2 on the surface, assume ∇F1a, b, c2 ≠ 0, and let C be 
any smooth curve on the surface passing through P0. We have shown that any vector tan-
gent to C is orthogonal to ∇F1a, b, c2 at P0. Because this argument applies to all smooth 
curves on the surface passing through P0, the tangent vectors for all these curves (with 
their tails at P0) are orthogonal to ∇F1a, b, c2; therefore, they all lie in the same plane  
(Figure 15.60b). This plane is called the tangent plane at P0. We can easily find an equa-
tion of the tangent plane because we know both a point on the plane P01a, b, c2 and a nor-
mal vector ∇F1a, b, c2; an equation is

∇F1a, b, c2 # 8x - a, y - b, z - c9 = 0.

DEFINITION Equation of the Tangent Plane for F 1x, y, z 2 = 0

Let F be differentiable at the point P01a, b, c2 with ∇F1a, b, c2 ≠ 0. The plane 
tangent to the surface F1x, y, z2 = 0 at P0, called the tangent plane, is the plane 
passing through P0 orthogonal to ∇F1a, b, c2. An equation of the tangent plane is

Fx1a, b, c21x - a2 + Fy1a, b, c21y - b2 + Fz1a, b, c21z - c2 = 0.

➤ Recall that an equation of the plane 
passing though 1a, b, c2 with a normal 
vector n = 8n1, n2, n39  is n11x - a2 +
n21y - b2 + n31z - c2 = 0.

➤ If r is a position vector corresponding to 
an arbitrary point on the tangent plane, 
and r0 is a position vector corresponding 
to a fixed point 1a, b, c2 on the plane, 
then an equation of the tangent plane may 
be written concisely as

∇F1a, b, c2 # 1r - r02 = 0.

Notice the analogy with tangent lines and 
level curves (Section 15.5). An equation of 
the line tangent to ƒ1x, y2 = 0 at 1a, b2 is

∇ƒ1a, b2 # 8x - a, y - b9 = 0.

EXAMPLE 1 Equation of a tangent plane Consider the ellipsoid 

F1x, y, z2 = x2

9
+

y2

25
+ z2 - 1 = 0.

a. Find an equation of the plane tangent to the ellipsoid at 10, 4, 352.
b. At what points on the ellipsoid is the tangent plane horizontal?

SOLUTION

a. Notice that we have written the equation of the ellipsoid in the implicit form 

F1x, y, z2 = 0. The gradient of F is ∇F1x, y, z2 = h 2x
9

 , 
2y

25
 , 2zi. Evaluating  

at 10, 4, 352, we have

∇Fa0, 4, 
3
5
b = h0, 

8
25

 , 
6
5
i.

An equation of the tangent plane at this point is

0 # 1x - 02 +
8
25

 1y - 42 +
6
5

 az -
3
5
b = 0,

or 4y + 15z = 25. The equation does not involve x, so the tangent plane is parallel to 
(does not intersect) the x-axis (Figure 15.61).

b. A horizontal plane has a normal vector of the form 80, 0, c9 , where c ≠ 0. A plane 

tangent to the ellipsoid has a normal vector ∇F1x, y, z2 = h 2x
9

, 
2y

25
, 2zi. Therefore, 

the ellipsoid has a horizontal tangent plane when Fx =
2x
9

= 0 and Fy =
2y

25
= 0, or 

x

y

z

Tangent plane

at (0, 4,    )

9 25
F(x, y, z) 5

x2 y2
1 1 z2 2 1 5 0

=F (0, 4,    )5
3

5
3

Figure 15.61
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976 Chapter 15  •  Functions of Several Variables

when x = 0 and y = 0. Substituting these values into the original equation for the  
ellipsoid, we find that horizontal planes occur at 10, 0, 12 and 10, 0, -12.

Related Exercises 14, 16 

The preceding discussion allows us to confirm a claim made in Section 15.5. The 
surface F1x, y, z2 = 0 is a level surface of the function w = F1x, y, z2 (corresponding to 
w = 0). At any point on that surface, the tangent plane has a normal vector ∇F1x, y, z2. 
Therefore, the gradient ∇F1x, y, z2 is orthogonal to the level surface F1x, y, z2 = 0 at all 
points of the domain at which F is differentiable.

Tangent Planes for z = ƒ 1x, y 2  Surfaces in ℝ3 are often defined explicitly in the form 
z = ƒ1x, y2. In this situation, the equation of the tangent plane is a special case of the general 
equation just derived. The equation z = ƒ1x, y2 is written as F1x, y, z2 = z - ƒ1x, y2 = 0, 
and the gradient of F at the point 1a, b, ƒ1a, b22 is

 ∇F1a, b, ƒ1a, b22 = 8Fx1a, b, ƒ1a, b22, Fy1a, b, ƒ1a, b22, Fz1a, b, ƒ1a, b229
 = 8 -ƒx1a, b2, -ƒy1a, b2, 19 .

Using the tangent plane definition, an equation of the plane tangent to the surface 
z = ƒ1x, y2 at the point 1a, b, ƒ1a, b22 is

-ƒx  1a, b21x - a2 - ƒy  1a, b21y - b2 + 11z - ƒ1a, b22 = 0.

After some rearranging, we obtain an equation of the tangent plane.

➤ This result extends Theorem 15.12, 
which states that for functions 
ƒ1x, y2 = 0, the gradient at a point is 
orthogonal to the level curve that passes 
through that point.

➤ To be clear, when F1x, y, z2 =
z - ƒ1x, y2, we have Fx = -ƒx, 
Fy = -ƒy, and Fz = 1.

Tangent Plane for z = ƒ 1x, y 2
Let ƒ be differentiable at the point 1a, b2. An equation of the plane tangent to the 
surface z = ƒ1x, y2 at the point 1a, b, ƒ1a, b22 is

z = ƒx1a, b21x - a2 + ƒy1a, b21y - b2 + ƒ1a, b2.

EXAMPLE 2 Tangent plane for z = ƒ 1x, y 2  Find an equation of the plane tangent to 
the paraboloid z = ƒ1x, y2 = 32 - 3x2 - 4y2 at 12, 1, 162.
SOLUTION The partial derivatives are ƒx = -6x and ƒy = -8y. Evaluating the partial 
derivatives at 12, 12, we have ƒx12, 12 = -12 and ƒy12, 12 = -8. Therefore, an equation 
of the tangent plane (Figure 15.62) is

 z = ƒx1a, b21x - a2 + ƒy1a, b21y - b2 + ƒ1a, b2
 = -121x - 22 - 81y - 12 + 16

 = -12x - 8y + 48.

Related Exercises 17–18 

x y

z

Tangent plane
at (2, 1, 16)

z 5 32 2 3x2 2 4y2

Figure 15.62

x y

z

x

y

Tangent line
linear approximation
at (a, f (a))

Tangent plane
linear approximation
at (a, b, f (a, b))

y 5 f (x)

z 5 f (x, y)

(a, f (a))

(a, b, f (a, b))

(a, b)

a

Figure 15.63

Linear Approximation
With a function of the form y = ƒ1x2, the tangent line at a point often gives good approxi-
mations to the function near that point. A straightforward extension of this idea applies to 
approximating functions of two variables with tangent planes. As before, the method is 
called linear approximation.

Figure 15.63 shows the details of linear approximation in the one- and two-variable 
cases. In the one-variable case (Section 4.6), if ƒ is differentiable at a, the equation of the 
line tangent to the curve y = ƒ1x2 at the point 1a, ƒ1a22 is

L1x2 = ƒ1a2 + ƒ′1a21x - a2.
The tangent line gives an approximation to the function. At points near a, we have 
ƒ1x2 ≈ L1x2.

The two-variable case is analogous. If ƒ is differentiable at 1a, b2, an equation of the 
plane tangent to the surface z = ƒ1x, y2 at the point 1a, b, ƒ1a, b22 is

L1x, y2 = ƒx1a, b21x - a2 + ƒy1a, b21y - b2 + ƒ1a, b2.
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This tangent plane is the linear approximation to ƒ at 1a, b2. At points near 1a, b2, we 
have ƒ1x, y2 ≈ L1x, y2. The pattern established here continues for linear approximations 
in higher dimensions: For each additional variable, a new term is added to the approxima-
tion formula.

DEFINITION Linear Approximation

Let ƒ be differentiable at 1a, b2. The linear approximation to the surface 
z = ƒ1x, y2 at the point 1a, b, ƒ1a, b22 is the tangent plane at that point, given by 
the equation

L1x, y2 = ƒx1a, b21x - a2 + ƒy1a, b21y - b2 + ƒ1a, b2.
For a function of three variables, the linear approximation to w = ƒ1x, y, z2 at the 
point 1a, b, c, ƒ1a, b, c22 is given by

 L1x, y, z2 = ƒx1a, b, c21x - a2 + ƒy1a, b, c21y - b2
 +  ƒz1a, b, c21z - c2 + ƒ1a, b, c2.

➤ The term linear approximation applies 
in ℝ2, in ℝ3, and in higher dimensions. 
Recall that lines in ℝ2 and planes in ℝ3 
are described by linear functions of the 
independent variables. In both cases, we 
call the linear approximation L.

EXAMPLE 3 Linear approximation Let ƒ1x, y2 = 5

x2 + y2 .

a. Find the linear approximation to the function at the point 1-1, 2, 12.
b. Use the linear approximation to estimate the value of ƒ1-1.05, 2.12.
SOLUTION

a. The partial derivatives of ƒ are

ƒx = -  
10x

1x2 + y222 and ƒy = -  
10y

1x2 + y222 .

Evaluated at 1-1, 22, we have ƒx1-1, 22 = 2
5 = 0.4 and ƒy1-1, 22 = -  45 = -0.8. 

Therefore, the linear approximation to the function at 1-1, 2, 12 is
 L1x, y2 = ƒx1-1, 221x - 1-122 + ƒy1-1, 221y - 22 + ƒ1-1, 22

 = 0.41x + 12 - 0.81y - 22 + 1

 = 0.4x - 0.8y + 3.

The surface and the tangent plane are shown in Figure 15.64.

b. The value of the function at the point 1-1.05, 2.12 is approximated by the value of the 
linear approximation at that point, which is

L1-1.05, 2.12 = 0.41-1.052 - 0.812.12 + 3 = 0.90.

In this case, we can easily evaluate ƒ1-1.05, 2.12 ≈ 0.907 and compare the linear  
approximation with the exact value; the approximation has a relative error of about 
0.8%.

Related Exercise 36 

z

x

y

5
x2 1 y2z 5

(21, 2, 1)

Tangent plane
at (21, 2, 1)

Figure 15.64

➤ Relative error =  

0 approximation - exact value 0
0 exact value 0

QUICK CHECK 2 Look at the graph of the 
surface in Example 3 (Figure 15.64) 
and explain why ƒx1-1, 22 7 0 and 
ƒy1-1, 22 6 0. 

Differentials and Change
Recall that for a function of the form y = ƒ1x2, if the independent variable changes from 
x to x + dx, the corresponding change ∆y in the dependent variable is approximated by 
the differential dy = ƒ′1x2 dx, which is the change in the linear approximation. Therefore, 
∆y ≈ dy, with the approximation improving as dx approaches 0.

For functions of the form z = ƒ1x, y2, we start with the linear approximation to the 
surface

ƒ1x, y2 ≈ L1x, y2 = ƒx1a, b21x - a2 + ƒy1a, b21y - b2 + ƒ1a, b2.
The exact change in the function between the points 1a, b2 and 1x, y2 is

∆z = ƒ1x, y2 - ƒ1a, b2.
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Replacing ƒ1x, y2 with its linear approximation, the change ∆z is approximated by

∆z ≈ L1x, y2 - ƒ1a, b2 = ƒx1a, b21x - a2 + ƒy1a, b21y - b2.(+++)+++*      (1)1*      (1)1*
 dz dx dy

The change in the x-coordinate is dx = x - a and the change in the y-coordinate is 
dy = y - b (Figure 15.65). As before, we let the differential dz denote the change in the 
linear approximation. Therefore, the approximate change in the z-coordinate is

∆z ≈ dz = ƒx1a, b2 dx + ƒy1a, b2 dy.
 (+1)1+*  (+1)1+*
 change in z due change in z due  
 to change in x to change in y

This expression says that if we move the independent variables from 1a, b2 to 
1x, y2 = 1a + dx, b + dy2, the corresponding change in the dependent variable ∆z has 
two contributions—one due to the change in x and one due to the change in y. If dx and dy 
are small in magnitude, then so is ∆z. The approximation ∆z ≈ dz improves as dx and dy 
approach 0. The relationships among the differentials are illustrated in Figure 15.65.

y

x

z Dz 5 f (x, y) 2 f (a, b)
dz 5 L(x, y) 2 f (a, b)

z 5 f (x, y)

(a, b, f (a, b))

(x, y, f (x, y))

(x, y, L(x, y))

(x, y) 5 (a 1 dx, b 1 dy)

Dz

Dx 5 dx

dz 5 change in L on
          the tangent plane
Dz 5 change in f on
          the  surface

(a, b)

Dy 5 dy

dz

Linear approximation

Figure 15.65

➤ Alternative notation for the differential at 
1a, b2 is dz 0 1a, b2 or dƒ 0 1a, b2.

QUICK CHECK 3 Explain why, if dx = 0 
or dy = 0 in the change formula for 
∆z, the result is the change formula 
for one variable. 

More generally, we replace the fixed point 1a, b2 in the previous discussion with the 
variable point 1x, y2 to arrive at the following definition.

DEFINITION The differential dz

Let ƒ be differentiable at the point 1x, y2. The change in z = ƒ1x, y2 as the 
independent variables change from 1x, y2 to 1x + dx, y + dy2 is denoted ∆z and is 
approximated by the differential dz:

∆z ≈ dz = ƒx1x, y2 dx + ƒy1x, y2 dy.

EXAMPLE 4 Approximating function change Let z = ƒ1x, y2 = 5

x2 + y2 .

Approximate the change in z when the independent variables change from 1-1, 22 to 
1-0.93, 1.942.
SOLUTION If the independent variables change from 1-1, 22 to 1-0.93, 1.942, then 
dx = 0.07 (an increase) and dy = -0.06 (a decrease). Using the values of the partial  
derivatives evaluated in Example 3, the corresponding change in z is approximately

 dz = ƒx1-1, 22 dx + ƒy1-1, 22 dy

 = 0.410.072 + 1-0.821-0.062
 = 0.076.

Again, we can check the accuracy of the approximation. The actual change is 
ƒ1-0.93, 1.942 - ƒ1-1, 22 ≈ 0.080, so the approximation has a 5% error.

Related Exercise 40 
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EXAMPLE 5 Body mass index The body mass index (BMI) for an adult human is 
given by the function B1w, h2 = w>h2, where w is weight measured in kilograms and h is 
height measured in meters.

a. Use differentials to approximate the change in the BMI when weight increases from 55 
to 56.5 kg and height increases from 1.65 to 1.66 m.

b. Which produces a greater percentage change in the BMI, a 1% change in the weight 
(at a constant height) or a 1% change in the height (at a constant weight)?

SOLUTION

a. The approximate change in the BMI is dB = Bw dw + Bh dh, where the derivatives are 
evaluated at w = 55 and h = 1.65, and the changes in the independent variables are 
dw = 1.5 and dh = 0.01. Evaluating the partial derivatives, we find that

 Bw1w, h2 = 1

h2 ,   Bw155, 1.652 ≈ 0.37,

 Bh1w, h2 = -  
2w

h3  , and  Bh155, 1.652 ≈ -24.49.

Therefore, the approximate change in the BMI is

 dB = Bw155, 1.652 dw + Bh155, 1.652 dh

 ≈ 10.37211.52 + 1-24.49210.012
 ≈ 0.56 - 0.25

 = 0.31.

As expected, an increase in weight increases the BMI, while an increase in height  
decreases the BMI. In this case, the two contributions combine for a net increase in  
the BMI.

b. The changes dw, dh, and dB that appear in the differential change formula in part (a) 

are absolute changes. The corresponding relative, or percentage, changes are 
dw
w

, 
dh
h

, 

and 
dB
B

 . To introduce relative changes into the change formula, we divide both sides of  

dB = Bw dw + Bh dh by B = w>h2 = wh-2. The result is

 
dB
B

= Bw 
dw

wh-2 + Bh 
dh

wh-2

 =
1

h2 
dw

wh-2 -
2w

h3  
dh

wh-2 Substitute for Bw and Bh.

 =
dw
w

- 2 
dh
h

 .  Simplify.
   "   "
 relative relative  
 change change  
 in w in h

This expression relates the relative changes in w, h, and B. With h constant 1dh = 02, 
a 1% change in w 1dw>w = 0.012 produces approximately a 1% change of the same 
sign in B. With w constant 1dw = 02, a 1% change in h 1dh>h = 0.012 produces  
approximately a 2% change in B of the opposite sign. We see that the BMI formula is 
more sensitive to small changes in h than in w.

Related Exercise 44 

➤ See Exercises 68–69 for general results 
about relative or percentage changes in 
functions.

QUICK CHECK 4 In Example 5, interpret 
the facts that Bw 7 0 and Bh 6 0, for 
w, h 7 0. 

The differential for functions of two variables extends naturally to more variables. 
For example, if ƒ is differentiable at 1x, y, z2 with w = ƒ1x, y, z2, then

dw = ƒx1x, y, z2 dx + ƒy1x, y, z2 dy + ƒz1x, y, z2 dz.

The differential dw (or dƒ) gives the approximate change in ƒ at the point 1x, y, z2 due to 
changes of dx, dy, and dz in the independent variables.
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EXAMPLE 6 Manufacturing errors A company manufactures cylindrical alumi-
num tubes to rigid specifications. The tubes are designed to have an outside radius of 
r = 10 cm, a height of h = 50 cm, and a thickness of t = 0.1 cm (Figure 15.66). The 
manufacturing process produces tubes with a maximum error of {0.05 cm in the radius 
and height, and a maximum error of {0.0005 cm in the thickness. The volume of the 
cylindrical tube is V1r, h, t2 = pht12r - t2. Use differentials to estimate the maximum 
error in the volume of a tube.

SOLUTION The approximate change in the volume of a tube due to changes dr, dh, and dt 
in the radius, height, and thickness, respectively, is

dV = Vr dr + Vh dh + Vt dt.

The partial derivatives evaluated at r = 10, h = 50, and t = 0.1 are

 Vr1r, h, t2 = 2pht,     Vr110, 50, 0.12  = 10p,

 Vh1r, h, t2 = pt12r - t2,   Vh110, 50, 0.12 = 1.99p,

 Vt1r, h, t2 = 2ph1r - t2,  Vt110, 50, 0.12  = 990p.

We let dr = dh = 0.05 and dt = 0.0005 be the maximum errors in the radius, height, 
and thickness, respectively. The maximum error in the volume is approximately

 dV = Vr110, 50, 0.12 dr + Vh110, 50, 0.12 dh + Vt110, 50, 0.12 dt

 = 10p10.052 + 1.99p10.052 + 990p10.00052
 ≈ 1.57 + 0.31 + 1.56

 = 3.44.

The maximum error in the volume is approximately 3.44 cm3. Notice that the “magni-
fication factor” for the thickness (990p) is roughly 100 and 500 times greater than the 
magnification factors for the radius and height, respectively. This means that for the same 
errors in r, h, and t, the volume is far more sensitive to errors in the thickness. The partial 
derivatives allow us to do a sensitivity analysis to determine which independent (input) 
variables are most critical in producing change in the dependent (output) variable.

Related Exercise 52 

h 5 50 cm

t 5 0.1 cm
r 5 10 cm

Figure 15.66

Getting Started
1. Suppose n is a vector normal to the tangent plane of the surface 

F1x, y, z2 = 0 at a point. How is n related to the gradient of F at 
that point?

2. Write the explicit function z = xy2 + x2y - 10 in the implicit 
form F1x, y, z2 = 0.

3. Write an equation for the plane tangent to the surface 
F1x, y, z2 = 0 at the point 1a, b, c2.

4. Write an equation for the plane tangent to the surface z = ƒ1x, y2 
at the point 1a, b, ƒ1a, b22.

5. Explain how to approximate a function ƒ at a point near 1a, b2, 
where the values of ƒ, ƒx, and ƒy are known at 1a, b2.

6. Explain how to approximate the change in a function ƒ when the 
independent variables change from 1a, b2 to 1a + ∆x, b + ∆y2.

7. Write the approximate change formula for a function z = ƒ1x, y2 
at the point 1x, y2 in terms of differentials.

8. Write the differential dw for the function w = ƒ1x, y, z2.
9–10. Suppose ƒ11, 22 = 4, ƒx11, 22 = 5, and ƒy11, 22 = -3.

9. Find an equation of the plane tangent to the surface z = ƒ1x, y2 at 
the point P011, 2, 42.

SECTION 15.6 EXERCISES

10. Find the linear approximation to ƒ at P011, 2, 42, and use it to  
estimate ƒ11.01, 1.992.

11–12. Suppose F10, 2, 12 = 0, Fx10, 2, 12 = 3, Fy10, 2, 12 = -1, 
and Fz10, 2, 12 = 6.

11. Find an equation of the plane tangent to the surface F1x, y, z2 = 0 
at the point P010, 2, 12.

12. Find the linear approximation to the function w = F1x, y, z2 at the 
point P010, 2, 12 and use it to estimate F10.1, 2, 0.992.

Practice Exercises
13–28. Tangent planes Find an equation of the plane tangent to the 
following surfaces at the given points (two planes and two equations).

13. x2 + y + z = 3; 11, 1, 12 and 12, 0, -12
14. x2 + y3 + z4 = 2; 11, 0, 12 and 1-1, 0, 12
15. xy + xz + yz - 12 = 0; 12, 2, 22 and 12, 0, 62
16. x2 + y2 - z2 = 0; 13, 4, 52 and 1-4, -3, 52
17. z = 4 - 2x2 - y2; 12, 2, -82 and 1-1, -1, 12

18. z = 2 + 2x2 +
y2

2
 ; a -  

1
2

, 1, 3b  and 13, -2, 222
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19. z = exy; 11, 0, 12 and 10, 1, 12
20. z = sin xy + 2; 11, 0, 22 and 10, 5, 22
21. xy sin z = 1; 11, 2, p>62 and 1-2, -1, 5p>62
22. yzexz - 8 = 0; 10, 2, 42 and 10, -8, -12
23. z2 - x2>16 - y2>9 - 1 = 0; 14, 3, -132 and 1-8, 9, 1142
24. 2x + y2 - z2 = 0; 10, 1, 12 and 14, 1, -32
25. z = x2ex - y; 12, 2, 42 and 1-1, -1, 12
26. z = ln 11 + xy2; 11, 2, ln 32 and 1-2, -1, ln 32

27. z =
x - y

x2 + y2 ; a1, 2, -  
1
5
b  and a2, -1, 

3
5
b

28. z = 2 cos 1x - y2 + 2; ap
6

 , -  
p

6
 , 3b  and ap

3
 , 
p

3
 , 4b

29–32. Tangent planes Find an equation of the plane tangent to the 
following surfaces at the given point.

29. z = tan-11xy2; a1, 1, 
p

4
b  30. z = tan-11x + y2; 10, 0, 02

31. sin xyz =
1
2

 ; ap, 1, 
1
6
b  32. 

x + z
y - z

= 2; 14, 2, 02

33–38. Linear approximation

a. Find the linear approximation to the function ƒ at the given point.
b. Use part (a) to estimate the given function value.

33. ƒ1x, y2 = xy + x - y; 12, 32; estimate ƒ12.1, 2.992.
34. ƒ1x, y2 = 12 - 4x2 - 8y2; 1-1, 42; estimate ƒ1-1.05, 3.952.
35. ƒ1x, y2 = -x2 + 2y2; 13, -12; estimate ƒ13.1, -1.042.
36. ƒ1x, y2 = 2x2 + y2; 13, -42; estimate ƒ13.06, -3.922.
37. ƒ1x, y, z2 = ln 11 + x + y + 2z2; 10, 0, 02; estimate 

ƒ10.1, -0.2, 0.22.

38. ƒ1x, y, z2 = x + y

x - z
 ; 13, 2, 42; estimate ƒ12.95, 2.05, 4.022.

39–42. Approximate function change Use differentials to approxi-
mate the change in z for the given changes in the independent  
variables.

39. z = 2x - 3y - 2xy when 1x, y2 changes from 11, 42 to 11.1, 3.92
40. z = -x2 + 3y2 + 2 when 1x, y2 changes from 1-1, 22 to 
1-1.05, 1.92

41. z = ex + y when 1x, y2 changes from 10, 02 to 10.1, -0.052
42. z = ln 11 + x + y2 when 1x, y2 changes from 10, 02 to 
1-0.1, 0.032

43. Changes in torus surface area The surface area of a torus with 
an inner radius r and an outer radius R 7 r is S = 4p21R2 - r22.
a. If r increases and R decreases, does S increase or decrease, or 

is it impossible to say?
b. If r increases and R increases, does S increase or decrease, or 

is it impossible to say?
c. Estimate the change in the surface area of the torus when 

r changes from r = 3.00 to r = 3.05 and R changes from 
R = 5.50 to R = 5.65.

d. Estimate the change in the surface area of the torus when 
r changes from r = 3.00 to r = 2.95 and R changes from 
R = 7.00 to R = 7.04.

e. Find the relationship between the changes in r and R that 
leaves the surface area (approximately) unchanged.

44. Changes in cone volume The volume of a right circular cone 
with radius r and height h is V = pr2h>3.

a. Approximate the change in the volume of the cone when 
the radius changes from r = 6.5 to r = 6.6 and the height 
changes from h = 4.20 to h = 4.15.

b. Approximate the change in the volume of the cone when the 
radius changes from r = 5.40 to r = 5.37 and the height 
changes from h = 12.0 to h = 11.96.

45. Area of an ellipse The area of an ellipse with axes of length 2a 
and 2b is A = pab. Approximate the percent change in the area 
when a increases by 2% and b increases by 1.5%.

46. Volume of a paraboloid The volume of a segment of a circular 
paraboloid (see figure) with radius r and height h is V = pr2h>2.  
Approximate the percent change in the volume when the radius 
decreases by 1.5% and the height increases by 2.2%.

h

V 5    r2h

r

p

2

47–50. Differentials with more than two variables Write the differen-
tial dw in terms of the differentials of the independent variables.

47. w = ƒ1x, y, z2 = xy2 + x2z + yz2

48. w = ƒ1x, y, z2 = sin 1x + y - z2

49. w = ƒ1u, x, y, z2 = u + x
y + z

50. w = ƒ1p, q, r, s2 = pq

rs

51. Law of Cosines The side lengths of any triangle are related by the 
Law of Cosines,

c2 = a2 + b2 - 2ab cos u.

u

a

c
b

a. Estimate the change in the side length c when a changes from 
a = 2 to a = 2.03, b changes from b = 4.00 to b = 3.96, 

and u changes from u =
p

3
 to u =

p

3
+

p

90
 .

b. If a changes from a = 2 to a = 2.03 and b changes from 
b = 4.00 to b = 3.96, is the resulting change in c greater in 

magnitude when u =
p

20
 (small angle) or when u =

9p
20

  

(close to a right angle)?

T
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52. Travel cost The cost of a trip that is L miles long, driving a 
car that gets m miles per gallon, with gas costs of $p>gal is 
C = Lp>m dollars. Suppose you plan a trip of L = 1500 mi in a 
car that gets m = 32 mi>gal, with gas costs of p = $3.80>gal.

a. Explain how the cost function is derived.
b. Compute the partial derivatives CL, Cm, and Cp. Explain the 

meaning of the signs of the derivatives in the context of this 
problem.

c. Estimate the change in the total cost of the trip if L changes 
from L = 1500 to L = 1520, m changes from m = 32 to 
m = 31, and p changes from p = $3.80 to p = $3.85.

d. Is the total cost of the trip (with L = 1500 mi, m = 32 mi>gal, 
and p = $3.80) more sensitive to a 1% change in L, in m, or in 
p (assuming the other two variables are fixed)? Explain.

53. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. The planes tangent to the cylinder x2 + y2 = 1 in ℝ3 all have 
the form ax + bz + c = 0.

b. Suppose w = xy>z, for x 7 0, y 7 0, and z 7 0. A decrease 
in z with x and y fixed results in an increase in w.

c. The gradient ∇F1a, b, c2 lies in the plane tangent to the sur-
face F1x, y, z2 = 0 at 1a, b, c2.

54–57. Horizontal tangent planes Find the points at which the follow-
ing surfaces have horizontal tangent planes.

54. x2 + 2y2 + z2 - 2x - 2z - 2 = 0

55. x2 + y2 - z2 - 2x + 2y + 3 = 0

56. z = sin 1x - y2 in the region -2p … x … 2p, -2p … y … 2p

57. z = cos 2x sin y in the region -p … x … p, -p … y … p

58. Heron’s formula The area of a triangle with sides of length a, b, 
and c is given by a formula from antiquity called Heron’s formula:

A = 1s1s - a21s - b21s - c2,
where s =

1
2

 1a + b + c2 is the semiperimeter of the triangle.

a. Find the partial derivatives Aa, Ab, and Ac.
b. A triangle has sides of length a = 2, b = 4, c = 5. Estimate 

the change in the area when a increases by 0.03, b decreases 
by 0.08, and c increases by 0.6.

c. For an equilateral triangle with a = b = c, estimate the percent 
change in the area when all sides increase in length by p%.

59. Surface area of a cone A cone with height h and radius r has a 
lateral surface area (the curved surface only, excluding the base) 

of S = pr2r2 + h2.

a. Estimate the change in the surface area when r increases 
from r = 2.50 to r = 2.55 and h decreases from h = 0.60 to 
h = 0.58.

b. When r = 100 and h = 200, is the surface area more sensitive 
to a small change in r or a small change in h? Explain.

60. Line tangent to an intersection curve Consider the paraboloid 
z = x2 + 3y2 and the plane z = x + y + 4, which intersects the 
paraboloid in a curve C at 12, 1, 72 (see figure). Find the equation 
of the line tangent to C at the point 12, 1, 72. Proceed as follows.

a. Find a vector normal to the plane at 12, 1, 72.
b. Find a vector normal to the plane tangent to the paraboloid at 
12, 1, 72.

c. Argue that the line tangent to C at 12, 1, 72 is orthogonal to 
both normal vectors found in parts (a) and (b). Use this fact to 
find a direction vector for the tangent line.

d. Knowing a point on the tangent line and the direction of the 
tangent line, write an equation of the tangent line in parametric 
form.

(2, 1)

(2, 1, 7)

y

x

C

z

61. Batting averages Batting averages in baseball are defined by 
A = x>y, where x Ú 0 is the total number of hits and y 7 0 is 
the total number of at-bats. Treat x and y as positive real numbers 
and note that 0 … A … 1.

a. Use differentials to estimate the change in the batting average 
if the number of hits increases from 60 to 62 and the number of 
at-bats increases from 175 to 180.

b. If a batter currently has a batting average of A = 0.350, does 
the average decrease more if the batter fails to get a hit than it 
increases if the batter gets a hit?

c. Does the answer to part (b) depend on the current batting  
average? Explain.

62. Water-level changes A conical tank with radius 0.50 m and 
height 2.00 m is filled with water (see figure). Water is released 
from the tank, and the water level drops by 0.05 m (from 2.00 m 
to 1.95 m). Approximate the change in the volume of water in 
the tank. (Hint: When the water level drops, both the radius and 
height of the cone of water change.)

h 5 2.00 m

r 5 0.5 m

63. Flow in a cylinder Poiseuille’s Law is a fundamental law of  
fluid dynamics that describes the flow velocity of a viscous  
incompressible fluid in a cylinder (it is used to model blood flow 
through veins and arteries). It says that in a cylinder of radius R 
and length L, the velocity of the fluid r … R units from the  

centerline of the cylinder is V =
P

4 Lv
 1R2 - r22, where P is the  

difference in the pressure between the ends of the cylinder, and  
v is the viscosity of the fluid (see figure). Assuming P and v 
are constant, the velocity V along the centerline of the cylinder 

1r = 02 is V =
kR2

L
 , where k is a constant that we will take to  

be k = 1.

a. Estimate the change in the centerline velocity 1r = 02 if 
the radius of the flow cylinder increases from R = 3 cm to 
R = 3.05 cm and the length increases from L = 50 cm to 
L = 50.5 cm.

b. Estimate the percent change in the centerline velocity if the 
radius of the flow cylinder R decreases by 1% and its length L 
increases by 2%.
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c. Complete the following sentence: If the radius of the cylinder 
increases by p%, then the length of the cylinder must increase 
by approximately ___% in order for the velocity to remain 
constant.

rR

L

Explorations and Challenges
64. Floating-point operations In general, real numbers (with infinite 

decimal expansions) cannot be represented exactly in a computer 
by floating-point numbers (with finite decimal expansions). Sup-
pose floating-point numbers on a particular computer carry an 
error of at most 10-16. Estimate the maximum error that is com-
mitted in evaluating the following functions. Express the error in 
absolute and relative (percent) terms.

a. ƒ1x, y2 = xy b. ƒ1x, y2 = x
y

c. F1x, y, z2 = xyz d. F1x, y, z2 = x>y
z

65. Probability of at least one encounter Suppose in a large group 
of people, a fraction 0 … r … 1 of the people have flu. The  
probability that in n random encounters you will meet at least one 
person with flu is P = ƒ1n, r2 = 1 - 11 - r2n. Although n is a 
positive integer, regard it as a positive real number.

a. Compute ƒr and ƒn.
b. How sensitive is the probability P to the flu rate r? Suppose 

you meet n = 20 people. Approximately how much does the 
probability P increase if the flu rate increases from r = 0.1 to 
r = 0.11 (with n fixed)?

c. Approximately how much does the probability P increase if the 
flu rate increases from r = 0.9 to r = 0.91 with n = 20?

d. Interpret the results of parts (b) and (c).

66. Two electrical resistors When two electrical resistors with resis-
tance R1 7 0 and R2 7 0 are wired in parallel in a circuit (see  
figure), the combined resistance R, measured in ohms (Ω), is 

given by 
1
R

=
1
R1

+
1
R2

 .

R1 R2

a. Estimate the change in R if R1 increases from 2 Ω to 2.05 Ω 
and R2 decreases from 3 Ω to 2.95 Ω.

b. Is it true that if R1 = R2 and R1 increases by the same small 
amount as R2 decreases, then R is approximately unchanged? 
Explain.

c. Is it true that if R1 and R2 increase, then R increases? Explain.
d. Suppose R1 7 R2 and R1 increases by the same small amount 

as R2 decreases. Does R increase or decrease?

67. Three electrical resistors Extending Exercise 66, when three 
electrical resistors with resistances R1 7 0, R2 7 0, and R3 7 0 
are wired in parallel in a circuit (see figure), the combined resis-

tance R, measured in ohms (Ω), is given by 
1
R

=
1
R1

+
1
R2

+
1
R3

 .  

Estimate the change in R if R1 increases from 2 Ω to 2.05 Ω, R2  
decreases from 3 Ω to 2.95 Ω, and R3 increases from 1.5 Ω to 
1.55 Ω.

R1 R2 R3

68. Power functions and percent change Suppose 

z = ƒ1x, y2 = xayb, where a and b are real numbers. Let 
dx
x

 , 
dy

y
 ,  

and 
dz
z

 be the approximate relative (percent) changes in x, y, and z,  

respectively. Show that 
dz
z

=
a1dx2

x
+

b1dy2
y

 ; that is, the relative  

changes are additive when weighted by the exponents a and b.

69. Logarithmic differentials Let ƒ be a differentiable function of 
one or more variables that is positive on its domain.

a. Show that d1ln ƒ2 = dƒ

ƒ
 .

b. Use part (a) to explain the statement that the absolute change 
in ln ƒ is approximately equal to the relative change in ƒ.

c. Let ƒ1x, y2 = xy, note that ln ƒ = ln x + ln y, and show that 

relative changes add; that is, 
dƒ

ƒ
=

dx
x

+
dy

y
 .

d. Let ƒ1x, y2 = x
y
 , note that ln ƒ = ln x - ln y, and show that 

relative changes subtract; that is, 
dƒ

ƒ
=

dx
x

-
dy

y
 .

e. Show that in a product of n numbers, ƒ = x1x2 gxn, the  
relative change in ƒ is approximately equal to the sum of the 
relative changes in the variables.

70. Distance from a plane to an ellipsoid (Adapted from 1938  

Putnam Exam) Consider the ellipsoid 
x2

a2 +
y2

b2 +
z2

c2 = 1  

and the plane P given by Ax + By + Cz + 1 = 0. Let  
h = 1A2 + B2 + C22-1>2 and m = 1a2A2 + b2B2 + c2C221>2.
a. Find the equation of the plane tangent to the ellipsoid at the 

point 1p, q, r2.
b. Find the two points on the ellipsoid at which the tangent plane 

is parallel to P, and find equations of the tangent planes.
c. Show that the distance between the origin and the plane P is h.
d. Show that the distance between the origin and the tangent 

planes is hm.
e. Find a condition that guarantees the plane P does not intersect 

the ellipsoid.

QUICK CHECK ANSWERS

1. F1x, y, z2 = z - xy - x + y = 0 2. If you walk in the 
positive x-direction from 1-1, 2, 12, then you walk uphill. 
If you walk in the positive y-direction from 1-1, 2, 12, then 
you walk downhill. 3. If ∆x = 0, then the change formula 
becomes ∆z ≈ ƒy1a, b2 ∆y, which is the change formula 
for the single variable y. If ∆y = 0, then the change formula 
becomes ∆z ≈ ƒx1a, b2 ∆x, which is the change formula for 
the single variable x. 4. The BMI increases with weight w 
and decreases with height h. 
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984 Chapter 15  •  Functions of Several Variables

15.7 Maximum/Minimum Problems
In Chapter 4, we showed how to use derivatives to find maximum and minimum val-
ues of functions of a single variable. When those techniques are extended to functions of 
two variables, we discover both similarities and differences. The landscape of a surface 
is far more complicated than the profile of a curve in the plane, so we see more interest-
ing features when working with several variables. In addition to peaks (maximum values) 
and hollows (minimum values), we encounter winding ridges, long valleys, and mountain 
passes. Yet despite these complications, many of the ideas used for single-variable func-
tions reappear in higher dimensions. For example, the Second Derivative Test, suitably 
adapted for two variables, plays a central role. As with single-variable functions, the tech-
niques developed here are useful for solving practical optimization problems.

Local Maximum ,Minimum Values
The concepts of local maximum and minimum values encountered in Chapter 4 extend 
readily to functions of two variables of the form z = ƒ1x, y2. Figure 15.67 shows a general 
surface defined on a domain D, which is a subset of ℝ2. The surface has peaks (local high 
points) and hollows (local low points) at points in the interior of D. The goal is to locate 
and classify these extreme points.

z

x
y

Local maximum

Local maximum and
absolute maximum
on D

Local minimum and
absolute minimum
on D

Local minimum

Figure 15.67

➤ We maintain the convention adopted in 
Chapter 4 that local maxima or minima 
occur at interior points of the domain. 
Recall that an open disk centered at 
1a, b2 is the set of points within a circle 
centered at 1a, b2.

DEFINITION Local Maximum ,Minimum Values

Suppose 1a, b2 is a point in a region R on which ƒ is defined. If ƒ1x, y2 … ƒ1a, b2 
for all 1x, y2 in the domain of ƒ and in some open disk centered at 1a, b2, then 
ƒ1a, b2 is a local maximum value of ƒ. If ƒ1x, y2 Ú ƒ1a, b2 for all 1x, y2 in 
the domain of ƒ and in some open disk centered at 1a, b2, then ƒ1a, b2 is a local 
minimum value of ƒ. Local maximum and local minimum values are also called 
local extreme values or local extrema.

THEOREM 15.14 Derivatives and Local Maximum ,Minimum Values
If ƒ has a local maximum or minimum value at 1a, b2 and the partial derivatives ƒx 
and ƒy exist at 1a, b2, then ƒx1a, b2 = ƒy1a, b2 = 0.

In familiar terms, a local maximum is a point on a surface from which you cannot 
walk uphill. A local minimum is a point from which you cannot walk downhill. The fol-
lowing theorem is the analog of Theorem 4.2.

Proof: Suppose ƒ has a local maximum value at 1a, b2. The function of one variable 
g1x2 = ƒ1x, b2, obtained by holding y = b fixed, also has a local maximum at 1a, b2. By 
Theorem 4.2, g′1a2 = 0. However, g′1a2 = ƒx1a, b2; therefore, ƒx1a, b2 = 0. Similarly, 
the function h1y2 = ƒ1a, y2, obtained by holding x = a fixed, has a local maximum at 
1a, b2, which implies that ƒy1a, b2 = h′1b2 = 0. An analogous argument is used for the 
local minimum case. 

QUICK CHECK 1 The paraboloid 
z = x2 + y2 - 4x + 2y + 5 has a 
local minimum at 12, -12. Verify the 
conclusion of Theorem 15.14 for this 
function. 

Suppose ƒ is differentiable at 1a, b2 (ensuring the existence of a tangent plane) and ƒ 
has a local extremum at 1a, b2. Then ƒx1a, b2 = ƒy1a, b2 = 0, which, when substituted 
into the equation of the tangent plane, gives the equation z = ƒ1a, b2 (a constant). There-
fore, if the tangent plane exists at a local extremum, then it is horizontal there.

Recall that for a function of one variable, the condition ƒ′1a2 = 0 does not guaran-
tee a local extremum at a. A similar precaution must be taken with Theorem 15.14. The 
conditions ƒx1a, b2 = ƒy1a, b2 = 0 do not imply that ƒ has a local extremum at 1a, b2, 
as we show momentarily. Theorem 15.14 provides candidates for local extrema. We call 
these candidates critical points, as we did for functions of one variable. Therefore, the 
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EXAMPLE 1 Finding critical points Find the critical points of 
ƒ1x, y2 = xy1x - 221y + 32.
SOLUTION This function is differentiable at all points of ℝ2, so the critical points occur 
only at points where ƒx1x, y2 = ƒy1x, y2 = 0. Computing and simplifying the partial de-
rivatives, these conditions become

  ƒx1x, y2 = 2y1x - 121y + 32 = 0

  ƒy1x, y2 = x1x - 2212y + 32 = 0.

We must now identify all 1x, y2 pairs that satisfy both equations. The first equation is sat-
isfied if and only if y = 0, x = 1, or y = -3. We consider each of these cases.

• Substituting y = 0, the second equation is 3x1x - 22 = 0, which has solutions x = 0 
and x = 2. So 10, 02 and 12, 02 are critical points.

• Substituting x = 1, the second equation is -12y + 32 = 0, which has the solution 
y = -  32. So 11, -  322 is a critical point.

• Substituting y = -3, the second equation is -3x1x - 22 = 0, which has roots x = 0 
and x = 2. So 10, -32 and 12, -32 are critical points.

We find that there are five critical points: 10, 02, 12, 02, 11, -  322, 10, -32, and 12, -32. 
Some of these critical points may correspond to local maximum or minimum values. We 
will return to this example and a complete analysis shortly.

Related Exercises 15, 18 

DEFINITION Critical Point

An interior point 1a, b2 in the domain of ƒ is a critical point of ƒ if either

1. ƒx1a, b2 = ƒy1a, b2 = 0, or

2. at least one of the partial derivatives ƒx and ƒy does not exist at 1a, b2.

Second Derivative Test
Critical points are candidates for local extreme values. With functions of one variable, the 
Second Derivative Test is used to determine whether critical points correspond to local 
maxima or minima (the test can also be inconclusive). The analogous test for functions of 
two variables not only detects local maxima and minima, but also identifies another type 
of point known as a saddle point.

DEFINITION Saddle Point

Consider a function ƒ that is differentiable at a critical point 1a, b2. Then ƒ has 
a saddle point at 1a, b2 if, in every open disk centered at 1a, b2, there are points 
1x, y2 for which ƒ1x, y2 7 ƒ1a, b2 and points for which ƒ1x, y2 6 ƒ1a, b2.

➤ The usual image of a saddle point is 
that of a mountain pass (or a horse 
saddle), where you can walk upward in 
some directions and downward in other 
directions. The definition of a saddle 
point given here includes other less 
common situations. For example, with 
this definition, the cylinder z = x3 has a 
line of saddle points along the y-axis.

If 1a, b2 is a critical point of ƒ and ƒ has a saddle point at 1a, b2, then from the point 
1a, b, ƒ1a, b22, it is possible to walk uphill in some directions and downhill in other di-
rections. The function ƒ1x, y2 = x2 - y2 (a hyperbolic paraboloid) is a good example to 
remember. The surface rises from the critical point 10, 02 along the x-axis and falls from 
10, 02 along the y-axis (Figure 15.68). We can easily check that ƒx10, 02 = ƒy10, 02 = 0, 
demonstrating that critical points do not necessarily correspond to local maxima or minima.

x

z

y

The hyperbolic paraboloid
z 5 x2 2 y2 has a saddle
point at (0, 0).

Figure 15.68
QUICK CHECK 2 Consider the plane tangent to a surface at a saddle point. In what direction 
does the normal to the plane point? 

procedure for locating local maximum and minimum values is to find the critical points 
and then determine whether these candidates correspond to genuine local maximum and 
minimum values.
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986 Chapter 15  •  Functions of Several Variables

The proof of this theorem is given in Appendix A, but a few comments are in order.  
The test relies on the quantity D1x, y2 = ƒxx ƒyy - 1ƒxy22, which is called the dis-
criminant of ƒ. It can be remembered as the 2 * 2 determinant of the Hessian matrix 

a  
ƒxx ƒxy

ƒyx ƒyy

b , where ƒxy = ƒyx, provided these derivatives are continuous (Theorem 15.4).  

The condition D1x, y2 7 0 means that the surface has the same general behavior in all 
directions near 1a, b2; either the surface rises in all directions or it falls in all directions. 
In the case that D1a, b2 = 0, the test is inconclusive: 1a, b2 could correspond to a local 
maximum, a local minimum, or a saddle point.

Finally, another useful characterization of a saddle point can be derived from  
Theorem 15.15: The tangent plane at a saddle point lies both above and below the surface.

THEOREM 15.15 Second Derivative Test
Suppose the second partial derivatives of ƒ are continuous throughout an 
open disk centered at the point 1a, b2, where ƒx1a, b2 = ƒy1a, b2 = 0. Let 
D1x, y2 = ƒxx1x, y2 ƒyy1x, y2 - 1ƒxy1x, y222.

1. If D1a, b2 7 0 and ƒxx1a, b2 6 0, then ƒ has a local maximum value at 
1a, b2.

2. If D1a, b2 7 0 and ƒxx1a, b2 7 0, then ƒ has a local minimum value at 
1a, b2.

3. If D1a, b2 6 0, then ƒ has a saddle point at 1a, b2.
4. If D1a, b2 = 0, then the test is inconclusive.

➤ The Second Derivative Test for functions 
of a single variable states that if a is 
a critical point with ƒ′1a2 = 0, then 
ƒ″1a2 7 0 implies that ƒ has a local 
minimum at a and ƒ″1a2 6 0 implies 
that ƒ has a local maximum at a; if 
ƒ″1a2 = 0, the test is inconclusive. 
Theorem 15.15 is easier to remember if 
you notice the parallels between the two 
second derivative tests.

QUICK CHECK 3 Compute 
the discriminant D1x, y2 of 
ƒ1x, y2 = x2y2. 

y

z

x

Local minimum at (2, 21)
where fx 5 fy 5 0

(2, 21, 0)

21

z 5 x2 1 2y2 2 4x 1 4y 1 6

2

Figure 15.69

EXAMPLE 2 Analyzing critical points Use the Second Derivative Test to classify the 
critical points of ƒ1x, y2 = x2 + 2y2 - 4x + 4y + 6.

SOLUTION We begin with the following derivative calculations:

 ƒx = 2x - 4,   ƒy = 4y + 4,

 ƒxx = 2,   ƒxy = ƒyx = 0, and ƒyy = 4.

Setting both ƒx and ƒy equal to zero yields the single critical point 12, -12. The value of 
the discriminant at the critical point is D12, -12 = ƒxx ƒyy - 1ƒxy22 = 8 7 0. Further-
more, ƒxx12, -12 = 2 7 0. By the Second Derivative Test, ƒ has a local minimum at 
12, -12; the value of the function at that point is ƒ12, -12 = 0 (Figure 15.69).

Related Exercise 24 

EXAMPLE 3 Analyzing critical points Use the Second Derivative Test to classify the 
critical points of ƒ1x, y2 = xy1x - 221y + 32.
SOLUTION In Example 1, we determined that the critical points of ƒ are 10, 02, 12, 02, 
11, -  322, 10, -32, and 12, -32. The derivatives needed to evaluate the discriminant are

 ƒx = 2y1x - 121y + 32,   ƒy = x1x - 2212y + 32,  
  ƒxx = 2y1y + 32,   ƒxy = 212y + 321x - 12, and ƒyy = 2x1x - 22.

The values of the discriminant at the critical points and the conclusions of the Second  
Derivative Test are shown in Table 15.4.

Table 15.4

1x, y 2 D 1x, y 2 ƒxx Conclusion

10, 02 -36 0 Saddle point

12, 02 -36 0 Saddle point

11, -  322 9 -  92 Local maximum

10, -32 -36 0 Saddle point

12, -32 -36 0 Saddle point
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The surface described by ƒ has one local maximum at 11, -  322, surrounded by four 
saddle points (Figure 15.70a). The structure of the surface may also be visualized by  
plotting the level curves of ƒ (Figure 15.70b).

z

x
y

Saddle points at (0, 23),
(0, 0), (2, 23), and (2, 0)

(a) (b)

One local maximum
surrounded by four
saddle points.

Local
maximum

z 5 xy(x 2 2)(y 1 3)

Saddle point

O

Saddle point

Saddle point Saddle point

Local maximum

at (1, 2   )

y

x

2
3

Figure 15.70 Related Exercise 27 

EXAMPLE 4 Inconclusive tests Apply the Second Derivative Test to the following 
functions and interpret the results.

a. ƒ1x, y2 = 2x4 + y4  b. ƒ1x, y2 = 2 - xy2

SOLUTION

a. The critical points of ƒ satisfy the conditions

ƒx = 8x3 = 0 and ƒy = 4y3 = 0,

so the sole critical point is 10, 02. The second partial derivatives evaluated at 10, 02 are

ƒxx10, 02 = ƒxy10, 02 = ƒyy10, 02 = 0.

We see that D10, 02 = 0, and the Second Derivative Test is inconclusive. While the 
bowl-shaped surface (Figure 15.71) described by ƒ has a local minimum at 10, 02, the 
surface also has a broad flat bottom, which makes the local minimum “invisible” to 
the Second Derivative Test.

b. The critical points of this function satisfy

ƒx1x, y2 = -y2 = 0 and ƒy1x, y2 = -2xy = 0.

The solutions of these equations have the form 1a, 02, where a is a real number. It is 
easy to check that the second partial derivatives evaluated at 1a, 02 are

ƒxx1a, 02 = ƒxy1a, 02 = 0 and ƒyy1a, 02 = -2a.

Therefore, the discriminant is D1a, 02 = 0, and the Second Derivative Test is incon-
clusive. Figure 15.72 shows that ƒ has a flat ridge above the x-axis that the Second 
Derivative Test is unable to classify.

Related Exercises 29–30 

z

y

x

Local minimum at (0, 0),
but the Second Derivative
Test is inconclusive.

z  2x4 y4

Figure 15.71

z

y
x

Second derivative
test fails to detect
saddle point at (0, 0).

z 5 2 2 xy2

Figure 15.72

➤ The same “flat” behavior occurs with 
functions of one variable, such as 
ƒ1x2 = x4. Although ƒ has a local 
minimum at x = 0, the Second 
Derivative Test is inconclusive.

➤ It is not surprising that the Second 
Derivative Test is inconclusive in 
Example 4b. The function has a line of 
local maxima at 1a, 02 for a 7 0, a line 
of local minima at 1a, 02 for a 6 0, and 
a saddle point at 10, 02.

Absolute Maximum and Minimum Values
As in the one-variable case, we are often interested in knowing where a function of two or 
more variables attains its extreme values over its domain (or a subset of its domain).

DEFINITION Absolute Maximum ,Minimum Values

Let ƒ be defined on a set R in ℝ2 containing the point 1a, b2. If ƒ1a, b2 Ú ƒ1x, y2 
for every 1x, y2 in R, then ƒ1a, b2 is an absolute maximum value of ƒ on R. If 
ƒ1a, b2 … ƒ1x, y2 for every 1x, y2 in R, then ƒ 1a, b2 is an absolute minimum 
value of ƒ on R.

M15_BRIG3644_03_SE_C15_919-1007.indd   987 25/10/17   2:15 PM



988 Chapter 15  •  Functions of Several Variables

It should be noted that the Extreme Value Theorem of Chapter 4 has an analog in ℝ2 
(or in higher dimensions): A function that is continuous on a closed bounded set in ℝ2  
attains its absolute maximum and absolute minimum values on that set. Absolute maxi-
mum and minimum values on a closed bounded set R occur in two ways.

• They may be local maximum or minimum values at interior points of R, where they are 
associated with critical points.

• They may occur on the boundary of R.

Therefore, the search for absolute maximum and minimum values on a closed bounded set 
amounts to examining the behavior of the function on the boundary of R and at the interior 
points of R.

➤ Recall that a closed set in ℝ2 is a set that 
includes its boundary. A bounded set 
in ℝ2 is a set that may be enclosed by a 
circle of finite radius.

EXAMPLE 5 Shipping regulations A shipping company handles rectangular boxes 
provided the sum of the length, width, and height of the box does not exceed 96 in. Find 
the dimensions of the box that meets this condition and has the largest volume.

SOLUTION Let x, y, and z be the dimensions of the box; its volume is V = xyz. The 
box with the maximum volume must also satisfy the condition x + y + z = 96, which 
is used to eliminate any one of the variables from the volume function. Noting that 
z = 96 - x - y, the volume function becomes

V  1x, y2 = xy196 - x - y2.
Notice that because x, y, and 96 - x - y are dimensions of the box, they must 
be nonnegative. The condition 96 - x - y Ú 0 implies that x + y … 96. There-
fore, among points in the xy-plane, the constraint is met only if 1x, y2 lies in the 
triangle bounded by the lines x = 0, y = 0, and x + y = 96 (Figure 15.73). 

At this stage, we have reduced the original problem to a related problem: 
Find the absolute maximum value of V1x, y2 = xy196 - x - y2 over the trian-
gular region

R = 51x, y2: 0 … x … 96, 0 … y … 96 - x6.

The boundaries of R consist of the line segments x = 0, 0 … y … 96; 
y = 0, 0 … x … 96; and x + y = 96, 0 … x … 96. We find that on these 
 boundary  segments, V = 0. To determine the behavior of V at interior points of 
R, we need to find critical points. The critical points of V satisfy

 Vx = 96y - 2xy - y2 = y196 - 2x - y2 = 0

 Vy = 96x - 2xy - x2 = x196 - 2y - x2 = 0.

You can check that these two equations have four solutions: 10, 02, 196, 02, 10, 962, and 
132, 322. The first three solutions lie on the boundary of the domain, where V = 0. At the 
fourth point, we have V132, 322 = 32,768 in3, which is the absolute maximum volume 
of the box. The dimensions of the box with maximum volume are x = 32, y = 32, and 
z = 96 - x - y = 32 (it is a cube). We also found that V has an absolute minimum of 0 
at every point on the boundary of R.

Related Exercise 43 

➤ Example 5 is a constrained optimization 
problem, in which the goal is to 
maximize the volume subject to an 
additional condition called a constraint. 
We return to such problems in the next 
section and present another method of 
solution.

y

x

V
Abs. max volume
occurs when
x 5 y 5 32.

Abs. min occurs
at all points on 
the boundary.

Volume V 5 xy(96 2 x 2 y)

Domain

R(32, 32)

x 1 y 5 96

96

96

Figure 15.73

We summarize the method of solution given in Example 5 in the following procedure 
box.

PROCEDURE Finding Absolute Maximum ,Minimum Values on Closed 
Bounded Sets

Let ƒ be continuous on a closed bounded set R in ℝ2. To find the absolute maxi-
mum and minimum values of ƒ on R:

1. Determine the values of ƒ at all critical points in R.

2. Find the maximum and minimum values of ƒ on the boundary of R.

3. The greatest function value found in Steps 1 and 2 is the absolute maximum 
value of ƒ on R, and the least function value found in Steps 1 and 2 is the ab-
solute minimum value of ƒ on R.
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The techniques for carrying out Step 1 of this process have been presented. The 
challenge often lies in locating extreme values on the boundary. Examples 6 and 7 il-
lustrate two approaches to handling the boundary of R. The first expresses the boundary 
using functions of a single variable, and the second describes the boundary parametri-
cally. In both cases, finding extreme values on the boundary becomes a one-variable prob-
lem. In the next section, we discuss an alternative method for finding extreme values on 
boundaries.

y

x

R

15

15

160

zf (x, y) 5 xy 2 8x 2 y2 1 12y 1 160

Figure 15.74

EXAMPLE 6 Extreme values over a region Find the absolute maximum and mini-
mum values of ƒ1x, y2 = xy - 8x - y2 + 12y + 160 over the triangular region 
R = 51x, y2: 0 … x … 15, 0 … y … 15 - x6.

SOLUTION Figure 15.74 shows the graph of ƒ over the region R. The goal is to determine 
the absolute maximum and minimum values of ƒ over R—including the boundary of R. 
We begin by finding the critical points of ƒ on the interior of R. The partial derivatives  
of ƒ are

ƒx1x, y2 = y - 8 and ƒy1x, y2 = x - 2y + 12.

The conditions ƒx1x, y2 = ƒy1x, y2 = 0 are satisfied only when 1x, y2 = 14, 82, which is 
a point in the interior of R. This critical point is a candidate for the location of an extreme 
value of ƒ, and the value of the function at this point is ƒ14, 82 = 192.

To search for extrema on the boundary of R, we consider each edge of R separately. 
Let C1 be the line segment 51x, y2: y = 0, for 0 … x … 156 on the x-axis, and define the 
single-variable function g1 to equal ƒ at all points along C1 (Figure 15.75). We substitute 
y = 0 and find that g1 has the form

g11x2 = ƒ1x, 02 = 160 - 8x.

y

x

z

R

15

15
C1

C3
C2

160

Values of f over C1:
g1(x)  160  8x

Values of f over C2:
g2 (y)  y2 12y  160

Values of f over C3:
g3(x)  2x2 25x  115

f (x, y)  xy 8x  y2 12y  160

Figure 15.75

Using what we learned in Chapter 4, the candidates for absolute extreme values of g1 on 
0 … x … 15 occur at critical points and endpoints. Specifically, the critical points of g1 
correspond to values where its derivative is zero, but in this case g  1

=1x2 = -8. So there is 
no critical point, which implies that the extreme values of g1 occur at the endpoints of the 
interval 30, 154. At the endpoints, we find that

g1102 = ƒ10, 02 = 160 and g11152 = ƒ115, 02 = 40.

Let’s set aside this information while we do a similar analysis on the other two edges of 
the boundary of R.

Let C2 be the line segment 51x, y2: x = 0, for 0 … y … 156 and define g2 to equal ƒ 
on C2 (Figure 15.75). Substituting x = 0, we see that

g21y2 = ƒ10, y2 = -y2 + 12y + 160.
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The critical points of g2 satisfy

g  2
=1y2 = -2y + 12 = 0,

which has the single root y = 6. Evaluating g2 at this point and the endpoints, we have

g2162 = ƒ10, 62 = 196, g2102 = ƒ10, 02 = 160, and g21152 = ƒ10, 152 = 115.

Observe that g1102 = g2102 because C1 and C2 intersect at the origin.
Finally, we let C3 be the line segment 51x, y2: y = 15 - x, 0 … x … 156 and de-

fine g3 to equal ƒ on C3 (Figure 15.75). Substituting y = 15 - x and simplifying, we  
find that

g31x2 = ƒ1x, 15 - x2 = -2x2 + 25x + 115.

The critical points of g3 satisfy

g  3
=1x2 = -4x + 25,

whose only root on the interval 0 … x … 15 is x = 6.25. Evaluating g3 at this critical 
point and the endpoints, we have

 g316.252 = ƒ16.25, 8.752 = 193.125, g31152 = ƒ115, 02 = 40, and

 g3102 = ƒ10, 152 = 115.

Observe that g31152 = g11152 and g3102 = g21152; the only new candidate for the loca-
tion of an extreme value is the point 16.25, 8.752.

Collecting and summarizing our work, we have 6 candidates for absolute extreme 
values:

 ƒ14, 82 = 192, ƒ10, 02 = 160, ƒ115, 02 = 40, ƒ10, 62 = 196,

  ƒ10, 152 = 115, and ƒ16.25, 8.752 = 193.125.

We see that ƒ has an absolute minimum value of 40 at 115, 02 and an absolute maximum 
value of 196 at 10, 62. These findings are illustrated in Figure 15.76.

y

x

f (x, y) 5 xy 2 8x 2 y2 1 12y 1 160

R
C1

C3

C2

Abs. min on R
occurs at (15, 0)

(6.25, 8.75)

(0, 15, 115)

(0, 0, 160)

(15, 0)

(15, 0, 40)

(0, 6, 196)(6.25, 8.75, 193.125)

(4, 8, 192)

(0, 0)

(0, 6)
(4, 8)

(0, 15)

z

Abs. max on R
occurs at (0, 6)

Figure 15.76
Related Exercise 52 

EXAMPLE 7 Absolute maximum and minimum values Find the absolute maxi-
mum and minimum values of ƒ1x, y2 = 1

2 1x3 - x - y22 + 3 on the region  
R = 51x, y2 : x2 + y2 … 16 (the closed disk centered at 10, 02 with radius 1).

SOLUTION We begin by locating the critical points of ƒ on the interior of R. The critical 
points satisfy the equations

ƒx1x, y2 = 1
2

 13x2 - 12 = 0 and ƒy1x, y2 = -y = 0, 

➤ Finding absolute extrema on a closed 
set does not require using the Second 
Derivative Test to classify the critical 
points. In Example 7, the test could be 
used to show that 1 113

, 02 and 1-  113
, 02 

correspond to a saddle point and a 
local maximum, respectively, but that 
information isn’t needed.
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which have the solutions x = { 113
 and y = 0. The values of the function at these 

points are ƒa 113
 , 0b = 3 -

1

313
 and ƒa -  

113
 , 0b = 3 +

1

313
 .

We now determine the maximum and minimum values of ƒ on the boundary of R, 
which is a circle of radius 1 described by the parametric equations

x = cos u, y = sin u, for 0 … u … 2p.

Substituting x and y in terms of u into the function ƒ, we obtain a new function g1u2 that 
gives the values of ƒ on the boundary of R:

g1u2 = 1
2

 1cos3 u - cos u - sin2 u2 + 3.

Finding the maximum and minimum boundary values is now a one-variable problem. The 
critical points of g satisfy

 g′1u2 = 1
2

 1-3 cos2 u sin u + sin u - 2 sin u cos u2

 = -  
1
2

 sin u13 cos2 u + 2 cos u - 12

 = -  
1
2

 sin u13 cos u - 121cos u + 12 = 0.

This condition is satisfied when sin u = 0, cos u =
1
3

 , or cos u = -1. The solutions of 

these equations on the interval 10, 2p2 are u = p, u = cos-1 
1
3

, and u = 2p - cos-1 
1
3

,  

which correspond to the points 1-1, 02, a 1
3

 , 
212

3
b , and a 1

3
 , -  

212
3
b  in the xy-plane, 

respectively. Notice that the endpoints of the interval 1u = 0 and u = 2p2 correspond to 
the same point on the boundary of R, namely 11, 02.

Having completed the first two steps of the procedure, we have six function values to 
consider:

• ƒa 113
 , 0b = 3 -

1

313
 ≈ 2.81 and ƒa -  

113
 , 0b = 3 +

1

313
≈ 3.19 (critical 

points),

• ƒ1-1, 02 = 3 (boundary point),

• ƒa 1
3

 , 
212

3
b = ƒa 1

3
 , -  

212
3
b =

65
27

 (boundary points), and

• ƒ11, 02 = 3 (boundary point).

The greatest value of ƒ on R, ƒa -  
113

 , 0b = 3 +
1

313
 , is the absolute maxi-

mum value, and it occurs at an interior point (Figure 15.77a). The least value, 

ƒa 1
3

 , 
212

3
b = ƒa 1

3
 , -  

212
3
b =

65
27

, is the absolute minimum value, and it occurs at  

two symmetric boundary points. Also revealing is the plot of the level curves of the  
surface with the boundary of R superimposed (Figure 15.77b). As the boundary of R is 
traversed, the values of ƒ vary, reaching a maximum value of 3 at (1, 0) and 1-1, 02, and  

a minimum value of 
65
27

 at a 1
3

 , 
212

3
b  and a 1

3
 , -  

212
3
b .

➤ Recall that a parametric description of 
a circle of radius 0 a 0  centered at the 
origin is x = a cos u, y = a sin u, for 
0 … u … 2p.

➤ There are two solutions to the equation 
cos u = 1

3 on the interval 10, 2p2. Recall, 
however, that using the inverse cosine 
to solve the equation reveals only the 
solution u = cos-1 13 because the range 
of cos-1x is 30, p4. The other solution, 
u = 2p - cos-1 13 , is found using 
symmetry.

➤ Observe that the level curves of ƒ in 
Figure 15.77b appear to be tangent to the 
blue curve x2 + y2 = 1 (the boundary of 
the region R) at the points corresponding 
to the maximum and minimum values of 
ƒ on this boundary. The significance of 
this observation is explained in  
Section 15.8.
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Open and , or Unbounded Regions Finding absolute maximum and minimum val-
ues of a function on an open region (for example, R = 51x, y2 = x2 + y2 6 96) or an 
unbounded domain (for example, R = 51x, y2: x 7 0, y 7 06) presents additional chal-
lenges. Because there is no systematic procedure for dealing with such problems, some 
ingenuity is generally needed. Notice that absolute extrema may not exist on such regions.

EXAMPLE 8 Absolute extreme values on an open region Find the absolute maxi-
mum and minimum values of ƒ1x, y2 = 4 - x2 - y2 on the open disk R = 51x, y2: 
x2 + y2 6 16 (if they exist).

SOLUTION You should verify that ƒ has a critical point at 10, 02 and it corresponds to a 
local maximum (on an inverted paraboloid). Moving away from 10, 02 in all directions, 
the function values decrease, so ƒ also has an absolute maximum value of 4 at 10, 02. 
The boundary of R is the unit circle 51x, y2: x2 + y2 = 16, which is not contained in R. 
As 1x, y2 approaches any point on the unit circle along any path in R, the function values 
ƒ1x, y2 = 4 - 1x2 + y22 decrease and approach 3 but never reach 3. Therefore, ƒ does 
not have an absolute minimum on R.

Related Exercise 59 

QUICK CHECK 4 Does the linear 
function ƒ1x, y2 = 2x + 3y have 
an absolute maximum or minimum 
value on the open unit square 
51x, y2: 0 6 x 6 1, 0 6 y 6 16? 

EXAMPLE 9 Absolute extreme values on an open region Find the point(s) on the 
plane x + 2y + z = 2 closest to the point P12, 0, 42.
SOLUTION Suppose 1x, y, z2 is a point on the plane, which means that z = 2 - x - 2y. 
The distance between P12, 0, 42 and 1x, y, z2 that we seek to minimize is

d1x, y, z2 = 21x - 222 + y2 + 1z - 422.

It is easier to minimize d  

2, which has the same critical points as d. Squaring d and elimi-
nating z using z = 2 - x - 2y, we have

  ƒ1x, y2 = 1d1x, y, z222 = 1x - 222 + y2 + 1-x - 2y - 222

(++1)1++*
   z - 4

 = 2x2 + 5y2 + 4xy + 8y + 8.

The critical points of ƒ satisfy the equations

ƒx = 4x + 4y = 0 and ƒy = 4x + 10y + 8 = 0,

➤ Notice that 
0
0x

 1d22 = 2d 
0d
0x

 and 

0
0y

 1d22 = 2d 
0d
0y

. Because d Ú 0, d2 and  

d have the same critical points.

Absolute maximum
on R occurs in interior

of R at  q         , 0r .2
1

3

2
2
1 3f(x, y) =    (x  – x – y  ) + 3

z

y x

Absolute minimum 
on R occurs on
boundary of R at

1
3

, 6
2 2

3
.

R = {(x, y): x  + y   ≤ 1}2 2

R

q r

(a)

2

x

y

.

Saddle
pointLocal

max

3

3

3

Level curves of f
labeled with z-values

Abs max on R

at                  

Minimum value
of f on boundary
of R occurs at 

Boundary of R is {(x, y): x  1 y   5 1}2 2

2
1

3 3

2
1

3
, 0

1
3

,6
2 2

3
, where

cos u 5 
1
3

Maximum value
of f on boundary
of R occurs at
(61, 0), where 
u 5 0 and u 5 p. 

25
8

25
8

7
2

11
4

65
27

R

q r

q r.

(b)

22 2

Figure 15.77

Related Exercises 47–48 
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whose only solution is x = 4
3 , y = -  43 . The Second Derivative Test confirms that this 

point corresponds to a local minimum of ƒ. We now ask: Does 14
3, -  432 correspond to the 

absolute minimum value of ƒ over the entire domain of the problem, which is ℝ2?  
Because the domain has no boundary, we cannot check values of ƒ on the boundary.  
Instead, we argue geometrically that there is exactly one point on the plane that is closest 
to P. We have found a point that is closest to P among nearby points on the plane. As we 
move away from this point, the values of ƒ increase without bound. Therefore, 14

3, -  432 
corresponds to the absolute minimum value of ƒ. A graph of ƒ (Figure 15.78) confirms 
this reasoning, and we conclude that the point 14

3, -  43, 10
3 2 is the point on the plane  

nearest P.
Related Exercises 62–63 

z

y
x

Absolute minimum

(   , 2  ,     )

Distance squared:
f (x, y) 5 2x2 1 5y2 1 4xy 1 8y 1 8

3
4

3
4

3
10

Figure 15.78

Getting Started
1. Describe the appearance of a smooth surface with a local  

maximum at a point.

2. Describe the usual appearance of a smooth surface at a saddle 
point.

3. What are the conditions for a critical point of a function ƒ?

4. If ƒx1a, b2 = ƒy1a, b2 = 0, does it follow that ƒ has a local maxi-
mum or local minimum at 1a, b2? Explain.

5. Consider the function z = ƒ1x, y2. What is the discriminant of ƒ, 
and how do you compute it?

6. Explain how the Second Derivative Test is used.

7. What is an absolute minimum value of a function ƒ on a set R in ℝ2?

8. What is the procedure for locating absolute maximum and mini-
mum values on a closed bounded domain?

9–12. Assume the second derivatives of ƒ are continuous throughout 
the xy-plane and ƒx10, 02 = ƒy10, 02 = 0. Use the given information 
and the Second Derivative Test to determine whether ƒ has a local 
minimum, a local maximum, or a saddle point at 10, 02, or state that 
the test is inconclusive.

9. ƒxx10, 02 = 5, ƒyy10, 02 = 3, and ƒxy10, 02 = -4

10. ƒxx10, 02 = -6, ƒyy10, 02 = -3, and ƒxy10, 02 = 4

11. ƒxx10, 02 = 8, ƒyy10, 02 = 5, and ƒxy10, 02 = -6

12. ƒxx10, 02 = -9, ƒyy10, 02 = -4, and ƒxy10, 02 = -6

Practice Exercises
13–22. Critical points Find all critical points of the following  
functions.

13. ƒ1x, y2 = 3x2 - 4y2 14. ƒ1x, y2 = x2 - 6x + y2 + 8y

15. ƒ1x, y2 = 3x2 + 3y - y3 16. ƒ1x, y2 = x3 - 12x + 6y2

17. ƒ1x, y2 = x4 + y4 - 16xy 18. ƒ1x, y2 = x3

3
-

y3

3
+ 3xy

19. ƒ1x, y2 = x4 - 2x2 + y2 - 4y + 5

20. ƒ1x, y2 = x3 + 6xy - 6x + y2 - 2y

21. ƒ1x, y2 = y3 + 6xy + x2 - 18y - 6x

22. ƒ1x, y2 = e8x2y2 - 24x2 - 8xy4

SECTION 15.7 EXERCISES
23–40. Analyzing critical points Find the critical points of the follow-
ing functions. Use the Second Derivative Test to determine (if possible) 
whether each critical point corresponds to a local maximum, a local 
minimum, or a saddle point. If the Second Derivative Test is inconclu-
sive, determine the behavior of the function at the critical points.

23. ƒ1x, y2 = -4x2 + 8y2 - 3

24. ƒ1x, y2 = x4 + y4 - 4x - 32y + 10

25. ƒ1x, y2 = 4 + 2x2 + 3y2

26. ƒ1x, y2 = xye-x - y

27. ƒ1x, y2 = x4 + 2y2 - 4xy

28. ƒ1x, y2 = 14x - 122 + 12y + 422 + 1

29. ƒ1x, y2 = 4 + x4 + 3y4

30. ƒ1x, y2 = x4y2

31. ƒ1x, y2 = 2x2 + y2 - 4x + 5

32. ƒ1x, y2 = tan-1xy

33. ƒ1x, y2 = 2xye-x2 - y2
 34. ƒ1x, y2 = x2 + xy2 - 2x + 1

35. ƒ1x, y2 = x

1 + x2 + y2 36. ƒ1x, y2 = x - 1

x2 + y2

37. ƒ1x, y2 = x4 + 4x21y - 22 + 81y - 122

38. ƒ1x, y2 = xe-x - y sin y, for 0 x 0 … 2, 0 … y … p

39. ƒ1x, y2 = yex - ey

40. ƒ1x, y2 = sin 12px2 cos 1py2, for 0 x 0 … 1
2

 and 0 y 0 … 1
2

41–42. Inconclusive tests Show that the Second Derivative Test is  
inconclusive when applied to the following functions at 10, 02.  
Describe the behavior of the function at 10, 02.
41. ƒ1x, y2 = x2y - 3 42. ƒ1x, y2 = sin 1x2y22
43. Shipping regulations A shipping company handles rectangular 

boxes provided the sum of the height and the girth of the box does 
not exceed 96 in. (The girth is the perimeter of the smallest side of 
the box.) Find the dimensions of the box that meets this condition 
and has the largest volume.

44. Cardboard boxes A lidless box is to be made using 2 m2 of card-
board. Find the dimensions of the box with the largest possible 
volume.
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45. Cardboard boxes A lidless cardboard box is to be made with a 
volume of 4 m3. Find the dimensions of the box that requires the 
least amount of cardboard.

46. Optimal box Find the dimensions of the largest rectangular box in 
the first octant of the xyz-coordinate system that has one vertex at 
the origin and the opposite vertex on the plane x + 2y + 3z = 6.

47–56. Absolute maxima and minima Find the absolute maximum 
and minimum values of the following functions on the given region R.

47. ƒ1x, y2 = x2 + y2 - 2y + 1; R = 51x, y2: x2 + y2 … 46
48. ƒ1x, y2 = 2x2 + y2; R = 51x, y2: x2 + y2 … 166
49. ƒ1x, y2 = 4 + 2x2 + y2; 

R = 51x, y2: -1 … x … 1, -1 … y … 16
50. ƒ1x, y2 = 6 - x2 - 4y2; 

R = 51x, y2: -2 … x … 2, -1 … y … 16
51. ƒ1x, y2 = 2x2 - 4x + 3y2 + 2; 

R = 51x, y2: 1x - 122 + y2 … 16
52. ƒ1x, y2 = x2 + y2 - 2x - 2y; R is the closed region bounded  

by the triangle with vertices 10, 02, 12, 02, and 10, 22.
53. ƒ1x, y2 = -2x2 + 4x - 3y2 - 6y - 1;  

R = 51x, y2: 1x - 122 + 1y + 122 … 16
54. ƒ1x, y2 = 2x2 + y2 - 2x + 2;  

R = 51x, y2: x2 + y2 … 4, y Ú 06

55. ƒ1x, y2 = 2y2 - x2

2 + 2x2y2 ; R is the closed region bounded by the lines  

y = x, y = 2x, and y = 2.

56. ƒ1x, y2 = 2x2 + y2; R is the closed region bounded by the  

ellipse 
x2

4
+ y2 = 1.

57. Pectin Extraction An increase in world production of processed 
fruit has led to an increase in fruit waste. One way of reducing this 
waste is to find useful waste byproducts. For example, waste from 
pineapples is reduced by extracting pectin from pineapple peels 
(pectin is commonly used as a thickening agent in jam and jellies, 
and it is also widely used in the pharmaceutical industry). Pectin 
extraction involves heating and drying the peels, then grinding the 
peels into a fine powder. The powder is next placed in a solution 
with a particular pH level H, for 1.5 … H … 2.5, and heated to a 
temperature T  (in degrees Celsius), for 70 … T … 90. The per-
centage of the powder F1H, T2 that becomes extracted pectin is

 F1H, T2 = -0.042T2 - 0.213TH - 11.219H2 + 7.327T

 +  58.729H - 342.684.

a. It can be shown that F attains its absolute maximum in the  
interior of the domain D = 51H, T2: 1.5 … H … 2.5, 
70 … T … 906. Find the pH level H and temperature T that 
together maximize the amount of pectin extracted from the 
powder.

b. What is the maximum percentage of pectin that can be  
extracted from the powder? Round your answer to the nearest 
whole number. (Source: Carpathian Journal of Food Science 
and Technology, Dec 2014)

T

58–61. Absolute extrema on open and/or unbounded regions If pos-
sible, find the absolute maximum and minimum values of the following 
functions on the region R.

58. ƒ1x, y2 = x + 3y; R = 51x, y2: � x � 6 1, � y � 6 26
59. ƒ1x, y2 = x2 + y2 - 4; R = 51x, y2: x2 + y2 6 46
60. ƒ1x, y2 = x2 - y2; R = 51x, y2: � x � 6 1, � y � 6 16
61. ƒ1x, y2 = 2e-x - y; R = 51x, y2: x Ú 0, y Ú 06
62–66. Absolute extrema on open and/or unbounded regions

62. Find the point on the plane x + y + z = 4 nearest the point 
P15, 4, 42.

63. Find the point on the plane x - y + z = 2 nearest the point 
P11, 1, 12.

64. Find the point on the paraboloid z = x2 + y2 nearest the point 
P13, 3, 12.

65. Find the points on the cone z2 = x2 + y2 nearest the point 
P16, 8, 02.

66. Rectangular boxes with a volume of 10 m3 are made of two mate-
rials. The material for the top and bottom of the box costs $10>m2 
and the material for the sides of the box costs $1>m2. What are the 
dimensions of the box that minimize the cost of the box?

67. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.  
Assume ƒ is differentiable at the points in question.

a. The fact that ƒx12, 22 = ƒy12, 22 = 0 implies that ƒ has a  
local maximum, local minimum, or saddle point at 12, 22.

b. The function ƒ could have a local maximum at 1a, b2 where 
ƒy1a, b2 ≠ 0.

c. The function ƒ could have both an absolute maximum and an 
absolute minimum at two different points that are not critical 
points.

d. The tangent plane is horizontal at a point on a smooth surface 
corresponding to a critical point.

68–69. Extreme points from contour plots Based on the level curves 
that are visible in the following graphs, identify the approximate loca-
tions of the local maxima, local minima, and saddle points.

68. 
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69. 
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y

70. Optimal box Find the dimensions of the rectangular box with 
maximum volume in the first octant with one vertex at the origin 
and the opposite vertex on the ellipsoid 36x2 + 4y2 + 9z2 = 36.

Explorations and Challenges
71. Magic triples Let x, y, and z be nonnegative numbers with 

x + y + z = 200.

a. Find the values of x, y, and z that minimize x2 + y2 + z2.

b. Find the values of x, y, and z that minimize 2x2 + y2 + z2.
c. Find the values of x, y, and z that maximize xyz.
d. Find the values of x, y, and z that maximize x2y2z2.

72. Maximum/minimum of linear functions Let R be a closed 
bounded region in ℝ2 and let ƒ1x, y2 = ax + by + c, where a, b, 
and c are real numbers, with a and b not both zero. Give a geomet-
ric argument explaining why the absolute maximum and minimum 
values of ƒ over R occur on the boundaries of R.

73. Optimal locations Suppose n houses are located at the distinct 
points 1x1, y12, 1x2, y22, c, 1xn, yn2. A power substation must be 
located at a point such that the sum of the squares of the distances 
between the houses and the substation is minimized.

a. Find the optimal location of the substation in the case that 
n = 3 and the houses are located at 10, 02, 12, 02, and 11, 12.

b. Find the optimal location of the substation in the case that 
n = 3 and the houses are located at distinct points 1x1, y12, 
1x2, y22, and 1x3, y32.

c. Find the optimal location of the substation in the general case 
of n houses located at distinct points 1x1, y12, 1x2, y22, c, 
1xn, yn2.

d. You might argue that the locations found in parts (a), (b) and 
(c) are not optimal because they result from minimizing the 
sum of the squares of the distances, not the sum of the dis-
tances themselves. Use the locations in part (a) and write the 
function that gives the sum of the distances. Note that mini-
mizing this function is much more difficult than in part (a). 
Then use a graphing utility to determine whether the optimal 
location is the same in the two cases. (Also see Exercise 81 
about Steiner’s problem.)

74–75. Least squares approximation In its many guises, least squares 
approximation arises in numerous areas of mathematics and statistics. 
Suppose you collect data for two variables (for example, height and 
shoe size) in the form of pairs 1x1, y12, 1x2, y22, c, 1xn, yn2. The data 
may be plotted as a scatterplot in the xy-plane, as shown in the figure. 
The technique known as linear regression asks the question: What is 
the equation of the line that “best fits” the data? The least squares 

T

criterion for best fit requires that the sum of the squares of the vertical 
distances between the line and the data points be a minimum.

y

x(x1, y1)
(x2, y2) (x3, y3)

(xn21, yn21)

(xn, yn)Regression
line

74. Let the equation of the best-fit line be y = mx + b, where the 
slope m and the y-intercept b must be determined using the least 
squares condition. First assume there are three data points 11, 22, 
13, 52, and 14, 62. Show that the function of m and b that gives the 
sum of the squares of the vertical distances between the line and 
the three data points is

 E1m, b2 = 11m + b2 - 222 + 113m + b2 - 522

 +  114m + b2 - 622.

Find the critical points of E and find the values of m and b that 
minimize E. Graph the three data points and the best-fit line.

75. Generalize the procedure in Exercise 74 by assuming n data 
points 1x1, y12, 1x2, y22, c, 1xn, yn2 are given. Write the function 
E1m, b2 (summation notation allows for a more compact calcula-
tion). Show that the coefficients of the best-fit line are

 m =
1a xk21a yk2 - na xkyk

1a xk2 2 - na x  k
2

 ,

 b =
1
n

 1a yk - ma xk2,
where all sums run from k = 1 to k = n.

76–77. Least squares practice Use the results of Exercise 75 to find 
the best-fit line for the following data sets. Plot the points and the  
best-fit line.

76. 10, 02, 12, 32, 14, 52 77. 1-1, 02, 10, 62, 13, 82
78. Second Derivative Test Suppose the conditions of the Second 

Derivative Test are satisfied on an open disk containing the point 
1a, b2. Use the test to prove that if 1a, b2 is a critical point of ƒ at 
which ƒx1a, b2 = ƒy1a, b2 = 0 and ƒxx1a, b2 6 0 6 ƒyy1a, b2 or 
ƒyy1a, b2 6 0 6 ƒxx1a, b2, then ƒ has a saddle point at 1a, b2.

79. Maximum area triangle Among all triangles with a perim-
eter of 9 units, find the dimensions of the triangle with the 
maximum area. It may be easiest to use Heron’s formula, which 
states that the area of a triangle with side length a, b, and c is 
A = 1s1s - a21s - b21s - c2, where 2s is the perimeter of the 
triangle.

80. Slicing plane Find an equation of the plane passing through the 
point 13, 2, 12 that slices off the solid in the first octant with the 
least volume.

81. Steiner’s problem for three points Given three distinct noncol-
linear points A, B, and C in the plane, find the point P in the plane  
such that the sum of the distances 0AP 0 + 0BP 0 + 0CP 0  is a 
minimum. Here is how to proceed with three points, assuming 
the triangle formed by the three points has no angle greater than 
2p>3 1120°2.
a. Assume the coordinates of the three given points are A1x1, y12,  

B1x2, y22, and C1x3, y32. Let d11x, y2 be the distance between 
A1x1, y12 and a variable point P1x, y2. Compute the gradient 
of d1 and show that it is a unit vector pointing along the line 
between the two points.

T

T

T
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b. Define d2 and d3 in a similar way and show that ∇d2 and ∇d3 
are also unit vectors in the direction of the line between the 
two points.

c. The goal is to minimize ƒ1x, y2 = d1 + d2 + d3.  
Show that the condition ƒx = ƒy = 0 implies that 
∇d1 + ∇d2 + ∇d3 = 0.

d. Explain why part (c) implies that the optimal point P has the 
property that the three line segments AP, BP, and CP all  
intersect symmetrically in angles of 2p>3.

e. What is the optimal solution if one of the angles in the triangle 
is greater than 2p>3 ( just draw a picture)?

f. Estimate the Steiner point for the three points 10, 02, 10, 12, 
and 12, 02.

82. Solitary critical points A function of one variable has the prop-
erty that a local maximum (or minimum) occurring at the only 
critical point is also the absolute maximum (or minimum) (for 
example, ƒ1x2 = x2). Does the same result hold for a function 
of two variables? Show that the following functions have the 
property that they have a single local maximum (or minimum), 
occurring at the only critical point, but the local maximum (or 
minimum) is not an absolute maximum (or minimum) on ℝ2.

a. ƒ1x, y2 = 3xey - x3 - e3y

b. ƒ1x, y2 = 12y2 - y42aex +
1

1 + x2 b -
1

1 + x2

This property has the following interpretation. Suppose a  
surface has a single local minimum that is not the absolute mini-
mum. Then water can be poured into the basin around the local 
minimum and the surface never overflows, even though there are 
points on the surface below the local minimum.
(Source: Mathematics Magazine, May 1985, and Calculus and 
Analytical Geometry, 2nd ed., Philip Gillett, 1984)

T

83. Two mountains without a saddle Show that the following func-
tions have two local maxima but no other extreme points (there-
fore, no saddle or basin between the mountains).

a. ƒ1x, y2 = -1x2 - 122 - 1x2 - ey22

b. ƒ1x, y2 = 4x2ey - 2x4 - e4y

(Source: Ira Rosenholtz, Mathematics Magazine, Feb 1987)

84. Powers and roots Assume x + y + z = 1 with x Ú 0, y Ú 0, 
and z Ú 0.

a. Find the maximum and minimum values of 
11 + x2211 + y2211 + z22.

b. Find the maximum and minimum values of 
11 + 1x211 + 1y211 + 1z2.
(Source: Math Horizons, Apr 2004)

85. Ellipsoid inside a tetrahedron (1946 Putnam Exam) Let P be a 

plane tangent to the ellipsoid 
x2

a2 +
y2

b2 +
z2

c2 = 1 at a point in the  

first octant. Let T be the tetrahedron in the first octant bounded by  
P and the coordinate planes x = 0, y = 0, and z = 0. Find the 
minimum volume of T. (The volume of a tetrahedron is one-third 
the area of the base times the height.)

QUICK CHECK ANSWERS

1. ƒx12, -12 = ƒy12, -12 = 0 2. Vertically, in the  
directions 80, 0, {19  3. D1x, y2 = -12x2y2  
4. It has neither an absolute maximum nor an absolute  
minimum value on this set. 

T

15.8 Lagrange Multipliers
One of many challenges in economics and marketing is predicting the behavior of con-
sumers. Basic models of consumer behavior often involve a utility function that expresses 
consumers’ combined preference for several different amenities. For example, a simple 
utility function might have the form U = ƒ1/, g2, where / represents the amount of lei-
sure time and g represents the number of consumable goods. The model assumes consum-
ers try to maximize their utility function, but they do so under certain constraints on the 
variables of the problem. For example, increasing leisure time may increase utility, but 
leisure time produces no income for consumable goods. Similarly, consumable goods may 
also increase utility, but they require income, which reduces leisure time. We first develop 
a general method for solving such constrained optimization problems and then return to 
economics problems later in the section.

The Basic Idea
We start with a typical constrained optimization problem with two independent vari-
ables and give its method of solution; a generalization to more variables then follows. We 
seek maximum and/or minimum values of a differentiable objective function ƒ with the  
restriction that x and y must lie on a constraint curve C in the xy-plane given by 
g1x, y2 = 0 (Figure 15.79).

Figure 15.80 shows the details of a typical situation in which we assume the (green) 
level curves of ƒ have increasing z-values moving away from the origin. Now imagine 
moving along the (red) constraint curve C: g1x, y2 = 0 toward the point P1a, b2. As  
we approach P (from either side), the values of ƒ evaluated on C increase, and as we move 
past P along C, the values of ƒ decrease.

y

x

z

Find the maximum and minimum
values of z as (x, y) varies over C.

z 5 f (x, y)

g(x, y) 5 0
C

Constraint
curve

Figure 15.79
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What is special about the point P at which ƒ appears to have a local maximum value 
on C? From Theorem 15.12, we know that at any point P1a, b2 on a level curve of ƒ, the 
line tangent to the level curve at P is orthogonal to ∇ƒ1a, b2. Figure 15.80 also suggests 
that the line tangent to the level curve of ƒ at P is tangent to the constraint curve C at P. 
We prove this fact shortly. This observation implies that ∇ƒ1a, b2 is also orthogonal to the 
line tangent to C at P1a, b2.

We need one more observation. The constraint curve C is just one level curve of 
the function z = g1x, y2. Using Theorem 15.12 again, the line tangent to C at P1a, b2 is 
orthogonal to ∇g1a, b2. We have now found two vectors ∇ƒ1a, b2 and ∇g1a, b2 that are 
both orthogonal to the line tangent to the level curve C at P1a, b2. Therefore, these two 
gradient vectors are parallel. These properties characterize the point P at which ƒ has a 
local extremum on the constraint curve. They are the basis of the method of Lagrange 
multipliers that we now formalize.

Lagrange Multipliers with Two Independent Variables
The major step in establishing the method of Lagrange multipliers is to prove that Figure 
15.80 is drawn correctly; that is, at the point on the constraint curve C where ƒ has a local 
extreme value, the line tangent to C is orthogonal to ∇ƒ1a, b2 and ∇g1a, b2.

Constraint
curve
C: g(x, y) 5 0

=f (P)

=g(P)

P(a, b)

Tangent
to C at P

Level curves of f

z 5 3

z 5 2

z 5 1

z 5 0

=f (P) is parallel
to =g(P) at P.

f  attains its maximum
value on the constraint
curve at P.

y

x

Figure 15.80

THEOREM 15.16 Parallel Gradients
Let ƒ be a differentiable function in a region of ℝ2 that contains the smooth curve C 
given by g1x, y2 = 0. Assume ƒ has a local extreme value on C at a point P1a, b2. 
Then ∇ƒ1a, b2 is orthogonal to the line tangent to C at P. Assuming ∇g1a, b2 ≠ 0, 
it follows that there is a real number l (called a Lagrange multiplier) such that 
∇ƒ1a, b2 = l∇g1a, b2.

➤ The Greek lowercase / is l; it is read 
lambda.

Proof: Because C  is smooth, it can be expressed parametrically in the form 
C: r1t2 = 8x1t2, y1t29 , where x and y are differentiable functions on an interval in t that 
contains t0 with P1a, b2 = 1x1t02, y1t022. As we vary t and follow C, the rate of change of 
ƒ is given by the Chain Rule:

dƒ

dt
=

0ƒ
0x

 
dx
dt

+
0ƒ
0y

 
dy

dt
= ∇ƒ # r′1t2.

At the point 1x1t02, y1t022 = 1a, b2 at which ƒ has a local extreme value, we have 
dƒ

dt
`
t= t0

= 0, which implies that ∇ƒ1a, b2 # r′1t02 = 0. Because r′1t2 is tangent to C, the  

gradient ∇ƒ1a, b2 is orthogonal to the line tangent to C at P.
To prove the second assertion, note that the constraint curve C given by g1x, y2 = 0 is 

also a level curve of the surface z = g1x, y2. Recall that gradients are orthogonal to level 
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curves. Therefore, at the point P1a, b2, ∇g1a, b2 is orthogonal to C at 1a, b2. Because 
both ∇ƒ1a, b2 and ∇g1a, b2 are orthogonal to C, the two gradients are parallel, so there is 
a real number l such that ∇ƒ1a, b2 = l∇g1a, b2. 

Theorem 15.16 leads directly to the method of Lagrange Multipliers, which produces 
candidates for local maxima and minima of ƒ on the constraint curve. In many problems, 
however, the goal is to find absolute maxima and minima of ƒ on the constraint curve. 
Much as we did with optimization problems in one variable, we find absolute extrema by 
examining both local extrema and endpoints. Several different cases arise:

• If the constraint curve is bounded (it lies within a circle of finite radius) and it closes 
on itself (for example, an ellipse), then we know that the absolute extrema of ƒ exist. In 
this case, there are no endpoints to consider, and the absolute extrema are found among 
the local extrema.

• If the constraint curve is bounded and includes its endpoints but does not close on itself 
(for example, a closed line segment), then the absolute extrema of ƒ exist, and we find 
them by examining the local extrema and the endpoints.

• In the case that the constraint curve is unbounded (for example, a line or a parabola) 
or the curve excludes one or both of its endpoints, we have no guarantee that absolute 
extrema exist. We can find local extrema, but they must be examined carefully to deter-
mine whether they are, in fact, absolute extrema (see Example 2 and Exercise 65).

We deal first with the case of finding absolute extrema on closed and bounded constraint 
curves.

PROCEDURE Lagrange Multipliers: Absolute Extrema on Closed and 
Bounded Constraint Curves

Let the objective function ƒ and the constraint function g be differentiable on a 
region of ℝ2 with ∇g1x, y2 ≠ 0 on the curve g1x, y2 = 0. To locate the absolute 
maximum and minimum values of ƒ subject to the constraint g1x, y2 = 0, carry out 
the following steps.

1. Find the values of x, y, and l (if they exist) that satisfy the equations

∇ƒ1x, y2 = l∇g1x, y2 and g1x, y2 = 0.

2. Evaluate ƒ at the values 1x, y2 found in Step 1 and at the endpoints of the 
constraint curve (if they exist). Select the largest and smallest corresponding 
function values. These values are the absolute maximum and minimum values 
of ƒ subject to the constraint.

QUICK CHECK 1 It can be shown that the 
function ƒ1x, y2 = x2 + y2 attains its 
absolute minimum value on the curve

C: g1x, y2 = 1
4

 1x - 322 - y = 0

at the point 11, 12. Verify that 
∇ƒ11, 12 and ∇g11, 12 are parallel, 
and that both vectors are orthogonal to 
the line tangent to C at 11, 12, thereby 
confirming Theorem 15.16. 

➤ In principle, it is possible to solve a 
constrained optimization problem by 
solving the constraint equation for one 
of the variables and eliminating that 
variable in the objective function. In 
practice, this method is often impractical, 
particularly with three or more variables 
or two or more constraints.

Notice that ∇ƒ = l∇g is a vector equation: 8ƒx, ƒy9 = l8gx, gy9 . It is satisfied pro-
vided ƒx = lgx and ƒy = lgy. Therefore, the crux of the method is solving the three equations

ƒx = lgx,  ƒy = lgy,  and  g1x, y2 = 0,

for the three variables x, y, and l.

EXAMPLE 1 Lagrange multipliers with two variables Find the absolute maximum 
and minimum values of the objective function ƒ1x, y2 = x2 + y2 + 2, where x and y lie 
on the ellipse C given by g1x, y2 = x2 + xy + y2 - 4 = 0.

SOLUTION Because C is closed and bounded, the absolute maximum and minimum  
values of ƒ exist. Figure 15.81a shows the paraboloid z = ƒ1x, y2 above the ellipse C in 
the xy-plane. As the ellipse is traversed, the corresponding function values on the surface 
vary. The goal is to find the maximum and minimum of these function values. An alterna-
tive view is given in Figure 15.81b, where we see the level curves of ƒ and the constraint 
curve C. As the ellipse is traversed, the values of ƒ vary, reaching maximum and mini-
mum values along the way.
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(a)

Constraint curve
C: g(x, y) 5 x2 1 xy 1 y2 2 4 5 0

Level curve
f (x, y) 5 2

f (x, y) 5 x2 1 y2 1 2

z 5 10

14
3z 5 2

14
3

Function values
corresponding to
constraint curve C.

At maximum and
minimum points,
the level curve is
tangent to the
constraint curve.

y

x

z

Level curve
f (x, y) 5 10

 (b)

Level curve
f (x, y) 5 214

3

22

y

x

2

Level curves of
f (x, y) 5 x2 1 y2 1 2

2

22

Level curve
f (x, y) 5 10

Constraint curve
C: g(x, y) 5 x2 1 xy 1 y2 2 4 5 0

Maximum and minimum
values of f occur at
points of C where the
level curve is tangent
to the constraint curve.

Figure 15.81

Noting that ∇ƒ1x, y2 = 82x, 2y9  and ∇g1x, y2 = 82x + y, x + 2y9 , the equations 
that result from ∇ƒ = l∇g and the constraint are

2x = l12x + y2,  2y = l1x + 2y2,  and  x2 + xy + y2 - 4 = 0.(++11)11++*  (++11)11++*      (++++1)1++++*
 ƒx = lgx ƒy = lgy constraint g1x, y2 = 0

Subtracting the second equation from the first leads to

1x - y212 - l2 = 0,

which implies that y = x, or l = 2. In the case that y = x, the constraint equation sim-
plifies to 3x2 - 4 = 0, or x = { 213

 . Therefore, two candidates for locations of extreme 

values are 1 213
, 213
2 and 1-  213

, -  213
2.

Substituting l = 2 into the first equation leads to y = -x, and then the constraint 
equation simplifies to x2 - 4 = 0, or x = {2. These values give two additional points 
of interest, 12, -22 and 1-2, 22. Evaluating ƒ at each of these points, we find that 
ƒ1 213 , 

213
2 = ƒ1-  213

, -  213
2 = 14

3  and ƒ12, -22 = ƒ1-2, 22 = 10. Therefore, the 
absolute maximum value of ƒ on C is 10, which occurs at 12, -22 and 1-2, 22, and the 
absolute minimum value of ƒ on C is 14>3, which occurs at 1 213 , 

213
2 and 1-  213 , -  213

2. 
Notice that the value of l is not used in the final result.

Related Exercises 9–10 

QUICK CHECK 2 Choose any point on the 
constraint curve in Figure 15.81b other 
than a solution point. Draw ∇ƒ and 
∇g at that point and show that they are 
not parallel. 

Lagrange Multipliers with Three Independent Variables
The technique just outlined extends to three or more independent variables. With three 
variables, suppose an objective function w = ƒ1x, y, z2 is given; its level surfaces are sur-
faces in ℝ3 (Figure 15.82a). The constraint equation takes the form g1x, y, z2 = 0, which 
is another surface S in ℝ3 (Figure 15.82b). To find the local maximum and minimum values 
of ƒ on S (assuming they exist), we must find the points 1a, b, c2 on S at which ∇ƒ1a, b, c2 
is parallel to ∇g1a, b, c2, assuming ∇g1a, b, c2 ≠ 0 (Figure 15.82c, d). In the case where 
the surface g1x, y, z2 = 0 is closed and bounded, the procedure for finding the absolute 
maximum and minimum values of ƒ1x, y, z2, where the point 1x, y, z2 is constrained to lie 
on S, is similar to the procedure for two variables.
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1000 Chapter 15  •  Functions of Several Variables

➤ If the constraint surface S: g1x, y, z2 = 0 
has a boundary curve C (see figure), 
then each point on C is a candidate for 
the location of an absolute maximum 
or minimum value of ƒ, and these 
points must be analyzed in Step 2 of 
the procedure. We avoid this case in the 
exercise set.

S

C

PROCEDURE Lagrange Multipliers: Absolute Extrema on Closed and 
Bounded Constraint Surfaces

Let ƒ and g be differentiable on a region of ℝ3 with ∇g1x, y, z2 ≠ 0 on the surface 
g1x, y, z2 = 0. To locate the absolute maximum and minimum values of ƒ subject 
to the constraint g1x, y, z2 = 0, carry out the following steps.

1. Find the values of x, y, z, and l that satisfy the equations

∇ƒ1x, y, z2 = l∇g1x, y, z2 and g1x, y, z2 = 0.

2. Among the points 1x, y, z2 found in Step 1, select the largest and smallest 
corresponding function values. These values are the absolute maximum and 
minimum values of ƒ subject to the constraint.

Now there are four equations to be solved for x, y, z, and l:

 ƒx1x, y, z2 = lgx1x, y, z2,   ƒy1x, y, z2 = lgy1x, y, z2,
  ƒz1x, y, z2 = lgz1x, y, z2, and  g1x, y, z2 = 0.

As in the two-variable case, special care must be given to constraint surfaces that are 
not closed and bounded. We examine one such case in Example 2.

➤ Problems similar to Example 2 were 
solved in Section 15.7 using ordinary 
optimization techniques. These methods 
may or may not be easier to apply than 
Lagrange multipliers.

EXAMPLE 2 A geometry problem Find the least distance between the point P13, 4, 02 
and the surface of the cone z2 = x2 + y2.

SOLUTION The cone is not bounded, so we begin our calculations recognizing that solu-
tions are only candidates for local extrema. Figure 15.83 shows both sheets of the cone 
and the point P13, 4, 02. Because P is in the xy-plane, we anticipate two solutions, one for 
each sheet of the cone. The distance between P and any point Q1x, y, z2 on the cone is

d1x, y, z2 = 21x - 322 + 1y - 422 + z2.

x

y

z

Find the points
Q on the cone
for which uPQu
is a minimum.

z2 5 x2 1 y2

P(3, 4, 0)

Q

Q

Figure 15.83

yx

z

x

z

(a) (b)

(c)

y

Level surfaces of
w 5 f (x, y, z)

Constraint surface S
g(x, y, z) 5 0

yx

z

Assuming f has a local
minimum on S, it will
occur at points where
=f (a, b, c) is parallel
to =g(a, b, c).

=f (a, b, c)

=g(a, b, c)

Level surface
of f

(d)

yx

z

Assuming f has a local
maximum on S, it will 
occur at points where
=f (a, b, c) is parallel
to =g(a, b, c).

Constraint surface
S: g(x, y, z) 5 0

=f (a, b, c)

=g(a, b, c)

S

S

Figure 15.82
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In many distance problems, it is easier to work with the square of the distance to avoid 
dealing with square roots. This maneuver is allowable because if a point minimizes 
1d1x, y, z222, it also minimizes d1x, y, z2. Therefore, we define

ƒ1x, y, z2 = 1d1x, y, z222 = 1x - 322 + 1y - 422 + z2.

The constraint is the condition that the point 1x, y, z2 must lie on the cone, which implies 
z2 = x2 + y2, or g1x, y, z2 = z2 - x2 - y2 = 0.

Now we proceed with Lagrange multipliers; the conditions are

  ƒx1x, y, z2 = lgx1x, y, z2,  or 21x - 32 = l1-2x2,  or x11 + l2 = 3, (1)

  ƒy1x, y, z2 = lgy1x, y, z2,  or 21y - 42 = l1-2y2,  or y11 + l2 = 4, (2)

  ƒz1x, y, z2 = lgz1x, y, z2,  or 2z = l12z2,  or z = lz, and  (3)

 g1x, y, z2 = z2 - x2 - y2 = 0.  (4)

The solutions of equation (3) (the simplest of the four equations) are either z = 0, or 
l = 1 and z ≠ 0. In the first case, if z = 0, then by equation (4), x = y = 0; however, 
x = 0 and y = 0 do not satisfy (1) and (2). So no solution results from this case.

On the other hand, if l = 1 in equation (3), then by (1) and (2), we find that x = 3
2 

and y = 2. Using (4), the corresponding values of z are {5
2 . Therefore, the two solutions 

and the values of ƒ are

 x = 3
2 ,  y = 2,  z = 5

2 ,   with ƒ13
2 , 2, 522 = 25

2  , and

 x = 3
2 ,  y = 2,  z = -  52 ,   with ƒ13

2 , 2, -  522 = 25
2 .

You can check that moving away from 13
2, 2, {5

22 in any direction on the cone has the 
effect of increasing the values of ƒ. Therefore, the points correspond to local minima of 
ƒ. Do these points also correspond to absolute minima? The domain of this problem is 
unbounded; however, one can argue geometrically that ƒ increases without bound moving 
away from 13

2, 2, {5
22 on the cone with 0 x 0 S ∞  and 0 y 0 S ∞ . Therefore, these points 

correspond to absolute minimum values and the points on the cone nearest to 13, 4, 02 are 

13
2, 2, {5

22, at a distance of A25
2

=
512

 . (Recall that ƒ = d2.)
Related Exercises 32–34 

➤ With three independent variables, it is 
possible to impose two constraints.  
These problems are explored in  
Exercises 61–64.

QUICK CHECK 3 In Example 2, is there 
a point that maximizes the distance 
between 13, 4, 02 and the cone? If 
the point 13, 4, 02 were replaced 
by 13, 4, 12, how many minimizing 
solutions would there be? 

71

7

1

,

Level curves of
utility function

U 5 1
U 5 2

U 5 3

U 5 4

U 5 5

g

Figure 15.84

741

7

6

1

U 5 1
U 5 2

U 5 3

U 5 4

U 5 5

Utility maximized
here, subject
to constraint.

Constraint curve
,

g

Figure 15.85

Economic Models In the opening of this section, we briefly described how utility func-
tions are used to model consumer behavior. We now look in more detail at some specific—
admittedly simple—utility functions and the constraints that are imposed on them.

As described earlier, a prototype model for consumer behavior uses two indepen-
dent variables: leisure time / and consumable goods g. A utility function U = ƒ1/, g2 
measures consumer preferences for various combinations of leisure time and consumable 
goods. The following assumptions about utility functions are commonly made.

1. Utility increases if any variable increases (essentially, more is better).

2. Various combinations of leisure time and consumable goods have the same utility; that 
is, giving up some leisure time for additional consumable goods (or vice versa) results 
in the same utility.

The level curves of a typical utility function are shown in Figure 15.84. Assumption 1 
is reflected by the fact that the utility values on the level curves increase as either / or g 
increases. Consistent with Assumption 2, a single level curve shows the combinations of 
/ and g that have the same utility; for this reason, economists call the level curves indiffer-
ence curves. Notice that if / increases, then g must decrease on a level curve to maintain 
the same utility, and vice versa.

Economic models assert that consumers maximize utility subject to constraints on lei-
sure time and consumable goods. One assumption that leads to a reasonable constraint is 
that an increase in leisure time implies a linear decrease in consumable goods. Therefore, 
the constraint curve is a line with negative slope (Figure 15.85). When such a constraint is 
superimposed on the level curves of the utility function, the optimization problem becomes 
evident. Among all points on the constraint line, which one maximizes utility? A solution is 
marked in the figure; at this point, the utility has a maximum value (between 2.5 and 3.0).
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EXAMPLE 3 Constrained optimization of utility Find the absolute maxi-
mum value of the utility function U = ƒ1/, g2 = /1>3g2>3, subject to the constraint 
G1/, g2 = 3/ + 2g - 12 = 0, where / Ú 0 and g Ú 0.

SOLUTION The constraint is closed and bounded, so we expect to find an absolute maxi-
mum value of ƒ. The level curves of the utility function and the linear constraint are 
shown in Figure 15.85. The solution follows the Lagrange multiplier method with two 
variables. The gradient of the utility function is

∇ƒ1/, g2 = h /
-2>3g2>3

3
, 

2/1>3g-1>3

3
i =

1
3

 h a g

/
b

2>3
, 2a /

g
b

1>3
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The gradient of the constraint function is ∇G1/, g2 = 83, 29 . Therefore, the equations 
that must be solved are

1
3

 a g

/
b

2>3
= 3l,  

2
3

 a /
g
b

1>3
= 2l,  and  G1/, g2 = 3/ + 2g - 12 = 0.

Eliminating l from the first two equations leads to the condition g = 3/, which, when 
substituted into the constraint equation, gives the solution / = 4

3 and g = 4. This point is 
a candidate for the location of the absolute maximum; the other candidates are the end-
points of the constraint curve, 14, 02 and 10, 62. The actual values of the utility function 
at these points are U = ƒ14

3, 42 = 4>23 3 ≈ 2.8 and ƒ14, 02 = ƒ10, 62 = 0. We con-
clude that the maximum value of ƒ is 2.8; this solution occurs at / = 4

3 and g = 4, and it 
is consistent with Figure 15.85.

Related Exercise 38 

QUICK CHECK 4 In Figure 15.85, explain 
why, if you move away from the 
optimal point along the constraint line, 
the utility decreases. 

Getting Started
1. Explain why, at a point that maximizes or minimizes ƒ subject to a 

constraint g1x, y2 = 0, the gradient of ƒ is parallel to the gradient 
of g. Use a diagram.

2. Describe the steps used to find the absolute maximum value and 
absolute minimum value of a differentiable function on a circle 
centered at the origin of the xy-plane.

3. For functions ƒ1x, y2 = x + 4y and g1x, y2 = x2 + y2 - 1, 
write the Lagrange multiplier conditions that must be satisfied by 
a point that maximizes or minimizes ƒ subject to the constraint 
g1x, y2 = 0.

4. For functions ƒ1x, y, z2 = xyz and g1x, y, z2 = x2 + 2y2 + 3z2 - 1, 
write the Lagrange multiplier conditions that must be satisfied by 
a point that maximizes or minimizes ƒ subject to the constraint 
g1x, y2 = 0.

5–6. The following figures show the level curves of ƒ and the constraint 
curve g1x, y2 = 0. Estimate the maximum and minimum values of ƒ 
subject to the constraint. At each point where an extreme value occurs, 
indicate the direction of ∇ƒ and a possible direction of ∇g.

5. 

1
2345678

g(x, y) 5 0

y

x
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6. y

x

g(x, y) 5 0

1
2345678

Practice Exercises
7–26. Lagrange multipliers Each function ƒ has an absolute  
maximum value and absolute minimum value subject to the given  
constraint. Use Lagrange multipliers to find these values.

7. ƒ1x, y2 = x + 2y subject to x2 + y2 = 4

8. ƒ1x, y2 = xy2 subject to x2 + y2 = 1

9. ƒ1x, y2 = x + y subject to x2 - xy + y2 = 1

10. ƒ1x, y2 = x2 + y2 subject to 2x2 + 3xy + 2y2 = 7

11. ƒ1x, y2 = xy subject to x2 + y2 - xy = 9

12. ƒ1x, y2 = x - y subject to x2 + y2 - 3xy = 20

13. ƒ1x, y2 = exy subject to x2 + xy + y2 = 9

14. ƒ1x, y2 = x2y subject to x2 + y2 = 9

15. ƒ1x, y2 = 2x2 + y2 subject to x2 + 2y + y2 = 15
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 15.8 Lagrange Multipliers 1003

16. ƒ1x, y2 = x2 subject to x2 + xy + y2 = 3

17. ƒ1x, y, z2 = x + 3y - z subject to x2 + y2 + z2 = 4

18. ƒ1x, y, z2 = xyz subject to x2 + 2y2 + 4z2 = 9

19. ƒ1x, y, z2 = x subject to x2 + y2 + z2 - z = 1

20. ƒ1x, y, z2 = x - z subject to x2 + y2 + z2 - y = 2

21. ƒ1x, y, z2 = x + y + z subject to x2 + y2 + z2 - xy = 5

22. ƒ1x, y, z2 = x + y + z subject to x2 + y2 + z2 - 2x - 2y = 1

23. ƒ1x, y, z2 = 2x + z2 subject to x2 + y2 + 2z2 = 25

24. ƒ1x, y, z2 = xy - z subject to x2 + y2 + z2 - xy = 1

25. ƒ1x, y, z2 = x2 + y + z subject to 2x2 + 2y2 + z2 = 2

26. ƒ1x, y, z2 = 1xyz21>2 subject to x + y + z = 1 with x Ú 0, 
y Ú 0, z Ú 0

27–36. Applications of Lagrange multipliers Use Lagrange multipli-
ers in the following problems. When the constraint curve is unbounded, 
explain why you have found an absolute maximum or minimum value.

27. Shipping regulations A shipping company requires that the  
sum of length plus girth of rectangular boxes not exceed 108 in. 
Find the dimensions of the box with maximum volume that meets 
this condition. (The girth is the perimeter of the smallest side of 
the box.)

28. Box with minimum surface area Find the dimensions of the rect-
angular box with a volume of 16 ft3 that has minimum surface area.

29. Extreme distances to an ellipse Find the minimum and maxi-
mum distances between the ellipse x2 + xy + 2y2 = 1 and the 
origin.

30. Maximum area rectangle in an ellipse Find the dimensions of 
the rectangle of maximum area with sides parallel to the coordi-
nate axes that can be inscribed in the ellipse 4x2 + 16y2 = 16.

31. Maximum perimeter rectangle in an ellipse Find the dimen-
sions of the rectangle of maximum perimeter with sides paral-
lel to the coordinate axes that can be inscribed in the ellipse 
2x2 + 4y2 = 3.

32. Minimum distance to a plane Find the point on the plane 
2x + 3y + 6z - 10 = 0 closest to the point 1-2, 5, 12.

33. Minimum distance to a surface Find the point on the surface 
4x + y - 1 = 0 closest to the point 11, 2, -32.

34. Minimum distance to a cone Find the points on the cone 
z2 = x2 + y2 closest to the point 11, 2, 02.

35. Extreme distances to a sphere Find the minimum and maximum 
distances between the sphere x2 + y2 + z2 = 9 and the point 
12, 3, 42.

36. Maximum volume cylinder in a sphere Find the dimensions 
of the right circular cylinder of maximum volume that can be in-
scribed in a sphere of radius 16.

37–40. Maximizing utility functions Find the values of / and g with 
/ Ú 0 and g Ú 0 that maximize the following utility functions subject 
to the given constraints. Give the value of the utility function at the 
optimal point.

37. U = ƒ1/, g2 = 10/1>2g1>2 subject to 3/ + 6g = 18

38. U = ƒ1/, g2 = 32/2>3g1>3 subject to 4/ + 2g = 12

T

39. U = ƒ1/, g2 = 8/4>5g1>5 subject to 10/ + 8g = 40

40. U = ƒ1/, g2 = /1>6g5>6 subject to 4/ + 5g = 20

41. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. Suppose you are standing at the center of a sphere looking at a 
point P on the surface of the sphere. Your line of sight to P is 
orthogonal to the plane tangent to the sphere at P.

b. At a point that maximizes ƒ on the curve g1x, y2 = 0, the dot 
product ∇ƒ # ∇g is zero.

42–47. Alternative method Solve the following problems from  
Section 15.7 using Lagrange multipliers.

42. Exercise 43 43. Exercise 44 44. Exercise 45

45. Exercise 46 46. Exercise 70 47. Exercise 63

48–51. Absolute maximum and minimum values Find the absolute 
maximum and minimum values of the following functions over the 
given regions R. Use Lagrange multipliers to check for extreme points 
on the boundary.

48. ƒ1x, y2 = x2 + 4y2 + 1; R = 51x, y2: x2 + 4y2 … 16
49. ƒ1x, y2 = x2 + y2 - 2y + 1; R = 51x, y2: x2 + y2 … 46 (This 

is Exercise 47, Section 15.7.)

50. ƒ1x, y2 = 2x2 + y2; R = 51x, y2: x2 + y2 … 166 (This is  
Exercise 48, Section 15.7.)

51. ƒ1x, y2 = 2x2 - 4x + 3y2 + 2; 
R = 51x, y2:1x - 122 + y2 … 16 (This is Exercise 51,  
Section 15.7.)

52. Extreme points on flattened spheres The equation 
x2n + y2n + z2n = 1, where n is a positive integer, describes a 
flattened sphere. Define the extreme points to be the points on the 
flattened sphere with a maximum distance from the origin.

a. Find all the extreme points on the flattened sphere with  
n = 2. What is the distance between the extreme points and  
the origin?

b. Find all the extreme points on the flattened sphere for integers 
n 7 2. What is the distance between the extreme points and 
the origin?

c. Give the location of the extreme points in the limit as n S ∞ .  
What is the limiting distance between the extreme points and 
the origin as n S ∞?

53–55. Production functions Economists model the output of manu-
facturing systems using production functions that have many of the 
same properties as utility functions. The family of Cobb-Douglas 
production functions has the form P = ƒ1K, L2 = CKa L1 - a, where 
K represents capital, L represents labor, and C and a are positive real 
numbers with 0 6 a 6 1. If the cost of capital is p dollars per unit, 
the cost of labor is q dollars per unit, and the total available budget is 
B, then the constraint takes the form pK + qL = B. Find the values 
of K and L that maximize the following production functions subject to 
the given constraint, assuming K Ú 0 and L Ú 0.

53. P = ƒ1K, L2 = K1>2 L1>2 for 20K + 30L = 300

54. P = ƒ1K, L2 = 10K1>3 L2>3 for 30K + 60L = 360

55. Given the production function P = ƒ1K, L2 = KaL1 - a and the 
budget constraint pK + qL = B, where a, p, q, and B are given, 

show that P is maximized when K =
aB
p

 and L =
11 - a2B

q
 .
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1004 Chapter 15  •  Functions of Several Variables

56. Temperature of an elliptical plate The temperature of 
points on an elliptical plate x2 + y2 + xy … 1 is given by 
T1x, y2 = 251x2 + y22. Find the hottest and coldest temperatures 
on the edge of the plate.

Explorations and Challenges
57–59. Maximizing a sum

57. Find the maximum value of x1 + x2 + x3 + x4 subject to the  
condition that x1

2 + x2
2 + x3

2 + x4
2 = 16.

58. Generalize Exercise 57 and find the maximum value 
of x1 + x2 +  g+  xn subject to the condition that 
x1

2 + x2
2 +  g+  xn

2 = c2 for a real number c and a positive  
integer n.

59. Generalize Exercise 57 and find the maximum value of 
a1x1 + a2x2 +  g+  anxn subject to the condition that 
x1

2 + x2
2 +  g+  xn

2 = 1, for given positive real numbers  
a1, c, an and a positive integer n.

60. Geometric and arithmetic means Given positive numbers  
x1, c, xn, prove that the geometric mean 1x1x2 gxn21>n is no 

greater than the arithmetic mean 
x1 +  g+  xn

n
 in the following 

cases.

a. Find the maximum value of xyz, subject to x + y + z = k, 
where k is a positive real number and x 7 0, y 7 0, and 
z 7 0. Use the result to prove that

1xyz21>3 …
x + y + z

3
 .

b. Generalize part (a) and show that

1x1x2gxn21>n …
x1 +  g+  xn

n
 .

61. Problems with two constraints Given a differentiable function 
w = ƒ1x, y, z2, the goal is to find its absolute maximum and  
minimum values (assuming they exist) subject to the constraints 
g1x, y, z2 = 0 and h1x, y, z2 = 0, where g and h are also  
differentiable.

a. Imagine a level surface of the function ƒ and the constraint 
surfaces g1x, y, z2 = 0 and h1x, y, z2 = 0. Note that g and 
h intersect (in general) in a curve C on which maximum and 
minimum values of ƒ must be found. Explain why ∇g and ∇h 
are orthogonal to their respective surfaces.

b. Explain why ∇ƒ lies in the plane formed by ∇g and ∇h at a 
point of C where ƒ has a maximum or minimum value.

c. Explain why part (b) implies that ∇ƒ = l∇g + m∇h at a 
point of C where ƒ has a maximum or minimum value, where 
l and m (the Lagrange multipliers) are real numbers.

d. Conclude from part (c) that the equations that must be 
solved for maximum or minimum values of ƒ subject to two 
constraints are ∇ƒ = l∇g + m∇h, g1x, y, z2 = 0, and 
h1x, y, z2 = 0.

62–64. Two-constraint problems Use the result of Exercise 61 to 
solve the following problems.

62. The planes x + 2z = 12 and x + y = 6 intersect in a line L.  
Find the point on L nearest the origin.

63. Find the maximum and minimum values of ƒ1x, y, z2 = xyz sub-
ject to the conditions that x2 + y2 = 4 and x + y + z = 1.

64. Find the maximum and minimum values of 
ƒ1x, y, z2 = x2 + y2 + z2 on the curve on which the cone 
z2 = 4x2 + 4y2 and the plane 2x + 4z = 5 intersect.

65. Check assumptions Consider the function 
ƒ1x, y2 = xy + x + y + 100 subject to the constraint xy = 4.

a. Use the method of Lagrange multipliers to write a system of 
three equations with three variables x, y, and l.

b. Solve the system in part (a) to verify that 1x, y2 = 1-2, -22 
and 1x, y2 = 12, 22 are solutions.

c. Let the curve C1 be the branch of the constraint curve corre-
sponding to x 7 0. Calculate ƒ12, 22 and determine whether 
this value is an absolute maximum or minimum value of ƒ over 
C1. (Hint: Let h11x2, for x 7 0, equal the values of ƒ over the 
curve C1 and determine whether h1 attains an absolute maxi-
mum or minimum value at x = 2.)

d. Let the curve C2 be the branch of the constraint curve cor-
responding to x 6 0. Calculate ƒ1-2, -22 and determine 
whether this value is an absolute maximum or minimum value 
of ƒ over C2. (Hint: Let h21x2, for x 6 0, equal the values of  
ƒ over the curve C2 and determine whether h2 attains an  
absolute maximum or minimum value at x = -2.)

e. Show that the method of Lagrange multipliers fails to find 
the absolute maximum and minimum values of ƒ over the 
constraint curve xy = 4. Reconcile your explanation with the 
method of Lagrange multipliers.

QUICK CHECK ANSWERS

1. Note that ∇ƒ11, 12 = 82x, 2y9 0 11, 12 = 82, 29  and 
∇g11, 12 = 81

21x - 32, -19 0 11, 12 = 8 -1, -19 , which im-
plies the gradients are multiples of one another, and  
therefore parallel. The equation of the line tangent to C at 
11, 12 is y = -x + 2; therefore, the vector v = 81, -19  is 
parallel to this tangent line. Because ∇ƒ11, 12 # v = 0 and 
∇g11, 12 # v = 0, both gradients are orthogonal to the tangent 
line. 3. The distance between 13, 4, 02 and the cone can be 
arbitrarily large, so there is no maximizing solution. If the point 
of interest is not in the xy-plane, there is one minimizing  
solution. 4. If you move along the constraint line away from 
the optimal solution in either direction, you cross level curves of 
the utility function with decreasing values. 

M15_BRIG3644_03_SE_C15_919-1007.indd   1004 25/10/17   2:16 PM



 Review Exercises 1005

1. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. The level curves of g1x, y2 = ex + y are lines.
b. The equation z2 = 2x2 - 6y2 determines z as a single function 

of x and y.
c. If ƒ has continuous partial derivatives of all orders, then 

ƒxxy = ƒyyx.
d. Given the surface z = ƒ1x, y2, the gradient ∇ƒ1a, b2 lies in the 

plane tangent to the surface at 1a, b, ƒ1a, b22.
2–5. Domains Find the domain of the following functions. Make a 
sketch of the domain in the xy-plane.

2. ƒ1x, y2 = sin-1a x2 + y2

4
b  3. ƒ1x, y2 = 2x - y2

4. ƒ1x, y2 = ln xy 5. ƒ1x, y2 = 29x2 + 4y2 - 36

6–7. Graphs Describe the graph of the following functions, and state 
the domain and range of the function.

6. ƒ1x, y2 = -2x2 + y2 7. g1x, y2 = -2x2 + y2 - 1

8–9. Level curves Make a sketch of several level curves of the follow-
ing functions. Label at least two level curves with their z-values.

8. ƒ1x, y2 = x2 - y 9. ƒ1x, y2 = x2 + 4y2

10. Matching level curves with surfaces Match level curve plots a–d 
with surfaces A–D.

(a)

y

x

 (b)

y

x

(c)

y

x

 (d)

y

x

(A)
x y

z

 (B)

z

yx

(C)
x y

z

 (D)
x y

z

11–18. Limits Evaluate the following limits or determine that they do 
not exist.

11. lim
1x, y2S14, -22

 110x - 5y + 6xy2

12. lim
1x, y2S11, 12

 
xy

x + y
 13. lim

1x, y2S10, 02
 
x + y

xy

14. lim
1x, y2S10, 02

 
sin xy

x2 + y2 15. lim
1x, y2S1-1, 12

 
x2 - y2

x2 - xy - 2y2

16. lim
1x, y2S10, 02

 
25x6y4

sin21x3y22

17. lim
1x, y, z2S12, 2, 32

 
x2z - 3x2 - y2z + 3y2

xz - 3x - yz + 3y

18. lim
1x, y, z2S13, 4, 72

 
1x + y - 1z

x + y - z

19–20. Continuity At what points of ℝ2 are the following functions 
continuous?

19. ƒ1x, y2 = ln 1y - x2 - 12 20. g1x, y2 = 1

x2 + y2

21–26. Partial derivatives Find the first partial derivatives of the  
following functions.

21. ƒ1x, y2 = 3x2y5 22. g1x, y, z2 = 4xyz2 -
3x
y

23. ƒ1x, y2 = x2

x2 + y2 24. g1x, y, z2 = xyz

x + y

25. ƒ1x, y2 = xyexy 26. g1u, v2 = u cos v - v sin u

27–28. Second partial derivatives Find the four second partial  
derivatives of the following functions.

27. ƒ1x, y2 = e2xy 28. H1p, r2 = p21p + 2r

29–30. Laplace’s equation Verify that the following functions satisfy 

Laplace’s equation, 
02u

0x2 +
02u

0y2 = 0.

29. u1x, y2 = y13x2 - y22 30. u1x, y2 = ln 1x2 + y22
31. Region between spheres Two spheres have the same center and 

radii r and R, where 0 6 r 6 R. The volume of the region  

between the spheres is V1r, R2 = 4p
3

 1R3 - r32.
a. First use your intuition. If r is held fixed, how does V change 

as R increases? What is the sign of VR? If R is held fixed, how 
does V change as r increases (up to the value of R)? What is 
the sign of Vr?

b. Compute Vr and VR. Are the results consistent with part (a)?

CHAPTER 15 REVIEW EXERCISES
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1006 Chapter 15  •  Functions of Several Variables

c. Consider spheres with R = 3 and r = 1. Does the volume 
change more if R is increased by ∆R = 0.1 (with r fixed) or  
if r is decreased by ∆r = 0.1 (with R fixed)?

32–35. Chain Rule Use the Chain Rule to evaluate the following  
derivatives.

32. w′1t2, where w = x cos yz, x = t2 + 1, y = t, and z = t3

33. w′1t2, where w = z ln 1x2 + y22, x = 3et, y = 4et, and z = t

34. ws, wt, wss, wtt, and wst, where w = xyz, x = 2st, y = st2, and 
z = s2t

35. wr, ws and wt, where w = ln 1xy22, x = rst, and y = r + s

36–37. Implicit differentiation Find dy>dx for the following implicit 
relations using Theorem 15.9.

36. 2x2 + 3xy - 3y4 = 2 37. y ln 1x2 + y22 = 4

38–39. Walking on a surface Consider the following surfaces and  
parameterized curves C in the xy-plane.

a. In each case, find z′1t2 on C.
b. Imagine that you are walking on the surface directly above C  

consistent with the positive orientation of C. Find the values of t  
for which you are walking uphill.

38. z = 4x2 + y2 - 2; C: x = cos t, y = sin t, for 0 … t … 2p

39. z = x2 - 2y2 + 4; C: x = 2 cos t, y = 2 sin t, for 0 … t … 2p

40. Constant volume cones Suppose the radius of a right circular 
cone increases as r1t2 = ta and the height decreases as h1t2 = t-b,  
for t Ú 1, where a and b are positive constants. What is the rela-
tionship between a and b such that the volume of the cone remains 
constant (that is, V′1t2 = 0, where V = 1p>32r2h)?

41. Directional derivatives Consider the function ƒ1x, y2 =
2x2 - 4y2 + 10, whose graph is shown in the figure.

x
y

z

a. Fill in the table showing the values of the directional derivative 
at points 1a, b2 in the directions given by the unit vectors u, v,  
and w.

1a, b 2 = 10, 0 2 1a, b 2 = 12, 0 2 1a, b 2 = 11, 1 2
u = 8 12

2 , 12
2 9

v = 8− 12
2 , 12

2 9
w = 8− 12

2 , - 12
2 9

b. Interpret each of the directional derivatives computed in  
part (a) at the point 12, 02.

42–47. Computing directional derivatives Compute the gradient of 
the following functions, evaluate it at the given point P, and evaluate the 
directional derivative at that point in the direction of the given vector.

42. ƒ1x, y2 = x2; P11, 22; u = h 112
 , -  

112
i

43. g1x, y2 = x2y3; P1-1, 12; u = h 5
13

 , 
12
13
i

44. ƒ1x, y2 = x

y2 ; P10, 32; u = h 13
2

 , 
1
2
i

45. h1x, y2 = 22 + x2 + 2y2 ; P12, 12; u = h 3
5

 , 
4
5
i

46. ƒ1x, y, z2 = xe1 + y2 + z2
; P10, 1, -22; u = h  

4
9

 , 
1
9

 , 
8
9
i

47. ƒ1x, y, z2 = sin xy + cos z; P11 , p , 02; u = h 2
7

 , 
3
7

 , -  
6
7
i

48–49. Direction of steepest ascent and descent

a. Find the unit vectors that give the direction of steepest ascent and 
steepest descent at P.

b. Find a unit vector that points in a direction of no change.

48. ƒ1x, y2 = ln 11 + xy2; P12, 32
49. ƒ1x, y2 = 24 - x2 - y2; P1-1, 12
50–51. Level curves Consider the paraboloid ƒ1x, y2 = 8 - 2x2 - y2. 
For the following level curves ƒ1x, y2 = C and points 1a, b2, compute 
the slope of the line tangent to the level curve at 1a, b2 and verify that 
the tangent line is orthogonal to the gradient at that point.

50. ƒ1x, y2 = 5; 1a, b2 = 11, 12
51. ƒ1x, y2 = 0; 1a, b2 = 12, 02
52. Directions of zero change Find the directions in which the func-

tion ƒ1x, y2 = 4x2 - y2 has zero change at the point 11, 1, 32. 
Express the directions in terms of unit vectors.

53. Electric potential due to a charged cylinder An infinitely long 
charged cylinder of radius R with its axis along the z-axis has an 

electric potential V = k ln 
R
r

, where r is the distance between a  

variable point P1x, y2 and the axis of the cylinder 1r2 = x2 + y22 
and k is a physical constant. The electric field at a point 1x, y2 
in the xy-plane is given by E = -∇V , where ∇V is the two-
dimensional gradient. Compute the electric field at a point 1x, y2 
with r 7 R.

54–59. Tangent planes Find an equation of the plane tangent to the 
following surfaces at the given points.

54. z = 2x2 + y2; 11, 1, 32 and 10, 2, 42

55. x2 +
y2

4
-

z2

9
= 1; 10, 2, 02 and a1, 1, 

3
2
b

56. x2 - 2x + y2 + 4y + 3z2 = 2; 13, -2, 12 and 1-1, -2, 12
57. e xy2z3 - 1 = 1; 11, 1, 12 and 11, -1, 12
58. z - tan-1 xy = 0; 11, 1, p>42 and 11, 13, p>32

59. Ax + y

z
= 1; 12, 2, 42 and 110, -1, 92

60–61. Linear approximation

a. Find the linear approximation to the function ƒ at the point 1a, b2.
b. Use part (a) to estimate the given function value.

60. ƒ1x, y2 = 4 cos 12x - y2; 1a, b2 = ap
4

 , 
p

4
b ; estimate 

ƒ10.8, 0.82.

T

M15_BRIG3644_03_SE_C15_919-1007.indd   1006 25/10/17   2:16 PM



71. ƒ1x, y2 = x4 + y4 - 4xy + 1 on the square 
R = 51x, y2: -2 … x … 2, -2 … y … 26

72. ƒ1x, y2 = x2y - y3 on the triangle 
R = 51x, y2: 0 … x … 2, 0 … y … 2 - x6

73. ƒ1x, y2 = xy on the semicircular disk 
R = 51x, y2: -1 … x … 1, 0 … y … 21 - x2 6

74. Least distance What point on the plane x + y + 4z = 8 is  
closest to the origin? Give an argument showing you have found 
an absolute minimum of the distance function.

75–78. Lagrange multipliers Use Lagrange multipliers to find the  
absolute maximum and minimum values of ƒ (if they exist) subject to 
the given constraint.

75. ƒ1x, y2 = 2x + y + 10 subject to 21x - 122 + 41y - 122 = 1

76. ƒ1x, y2 = xy subject to 3x2 - 2xy + 3y2 = 4

77. ƒ1x, y, z2 = x + 2y - z subject to x2 + y2 + z2 = 1

78. ƒ1x, y, z2 = x2y2z subject to 2x2 + y2 + z2 = 25

79. Maximum perimeter rectangle Use Lagrange multipliers to find 
the dimensions of the rectangle with the maximum perimeter that 
can be inscribed with sides parallel to the coordinate axes in the 

ellipse 
x2

a2 +
y2

b2 = 1.

80. Minimum surface area cylinder Use Lagrange multipliers to 
find the dimensions of the right circular cylinder of minimum sur-
face area (including the circular ends) with a volume of 32p in3. 
Give an argument showing you have found an absolute minimum.

81. Minimum distance to a cone Find the point(s) on the cone 
z2 - x2 - y2 = 0 that are closest to the point 11, 3, 12. Give an 
argument showing you have found an absolute minimum of the 
distance function.

82. Gradient of a distance function Let P01a, b, c2 be a fixed point 
in ℝ3, and let d1x, y, z2 be the distance between P0 and a variable 
point P1x, y, z2.
a. Compute ∇d1x, y, z2.
b. Show that ∇d1x, y, z2 points in the direction from P0 to P and 

has magnitude 1 for all 1x, y, z2.
c. Describe the level surfaces of d and give the direction of 

∇d1x, y, z2 relative to the level surfaces of d.
d. Discuss lim

PSP0 
∇d1x, y, z2.

83. Minimum distance to a paraboloid Use Lagrange multipliers to 
find the point on the paraboloid z = x2 + y2 that lies closest to 
the point 15, 10, 32. Give an argument showing you have found an 
absolute minimum of the distance function.

61. ƒ1x, y2 = 1x + y2exy; 1a, b2 = 12, 02; estimate ƒ11.95, 0.052.
62. Changes in a function Estimate the change in the function 

ƒ1x, y2 = -2y2 + 3x2 + xy when 1x, y2 changes from 11, -22 
to 11.05, -1.92.

63. Volume of a cylinder The volume of a cylinder with radius r and 
height h is V = pr2h. Find the approximate percentage change 
in the volume when the radius decreases by 3% and the height 
increases by 2%.

64. Volume of an ellipsoid The volume of an ellipsoid with axes of 
length 2a, 2b, and 2c is V = pabc. Find the percentage change in 
the volume when a increases by 2%, b increases by 1.5%, and c 
decreases by 2.5%.

65. Water level changes A hemispherical tank with a radius of 1.50 m 
is filled with water to a depth of 1.00 m. Water is released from 
the tank, and the water level drops by 0.05 m (from 1.00 m to 
0.95 m).

a. Approximate the change in the volume of water in the tank. 

The volume of a spherical cap is V =
1
3

 ph213r - h2, where  

r is the radius of the sphere and h is the thickness of the cap  
(in this case, the depth of the water).

b. Approximate the change in the surface area of the water in  
the tank.

1.5 m

1 m

66–69. Analyzing critical points Identify the critical points of the 
following functions. Then determine whether each critical point cor-
responds to a local maximum, local minimum, or saddle point. State 
when your analysis is inconclusive. Confirm your results using a 
graphing utility.

66. ƒ1x, y2 = x4 + y4 - 16xy 67. ƒ1x, y2 = x3

3
-

y3

3
+ 2xy

68. ƒ1x, y2 = xy12 + x21y - 32
69. ƒ1x, y2 = 10 - x3 - y3 - 3x2 + 3y2

70–73. Absolute maxima and minima Find the absolute maximum 
and minimum values of the following functions on the specified  
region R.

70. ƒ1x, y2 = x3

3
-

y3

3
+ 2xy on the rectangle  

R = 51x, y2: 0 … x … 3, -1 … y … 16

 Guided Projects 1007

Chapter 15 Guided Projects

Applications of the material in this chapter and related topics can be found in the following Guided Projects. For additional information, 
see the Preface.

• Traveling waves

• Ecological diversity

• Economic production functions
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Volumes of Solids
The problem of finding the net area of a region bounded by a curve led to the definite 
 integral in Chapter 5. Recall that we began that discussion by approximating the region 
with a collection of rectangles and then formed a Riemann sum of the areas of the rect-
angles. Under appropriate conditions, as the number of rectangles increases, the sum 
 approaches the value of the definite integral, which is the net area of the region.

16

Chapter Preview We have now generalized limits and derivatives to func-
tions of several variables. The next step is to carry out a similar process with respect to 
integration. As you know, single (one-variable) integrals are developed from Riemann 
sums and are used to compute areas of regions in ℝ2. In an analogous way, we use Rie-
mann sums to develop double (two-variable) and triple (three-variable) integrals, which 
are used to compute volumes of solid regions in ℝ3. These multiple integrals have many 
applications in statistics, science, and engineering, including calculating the mass, the cen-
ter of mass, and moments of inertia of solids with a variable density. Another significant 
development in this chapter is the appearance of cylindrical and spherical coordinates. 
These alternative coordinate systems often simplify the evaluation of integrals in three-
dimensional space. The chapter closes with the two- and three-dimensional versions of 
the substitution (change of variables) rule. The overall lesson of the chapter is that we can 
integrate functions over most geometrical objects, from intervals on the x-axis to regions 
in the plane bounded by curves to complicated three-dimensional solids.

16.1  Double Integrals over 
Rectangular Regions

In Chapter 15 the concept of differentiation was extended to functions of several variables. 
In this chapter, we extend integration to multivariable functions. By the close of the chap-
ter, we will have completed Table 16.1, which is a basic road map for calculus.

Multiple Integration

16.1 Double Integrals over 
Rectangular Regions

16.2 Double Integrals over 
General Regions

16.3 Double Integrals in Polar 
Coordinates

16.4 Triple Integrals

16.5 Triple Integrals in Cylindrical 
and Spherical Coordinates

16.6 Integrals for Mass 
Calculations

16.7 Change of Variables in 
Multiple Integrals

Table 16.1 

Derivatives Integrals

Single variable: ƒ 1x 2 ƒ′1x2 ∫b

a
ƒ1x2 dx

Several variables: ƒ 1x, y 2  and ƒ 1x, y, z 2 0ƒ
0x

 , 
0ƒ
0y

 , 
0ƒ
0z 6

R

ƒ1x, y2 dA, 9
D

ƒ1x, y, z2 dV
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 16.1 Double Integrals over Rectangular Regions 1009

We now carry out an analogous procedure with surfaces defined by functions of the form 
z = ƒ1x, y2, where, for the moment, we assume ƒ1x, y2 Ú 0 on a region R in the  xy-plane 
(Figure 16.1a). The goal is to determine the volume of the solid bounded by the surface 
and R. In general terms, the solid is first approximated by boxes (Figure 16.1b). The sum 
of the volumes of these boxes, which is a Riemann sum, approximates the volume of the 
solid. Under appropriate conditions, as the number of boxes increases, the approximations 
converge to the value of a double integral, which is the volume of the solid.

y

z

(a) (b)

x
y

x

z

z 5 f (x, y)

R

A three-dimensional solid bounded by z 5 f (x, y) and a region R
in the xy-plane is approximated by a collection of boxes.

Figure 16.1

We assume z = ƒ1x, y2 is a nonnegative function defined on a rectangular region 
R = 51x, y2: a … x … b, c … y … d6. A partition of R is formed by dividing R into n 
rectangular subregions using lines parallel to the x- and y-axes (not necessarily uniformly 
spaced). The rectangles may be numbered in any systematic way; for example, left to right 
and then bottom to top. The side lengths of the kth rectangle are denoted ∆xk and ∆yk, so 
the area of the kth rectangle is ∆Ak = ∆xk∆yk. We also let 1xk

*, yk
*2 be any point in the kth 

rectangle, for 1 … k … n (Figure 16.2).

➤	 We adopt the convention that ∆xk 
and ∆yk are the side lengths of the kth 
rectangle, for k = 1, c, n, even though 
there are generally fewer than n different 
values of ∆xk and ∆yk. This convention 
is used throughout the chapter.

To approximate the volume of the solid bounded by the surface z = ƒ1x, y2 and the 
 region R, we construct boxes on each of the n rectangles; each box has a height of ƒ1xk

*, yk
*2 and 

a base with area ∆Ak, for 1 … k … n (Figure 16.3). Therefore, the volume of the kth box is

ƒ1xk
*, yk

*2∆Ak = ƒ1xk
*, yk

*2∆xk∆yk.

z

y

x

z 5 f (x, y)

(xk
*, yk

*) is a point in the kth
rectangle, which has area
DAk 5 DxkDyk.

Dxk

R
a

b

c
d

Dyk

(xk
*, yk

*)

Figure 16.2

Height of
kth box
5 f (xk

*, yk
*)

Volume of kth box
5 f (xk

*, yk
*) DAk

(xk
*, yk

*)

z

y

x

z 5 f (x, y)

a

b

c
d

Figure 16.3
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1010 Chapter 16  •  Multiple Integration

The sum of the volumes of the n boxes gives an approximation to the volume of the solid:

V ≈ a
n

k = 1
 ƒ1xk

*, yk
*2 ∆Ak.

We now let ∆ be the maximum length of the diagonals of the rectangles in the parti-
tion. As ∆ S 0, the areas of all the rectangles approach zero 1∆Ak S 02 and the number 
of rectangles increases 1n S ∞2. If the approximations given by these Riemann sums 
have a limit as ∆ S 0, then we define the volume of the solid to be that limit (Figure 16.4).

QUICK CHECK 1 Explain why the sum 
for the volume is an approximation. 
How can the approximation be 
improved?	

➤	 The functions that we encounter in this 
text are integrable. Advanced methods 
are needed to prove that continuous 
functions and many functions with finite 
discontinuities are also integrable.

DEFINITION Double Integrals

A function ƒ defined on a rectangular region R in the xy-plane is integrable on R if  

lim
∆S0

 a
n

k = 1

ƒ1xk
*, yk

*2∆Ak exists for all partitions of R and for all choices of 1xk
*, yk

*2  
within those partitions. The limit is the double integral of ƒ over R, which we write

6
R

ƒ1x, y2 dA = lim
∆S0

 a
n

k = 1

ƒ1xk
*, yk

*2∆Ak.

x

z

y

n 5 4 3 4 5 16 n 5 8 3 8 5 64 n 5 16 3 16 5 256

Volume 5 lim S f (xk
*, yk

*) DAk
k51

n

x

z

y

x

z

y

x

z

y

D$0

D$0
n$`

Figure 16.4

If ƒ is nonnegative on R, then the double integral equals the volume of the solid 
bounded by z = ƒ1x, y2 and the xy-plane over R. If ƒ is negative on parts of R, the value 
of the double integral may be zero or negative, and the result is interpreted as a net volume 
(by analogy with net area for single variable integrals).

Iterated Integrals
Evaluating double integrals using limits of Riemann sums is tedious and rarely done. For-
tunately, there is a practical method for evaluating double integrals that is based on the 
general slicing method (Section 6.3). An example illustrates the technique.

Suppose we wish to compute the volume of the solid region bounded by the  
plane z = ƒ1x, y2 = 6 - 2x - y over the rectangular region R = 51x, y2: 0 … x … 1, 
0 … y … 26 (Figure 16.5). By definition, the volume is given by the double integral

V = 6
R

ƒ1x, y2 dA = 6
R

16 - 2x - y2 dA.

According to the general slicing method (see margin note and figure), we can compute this 
volume by taking vertical slices through the solid parallel to the yz-plane (Figure 16.5). 
The slice at the point x has a cross-sectional area denoted A1x2. In general, as x varies, the 

y

z

x

A(x)

x

b

a

If a solid is sliced parallel to the y-axis 
and perpendicular to the xy-plane, and the 
cross-sectional area of the slice at the point 
x is A1x2, then the volume of the solid 
region is

V = ∫b

a
A1x2 dx.

M16_BRIG3644_03_SE_C16_1008-1088.indd   1010 25/10/17   2:45 PM



 16.1 Double Integrals over Rectangular Regions 1011

area A1x2 also changes, so we integrate these cross-sectional areas from x = 0 to x = 1 
to obtain the volume

V = ∫1

0
A1x2 dx.

The important observation is that for a fixed value of x, A1x2 is the area of the plane 
region under the curve z = 6 - 2x - y. This area is computed by integrating ƒ with 
 respect to y from y = 0 to y = 2, holding x fixed; that is,

A1x2 = ∫2

0
16 - 2x - y2 dy,

where 0 … x … 1, and x is treated as a constant in the integration. Substituting for A1x2, 
we have

V = ∫1

0
A1x2 dx = ∫1

0
a ∫2

0
16 - 2x - y2 dyb  dx.

(+++1)1+++*
    A1x2

The expression that appears on the right side of this equation is called an iterated 
integral (meaning repeated integral). We first evaluate the inner integral with respect to 
y holding x fixed; the result is a function of x. Then the outer integral is evaluated with 
 respect to x; the result is a real number, which is the volume of the solid in Figure 16.5. 
Both of these integrals are ordinary one-variable integrals.

y

z

x

A(x)

x 5 1y 5 2

z 5 6 2 2x 2 y

1
2

A slice at a fixed value of x
has area A(x), where 0 # x # 1.

Figure 16.5

EXAMPLE 1 Evaluating an iterated integral Evaluate V = #1
0  A1x2 dx, where 

A1x2 = #2
0  16 - 2x - y2 dy.

SOLUTION Using the Fundamental Theorem of Calculus, holding x constant, we have

 A1x2 = ∫2

0
16 - 2x - y2 dy

 = a6y - 2xy -
y2

2
b ` 2

0
  Evaluate integral with respect to y;  

x is constant.

 = 112 - 4x - 22 - 0  Simplify; limits are in y.

 = 10 - 4x.  Simplify.

Substituting A1x2 = 10 - 4x into the volume integral, we have

 V = ∫1

0
A1x2 dx

 = ∫1

0
110 - 4x2 dx  Substitute for A1x2.

 = 110x - 2x22 ` 1
0

 Evaluate integral with respect to x.

 = 8.  Simplify.
Related Exercises 10, 25	

y

z

x

A(y)

x 5 1

1

2

y 5 2

z 5 6 2 2x 2 y

A slice at a fixed value of y has
area A(y), where 0 # y # 2.

Figure 16.6

EXAMPLE 2 Same double integral, different order Example 1 used slices through 
the solid parallel to the yz-plane. Compute the volume of the same solid using vertical 
slices through the solid parallel to the xz-plane, for 0 … y … 2 (Figure 16.6).

SOLUTION In this case, A1y2 is the area of a slice through the solid for a fixed value of y 
in the interval 0 … y … 2. This area is computed by integrating z = 6 - 2x - y from 
x = 0 to x = 1, holding y fixed; that is,

A1y2 = ∫1

0
16 - 2x - y2 dx,

where 0 … y … 2.
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1012 Chapter 16  •  Multiple Integration

Using the general slicing method again, the volume is

 V = ∫2

0
A1y2 dy  General slicing method

 = ∫2

0
a ∫1

0
16 - 2x - y2 dxb  dy  Substitute for A1y2.

    (+++1)1+++*
         A1y2

 = ∫2

0
a16x - x2 - yx2 ` 1

0
b  dy  

 Evaluate inner integral with respect  
to x; y is constant.

 = ∫2

0
15 - y2 dy   Simplify; limits are in x.

 = a5y -
y2

2
b ` 2

0
 Evaluate outer integral with respect to y.

 = 8.  Simplify.
Related Exercise 37	

Several important comments are in order. First, the two iterated integrals give the 
same value for the double integral. Second, the notation of the iterated integral must be 
used carefully. When we write #d

c #b
a  ƒ1x, y2 dx dy, it means #d

c 1#b
a ƒ1x, y2 dx2  dy. The  inner 

integral with respect to x is evaluated first, holding y fixed, and the variable runs from 
x = a to x = b. The result of that integration is a constant or a function of y, which is 
then integrated in the outer integral, with the variable running from y = c to y = d. The 
order of integration is signified by the order of dx and dy.

Similarly, #b
a #d

c  ƒ1x, y2 dy dx means #b
a 1#d

c  ƒ1x, y2 dy2  dx. The inner integral with 
respect to y is evaluated first, holding x fixed. The result is then integrated with respect to 
x. In both cases, the limits of integration in the iterated integrals determine the boundaries 
of the rectangular region of integration.

Examples 1 and 2 illustrate one version of Fubini’s Theorem, a deep result that relates 
double integrals to iterated integrals. The first version of the theorem applies to double 
integrals over rectangular regions.

QUICK CHECK 2 Consider the integral #4
3 #2

1 ƒ1x, y2 dx dy. Give the limits 
of integration and the variable of 
integration for the first (inner) integral 
and the second (outer) integral. Sketch 
the region of integration.	

THEOREM 16.1 (Fubini) Double Integrals over Rectangular Regions
Let ƒ be continuous on the rectangular region R = 51x, y2: a … x … b, c … y … d6. 
The double integral of ƒ over R may be evaluated by either of two iterated integrals:

6
R

ƒ1x, y2 dA = ∫d

c
∫b

a
ƒ1x, y2 dx dy = ∫b

a
∫d

c
ƒ1x, y2 dy dx.

➤	 The area of the kth rectangle in the 
partition is ∆Ak = ∆xk∆yk, where ∆xk 
and ∆yk are the lengths of the sides of 
that rectangle. Accordingly, the element 
of area dA in the double integral becomes 
dx dy or dy dx in the iterated integral.

The importance of Fubini’s Theorem is twofold: It says that double integrals may 
be evaluated by iterated integrals. It also says that the order of integration in the iterated 
integrals does not matter (although in practice, one order of integration is often easier to 
use than the other).

EXAMPLE 3 A double integral Find the volume of the solid bounded by the surface 
ƒ1x, y2 = 4 + 9x2y2 over the region R = 51x, y2: -1 … x … 1, 0 … y … 26. Use both 
possible orders of integration.

SOLUTION Because ƒ1x, y2 7 0 on R, the volume of the region is given by the double 
integral 6R 14 + 9x2y22 dA. By Fubini’s Theorem, the double integral is evaluated as an 
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 16.1 Double Integrals over Rectangular Regions 1013

iterated integral. If we first integrate with respect to x, the area of a cross section of the 
solid for a fixed value of y is given by A1y2 (Figure 16.7a). The volume of the region is

  6
R

14 + 9x2y22 dA = ∫2

0
∫1

-1
14 + 9x2y22  dx dy  Convert to an iterated integral.

(++111)111++*
    A1y2

 = ∫2

0
14x + 3x3y22 ` 1

-1
dy  

 Evaluate inner integral  
with respect to x.

 = ∫2

0
18 + 6y22 dy  Simplify.

 = 18y + 2y32 ` 2
0

 
 Evaluate outer integral  
with respect to y.

 = 32.  Simplify.

y

x

z

y

z

A(y)

R R
A(x)

z 5 4 1 9x2y2z 5 4 1 9x2y2

21

1

0

2
V 5 E  E   (4 1 9x2y2) dx dy

0

2

21

1
V 5 E    E  (4 1 9x2y2) dy dx

1

2

1

2

A(y) 5 E   (4 1 9x2y2) dx
21

1
A(x) 5 E  (4 1 9x2y2) dy

0

2

x

(a) (b)

Figure 16.7

Alternatively, if we integrate first with respect to y, the area of a cross section of the 
solid for a fixed value of x is given by A1x2 (Figure 16.7b). The volume of the region is

  6
R

14 + 9x2y22  dA = ∫1

-1
∫2

0
14 + 9x2y22  dy dx  Convert to an iterated integral.

(++111)111++*
    A1x2

 = ∫1

-1
14y + 3x2y32 ` 2

0
 dx  

 Evaluate inner integral with  
respect to y.

 = ∫1

-1
18 + 24x22 dx  Simplify.

 = 18x + 8x32 ` 1
-1

= 32.  
 Evaluate outer integral with  
respect to x.

As guaranteed by Fubini’s Theorem, the two iterated integrals are equal, both giving 
the value of the double integral and the volume of the solid.

Related Exercises 26, 39	

QUICK CHECK 3 Write the iterated 
integral #10

-10#20
0 1x2y + 2xy32 dy dx 

with the order of integration  
reversed.	
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1014 Chapter 16  •  Multiple Integration

The following example shows that sometimes the order of integration must be chosen 
carefully either to save work or to make the integration possible.

EXAMPLE 4 Choosing a convenient order of integration Evaluate 6R  yexy dA, 
where R = 51x, y2: 0 … x … 1, 0 … y … ln 26.

SOLUTION The iterated integral #1
0 #ln 2

0  yexy dy dx requires first integrating yexy with 
 respect to y, which entails integration by parts. An easier approach is to integrate first 
with respect to x:

 ∫ ln 2

0
∫1

0
yexy dx dy = ∫ ln 2

0
exy `

1

0
 dy  

 Evaluate inner integral  
with respect to x.

 = ∫ ln 2

0
1ey - 12 dy  Simplify.

 = 1ey - y2 ` ln 2

0
  

Evaluate outer integral  
with respect to y.

 = 1 - ln 2.  Simplify.
Related Exercises 41, 43	

Average Value
The concept of the average value of a function (Section 5.4) extends naturally to functions 
of two variables. Recall that the average value of the integrable function ƒ over the interval 
3a, b4 is

ƒ =
1

b - a ∫
b

a
ƒ1x2 dx.

To find the average value of an integrable function ƒ over a region R, we integrate ƒ over 
R and divide the result by the “size” of R, which is the area of R in the two-variable case.

➤	 The same definition of average value 
applies to more general regions in the 
plane.

DEFINITION Average Value of a Function over a Plane Region

The average value of an integrable function ƒ over a region R is

ƒ =
1

area of R
 6

R

ƒ1x, y2 dA.

EXAMPLE 5 Average value Find the average value of the quantity 2 - x - y over  
the square R = 51x, y2: 0 … x … 2, 0 … y … 26 (Figure 16.8).

SOLUTION The area of the region R is 4. Letting ƒ1x, y2 = 2 - x - y, the average  
value of ƒ is

  
1

area of R
 6

R

ƒ1x, y2 dA =
1
4

 6
R

12 - x - y2 dA

 =
1
4 ∫

2

0
∫2

0
12 - x - y2 dx dy  Convert to an iterated integral.

 =
1
4 ∫

2

0
a2x -

x2

2
- xyb ` 2

0
 dy 

 Evaluate inner integral  
with respect to x.

 =
1
4 ∫

2

0
12 - 2y2 dy  Simplify.

 = 0.  
 Evaluate outer integral  
with respect to y.

Related Exercise 46	

➤	 An average value of 0 means that over 
the region R, the volume of the solid 
above the xy-plane and below the surface 
equals the volume of the solid below the 
xy-plane and above the surface.

z

y

x

Average value of
f (x, y) 5 2 2 x 2 y
over R is zero.

2

2

2

R

f (x, y) 5 2 2 x 2 y

Figure 16.8
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 16.1 Double Integrals over Rectangular Regions 1015

Getting Started
1. Write an iterated integral that gives the volume of the 

solid bounded by the surface ƒ1x, y2 = xy over the square 
R = 51x, y2: 0 … x … 2, 1 … y … 36.

2. Write an iterated integral that gives the volume of a box with 
height 10 and base R = 51x, y2: 0 … x … 5, -2 … y … 46.

3. Write two iterated integrals that equal 6R ƒ1x, y2 dA, where 
R = 51x, y2: -2 … x … 4, 1 … y … 56.

4. Consider the integral #3
1 #1

-112y2 + xy2 dy dx. State the variable 
of integration in the first (inner) integral and the limits of integra-
tion. State the variable of integration in the second (outer) integral 
and the limits of integration.

5. Region R = 51x, y2: 0 … x … 4, 0 … y … 66 is partitioned into 
six equal subregions (see figure, which also shows the level curves 
of a function ƒ continuous on the region R). Estimate the value of 

6R ƒ1x, y2 dA by evaluating the Riemann sum a
6

k = 1

ƒ1x*
k, y

*
k2∆Ak,  

where 1x*
k, y

*
k2 is the center of the kth subregion, for  

k = 1, c, 6.
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6. Draw a solid whose volume is given by the double integral #6
0 #2

1 10 dy dx. Then evaluate the integral using geometry.

Practice Exercises
7–24. Iterated integrals Evaluate the following iterated integrals.

7. ∫2

0
∫1

0
 4xy dx dy 8. ∫2

1
∫1

0
13x2 + 4y32 dy dx

9. ∫3

1
∫2

0
x2y dx dy 10. ∫3

0
∫1

-2
12x + 3y2 dx dy

11. ∫3

1
∫p>2

0
x sin y dy dx 12. ∫3

1
∫2

1
1y2 + y2 dx dy

13. ∫4

1
∫4

0
1uv du dv 14. ∫p>4

0
∫3

0
r sec u dr du

15. ∫ ln 5

1
∫ ln 3

0
ex + y dx dy 16. ∫p>2

0
∫1

0
uv cos 1u2v2 du dv

17. ∫1

0
∫1

0
t2est ds dt 18. ∫2

0
∫1

0
 

8xy

1 + x4 dx dy

19. ∫ e

1
∫1

0
41 p + q2 ln q dp dq 20. ∫1

0
∫p

0
y2 cos xy dx dy
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21. ∫2

1
∫2

1
 

x
x + y

 dy dx 22. ∫2

0
∫1

0
x5y2ex3y3 dy dx

23. ∫1

0
∫4

1

3y2x + y2
 dx dy 24. ∫1

0
∫1

0
x2y2ex3y dx dy

25–35. Double integrals Evaluate each double integral over the region 
R by converting it to an iterated integral.

25. 6
R

1x + 2y2 dA; R = 51x, y2: 0 … x … 3, 1 … y … 46

26. 6
R

1x2 + xy2 dA; R = 51x, y2: 1 … x … 2, -1 … y … 16

27. 6
R

s2t sin 1st22 dA; R = 51s, t2: 0 … s … p, 0 … t … 16

28. 6
R

x
1 + xy

 dA; R = 51x, y2: 0 … x … 1, 0 … y … 16

29. 6
R
Ax

y
 dA; R = 51x, y2: 0 … x … 1, 1 … y … 46

30. 6
R

xy sin x2 dA; R = 51x, y2: 0 … x … 1p>2 , 0 … y … 16

31. 6
R

ex + 2y dA; R = 51x, y2: 0 … x … ln 2, 1 … y … ln 36

32. 6
R

1x2 - y222 dA; R = 51x, y2: -1 … x … 2, 0 … y … 16

33. 6
R

1x5 - y522 dA; R = 51x, y2: 0 … x … 1, -1 … y … 16

34. 6
R

cos 1x1y2 dA; R = 51x, y2: 0 … x … 1, 0 … y … p2>46

35. 6
R

x3y cos 1x2y22 dA; R = 51x, y2: 0 … x … 1p>2, 0 … y … 16

36–39. Volumes of solids Find the volume of the following solids.

36. The solid beneath the cylinder ƒ1x, y2 = e-x and above the region 
R = 51x, y2: 0 … x … ln 4, -2 … y … 26

z

y

x

f (x, y) 5 e2x

22

2

ln 4
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1016 Chapter 16  •  Multiple Integration

37. The solid beneath the plane ƒ1x, y2 = 24 - 3x - 4y and above 
the region R = 51x, y2: -1 … x … 3, 0 … y … 26

y

z

x

f (x, y) 5 24 2 3x 2 4y

2
3

24

21

38. The solid in the first octant bounded above by the surface 
z = 9xy21 - x224 - y2 and below by the xy-plane

39. The solid in the first octant bounded by the surface 
z = xy221 - x2 and the planes z = 0 and y = 3

40–45. Choose a convenient order When converted to an iterated inte-
gral, the following double integrals are easier to evaluate in one order 
than the other. Find the best order and evaluate the integral.

40. 6
R

y cos xy dA; R = 51x, y2: 0 … x … 1, 0 … y … p>36

41. 6
R

1y + 12ex1y + 12 dA; R = 51x, y2: 0 … x … 1, -1 … y … 16

42. 6
R

x sec 2 xy dA; R = 51x, y2: 0 … x … p>3, 0 … y … 16

43. 6
R

6x5ex3y dA; R = 51x, y2: 0 … x … 2, 0 … y … 26

44. 6
R

y3 sin 1xy22 dA; R = 51x, y2: 0 … x … 2, 0 … y … 1p>2 6

45. 6
R

x

11 + xy22 dA; R = 51x, y2: 0 … x … 4, 1 … y … 26

46–48. Average value Compute the average value of the following 
functions over the region R.

46. ƒ1x, y2 = 4 - x - y; R = 51x, y2: 0 … x … 2, 0 … y … 26
47. ƒ1x, y2 = e-y; R = 51x, y2: 0 … x … 6, 0 … y … ln 26
48. ƒ1x, y2 = sin x sin y; R = 51x, y2: 0 … x … p, 0 … y … p6
49. Average value Find the average squared distance between the 

points of R = 51x, y2: -2 … x … 2, 0 … y … 26 and the origin.

50. Average value Find the average squared distance between the points 
of R = 51x, y2: 0 … x … 3, 0 … y … 36 and the point 13, 32.

51. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. The region of integration for #6
4 #3

1  4 dx dy is a square.
b. If ƒ is continuous on ℝ2, then #6

4 #3
1 ƒ1x, y2 dx dy = #6

4 #3
1 ƒ1x, y2 dy dx.

c. If ƒ is continuous on ℝ2, then #6
4 #3

1 ƒ1x, y2 dx dy = #3
1 #6

4 ƒ1x, y2 dy dx.

52. Symmetry Evaluate the following integrals using symmetry argu-
ments. Let R = 51x, y2: -a … x … a, -b … y … b6, where a 
and b are positive real numbers.

a. 6
R

xye-1x2 + y22 dA b. 6
R

sin 1x - y2
x2 + y2 + 1

 dA

53. Computing populations The population densities in nine districts 
of a rectangular county are shown in the figure.

a. Use the fact that population = 1population density2 * 1area2 
to estimate the population of the county.

b. Explain how the calculation of part (a) is related to Riemann 
sums and double integrals.

2

1

31

Population densities have
units of people/mi2.

250 200 150

500 400 250

350 300 150

0

y (mi) 

x (mi)3
2

1
2

54. Approximating water volume The varying depth of an 
18 m * 25 m swimming pool is measured in 15 different rectan-
gles of equal area (see figure). Approximate the volume of water 
in the pool.

18

25

Depth readings have units of m.

1 1.5 2.0 2.5

0.75 1.25 1.75 2.25

3.0

1 1.5 2.0 2.5 3.0

2.75

0

y (m) 

x (m)

Explorations and Challenges
55. Cylinders Let S be the solid in ℝ3 between the cylinder z = ƒ1x2 

and the region R = 51x, y2: a … x … b, c … y … d6, where 
ƒ1x2 Ú 0 on R. Explain why #d

c #b
a ƒ1x2 dx dy equals the area of 

the constant cross section of S multiplied by 1d - c2, which is the 
volume of S.

56. Product of integrals Suppose ƒ1x, y2 = g1x2h1y2, where g and h 
are continuous functions for all real values of x and y.

a. Show that #d
c #b

a ƒ1x, y2 dx dy = 1#b
a g1x2 dx21#d

c h1y2 dy2.  
Interpret this result geometrically.

b. Write 1#b
a g1x2 dx2 2 as an iterated integral.

c. Use the result of part (a) to evaluate #2p
0 #30

10  e
-4y2

cos x dy dx.

57. Solving for a parameter Let R = 51x, y2: 0 … x … p, 
0 … y … a6. For what values of a, with 0 … a … p, is 
6R sin 1x + y2 dA equal to 1?

58–59. Zero average value Find the value of a 7 0 such that the aver-
age value of the following functions over R = 51x, y2: 0 … x … a, 
0 … y … a6 is zero.

58. ƒ1x, y2 = x + y - 8 59. ƒ1x, y2 = 4 - x2 - y2

T
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 16.2 Double Integrals over General Regions 1017

60. Maximum integral Consider the plane x + 3y + z = 6 over 
the rectangle R with vertices at 10, 02, 1a, 02, 10, b2, and 1a, b2, 
where the vertex 1a, b2 lies on the line where the plane intersects 
the xy-plane (so a + 3b = 6). Find the point 1a, b2 for which the 
volume of the solid between the plane and R is a maximum.

61. Density and mass Suppose a thin rectangular plate, represented by a 
region R in the xy-plane, has a density given by the function r1x, y2; 
this function gives the area density in units such as grams per square 
centimeter 1g>cm22. The mass of the plate is 6R r1x, y2 dA. Assume  
R = 51x, y2: 0 … x … p>2, 0 … y … p6 and find the mass of 
the plates with the following density functions.

a. r1x, y2 = 1 + sin x b. r1x, y2 = 1 + sin y
c. r1x, y2 = 1 + sin x sin y

62. Approximating volume Propose a method based on Riemann 
sums to approximate the volume of the shed shown in the figure 
(the peak of the roof is directly above the rear corner of the shed). 
Carry out the method and provide an estimate of the volume.

12

16

10

8

63. An identity Suppose the second partial derivatives of ƒ are con-
tinuous on R = 51x, y2: 0 … x … a, 0 … y … b6. Simplify 

6
R

 
02ƒ

0x 0y
 dA.

QUICK CHECK ANSWERS

1. The sum gives the volume of a collection of rectangular 
boxes, and these boxes do not exactly fill the solid region 
under the surface. The approximation is improved by using 
more boxes. 2. Inner integral: x runs from x = 1 to x = 2; 
outer integral: y runs from y = 3 to y = 4. The region is the 
rectangle 51x, y2: 1 … x … 2, 3 … y … 46.

3. #20
0 #10

-10 1x2y + 2xy32 dx dy	

16.2  Double Integrals over General 
Regions

Evaluating double integrals over rectangular regions is a useful place to begin our study 
of multiple integrals. Problems of practical interest, however, usually involve nonrectan-
gular regions of integration. The goal of this section is to extend the methods presented in  
Section 16.1 so that they apply to more general regions of integration.

General Regions of Integration
Consider a function ƒ defined over a closed, bounded nonrectangular region R in the  
xy-plane. As with rectangular regions, we use a partition consisting of rectangles, but now, 
such a partition does not cover R exactly. In this case, only the n rectangles that lie entirely 
within R are considered to be in the partition (Figure 16.9). When ƒ is nonnegative on R, 
the volume of the solid bounded by the surface z = ƒ1x, y2 and the xy-plane over R is  
approximated by the Riemann sum

V ≈ a
n

k = 1

 ƒ1xk
*, yk

*2∆Ak,

where ∆Ak = ∆xk∆yk is the area of the kth rectangle and 1xk
*, yk

*2 is any point in the kth 
rectangle, for 1 … k … n. As before, we define ∆ to be the maximum length of the diago-
nals of the rectangles in the partition.

Under the assumptions that ƒ is continuous on R and that the boundary of R consists 
of a finite number of smooth curves, two things occur as ∆ S 0 and the number of rect-
angles increases 1n S ∞2.
• The rectangles in the partition fill R more and more completely; that is, the union of the 

rectangles approaches R.

• Over all partitions and all choices of 1xk
*, yk

*2 within a partition, the Riemann sums  
approach a (unique) limit.

R

y

xO

Figure 16.9
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1018 Chapter 16  •  Multiple Integration

The limit approached by the Riemann sums is the double integral of ƒ over R; that 
is,

6
R

ƒ1x, y2 dA =  lim
∆S0

 a
n

k = 1
 ƒ1xk

*, yk
*2∆Ak.

When this limit exists, ƒ is integrable over R. If ƒ is nonnegative on R, then the double 
 integral equals the volume of the solid bounded by the surface z = ƒ1x, y2 and the 
 xy-plane over R (Figure 16.10).

The double integral 6R ƒ1x, y2 dA has another common interpretation. Suppose R 
represents a thin plate whose density at the point 1x, y2 is ƒ1x, y2. The units of density are 
mass per unit area, so the product ƒ1xk

*, yk
*2∆Ak approximates the mass of the kth rectangle 

in R. Summing the masses of the rectangles gives an approximation to the total mass of R. 
In the limit as n S ∞  and ∆ S 0, the double integral equals the mass of the plate.

Iterated Integrals
Double integrals over nonrectangular regions are also evaluated using iterated integrals. 
However, in this more general setting, the order of integration is critical. Most of the dou-
ble integrals we encounter fall into one of two categories determined by the shape of the 
region R.

The first type of region has the property that its lower and upper boundaries are the 
graphs of continuous functions y = g1x2 and y = h1x2, respectively, for a … x … b. 
Such regions have any of the forms shown in Figure 16.11.

Once again, we appeal to the general slicing method. Assume for the moment that 
ƒ is nonnegative on R and consider the solid bounded by the surface z = ƒ1x, y2 and R  
(Figure 16.12). Imagine taking vertical slices through the solid parallel to the yz-plane. 
The cross section through the solid at a fixed value of x extends from the lower curve 
y = g1x2 to the upper curve y = h1x2. The area of that cross section is

A1x2 = ∫h1x2
g1x2 ƒ1x, y2 dy,   for a … x … b.

The volume of the solid is given by a double integral; it is evaluated by integrating the 
cross-sectional areas A1x2 from x = a to x = b:

6
R

ƒ1x, y2 dA = ∫b

a
∫h1x2

g1x2 ƒ1x, y2 dy dx.
(++)++*
   A1x2

The limits of integration in the iterated integral describe the boundaries of the region of 
integration R.

y

x

z

z 5 f (x, y)

R

Volume of solid 5 EE f (x, y) dA
R

k51

n

S f (xk
*, yk

*) DAk5 lim
D$0

Figure 16.10

y

xa b

y

x

y

x

a b

a b

y 5 h(x)

y 5 g(x)

y 5 h(x)

y 5 g(x)

y 5 h(x)

y 5 g(x)

R

R

R

Figure 16.11

x

y

z

 x

 b

 a

z 5 f (x, y)

Integrate
the cross-
sectional
areas A(x).

A(x)

y 5 g(x)

y 5 h(x)

Figure 16.12
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 16.2 Double Integrals over General Regions 1019

EXAMPLE 1 Evaluating a double integral Express the integral 6R 2x2y dA as an iter-
ated integral, where R is the region bounded by the parabolas y = 3x2 and y = 16 - x2. 
Then evaluate the integral.

SOLUTION The region R is bounded below and above by the graphs of g1x2 = 3x2 and 
h1x2 = 16 - x2, respectively. Solving 3x2 = 16 - x2, we find that these curves  
intersect at x = -2 and x = 2, which are the limits of integration in the x-direction  
(Figure 16.13).

Figure 16.14 shows the solid bounded by the surface z = 2x2y and the region R. A 
typical vertical cross section through the solid parallel to the yz-plane at a fixed value  
of x has area

A1x2 = ∫16-x2

3x2
2x2y dy.

Integrating these cross-sectional areas between x = -2 and x = 2, the iterated integral 
becomes

 6
R

2x2y dA = ∫2

-2
∫16-x2

3x2
2x2y dy dx  Convert to an iterated integral.

(++)++*
  A1x2

 = ∫2

-2
x2y2 `

16-x2

3x2
dx  

 Evaluate inner integral  
with respect to y.

 = ∫2

-2
x21116 - x222 - 13x2222 dx Simplify.

 = ∫2

-2
1-8x6 - 32x4 + 256x22 dx  Simplify.

 ≈ 663.2.  
 Evaluate outer integral  
with respect to x.

Because z = 2x2y Ú 0 on R, the value of the integral is the volume of the solid shown in 
Figure 16.14.

Related Exercises 12, 46	

y

x222

y 5 16 2 x2
y 5 3x2

R

The bounding curves
determine the limits
of integration in y.

The projection of R
on the x-axis
determines the limits
of integration in x.

Figure 16.13

z

x

y

y 5 16 2 x2
y 5 3x2

z 5 2x2y

R

A(x) 5 E        2x2y dy
3x2

162x2

Figure 16.14

QUICK CHECK 1 A region R is bounded 
by the x- and y-axes and the line 
x + y = 2. Suppose you integrate 
first with respect to y. Give the limits 
of the iterated integral over R.	

Change of Perspective Suppose the region of integration R is bounded on the left and 
right by the graphs of continuous functions x = g1y2 and x = h1y2, respectively, on the 
interval c … y … d. Such regions may take any of the forms shown in Figure 16.15.

y

x

c

d

y

x

c

d

y

x

c

d

R
R R

x 5 g(y)

x 5 h(y)

x 5 g(y)

x 5 h(y)

x 5 h(y)

x 5 g(y)

Figure 16.15

To find the volume of the solid bounded by the surface z = ƒ1x, y2 and R, we now 
take vertical slices parallel to the xz-plane. The double integral 6R ƒ1x, y2 dA is then 
 converted to an iterated integral in which the inner integration is with respect to x over the 
interval g1y2 … x … h1y2 and the outer integration is with respect to y over the interval 
c … y … d. The evaluation of double integrals in these two cases is summarized in the 
following theorem.
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1020 Chapter 16  •  Multiple Integration

EXAMPLE 2 Computing a volume Find the volume of the solid below the surface  

ƒ1x, y2 = 2 +
1
y

 and above the region R in the xy-plane bounded by the lines  

y = x, y = 8 - x, and y = 1. Notice that ƒ1x, y2 7 0 on R.

SOLUTION The region R is bounded on the left by x = y and bounded on the right by 
y = 8 - x, or x = 8 - y (Figure 16.16). These lines intersect at the point 14, 42. We 
take vertical slices through the solid parallel to the xz-plane from y = 1 to y = 4. To  
visualize these slices, it helps to draw lines through R parallel to the x-axis.

Integrating the cross-sectional areas of slices from y = 1 to y = 4, the volume of the 
solid beneath the graph of ƒ and above R (Figure 16.17) is given by

 6
R

a2 +
1
y
b  dA = ∫4

1
∫8-y

y
a2 +

1
y
b  dx dy  Convert to an iterated integral.

 = ∫4

1
a2 +

1
y
bx `

8-y

y
 dy  

 Evaluate inner integral  
with respect to x.

 = ∫4

1
a2 +

1
y
b18 - 2y2 dy  Simplify.

 = ∫4

1
a14 - 4y +

8
y
b  dy  Simplify.

 = 114y - 2y2 + 8 ln 0 y 0 2 ` 4
1
 

 Evaluate outer integral  
with respect to y.

 = 12 + 8 ln 4 ≈ 23.09.  Simplify.
Related Exercise 74	

➤	 Theorem 16.2 is another version of Fubini’s 
Theorem. With integrals over nonrectangular 
regions, the order of integration cannot be 
simply switched; that is,

∫b

a
∫h1x2

g1x2 ƒ1x, y2 dy dx

 ≠ ∫h1x2
g1x2 ∫

b

a
ƒ1x, y2 dx dy.

The element of area dA corresponds to the 
area of a small rectangle in the partition. 
Comparing the double integral to the iterated 
integral, we see that the element of area is 
dA = dy dx or dA = dx dy, which is con-
sistent with the area formula for rectangles.

THEOREM 16.2 Double Integrals over Nonrectangular Regions
Let R be a region bounded below and above by the graphs of the continuous func-
tions y = g1x2 and y = h1x2, respectively, and by the lines x = a and x = b (Fig-
ure 16.11). If ƒ is continuous on R, then

6
R

ƒ1x, y2 dA = ∫b

a
∫h1x2

g1x2 ƒ1x, y2 dy dx.

Let R be a region bounded on the left and right by the graphs of the continuous 
functions x = g1y2 and x = h1y2, respectively, and the lines y = c and y = d 
(Figure 16.15). If ƒ is continuous on R, then

6
R

ƒ1x, y2 dA = ∫d

c
∫h1y2

g1y2 ƒ1x, y2 dx dy.

y

x1 7 8

1

4

R

(4, 4)
y 5 x or
x 5 y y 5 8 2 x or

x 5 8 2 y

The bounding curves
determine the limits
of integration in x.

The projection of R on the
y-axis determines the limits
of integration in y.

Figure 16.16

x

y

z

R

f (x, y) 5 2 1 1
y

y 5 1

x 5 y

x 5 8 2 y

Figure 16.17

QUICK CHECK 2 Could the integral in Example 2 be evaluated by integrating first (inner 
integral) with respect to y?	

Choosing and Changing the Order of Integration
Occasionally, a region of integration is bounded above and below by a pair of curves and 
the region is bounded on the right and left by a pair of curves. For example, the region R 
in Figure 16.18 is bounded above by y = x1>3 and below by y = x2, and it is bounded on 
the right by x = 1y and on the left by x = y3. In these cases, we can choose either of 
two orders of integration; however, one order of integration may be preferable. The fol-
lowing examples illustrate the valuable techniques of choosing and changing the order 
of integration.

y

x1

1

R

y 5 x1/3 or
x 5 y3

R is bounded above and below,
and on the right and left, by curves.

Figure 16.18

M16_BRIG3644_03_SE_C16_1008-1088.indd   1020 25/10/17   2:45 PM



 16.2 Double Integrals over General Regions 1021

EXAMPLE 3 Volume of a tetrahedron Find the volume of the tetrahedron (pyramid 
with four triangular faces) in the first octant bounded by the plane z = c - ax - by and 
the coordinate planes (x = 0, y = 0, and z = 0). Assume a, b, and c are positive real 
numbers (Figure 16.19).

SOLUTION Let R be the triangular base of the tetrahedron in the xy-plane; it is bounded 
by the x- and y-axes and the line ax + by = c (found by setting z = 0 in the equation of 
the plane; Figure 16.20). We can view R as being bounded below and above by the lines 
y = 0 and y = c>b - ax>b, respectively. The boundaries on the left and right are then 
x = 0 and x = c>a, respectively. Therefore, the volume of the solid region between the 
plane and R is

 6
R

1c - ax - by2 dA = ∫ c>a
0
∫ c>b-ax>b

0
1c - ax - by2 dy dx  

 Convert to an iterated  
integral.

 = ∫ c>a
0
acy - axy -

by2

2
b ` c>b-ax>b

0
 dx 

 Evaluate inner integral  
with respect to y.

 = ∫ c>a
0

 
1ax - c22

2b
 dx  Simplify and factor.

 =
c3

6ab
.  

 Evaluate outer integral  
with respect to x.

This result illustrates the volume formula for a tetrahedron. The lengths of the legs of the 
triangular base are c>a and c>b, which means the area of the base is c2>12ab2. The height 
of the tetrahedron is c. The general volume formula is

V =
c3

6ab
=

1
3

 
c2

2ab
  #  c =

1
3

 1area of base21height2.
  ()*  

"

 area of 
height 

 base

Related Exercise 73	

y

x

z

c
b

c
a

c

z 5 c 2 ax 2 by

R

Figure 16.19

y

x

R

y 5 0

c
b

c
a

c
b

ax 1 by 5 c or
y 5 2

ax
b

Figure 16.20

➤	 In Example 3, it is just as easy to view R 
as being bounded on the left and the right 
by the lines x = 0 and x = c>a - by>a, 
respectively, and integrating first with 
respect to x.

EXAMPLE 4 Changing the order of integration Consider the iterated integral #1p
0 #1p

y  sin x2 dx dy. Sketch the region of integration determined by the limits of inte-
gration and then evaluate the iterated integral.

SOLUTION The region of integration is R = 51x, y2: y … x … 1p, 0 … y … 1p6, 
which is a triangle (Figure 16.21a). Evaluating the iterated integral as given (integrating 
first with respect to x) requires integrating sin x2, a function whose antiderivative is not 
expressible in terms of elementary functions. Therefore, this order of integration is not 
feasible.

y

x

y

xy 5 0

x 5 y

Integrating first
with respect to x
does not work. Instead...

... we integrate first
with respect to y.

p

x 5     p

y 5 x
R R

y

p

0
E      E     sin x2 dx dy

(a) (b)

E     E  sin x2 dy dx
0

x

0
pp

p

p p

x 5     p

Figure 16.21
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1022 Chapter 16  •  Multiple Integration

Regions Between Two Surfaces
An extension of the preceding ideas allows us to solve more general volume problems. Let 
z = ƒ1x, y2 and z = g  1x, y2 be continuous functions with ƒ1x, y2 Ú g  1x, y2 on a region 
R in the xy-plane. Suppose we wish to compute the volume of the solid between the two 
surfaces over the region R (Figure 16.22). Forming a Riemann sum for the volume, the 
height of a typical box within the solid is the vertical distance ƒ1x, y2 - g  1x, y2 between 
the upper and lower surfaces. Therefore, the volume of the solid between the surfaces is

V = 6
R

1ƒ1x, y2 - g  1x, y22 dA.

Instead, we change our perspective (Figure 16.21b) and integrate first with respect to 
y. With this order of integration, y runs from y = 0 to y = x in the inner integral, and x 
runs from x = 0 to x = 1p in the outer integral:

 6
R

sin x2 dA = ∫
1p

0
∫

x

0
sin x2 dy dx

 = ∫
1p

0
y sin x2 `

x

0
 dx  

 Evaluate inner integral with  
respect to y; sin x2 is constant.

 = ∫
1p

0
x sin x2 dx  Simplify.

 = -
1
2

 cos x2 `
1p

0
 Evaluate outer integral with respect to x.

 = 1.  Simplify.

This example shows that the order of integration can make a practical difference.
Related Exercises 58, 64	

QUICK CHECK 3 Change the order 
of integration of the integral #1

0 #y
0  ƒ1x, y2 dx dy.	

yx

z

z 5 f (x, y)

z 5 g(x, y)

Volume 5 EE ( f (x, y) 2 g(x, y)) dA
R

R

Shadow of the solid
in the xy-plane

Figure 16.22

EXAMPLE 5 Region bounded by two surfaces Find the volume of the solid  
bounded by the parabolic cylinder z = 1 + x2 and the planes z = 5 - y and y = 0  
(Figure 16.23).

SOLUTION The upper surface bounding the solid is z = 5 - y and the lower surface is 
z = 1 + x2; these two surfaces intersect along a curve C. Solving 5 - y = 1 + x2, we 
find that y = 4 - x2, which is the projection of C onto the xy-plane. The back wall of 
the solid is the plane y = 0, and its projection onto the xy-plane is the x-axis. This line 
1y = 02 intersects the parabola y = 4 - x2 at x = {2. Therefore, the region of integra-
tion (Figure 16.23) is

R = 51x, y2: 0 … y … 4 - x2, -2 … x … 26.

Notice that both R and the solid are symmetric about the yz-plane. Therefore, the volume 
of the entire solid is twice the volume of that part of the solid that lies in the first octant. 
The volume of the solid is

 2∫2

0
∫4-x2

0
115 - y2 - 11 + x222 dy dx(1)1*   (1)1*

ƒ1x, y2    g  1x, y2

 = 2∫2

0
∫4-x2

0
14 - x2 - y2 dy dx  Simplify the integrand.

 = 2∫2

0
a14 - x22y -

y2

2
b ` 4-x2

0
 dx  

Evaluate inner integral  
with respect to y.

 = ∫2

0
1x4 - 8x2 + 162 dx  Simplify.

 = a x5

5
-

8x3

3
+ 16xb ` 2

0
 

 Evaluate outer integral with  
respect to x.

 =
256
15

.  Simplify.

Related Exercises 78–79	

22

2

5

4

R

C

z 5 1 1 x2

y 5 4 2 x2

Intersection
curve C

Projection of C
onto the xy-plane

y
x

z

z 5 5 2 y

y 5 0

Figure 16.23

➤	 To use symmetry to simplify a double 
integral, you must check that both the 
region of integration and the integrand 
have the same symmetry.

M16_BRIG3644_03_SE_C16_1008-1088.indd   1022 25/10/17   2:45 PM



 16.2 Double Integrals over General Regions 1023

Decomposition of Regions
We occasionally encounter regions that are more complicated than those considered so 
far. A technique called decomposition allows us to subdivide a region of integration into 
two (or more) subregions. If the integrals over the subregions can be evaluated separately, 
the results are added to obtain the value of the original integral. For example, the region R 
in Figure 16.24 is divided into two nonoverlapping subregions R1 and R2. By partitioning 
these regions and using Riemann sums, it can be shown that

6
R

ƒ1x, y2 dA = 6
R1

ƒ1x, y2 dA + 6
R2

ƒ1x, y2 dA.

This method is illustrated in Example 6. The analog of decomposition with single variable 
integrals is the property #b

a  ƒ1x) dx = #p
a ƒ1x) dx + #b

p  ƒ1x2 dx.

O

y

x

R1

R2

R 5 R1 < R2

Figure 16.24

x

y

z

R

Volume of solid 5 (area of R) 3 (height)

5 area of R 5 EE 1 dA

height 5 1

z 5 1

R

Figure 16.25

➤	 We are solving a familiar area problem 
first encountered in Section 6.2. Suppose 
R is bounded above by y = h1x2 and 
below by y = g1x2, for a … x … b. 
Using a double integral, the area of R is

 6
R

dA = ∫b

a
∫h1x2

g1x2 dy dx

 = ∫b

a
1h1x2 - g1x22 dx,

which is a result obtained in Section 6.2.

Areas of Regions by Double Integrals

Let R be a region in the xy-plane. Then

area of R = 6
R

dA.

EXAMPLE 6 Area of a plane region Find the area of the region R bounded by 
y = x2, y = -x + 12, and y = 4x + 12 (Figure 16.26).

SOLUTION The region R in its entirety is bounded neither above and below by two curves, 
nor on the left and right by two curves. However, when decomposed along the y-axis, R 
may be viewed as two regions R1 and R2, each of which is bounded above and below by a 
pair of curves. Notice that the parabola y = x2 and the line y = -x + 12 intersect in the 
first quadrant at the point 13, 92, while the parabola and the line y = 4x + 12 intersect in 
the second quadrant at the point 1-2, 42.

To find the area of R, we integrate the function ƒ1x, y2 = 1 over R1 and R2; the area is

 6
R1

1 dA + 6
R2

1 dA  Decompose region.

 = ∫0

-2
∫4x+12

x2
 1 dy dx + ∫3

0
∫-x+12

x2
 1 dy dx  Convert to iterated integrals.

 = ∫0

-2
 14x + 12 - x22 dx + ∫3

0
 1-x + 12 - x22 dx 

 Evaluate inner integrals  
with respect to y.

 = a2x2 + 12x -
x3

3
b ` 0

-2
+ a - x2

2
+ 12x -

x3

3
b ` 3

0
 

 Evaluate outer integrals  
with respect to x.

 =
40
3

+
45
2

=
215
6

 .  Simplify.

Related Exercise 86	

y

x1 421

2

12

24

y 5 2x 1 12

(22, 4)

(3, 9)

y 5 x2

R1 R2

y 5 4x 1 12

Figure 16.26

QUICK CHECK 4 Consider the triangle R with vertices 1-1, 02, 11, 02, and 10, 12 as a region 
of integration. If we integrate first with respect to x, does R need to be decomposed? If we 
integrate first with respect to y, does R need to be decomposed?	

Finding Area by Double Integrals
An interesting application of double integrals arises when the integrand is ƒ1x, y2 = 1. 
The integral 6R 1 dA gives the volume of the solid between the horizontal plane z = 1 
and the region R. Because the height of this solid is 1, its volume equals (numerically) 
the area of R (Figure 16.25). Therefore, we have a way to compute areas of regions in the  
xy-plane using double integrals.

M16_BRIG3644_03_SE_C16_1008-1088.indd   1023 25/10/17   2:45 PM



1024 Chapter 16  •  Multiple Integration

Getting Started
1. Describe and sketch a region that is bounded above and below by 

two curves.

2. Describe and sketch a region that is bounded on the left and on the 
right by two curves.

3. Which order of integration is preferable to integrate ƒ1x, y2 = xy 
over R = 51x, y2: y - 1 … x … 1 - y, 0 … y … 16?

4. Which order of integration would you use to find the area of 
the region bounded by the x-axis and the lines y = 2x + 3 and 
y = 3x - 4 using a double integral?

5. Change the order of integration in the integral ∫1

0
∫1y

y2
ƒ1x, y2 dx dy.

6. Sketch the region of integration for ∫2

-2
∫4

x2
 exy dy dx.

7. Sketch the region of integration for ∫2

0
∫2x

0
 dy dx and use geometry 

to evaluate the iterated integral.

8. Describe a solid whose volume equals ∫4

-4
∫216-x2

-216-x2
 10 dy dx and 

evaluate this iterated integral using geometry.

9–10. Consider the region R shown in the figure and write an iterated 
integral of a continuous function ƒ over R.

9. y

x1

2

10

y 5 4x
(2, 8)

y 5 x3

R

 10. y

x26 22 2 6

10

40

y 5 2x 1 24

(4, 32)

y 5 2x2R

Practice Exercises
11–27. Evaluating integrals Evaluate the following integrals.

11. ∫
1

0
∫

1

x
6y dy dx 12. ∫

1

0
∫

2x

0
15xy2 dy dx

13. ∫
2

0
∫

2x

x2
xy dy dx 14. ∫

p>4

-p>4∫
cos x

sin x
dy dx

15. ∫
2

-2
∫

8-x2

x2
x dy dx 16. ∫

ln 2

0
∫

2

ex
 dy dx

17. ∫
1

0
∫

x

0
2ex2

dy dx 18. ∫
23 p>2

0
∫

x

0
 y cos x3 dy dx

19. ∫
ln 2

0
∫

2

ey
 
y

x
 dx dy 20. ∫

4

0
∫

2y

y
xy dx dy

21. ∫
p>2

0
∫

p>2

y
6 sin 12x - 3y2 dx dy

22. ∫
p>2

0
∫

cos y

0
esin y dx dy 23. ∫

p>2

0
∫

y cos y

0
dx dy

24. ∫
1

0
∫

p>4

tan -1 x
2x dy dx 25. ∫

4

0
∫
216-y2

-216-y2
 2xy dx dy

SECTION 16.2 EXERCISES

26. ∫
1

0
∫

x

0
2ex dy dx 27. ∫

p

p>2∫
y2

0
cos 

x
y

 dx dy

28–34. Regions of integration Sketch each region R and write an  
iterated integral of a continuous function ƒ over R. Use the  
order dy dx.

28. R = 51x, y2: 0 … x … 2, 3x2 … y … -6x + 246
29. R = 51x, y2: 1 … x … 2, x + 1 … y … 2x + 46
30. R = 51x, y2: 0 … x … 4, x2 … y … 81x6
31. R is the triangular region with vertices 10, 02, 10, 22, and 11, 02.
32. R is the triangular region with vertices 10, 02, 10, 22, and 11, 12.
33. R is the region in the first quadrant bounded by a circle of radius 1 

centered at the origin.

34. R is the region in the first quadrant bounded by the y-axis and the 
parabolas y = x2 and y = 1 - x2.

35–42. Regions of integration Write an iterated integral of a continu-
ous function ƒ over the region R. Use the order dy dx. Start by sketch-
ing the region of integration if it is not supplied.

35. y

x4 10

20

10

R y 5 3x 2 9

(9, 18)
y 5 2x

 36. y

x22 6

2

26

R

y 5 23x 1 5

x 5     25 2 y2

(3, 24)

37. R is the region bounded by y = 4 - x, y = 1, and x = 0.

38. R = 51x, y2: 0 … x … y11 - y26.

39. R is the region bounded by y = 2x + 3, y = 3x - 7, and y = 0.

40. R is the region in quadrants 2 and 3 bounded by the semicircle 
with radius 3 centered at 10, 02.

41. R is the region bounded by the triangle with vertices 10, 02,  
12, 02, and 11, 12.

42. R is the region in the first quadrant bounded by the x-axis, the line 
x = 6 - y, and the curve y = 1x.

43–56. Evaluating integrals Evaluate the following integrals. A sketch 
is helpful.

43. 6R xy dA; R is bounded by x = 0, y = 2x + 1, and y = -2x + 5.

44. 6R 1x + y2 dA; R is the region in the first quadrant bounded by 
x = 0, y = x2, and y = 8 - x2.

45. 6R y
2 dA; R is bounded by x = 1, y = 2x + 2, and y = -x - 1.

46. 6R x
2y dA; R is the region in quadrants 1 and 4 bounded by the 

semicircle of radius 4 centered at 10, 02.
47. 6R 12y dA; R is bounded by y = 2 - x, y = 1x, and y = 0.

48. 6R y
2 dA; R is bounded by y = 1, y = 1 - x, and y = x - 1.
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 16.2 Double Integrals over General Regions 1025

49. 6R 3xy dA; R is the region in the first quadrant bounded by 
y = 2 - x, y = 0, and x = 4 - y2.

50. 6R1x + y2 dA; R is bounded by y = 0 x 0  and y = 4.

51. 6R 3x2 dA; R is bounded by y = 0, y = 2x + 4, and y = x3.

52. 6R 8xy dA; R = 51x, y2: 0 … y … sec x, 0 … x … p>46
53. 6R 1x + y2 dA; R is the region bounded by y = 1>x and 

y = 5>2 - x.

54. 6R 
y

1 + x + y2 dA; R = 51x, y2: 0 … 1x … y, 0 … y … 16

55. 6R x sec 2 y dA; R = 51x, y2: 0 … y … x2, 0 … x … 1p>26

56. 6R 
8xy

1 + x2 + y2 dA; R = 51x, y2: 0 … y … x, 0 … x … 26

71–80. Volumes Find the volume of the following solids.

71. The solid bounded by the cylinder z = 2 - y2, the xy-plane, the 
xz-plane, and the planes y = x and x = 1

1

y

x

z

1

2

z 5 2 2 y2

1

y 5 x
x 5 1

72. The solid bounded between the cylinder z = 2 sin2 x and the  
xy-plane over the region R = 51x, y2: 0 … x … y … p6

73. The tetrahedron bounded by the coordinate planes (x = 0, y = 0, 
and z = 0) and the plane z = 8 - 2x - 4y

74. The solid in the first octant bounded by the coordinate planes and 
the surface z = 1 - y - x2

75. The segment of the cylinder x2 + y2 = 1 bounded above by the 
plane z = 12 + x + y and below by z = 0

76. The solid S between the  
surfaces z = ex - y and  
z = -ex - y, where S  
intersects the xy-plane  
in the region  
R = 51x, y2: 0 … x … y,  
0 … y … 16

y

x

z

z 5 2ex 2 y

z 5 ex 2 y

R

77. The solid above the region  
R = 51x, y2: 0 … x … 1,  
0 … y … 2 - x6 and between  
the planes -4x - 4y + z = 0  
and -2x - y + z = 8

y

x

z
22x 2 y 1 z 5 8

24x 2 4y 1 z 5 0

1

1

2

y 5 2 2 x

R

57. ∫2

0
∫2x

x2
ƒ1x, y2 dy dx

y

x1

1

0

R

y 5 2x

(2, 4)

y 5 x2

58. ∫3

0
∫6-2x

0
ƒ1x, y2 dy dx

y

x1

1

0

R

y 5 6 2 2x

57–62. Changing order of integration Reverse the order of integra-
tion in the following integrals.

59. ∫1

1>2∫
-ln y

0
ƒ1x, y2 dx dy 60. ∫1

0
∫ ey

1
ƒ1x, y2 dx dy

61. ∫1

0
∫ cos - 1 y

0
ƒ1x, y2 dx dy 62. ∫ e

1
∫ ln x

0
ƒ1x, y2 dy dx

63–68. Changing order of integration Reverse the order of integra-
tion and evaluate the integral.

63. ∫1

0
∫1

y
ex2

 dx dy 64. ∫p
0
∫p

x
sin y2 dy dx

65. ∫1>2
0
∫1>4

y2
y cos 116px22 dx dy

66. ∫4

0
∫21x

 
x

y5 + 1
 dy dx 67. ∫13 p

0
∫13 py

 x4 cos 1x2y2 dx dy

68. ∫2

0
∫4-x2

0

xe2y

4 - y
 dy dx

69–70. Two integrals to one Draw the regions of integration and write 
the following integrals as a single iterated integral.

69. ∫1

0
∫ e

ey ƒ1x, y2 dx dy + ∫0

-1
∫ e

e-y ƒ1x, y2 dx dy

70. ∫0

-4
∫216-x2

0
ƒ1x, y2 dy dx + ∫4

0
∫4-x

0
ƒ1x, y2 dy dx
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1026 Chapter 16  •  Multiple Integration

78. The solid in the first octant  
bounded by the planes x = 0,  
y = 0, z = 1, and z = 2 - y,  
and the cylinder y = 1 - x2

z 5 1

z

x

y
R

z 5 2 2 y

79. The solid above the region  
R = 51x, y2: 0 … x … 1,  
0 … y … 1 - x6 bounded  
by the paraboloids  
z = x2 + y2 and  
z = 2 - x2 - y2 and  
the coordinate planes  
in the first octant

y

z

x

z 5 x2 1 y2

z 5 2 2 x2 2 y2

R

80. The solid bounded by the  
parabolic cylinder z = x2 + 1,  
and the planes z = y + 1  
and y = 1

z 5 x2 1 1

z 5 y 1 1

y

x

z

R

81–84. Volume using technology Find the volume of the following  
solids. Use a computer algebra system to evaluate an appropriate  
iterated integral.

81. The column with a square base R = 51x, y2: 0 x 0 … 1, 0 y 0 … 16 
cut by the plane z = 4 - x - y

82. The solid between the paraboloid z = x2 + y2 and the plane 
z = 1 - 2y

83. The wedge sliced from the cylinder x2 + y2 = 1 by the planes 
z = a12 - x2 and z = a1x - 22, where a 7 0

84. The solid bounded by the elliptical cylinder x2 + 3y2 = 12,  
the plane z = 0, and the paraboloid z = 3x2 + y2 + 1

T

85–90. Area of plane regions Use double integrals to compute the 
area of the following regions.

85. The region bounded by the parabola y = x2 and the line y = 4

86. The region bounded by the parabola y = x2 and the line 
y = x + 2

87. The region in the first quadrant bounded by y = ex and x = ln 2

88. The region bounded by y = 1 + sin x and y = 1 - sin x on the 
interval 30, p4

89. The region in the first quadrant bounded by y = x2, y = 5x + 6, 
and y = 6 - x

90. The region bounded by the lines x = 0, x = 4, y = x, and 
y = 2x + 1

91. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. In the iterated integral #d
c #b

a ƒ1x, y2 dx dy, the limits a and b 
must be constants or functions of x.

b. In the iterated integral #d
c #b

a ƒ1x, y2 dx dy, the limits c and d 
must be functions of y.

c. Changing the order of integration gives #2
0 #y

1 ƒ1x, y2 dx dy = #y
1 #2

0 ƒ1x, y2 dy dx.

Explorations and Challenges
92. Related integrals Evaluate each integral.

a. ∫4

0
∫4

0
14 - x - y2 dx dy b. ∫4

0
∫4

0
�4 - x - y �dx dy

93. Sliced block Find the volume of the solid bounded by the planes 
x = 0, x = 5, z = y - 1, z = -2y - 1, z = 0, and z = 2.

94. Square region Consider the region R = 51x, y2: 0 x 0 + 0 y 0 … 16 
shown in the figure.

a. Use a double integral to show that the area of R is 2.
b. Find the volume of the square column whose base is R and 

whose upper surface is z = 12 - 3x - 4y.
c. Find the volume of the solid above R and beneath the cylinder 

x2 + z2 = 1.
d. Find the volume of the pyramid whose base is R and whose 

vertex is on the z-axis at 10, 0, 62.

121

21

1

y

x

R

uxu 1 uyu # 1

95–96. Average value Use the definition for the average value of a 

function over a region R (Section 16.1), ƒ =
1

area of R
 6R ƒ1x, y2 dA.

95. Find the average value of a - x - y over the region 
R = 51x, y2: x + y … a, x Ú 0, y Ú 06, where a 7 0.

96. Find the average value of z = a2 - x2 - y2 over the region 
R = 51x, y2: x2 + y2 … a26, where a 7 0.
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 16.3 Double Integrals in Polar Coordinates 1027

97–98. Area integrals Consider the following regions R. Use a  
computer algebra system to evaluate the integrals.

a. Sketch the region R.

b. Evaluate 6R dA to determine the area of the region.

c. Evaluate 6R xy dA.

97. R is the region between both branches of y = 1>x and the lines 
y = x + 3>2 and y = x - 3>2.

98. R is the region bounded by the ellipse x2>18 + y2>36 = 1 with 
y … 4x>3.

99–102. Improper integrals Many improper double integrals may be 
handled using the techniques for improper integrals in one variable 
(Section 8.9). For example, under suitable conditions on ƒ,

∫∞
a
∫h1x2

g1x2  ƒ1x, y2 dy dx = lim
bS∞

 ∫b

a
∫h1x2

g1x2 ƒ1x, y2 dy dx.

T Use or extend the one-variable methods for improper integrals to eval-
uate the following integrals.

99. ∫∞
1
∫ e-x

0
xy dy dx 100. ∫∞

1
∫1>x2

0
 
2y

x
 dy dx

101. ∫∞
0
∫∞

0
e-x - y dy dx

102. ∫∞-∞ ∫
∞

-∞
 

1

1x2 + 121y2 + 12 dy dx

QUICK CHECK ANSWERS

1. Inner integral: 0 … y … 2 - x; outer integral: 
0 … x … 2 2. Yes; however, two separate iterated  
integrals would be required. 3. #1

0 #1
x ƒ1x, y2 dy dx

4. No; yes	

16.3  Double Integrals in Polar 
Coordinates

In Chapter 12, we explored polar coordinates and saw that in certain situations, they sim-
plify problems considerably. The same is true when it comes to integration over plane re-
gions. In this section, we learn how to formulate double integrals in polar coordinates and 
how to change double integrals from Cartesian coordinates to polar coordinates.

Moving from Rectangular to Polar Coordinates
Suppose we want to find the volume of the solid bounded by the paraboloid z = 9 - x2 - y2 
and the xy-plane (Figure 16.27). The intersection of the paraboloid and the xy-plane 1z = 0 2 
is the curve 9 - x2 - y2 = 0, or x2 + y2 = 9. Therefore, the region of integration R is the 
disk of radius 3 in the xy-plane, centered at the origin, which, when expressed in Cartesian 
coordinates, is R = 51x, y2: -29 - x2 … y … 29 - x2, -3 … x … 36. Using the 
relationship r2 = x2 + y2 for converting Cartesian to polar coordinates, the region of inte-
gration expressed in polar coordinates is simply R = 51r, u2: 0 … r … 3, 0 … u … 2p6. 
Furthermore, the paraboloid expressed in polar coordinates is z = 9 - r2. This problem 
(which is solved in Example 1) illustrates how both the integrand and the region of inte-
gration in a double integral can be simplified by working in polar coordinates.

The region of integration in this problem is an example of a polar rectangle. In 
polar coordinates, it has the form R = 51r, u2: 0 … a … r … b, a … u … b6, where 
b - a … 2p and a, b, a, and b are constants (Figure 16.28). Polar rectangles are the ana-
logs of rectangles in Cartesian coordinates. For this reason, the methods used in Section 
16.1 for evaluating double integrals over rectangles can be extended to polar rectangles. 
The goal is to evaluate integrals of the form 6R ƒ1x, y2 dA, where ƒ is a continuous func-
tion on the polar rectangle R. If ƒ is nonnegative on R, this integral equals the volume of 
the solid bounded by the surface z = ƒ1x, y2 and the region R in the xy-plane.

➤	 Recall the conversions between Cartesian 
and polar coordinates (Section 12.2):

 x = r cos u, y = r sin u, or

 r2 = x2 + y2, tan u = y>x.

x y

z Surface
z 5 9 2 x2 2 y2

or z 5 9 2 r2

Region of integration
{(x, y): x2 1 y2 # 9}
or {(r, u): 0 # r # 3}

3 3

9

R

Figure 16.27

0 b

y

x

y

x

0 # r # b
0 # u # 2

Examples of
polar rectangles

0 # r # b
a # u # b

a # r # b
a # u # b

R

R R

a b

b

b

a

y

a
b

x

b

2
p

Figure 16.28
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1028 Chapter 16  •  Multiple Integration

Our approach is to divide 3a, b4 into M subintervals of equal length ∆r = 1b - a2>M. 
We similarly divide 3a, b4 into m subintervals of equal length ∆u = 1b - a2>m. Now 
look at the arcs of the circles centered at the origin with radii

r = a, r = a + ∆r, r = a + 2∆r, c, r = b

and the rays

u = a, u = a + ∆u, u = a + 2∆u, c, u = b

emanating from the origin (Figure 16.29). The arcs and rays divide the region R into 
n = Mm polar rectangles that we number in a convenient way from k = 1 to k = n. The 
area of the kth rectangle is denoted ∆Ak, and we let 1rk

*, uk
*2 be the polar coordinates of 

an arbitrary point in that rectangle. Note that this point also has the Cartesian coordinates 
1x*

k, y
*
k2 = 1r*

k cos u*
k, r

*
k sin u*

k2. If ƒ is continuous on R, the volume of the solid region 
beneath the surface z = ƒ1x, y2 and above R may be computed with Riemann sums using 
either ordinary rectangles (as in Sections 16.1 and 16.2) or polar rectangles. Here, we now 
use polar rectangles.

Consider the “box” whose base is the kth polar rectangle and whose height is 
ƒ1x*

k, y
*
k2; its volume is ƒ1x*

k, y
*
k2∆Ak, for k = 1, c, n. Therefore, the volume of the solid 

region beneath the surface z = ƒ1x, y2 with a base R is approximately

V = a
 n

k = 1
 ƒ1xk

*, yk
*2∆Ak.

This approximation to the volume is a Riemann sum. We let ∆ be the maximum value 
of ∆r and ∆u. If ƒ is continuous on R, then as n S ∞  and ∆ S 0, the sum approaches a 
double integral; that is,

6
R

ƒ1x, y2 dA = lim
∆S0

 a
n

k = 1

ƒ1xk
*, yk

*2∆ Ak = lim
∆S0

 a
n

k = 1

ƒ1rk
* cos u*

k, rk
*

 sin u*
k2∆ Ak. (1)

The next step is to express ∆Ak in terms of ∆r and ∆u. Figure 16.30 shows the kth 
polar rectangle, with an area of ∆Ak. The point 1rk

*, uk
*2 (in polar coordinates) is chosen so 

that the outer arc of the polar rectangle has radius r*
k + ∆r>2 and the inner arc has radius 

r*
k - ∆r>2. The area of the polar rectangle is

 ∆Ak = 1area of outer sector2 - 1area of inner sector2

 =
1
2

 ark
* +

∆r
2
b

2

∆u -
1
2

 ark
* -

∆r
2
b

2

∆u  Area of sector =
1
2

 r2∆u

 = rk
*∆r∆u.  Expand and simplify.

Substituting this expression for ∆Ak into equation (1), we have

6
R

ƒ1x, y2 dA = lim
∆S0

 a
n

k = 1

ƒ1xk
*, yk

*2∆ Ak = lim
∆S0

 a
n

k = 1

ƒ1rk
* cos u*

k, rk
*

 sin u*
k2r*

k∆
 r∆u.

This observation leads to a theorem that allows us to write a double integral in x and y as 
an iterated integral of ƒ1r cos u, r sin u2r in polar coordinates. It is an example of a change 
of variables, explained more generally in Section 16.7.

R 5 {(r, u): 0 # a # r # b, a # u # b}

DrDu

DAk

u 5 a

u 5 b

u 5 0

r 5 b

r 5 a

0

polar: (rk
*, uk

*)
rectangular: (xk

*, yk
*)

Figure 16.29

(rk
*, uk

*)

Dr

Du

DAk 5 rk
*DrDu

Dr
2

rk
* 2

Dr
2

rk
* 1

Figure 16.30

➤	 Recall that the area of a sector of a circle 
of radius r subtended by an angle u is 
1
2 r2u.

Area 5 2r2 u

u

r

1
2

➤	 The most common error in evaluating 
integrals in polar coordinates is to omit 
the factor r that appears in the integrand. 
In Cartesian coordinates, the element of 
area is dx dy; in polar coordinates, the 
element of area is r dr du, and without 
the factor of r, area is not measured 
correctly.

THEOREM 16.3 Change of Variables for Double Integrals over Polar  
Rectangle Regions
Let ƒ be continuous on the region R in the xy-plane expressed in polar coordinates 
as R = 51r, u2: 0 … a … r … b, a … u … b6, where b - a … 2p. Then ƒ is 
integrable over R, and the double integral of ƒ over R is

6
R

ƒ1x, y2 dA = ∫b
a
∫b

a
ƒ1r cos u, r sin u2 r dr du.

QUICK CHECK 1 Describe in polar 
coordinates the region in the first 
quadrant between the circles of radius 
1 and 2.	
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 16.3 Double Integrals in Polar Coordinates 1029

EXAMPLE 1 Volume of a paraboloid cap Find the volume of the solid bounded by 
the paraboloid z = 9 - x2 - y2 and the xy-plane.

SOLUTION Using x2 + y2 = r2, the surface is described in polar coordinates by 
z = 9 - r2. The paraboloid intersects the xy-plane 1z = 02 when z = 9 - r2 = 0, or 
r = 3. Therefore, the intersection curve is the circle of radius 3 centered at the origin. 
The resulting region of integration is the disk R = 51r, u2: 0 … r … 3, 0 … u … 2p6 
(Figure 16.31). Integrating over R in polar coordinates, the volume is

 V = ∫2p

0
∫3

0
19 - r22 r dr du  Iterated integral for volume(1)1*
   z

 = ∫2p

0
a 9r2

2
-

r4

4
b ` 3

0
 du  Evaluate inner integral with respect to r.

 = ∫2p

0
 
81
4

 du =
81p

2
 .  Evaluate outer integral with respect to u.

Related Exercises 12, 16	
x y

z

3 3

z 5 9 2 x2 2 y2

   5 9 2 r2

9

r 5 3

R

r 5 0

R 5 {(r, u): 0 # r # 3, 0 # u # 2p}

23

3

23 3

y

x

u

R

Figure 16.31

QUICK CHECK 2 Express the 
functions ƒ1x, y2 = 1x2 + y225>2 
and h1x, y2 = x2 - y2 in polar 
coordinates.	

z 5 x2 1 y2

or
z 5 r2  

x

y

R

z

2

1

1

Projection of C onto
xy-plane: r 5 1

Intersection
curve C

z 5 2 2     x2 1 y2

or
z 5 2 2 r

Figure 16.32

EXAMPLE 2 Region bounded by two surfaces Find the volume of the region 
bounded by the paraboloid z = x2 + y2 and the cone z = 2 - 2x2 + y2.

SOLUTION As discussed in Section 16.2, the volume of a solid bounded by two 
surfaces z = ƒ1x, y2 and z = g1x, y2 over a region R in the xy-plane is given by 
6R 1ƒ1x, y2 - g1x, y22 dA, where ƒ1x, y2 Ú g1x, y2 over R. Because the paraboloid  

z = x2 + y2 lies below the cone z = 2 - 2x2 + y2 (Figure 16.32), the volume of  
the solid bounded by the surfaces is

V = 6
R

112 - 2x2 + y22 - 1x2 + y222  dA,

where the boundary of R is the curve of intersection C of the surfaces projected onto the 
xy-plane. To find C, we set the equations of the surfaces equal to one another. Writing 
x2 + y2 = 2 - 2x2 + y2 seems like a good start, but it leads to algebraic difficulties. 
Instead, we write the equation of the cone as 2x2 + y2 = 2 - z and then substitute this 
equation into the equation for the paraboloid:

 z = 12 - z22
  z = x2 + y2 ( paraboloid) and  2x2 + y2 = 2 - z (cone)

 z2 - 5z + 4 = 0  Simplify.

 1z - 121z - 42 = 0  Factor.

 z = 1 or z = 4. Solve for z.

The solution z = 4 is an extraneous root (see Quick Check 3). Setting z = 1 in 
the equation of either the paraboloid or the cone leads to x2 + y2 = 1, which is 
an equation of the curve C in the plane z = 1. Projecting C onto the xy-plane, 
we conclude that the region of integration (written in polar coordinates) is 
R = 51r, u2: 0 … r … 1, 0 … u … 2p6.

Converting the original volume integral into polar coordinates and evaluating 
it over R, we have

 V = 6
R

112 - 2x2 + y22 - 1x2 + y222  dA Double integral for volume

 = ∫2p

0
∫1

0
12 - r - r22 r dr du  

 Convert to polar coordinates; 
x2 + y2 = r2.

 = ∫2p

0
ar2 -

1
3

 r3 -
1
4

 r4b ` 1
0

 du  Evaluate the inner integral.

 = ∫2p

0

5
12

 du =
5p
6

 .  Evaluate the outer integral.

Related Exercises 33, 40	

QUICK CHECK 3 Give a geometric 
explanation for the extraneous root 
z = 4 found in Example 2.	
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EXAMPLE 3 Annular region Find the volume of the region beneath the surface 
z = xy + 10 and above the annular region R = 51r, u2: 2 … r … 4, 0 … u … 2p6. 
(An annulus is the region between two concentric circles.)

SOLUTION The region of integration suggests working in polar coordinates  
(Figure 16.33). Substituting x = r cos u and y = r sin u, the integrand becomes

 xy + 10 = 1r cos u21r sin u2 + 10 Substitute for x and y.

 = r2 sin u cos u + 10  Simplify.

 = 1
2 r2 sin 2u + 10.  sin 2u = 2 sin u cos u

Substituting the integrand into the volume integral, we have

 V = ∫2p

0
∫4

2
11

2 r2 sin 2u + 102  r dr du  Iterated integral for volume

 = ∫2p

0
∫4

2
11

2 r3 sin 2u + 10r2  dr du  Simplify.

 = ∫2p

0
a r4

8
 sin 2u + 5r2b ` 4

2
 du  Evaluate inner integral with respect to r.

 = ∫2p

0
130 sin 2u + 602 du  Simplify.

 = 1151-cos 2u2 + 60u2 ` 2p
0

= 120p. Evaluate outer integral with respect to u.

Related Exercises 22, 38	

r 54

R

R

r 5 2

24

4

24 4

y

x

R 5 {(r, u): 2 # r # 4, 0 # u # 2p}

y

x

z
z 5 xy 1 10

Figure 16.33

More General Polar Regions
In Section 16.2 we generalized double integrals over rectangular regions to double inte-
grals over nonrectangular regions. In an analogous way, the method for integrating over a 
polar rectangle may be extended to more general regions. Consider a region (described in 
polar coordinates) bounded by two rays u = a and u = b, where b - a … 2p, and two 
curves r = g1u2 and r = h1u2 (Figure 16.34):

R = 51r, u2: 0 … g1u2 … r … h1u2, a … u … b6.

The double integral 6R ƒ1x, y2 dA is expressed as an iterated integral in which the inner 
integral has limits r = g1u2 and r = h1u2, and the outer integral runs from u = a to 
u = b; the integrand is transformed into polar coordinates as before. If ƒ is nonnegative 
on R, the double integral gives the volume of the solid bounded by the surface z = ƒ1x, y2 
and R.

r 5 g(u)

r 5 h(u)

R 5 {(r, u): 0 # g(u) # r # h(u), a # u # b}

R

u 5 a

u 5 b
Outer interval
of integration:
a # u # b

x

y

Inner interval
of integration:
g(u) # r # h(u)

Figure 16.34

THEOREM 16.4 Change of Variables for Double Integrals over More  General 
Polar Regions
Let ƒ be continuous on the region R in the xy-plane expressed in polar coordi-
nates as

R = 51r, u2: 0 … g1u2 … r … h1u2, a … u … b6,

where 0 6 b - a … 2p. Then

6
R

ƒ1x, y2 dA = ∫b
a
∫h1u2

g1u2 ƒ1r cos u, r sin u2 r dr du.

EXAMPLE 4 Specifying regions Write an iterated integral in polar coordinates for 
6R g  1r, u2 dA for the following regions R in the xy-plane.

a. The region outside the circle r = 2 (with radius 2 centered at 10, 02) and inside the 
circle r = 4 cos u (with radius 2 centered at 12, 02)

b. The region inside both circles of part (a)

➤	 For the type of region described in 
Theorem 16.4, with the boundaries in the 
radial direction expressed as functions 
of u, the inner integral is always with 
respect to r.

➤	 Recall from Section 12.2 that the polar 
equation r = 2a sin u describes a circle 
of radius 0 a 0  with center 10, a2. The polar 
equation r = 2a cos u describes a circle 
of radius 0 a 0  with center 1a, 02.
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 16.3 Double Integrals in Polar Coordinates 1031

SOLUTION

a. Equating the two expressions for r, we have 4 cos u = 2 or cos u = 1
2, so the circles 

intersect when u = {p>3 (Figure 16.35). The inner boundary of R is the circle 
r = 2, and the outer boundary is the circle r = 4 cos u. Therefore, the region of 
 integration is R = 51r, u2: 2 … r … 4 cos u, -p>3 … u … p>36 and the iterated 
 integral is

6
R

g1r, u2 dA = ∫p>3-p>3∫
4 cos u

2
g  1r, u2 r dr du.

b. From part (a), we know that the circles intersect when u = {p>3. The region R con-
sists of three subregions R1, R2, and R3 (Figure 16.36a).

• For -p>2 … u … -p>3, R1 is bounded by r = 0 (inner curve) and r = 4 cos u 
(outer curve) (Figure 16.36b).

• For -p>3 … u … p>3, R2 is bounded by r = 0 (inner curve) and r = 2 (outer 
curve) (Figure 16.36c).

• For p>3 … u … p>2, R3 is bounded by r = 0 (inner curve) and r = 4 cos u (outer 
curve) (Figure 16.36d).

Therefore, the double integral is expressed in three parts:

 6
R

g1r, u2 dA = ∫-p>3
-p>2 ∫

4 cos u

0
g1r, u2 r dr du + ∫p>3-p>3∫

2

0
g1r, u2 r dr du

  + ∫p>2
p>3 ∫

4 cos u

0
g1r, u2 r dr du.

y

x

R

The inner and outer boundaries of R are
traversed as u varies from 2    to    .

u 5 2

u 5

r 5 4 cos u

r 5 2

Radial lines enter the region R at r 5 2
and exit the region at r 5 4 cos u.

2 4

3

3

3 3

p

p

p p

Figure 16.35

u 5 3

u 5 3 u 5 3

u 5 2

u 5 2 3

u 5 2 3

2

u 5 2 3

u 5 2 2
# u # 22 3

y

y

x x

y

x

y

x

r 5 4 cos ur 5 2

2 # u #3 3 # u #3 2

In R3, radial lines begin at the
origin and exit at r 5 4 cos u.

In R2, radial lines begin at the
origin and exit at r 5 2.

In R1, radial lines begin at the
origin and exit at r 5 4 cos u.

2 2 22 4
r 5 0 r 5 0 r 5 0

r 5 2

r 5 4 cos u

r 5 4 cos u

R2

R3

R1

(b)(a) (c) (d)

p

p

p p p

p

p pp

p

p

p

p

p

Figure 16.36 Related Exercise 44	

Areas of Regions
In Cartesian coordinates, the area of a region R in the xy-plane is computed by inte-
grating the function ƒ1x, y2 = 1 over R; that is, A = 6R dA. This fact extends to polar 
coordinates.

Area of Polar Regions

The area of the polar region R = 51r, u2: 0 … g1u2 … r … h1u2, a … u … b6, 
where 0 6 b - a … 2p, is

A = 6
R

dA = ∫b
a
∫h1u2

g1u2 r dr du.

➤	 Do not forget the factor of r in the area 
integral!
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EXAMPLE 5 Area within a lemniscate Compute the area of the region in the first and 
fourth quadrants outside the circle r = 12 and inside the lemniscate r2 = 4 cos 2u  
(Figure 16.37).

SOLUTION The equation of the circle can be written as r2 = 2. Equating the two expres-
sions for r2, the circle and the lemniscate intersect when 2 = 4 cos 2u, or cos 2u = 1

2. 
The angles in the first and fourth quadrants that satisfy this equation are u = {p>6 
(Figure 16.37). The region between the two curves is bounded by the inner curve 
r = g1u2 = 12 and the outer curve r = h1u2 = 21cos 2u. Therefore, the area of the 
region is

 A = ∫
p>6

-p>6∫
21cos 2u12

r dr du

  = ∫
p>6

-p>6
a r2

2
b `

21cos 2u12
du Evaluate inner integral with respect to r.

 = ∫
p>6

-p>6
12 cos 2u - 12 du Simplify.

  = 1sin 2u - u2 `
p>6

-p>6
 Evaluate outer integral with respect to u.

 = 13 -
p

3
 .  Simplify.

Related Exercises 50–51	

y

x1 2

u 5 2

u 5 p6

p

6

Figure 16.37

QUICK CHECK 4 Express the area of 
the disk R = 51r, u2: 0 … r … a, 
0 … u … 2p6 in terms of a double 
integral in polar coordinates.	

Average Value over a Planar Polar Region
We have encountered the average value of a function in several different settings. To find 
the average value of a function over a region in polar coordinates, we again integrate the 
function over the region and divide by the area of the region.

EXAMPLE 6 Average y-coordinate Find the average value of the y-coordinates of the  
points in the semicircular disk of radius a given by R = 51r, u2: 0 … r … a, 0 … u … p6.

SOLUTION The double integral that gives the average value we seek is y = 1
area of R 6R y dA.  

We use the facts that the area of R is pa2>2 and the y-coordinates of points in the semicir-
cular disk are given by y = r sin u. Evaluating the average value integral, we find that

 y =
1

pa2>2 ∫
p

0
∫

a

0
 r sin u r dr du

 =
2

pa2 ∫
p

0
sin u a r3

3
b `

a

0
 du  Evaluate inner integral with respect to r.

 =
2

pa2 
a3

3 ∫
p

0
 sin u du  Simplify.

 =
2a
3p

 1-cos u2 `
p

0
 Evaluate outer integral with respect to u.

 =
4a
3p

 .  Simplify.

Note that 4>13p2 ≈ 0.42, so the average value of the y-coordinates is less than half the 
radius of the disk.

Related Exercise 53	
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Getting Started
1. Draw the polar region 51r, u2: 1 … r … 2, 0 … u … p>26. Why 

is it called a polar rectangle?

2. Write the double integral 6R ƒ1x, y2 dA as an iterated integral in 
polar coordinates when R = 51r, u2: a … r … b, a … u … b6.

3. Sketch in the xy-plane the region of integration for the integral 

∫p>6-p>6∫
cos 2u

1>2 g1r, u2 r dr du.

4. Explain why the element of area in Cartesian coordinates dx dy 
becomes r dr du in polar coordinates.

5. How do you find the area of a polar region 
R = 51r, u2: g1u2 … r … h1u2, a … u … b6?

6. How do you find the average value of a function over a region that 
is expressed in polar coordinates?

7–10. Polar rectangles Sketch the following polar rectangles.

7. R = 51r, u2: 0 … r … 5, 0 … u … p>26
8. R = 51r, u2: 2 … r … 3, p>4 … u … 5p>46
9. R = 51r, u2: 1 … r … 4, -p>4 … u … 2p>36
10. R = 51r, u2: 4 … r … 5, -p>3 … u … p>26
Practice Exercises
11–14. Volume of solids Find the volume of the solid bounded by the 
surface z = ƒ1x, y2 and the xy-plane.

11. ƒ1x, y2 = 4 - 2x2 + y2

y

x

z 5 4 2     x2 1 y2

z

12. ƒ1x, y2 = 16 - 41x2 + y22 13. ƒ1x, y2 = e-1x2 + y22>8 - e-2

14. ƒ1x, y2 = 20

1 + x2 + y2 - 2

15–18. Solids bounded by paraboloids Find the volume of the solid 
below the paraboloid z = 4 - x2 - y2 and above the following polar 
rectangles.

15. R = 51r, u2: 0 … r … 1,  
0 … u … 2p6

x y

z

z 5 4 2 x2 2 y2

R

 4 

 1  1

SECTION 16.3 EXERCISES

16. R = 51r, u2: 0 … r … 2, 0 … u … 2p6
17. R = 51r, u2: 1 … r … 2, 0 … u … 2p6
18. R = 51r, u2: 1 … r … 2, -p>2 … u … p>26
19–20. Solids bounded by hyperboloids Find the volume of the solid 
below the hyperboloid z = 5 - 21 + x2 + y2 and above the follow-
ing polar rectangles.

19. R = 51r, u2: 13 … r … 212, 0 … u … 2p6
20. R = 51r, u2: 13 … r … 115, -p>2 … u … p6
21–30. Cartesian to polar coordinates Evaluate the following inte-
grals using polar coordinates. Assume 1r, u2 are polar coordinates.  
A sketch is helpful.

21. 6
R

1x2 + y22 dA; R = 51r, u2: 0 … r … 4, 0 … u … 2p6

22. 6
R

2xy dA; R = 51r, u2: 1 … r … 3, 0 … u … p>26

23. 6
R

2xy dA; R = 51x, y2: x2 + y2 … 9, y Ú 06

24. 6
R

dA

1 + x2 + y2 ; R = 51r, u2: 1 … r … 2, 0 … u … p6

25. 6
R

dA216 - x2 - y2
 ; R = 51x, y2: x2 + y2 … 4, x Ú 0, y Ú 06

26. 6
R

e-x2 - y2
 dA; R = 51x, y2: x2 + y2 … 96

27. ∫
1

-1
∫
21-x2

-21-x2 
1x2 + y223>2 dy dx

28. ∫
3

0
∫
29-x2

0
2x2 + y2 dy dx

29. 6
R

2x2 + y2 dA; R = 51x, y2: 1 … x2 + y2 … 46

30. ∫
4

-4
∫
216-y2

0
116 - x2 - y22 dx dy

31–40. Volume between surfaces Find the volume of the following solids.

31. The solid bounded by the  
paraboloid z = x2 + y2 and  
the plane z = 9

yx

z z 5 9

z 5 x2 1 y2
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32. The solid bounded by the paraboloid z = 2 - x2 - y2 and the 
plane z = 1

33. The solid bounded by the paraboloids z = x2 + y2 and 
z = 2 - x2 - y2

z 5 x2 1 y2

z 5 2 2 x2 2 y2

x

y
R

z

34. The solid bounded by the paraboloids z = 2x2 + y2 and 
z = 27 - x2 - 2y2

z 5 2x2 1 y2

z 5 27 2 x2 2 2y2

x

y
R

z

35. The solid bounded below by the paraboloid z = x2 + y2 - x - y 
and above by the plane x + y + z = 4

36. The solid bounded by the cylinder x2 + y2 = 4 and the planes 
z = 3 - x and z = x - 3

z

x

y

37. The solid bounded by the paraboloid z = 18 - x2 - 3y2 and the 
hyperbolic paraboloid z = x2 - y2

38. The solid outside the cylinder x2 + y2 = 1 that is bounded above 
by the hyperbolic paraboloid z = -x2 + y2 + 8 and below by 
the paraboloid z = x2 + 3y2

z

x

y

z 5 2x2 1 y2 1 8

z 5 x2 1 3y2

x2 1 y2  5 1

39. The solid outside the cylinder x2 + y2 = 1 that is bounded 
above by the sphere x2 + y2 + z2 = 8 and below by the cone 

z = 2x2 + y2

z 5      x2 1 y2

x

y

z

x2 1 y2 1 z2 5 8

x2 1 y2  5 1

40. The solid bounded by the cone z = 2 - 2x2 + y2 and the upper 

half of a hyperboloid of two sheets z = 21 + x2 + y2

41–46. Describing general regions Sketch the following regions R.  
Then express 6R g1r, u2 dA as an iterated integral over R in polar 
 coordinates.

41. The region inside the limaçon r = 1 + 1
2 cos u

42. The region inside the leaf of the rose r = 2 sin 2u in the first 
quadrant

43. The region inside the lobe of the lemniscate r2 = 2 sin 2u in the 
first quadrant

44. The region outside the circle r = 2 and inside the circle 
r = 4 sin u

45. The region outside the circle r = 1 and inside the rose 
r = 2 sin 3u in the first quadrant

46. The region outside the circle r = 1>2 and inside the cardioid 
r = 1 + cos u
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47–52. Computing areas Use a double integral to find the area of the 
following regions.

47. The annular region 51r, u2: 1 … r … 2, 0 … u … p6
48. The region bounded by the cardioid r = 211 - sin u2
49. The region bounded by all leaves of the rose r = 2 cos 3u

50. The region inside both the cardioid r = 1 - cos u and the circle 
r = 1

51. The region inside both the cardioid r = 1 + sin u and the cardi-
oid r = 1 + cos u

52. The region bounded by the spiral r = 2u, for 0 … u … p, and the 
x-axis

53–54. Average values Find the following average values.

53. The average distance between points of the disk 
51r, u2: 0 … r … a6 and the origin

54. The average value of 1>r2 over the annulus 51r, u2: 2 … r … 46
55. Explain why or why not Determine whether the following state-

ments are true and give an explanation or counterexample.

a. Let R be the unit disk centered at 10, 02. Then 
6R1x2 + y22 dA = #2p

0 #1
0 r2 dr du.

b. The average distance between the points of the hemisphere 

z = 24 - x2 - y2 and the origin is 2 (calculus not required).

c. The integral #1
0 #21 - y2

0 ex2 + y2 dx dy is easier to evaluate in  
polar coordinates than in Cartesian coordinates.

56. Areas of circles Use integration to show that the circles 
r = 2a cos u and r = 2a sin u have the same area, which is pa2.

57. Filling bowls with water Which bowl holds the most water when 
all the bowls are filled to a depth of 4 units?

• The paraboloid z = x2 + y2, for 0 … z … 4

• The cone z = 2x2 + y2, for 0 … z … 4

• The hyperboloid z = 21 + x2 + y2, for 1 … z … 5

58. Equal volumes To what height (above the bottom of the bowl) 
must the cone and paraboloid bowls of Exercise 57 be filled to 
hold the same volume of water as the hyperboloid bowl filled to a 
depth of 4 units (1 … z … 5)?

59. Volume of a hyperbolic paraboloid Consider the surface 
z = x2 - y2.

a. Find the region in the xy-plane in polar coordinates for which 
z Ú 0.

b. Let R = 51r, u2: 0 … r … a, -p>4 … u … p>46, which is 
a sector of a circle of radius a. Find the volume of the region 
below the hyperbolic paraboloid and above the region R.

60. Volume of a sphere Use double integrals in polar coordinates to 
verify that the volume of a sphere of radius a is 43 pa3.

61. Volume Find the volume of the solid bounded by the cylinder  

1x - 122 + y2 = 1, the plane z = 0, and the cone z = 2x2 + y2   
(see figure). (Hint: Use symmetry.)

Intersecting surfaces Corresponding solid
y

x

z

62. Volume Find the volume of the solid bounded by the 
 paraboloid z = 2x2 + 2y2, the plane z = 0, and the cylinder 
x2 + 1y - 122 = 1. (Hint: Use symmetry.)

Explorations and Challenges
63–64. Miscellaneous integrals Evaluate the following integrals using 
the method of your choice. A sketch is helpful.

63. 6
R

dA

4 + 2x2 + y2
 ; R = e 1r, u2: 0 … r … 2, 

p

2
… u …

3p
2
f

64. 6
R

x - y

x2 + y2 + 1
 dA; R is the region bounded by the unit circle  

centered at the origin.

65–68. Improper integrals Improper integrals arise in polar coordi-
nates when the radial coordinate r becomes arbitrarily large. Under 
certain conditions, these integrals are treated in the usual way:

∫b
a
∫∞

a
g1r, u2 r dr du = lim

bS∞
∫b
a
∫b

a
g1r, u2 r dr du.

Use this technique to evaluate the following integrals.

65. ∫p>2
0
∫∞

1
 
cos u

r3  r dr du

66. 6
R

dA

1x2 + y225>2 ; R = 51r, u2: 1 … r 6 ∞ , 0 … u … 2p6

67. 6
R

e-x2 - y2 dA; R = e 1r, u2: 0 … r 6 ∞ , 0 … u …
p

2
f

68. 6
R

 
dA

11 + x2 + y222 ; R is the first quadrant.

69. Slicing a hemispherical cake A cake is shaped like a hemisphere 
of radius 4 with its base on the xy-plane. A wedge of the cake is 
removed by making two slices from the center of the cake outward, 
perpendicular to the xy-plane and separated by an angle of w.

a. Use a double integral to find the volume of the slice for 
w = p>4. Use geometry to check your answer.

b. Now suppose the cake is sliced horizontally at z = a 7 0 and 
let D be the piece of cake above the plane z = a. For what  
approximate value of a is the volume of D equal to the volume 
in part (a)?

T
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70. Mass from density data The following table gives the density (in 
units of g>cm2) at selected points (in polar coordinates) of a thin 
semicircular plate of radius 3. Estimate the mass of the plate and 
explain your method.

U = 0 U = P ,4 U = P ,2 U = 3P>4 U = P

r = 1 2.0 2.1 2.2 2.3 2.4

r = 2 2.5 2.7 2.9 3.1 3.3

r = 3 3.2 3.4 3.5 3.6 3.7

71. A mass calculation Suppose the density of a thin plate repre-
sented by the polar region R is r1r, u2 (in units of mass per area). 
The mass of the plate is 6R r1r, u2 dA. Find the mass of the thin 
half annulus R = 51r, u2: 1 … r … 4, 0 … u … p6 with a  
density r1r, u2 = 4 + r sin u.

72. Area formula In Section 12.3 it was shown that the area of a 
region enclosed by the polar curve r = g1u2 and the rays u = a 

and u = b, where b - a … 2p, is A = 1
2#ba r2 du. Prove this  

result using the area formula with double integrals.

73. Normal distribution An important integral in statistics associated 
with the normal distribution is I = #∞-∞ e-x2 dx. It is evaluated in 
the following steps.

a. In Section 8.9, it is shown that #∞0 e-x2 dx converges (in the  
narrative following Example 7). Use this result to explain  
why #∞-∞ e

-x2 dx converges.
b. Assume

I 2 = a ∫∞-∞ e-x2 dxb a ∫∞-∞ e-y2 dyb = ∫∞-∞ ∫
∞

-∞
 e-x2 - y2 dx dy,

where we have chosen the variables of integration to be x and 
y and then written the product as an iterated integral. Evaluate 

T this integral in polar coordinates and show that I = 1p.  
Why is the solution I = -1p rejected?

c. Evaluate #∞0 e-x2 dx, #∞0 xe-x2 dx, and #∞0  x
2 e-x2 dx (using  

part (a) if needed).

74. Existence of integrals For what values of p does the integral 

6R 
dA

1x2 + y22p exist in the following cases? Assume 1r, u2 are  

polar coordinates.

a. R = 51r, u2: 1 … r 6 ∞ , 0 … u … 2p6
b. R = 51r, u2: 0 … r … 1, 0 … u … 2p6

75. Integrals in strips Consider the integral

I = 6
R

dA

11 + x2 + y222

where R = 51x, y2: 0 … x … 1, 0 … y … a6.

a. Evaluate I for a = 1. (Hint: Use polar coordinates.)
b. Evaluate I for arbitrary a 7 0.
c. Let a S ∞  in part (b) to find I over the infinite strip 

R = 51x, y2: 0 … x … 1, 0 … y 6 ∞6.

QUICK CHECK ANSWERS

1. R = 51r, u2: 1 … r … 2, 0 … u … p>26
2. r5, r2 1cos2 u - sin2 u2 = r2 cos 2u

3. z = 2 - 2x2 + y2 is the lower half of the double-
napped cone 12 - z22 = x2 + y2. Imagine both halves of 
this cone in Figure 16.32: It is apparent that the paraboloid 
z = x2 + y2 intersects the cone twice, once when z = 1 and 
once when z = 4. 4. #2p

0 #a
0  r dr du = pa2	

16.4 Triple Integrals
At this point, you may see a pattern that is developing with respect to integration. In  
Chapter 5, we introduced integrals of single-variable functions. In the first three sections 
of this chapter, we moved up one dimension to double integrals of two-variable func-
tions. In this section, we take another step and investigate triple integrals of three-variable 
functions. There is no end to the progression of multiple integrals. It is possible to define 
integrals with respect to any number of variables. For example, problems in statistics and 
statistical mechanics involve integration over regions of many dimensions.

Triple Integrals in Rectangular Coordinates
Consider a function w = ƒ1x, y, z2 that is defined on a closed and bounded region D of ℝ3. 
The graph of ƒ lies in four-dimensional space and is the set of points 1x, y, z, ƒ1x, y, z22, 
where 1x, y, z2 is in D. Despite the difficulty in representing ƒ in ℝ3, we may still define 
the integral of ƒ over D. We first create a partition of D by slicing the region with three sets 
of planes that run parallel to the xz-, yz-, and xy-planes (Figure 16.38). This partition sub-
divides D into small boxes that are ordered in a convenient way from k = 1 to k = n. The 
partition includes all boxes that are wholly contained in D. The kth box has side lengths 
∆xk, ∆yk, and ∆zk, and volume ∆Vk = ∆xk∆yk∆zk. We let 1xk

*, yk
*, zk

*2 be an arbitrary point 
in the kth box, for k = 1, c, n.
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A Riemann sum is now formed, in which the kth term is the function value ƒ1xk
*, yk

*, zk
*2 

multiplied by the volume of the kth box:

a
n

k = 1
 ƒ1xk

*, yk
*, zk

*2∆Vk.

We let ∆ denote the maximum length of the diagonals of the boxes. As the number of 
boxes n increases, while ∆ approaches zero, two things happen.

• For commonly encountered regions, the region formed by the collection of boxes 
 approaches the region D.

• If ƒ is continuous, the Riemann sum approaches a limit.

The limit of the Riemann sum is the triple integral of ƒ over D, and we write

9
D

ƒ1x, y, z2 dV = lim
∆S0

 a
n

k = 1
 ƒ1xk

*, yk
*, zk

*2∆Vk.

The kth box in the partition has volume ∆Vk = ∆xk∆yk∆zk, where ∆xk, ∆yk, and ∆zk 
are the side lengths of the box. Accordingly, the element of volume in the triple integral, 
which we denote dV, becomes dx dy dz (or some rearrangement of dx, dy, and dz) in an 
iterated integral.

We give two immediate interpretations of a triple integral. First, if ƒ1x, y, z2 = 1, 
then the Riemann sum simply adds up the volumes of the boxes in the partition. In the 
limit as ∆ S 0, the triple integral 9D dV  gives the volume of the region D. Second, 
suppose D is a solid three-dimensional object and its density varies from point to point  
according to the function ƒ1x, y, z2. The units of density are mass per unit volume, so the 
product ƒ1xk

*, yk
*, zk

*2∆Vk approximates the mass of the kth box in D. Summing the masses 
of the boxes gives an approximation to the total mass of D. In the limit as ∆ S 0, the 
triple integral gives the mass of the object.

As with double integrals, a version of Fubini’s Theorem expresses a triple integral in 
terms of an iterated integral in x, y, and z. The situation becomes interesting because with 
three variables, there are six possible orders of integration.

y

x

z

DVk

Dzk

Dxk
Dyk

DVk 5 Dxk Dyk DzkD

(xk
*, yk

*, zk
*)

(xk
*, yk

*, zk
*)

Figure 16.38

➤	 Notice the analogy between double and 
triple integrals:

area of R = 6
R

dA and

volume of D = 9
D

dV.

The use of triple integrals to compute the 
mass of an object is discussed in detail in 
Section 16.6.

QUICK CHECK 1 List the six orders 
in which the three differentials 
dx, dy, and dz may be written.	

Finding Limits of Integration We discuss one of the six orders of integration in detail; 
the others are examined in the examples. Suppose a region D in ℝ3 is bounded above by 
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a surface z = H1x, y2 and below by a surface z = G1x, y2 (Figure 16.39). These two sur-
faces determine the limits of integration in the z-direction. The next step is to project the 
region D onto the xy-plane to form a region that we call R (Figure 16.40). You can think of 
R as the shadow of D in the xy-plane. At this point, we can begin to write the triple integral 
as an iterated integral. So far, we have

9
D

ƒ1x, y, z2 dV = 6
R

a ∫H1x, y2
G1x, y2  ƒ1x, y, z2 dzb  dA.

Now assume R is bounded above and below by the curves y = h1x2 and y = g1x2, 
respectively, and bounded on the right and left by the lines x = a and x = b, respec-
tively (Figure 16.40). The remaining integration over R is carried out as a double integral  
(Section 16.2).

Lines parallel
to z-axis enter
the region D
at z 5 G(x, y).

Lines parallel
to z-axis exit
the region D
at z 5 H(x, y).

D R
G(x, y)

H(x, y)EEE f (x, y, z) dV 5 EE(E         f (x, y, z) dz) dA

z

D

y

x

a

b

y 5 g(x)

z 5 H(x, y)

z 5 G(x, y)

y 5 h(x)

R

Figure 16.39

z

D

y

x

xa b

y

a

b

Lines parallel to y-axis
enter R at y 5 g(x).

y 5 g(x)

y 5 h(x)

y 5 h(x)

y 5 g(x)

R

R

x varies
from a to b.

Lines parallel to y-axis
exit R at y 5 h(x).

D
a

b

g(x)

h(x)

G(x, y)

H(x, y)EEE f (x, y, z) dV 5 E  E     E         f (x, y, z) dz dy dx

Figure 16.40

The intervals that describe D are summarized in Table 16.2, which can then be 
used to formulate the limits of integration. To integrate over all points of D, we carry 
out the following steps.

1. Integrate with respect to z from z = G1x, y2 to z = H1x, y2; the result (in general) 
is a function of x and y.

2. Integrate with respect to y from y = g1x2 to y = h1x2; the result (in general) is a 
function of x.

3. Integrate with respect to x from x = a to x = b; the result is (always) a real 
number.

Table 16.2 

Integral Variable Interval

Inner z G1x, y2 … z … H1x, y2
Middle y g1x2 … y … h1x2
Outer x a … x … b

➤	 Theorem 16.5 is a version of Fubini’s 
Theorem. Five other versions could be 
written for the other orders of integration.

THEOREM 16.5 Triple Integrals
Let ƒ be continuous over the region

D = 51x, y, z2: a … x … b, g1x2 … y … h1x2, G1x, y2 … z … H1x, y26, 

where g, h, G, and H are continuous functions. Then ƒ is integrable over D and the 
triple integral is evaluated as the iterated integral

9
D

ƒ1x, y, z2 dV = ∫b

a
∫h1x2

g1x2 ∫
H1x, y2

G1x, y2 ƒ1x, y, z2 dz dy dx.

We now illustrate this procedure with several examples.
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EXAMPLE 1 Mass of a box A solid box D is bounded by the planes x = 0, x = 3, 
y = 0, y = 2, z = 0, and z = 1. The density of the box decreases linearly in the positive 
z-direction and is given by ƒ1x, y, z2 = 2 - z. Find the mass of the box.

SOLUTION The mass of the box is found by integrating the density ƒ1x, y, z2 = 2 - z 
over the box. Because the limits of integration for all three variables are constant, the  
iterated integral may be written in any order. Using the order of integration dz dy dx  
(Figure 16.41), the limits of integration are shown in Table 16.3.

The mass of the box is

 M = 9
D

12 - z2 dV

 = ∫3

0
∫2

0
∫1

0
12 - z2 dz dy dx  Convert to an iterated integral.

 = ∫3

0
∫2

0
 a2z -

z2

2
b ` 1

0
 dy dx Evaluate inner integral with respect to z.

 = ∫3

0
∫2

0
 
3
2

 dy dx Simplify.

 = ∫3

0
a 3y

2
b ` 2

0
 dx  Evaluate middle integral with respect to y.

 = ∫3

0
 3 dx = 9.  Evaluate outer integral with respect to x and simplify.

The result makes sense: The density of the box varies linearly from 1 (at the top of 
the box) to 2 (at the bottom); if the box had a constant density of 1, its mass would be 
1volume2 * 1density2 = 6; if the box had a constant density of 2, its mass would be 12. 
The actual mass is the average of 6 and 12, as you might expect.

Any other order of integration produces the same result. For example, with the order 
dy dx dz, the iterated integral is

M = 9
D

12 - z2 dV = ∫1

0
∫3

0
∫2

0
12 - z2 dy dx dz = 9.

Related Exercises 8–9	

y

x

z

2

3

2

1

3 x

y

D

R

z 5 1

x varies
from 0 to 3.

z varies
from 0 to 1.

z 5 0

R is the base of the
box in the xy-plane.

0

1

0

2

0

3
M 5 E  E  E  (2 2 z) dz dy dx

y varies
from
0 to 2.

Figure 16.41

Table 16.3 

Integral Variable Interval

Inner z 0 … z … 1

Middle y 0 … y … 2

Outer x 0 … x … 3

QUICK CHECK 2 Write the integral in 
Example 1 in the orders dx dy dz and 
dx dz dy.	

EXAMPLE 2 Volume of a prism Find the volume of the prism D in the first octant 
bounded by the planes y = 4 - 2x and z = 6 (Figure 16.42).

SOLUTION The prism may be viewed in several different ways. Letting the base of the 
prism be in the xz-plane, the upper surface of the prism is the plane y = 4 - 2x, and 
the lower surface is y = 0. The projection of the prism onto the xz-plane is the rectangle 
R = 51x, z2: 0 … x … 2, 0 … z … 66. One possible order of integration in this case is 
dy dx dz.

Inner integral with respect to y: A line through the prism parallel to the y-axis enters 
the prism through the rectangle R at y = 0 and exits the prism at the plane y = 4 - 2x. 
Therefore, we first integrate with respect to y over the interval 0 … y … 4 - 2x  
(Figure 16.43a).

Middle integral with respect to x: The limits of integration for the middle and outer 
integrals must cover the region R in the xz-plane. A line parallel to the x-axis enters 
R at x = 0 and exits R at x = 2. So we integrate with respect to x over the interval 
0 … x … 2 (Figure 16.43b).

Outer integral with respect to z: To cover all of R, the line segments from x = 0 to 
x = 2 must run from z = 0 to z = 6. So we integrate with respect to z over the interval 
0 … z … 6 (Figure 16.43b).

y

x

z
z 5 6

D

2

4

y 5 4 2 2x

R

Figure 16.42
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y

x

z

z 5 6

D
y 5 4 2 2x

y

x

z

RR

x 5 2

y 5 0

z 5 6

x 5 0

z 5 0

(a) (b)

R

422xEE (E       dy) dA
0

2

0 0

6

0

422xE  E   (E       dy) dx dz

Inner integral:
y varies from
0 to 4 2 2x.

Middle integral:
x varies from 0 to 2.
Outer integral:
z varies from 0 to 6.

Figure 16.43

Integrating ƒ1x, y, z2 = 1, the volume of the prism is

 V = 9
D

dV = ∫6

0
∫2

0
∫4-2x

0
dy dx dz

 = ∫6

0
∫2

0
14 - 2x2 dx dz  Evaluate inner integral with respect to y.

 = ∫6

0
14x - x22 ` 2

0
 dz  Evaluate middle integral with respect to x.

 = ∫6

0
4 dz  Simplify.

 = 24.  Evaluate outer integral with respect to z.

Related Exercises 15, 18	

➤	 The volume of the prism could also be 
found using geometry: The area of the 
triangular base in the xy-plane is 4 and 
the height of the prism is 6. Therefore, 
the volume is 6 # 4 = 24.

QUICK CHECK 3 Write the integral in 
Example 2 in the orders dz dy dx and 
dx dy dz.	

EXAMPLE 3 A volume integral Find the volume of the solid D bounded by the 
 paraboloids y = x2 + 3z2 + 1 and y = 5 - 3x2 - z2 (Figure 16.44a).

SOLUTION The right boundary of D is the surface y = 5 - 3x2 - z2 and the left bound-
ary is y = x2 + 3z2 + 1. These surfaces are functions of x and z, so they determine the 
limits of integration for the inner integral in the y-direction.

R
D

z

x

Inner integral 
with respect to y

y 5 5 2 3x2 2 z2y 5 x2 1 3z2 1 1

(a)

x2
13z2

11
R

523x22z2EE (E             dy)dAVolume 5

y

 

x

z

1

1
r 5 1

R

(b)

R 5 h(r, u): 0 # r # 1, 0 # u # 2pj

Figure 16.44

A key step in the calculation is finding the curve of intersection between the two  
surfaces and projecting it onto the xz-plane to form the boundary of the region R, where  
R is the projection of D onto the xz-plane. Equating the y-coordinates of the surfaces,  
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we have x2 + 3z2 + 1 = 5 - 3x2 - z2, which, when simplified, is the equation of a 
unit circle centered at the origin in the xz-plane:

x2 + z2 = 1.

Observe that a line through the solid parallel to the y-axis enters the solid at y = x2 + 3z2 + 1 
and exits at y = 5 - 3x2 - z2. Therefore, for fixed values of x and z, we integrate in y 
over the interval x2 + 3z2 + 1 … y … 5 - 3x2 - z2 (Figure 16.44a). After evaluating 
the inner integral with respect to y, we have

V = 6
R

a ∫5-3x2- z2

x2+3z2+1
dyb  dA = 6

R

ay `
5-3x2- z2

x2+3z2+1
b  dA = 6

R

411 - x2 - z22 dA.

The region R is bounded by a circle, so it is advantageous to evaluate the remain-
ing double integral in polar coordinates, where u and r have the same meaning in 
the xz-plane as they do in the xy-plane. Note that R is expressed in polar coordinates 
as R = 51r, u2: 0 … r … 1, 0 … u … 2p6 (Figure 16.44b). Using the relationship 
x2 + z2 = r2, we change variables and evaluate the double integral:

 V = 6
R

411 - x2 - z22 dA

 = ∫2p

0
∫1

0
411 - r22  r dr du  Convert to polar coordinates: x2 + z2 = r2  

and dA = r dr du.

 = ∫2p

0
∫1

0
 2u du du  Let u = 1 - r2 1 du = -2r dr.

 = ∫2p

0
au2 `

1

0
b  du  Evaluate inner integral.

 = ∫2p

0
du = 2p.  Evaluate outer integral.

Related Exercises 23, 25	

Changing the Order of Integration
As with double integrals, choosing an appropriate order of integration may simplify the 
evaluation of a triple integral. Therefore, it is important to become proficient at changing 
the order of integration.

EXAMPLE 4 Changing the order of integration Consider the integral

∫14 p
0
∫ z

0
∫ z

y
 12y2z3 sin x4 dx dy dz.

a. Sketch the region of integration D.

b. Evaluate the integral by changing the order of integration.

SOLUTION

a. We begin by finding the projection of the region of integration D on the appropriate 
coordinate plane; call the projection R. Because the inner integration is with respect 
to x, R lies in the yz-plane, and it is determined by the limits on the middle and outer 
integrals. We see that

R = 51y, z2: 0 … y … z, 0 … z … 24 p6,

which is a triangular region in the yz-plane bounded by the z-axis and the lines y = z 
and z = 24 p. Using the limits on the inner integral, for each point in R we let x vary 
from the plane x = y to the plane x = z. In so doing, the points fill an inverted tetra-
hedron in the first octant with its vertex at the origin, which is D (Figure 16.45).

b. It is difficult to evaluate the integral in the given order 1dx dy dz2 because the antideriva-
tive of sin x4 is not expressible in terms of elementary functions. If we integrate first with 
respect to y, we introduce a factor in the integrand that enables us to use a substitution  

➤	 How do we know to switch the order 
of integration so the inner integral is 
with respect to y? Often we do not 
know in advance whether a new order 
of integration will work, and some trial 
and error is needed. In this case, either 
y2 or z3 is easier to integrate than sin x4, 
so either y or z is a likely variable for the 
inner integral.
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1042 Chapter 16  •  Multiple Integration

to integrate sin x4. With the order of integration dy dx dz, the bounds of integration for 
the inner integral extend from the plane y = 0 to the plane y = x (Figure 16.46a). Fur-
thermore, the projection of D onto the xz-plane is the region R, which must be covered 
by the middle and outer integrals (Figure 16.46b). In this case, we draw a line segment 
parallel to the x-axis to see that the limits of the middle integral run from x = 0 to 
x = z. Then we include all these segments from z = 0 to z = 24 p to obtain the outer 
limits of integration in z. The integration proceeds as follows:

 ∫
24 p

0
∫

z

0
∫

x

0
12y2z3 sin x4 dy dx dz = ∫

24 p

0
∫

z

0
14y3z3 sin x42 `

x

0 
dx dz 

 Evaluate inner  
integral with  
respect to y.

 = ∫
24 p

0
∫

z

0
4x3z3 sin x4 dx dz  Simplify.

 = ∫
24 p

0
z31-cos x42 `

z

0
 dz  

 Evaluate middle  
integral with re-
spect to x; u = x4.

 = ∫
24 p

0
z311 - cos z42 dz  Simplify.

 = a z4

4
-

sin z4

4
b `
24 p
0

 
 Evaluate outer  
integral with re-
spect to z; u = z4.

 =
p

4
 .  Simplify.

D

R

yx

z

(a) (b)

yx

z

Middle integral: x varies from 0 to z.
Outer integral: z varies from 0 to        .

x 5 z

y 5 x
y 5 0

Inner integral:
y varies from 0 to x.

Projection
of D on the
xz-plane

x 5 0

R is a triangular
region in the 
xz-plane.

4
p 4

p

4
p 4

p

4z 5    p

4
p

Figure 16.46
Related Exercises 47, 56	

yx

z
4
p

The plane
x 5 z

The plane
x 5 y

The line y 5 z
in the yz-plane

R is a triangular
region in the yz-plane

R

D

4z 5    p

Figure 16.45
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 16.4 Triple Integrals 1043

Average Value of a Function of Three Variables
The idea of the average value of a function extends naturally from the one- and two- 
variable cases. The average value of a function of three variables is found by integrating 
the function over the region of interest and dividing by the volume of the region.

DEFINITION Average Value of a Function of Three Variables

If ƒ is continuous on a region D of ℝ3, then the average value of ƒ over D is

ƒ =
1

volume of D
 9

D

ƒ1x, y, z2 dV.

EXAMPLE 5 Average temperature Consider a block of a conducting material occupy-
ing the region

D = 51x, y, z2: 0 … x … 2, 0 … y … 2, 0 … z … 16.

Due to heat sources on its boundaries, the temperature in the block is given by 
T1x, y, z2 = 250xy sin pz. Find the average temperature of the block.

SOLUTION We must integrate the temperature function over the block and divide by  
the volume of the block, which is 4. One way to evaluate the temperature integral is as  
follows:

 9
D

250xy sin pz dV = 250∫2

0
∫2

0
∫1

0
xy sin pz dz dy dx  Convert to an iterated integral.

 = 250∫2

0
∫2

0
xy 

1
p

 1-cos pz2 ` 1
0 
dy dx 

 Evaluate inner integral with  
respect to z.

 =
500
p ∫

2

0
∫2

0
xy dy dx  Simplify.

 =
500
p ∫

2

0
x a y2

2
b ` 2

0
 dx  

 Evaluate middle integral with 
respect to y.

 =
1000
p ∫2

0
x dx  Simplify.

 =
1000
p

 a x2

2
b ` 2

0
=

2000
p

 .  
 Evaluate outer integral with  
respect to x.

Dividing by the volume of the region, we find that the average temperature is 
12000>p2>4 = 500>p ≈ 159.2.

Related Exercises 51–52	

QUICK CHECK 4 Without integrating, 
what is the average value of 
ƒ1x, y, z2 = sin x sin y sin z on  
the cube 51x, y, z2: -1 … x … 1, 
-1 … y … 1, -1 … z … 16?
Use symmetry arguments.	

Getting Started
1. Sketch the region D = 51x, y, z2: x2 + y2 … 4, 0 … z … 46.

2. Write an iterated integral for 9D ƒ1x, y, z2 dV , where D is the box 
51x, y, z2: 0 … x … 3, 0 … y … 6, 0 … z … 46.

3. Write an iterated integral for 9D ƒ1x, y, z2 dV , where D is a 
sphere of radius 9 centered at 10, 0, 02. Use the order dz dy dx.

4. Sketch the region of integration for the integral  

∫1

0
∫21- z2

0
∫21-y2- z2

0
ƒ1x, y, z2 dx dy dz.

5. Write the integral in Exercise 4 in the order dy dx dz.

SECTION 16.4 EXERCISES

6. Write an integral for the average value of ƒ1x, y, z2 = xyz over  
the region bounded by the paraboloid z = 9 - x2 - y2 and the  
xy-plane (assuming the volume of the region is known).

Practice Exercises
7–14. Integrals over boxes Evaluate the following integrals. A sketch 
of the region of integration may be useful.

7. ∫2

-2
∫6

3
∫2

0
dx dy dz 8. ∫1

-1
∫2

-1
∫1

0
6xyz dy dx dz

9. ∫2

-2
∫2

1
∫ e

1
 
xy2

z
 dz dx dy 10. ∫ ln 4

0
∫ ln 3

0
∫ ln 2

0
e-x + y + z dx dy dz
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1044 Chapter 16  •  Multiple Integration

11. ∫p>2
0
∫1

0
∫p>2

0
sin px cos y sin 2z dy dx dz

12. ∫2

0
∫2

1
∫1

0
 yzex dx dz dy

13. 9
D

1xy + xz + yz2 dV ; D = 51x, y, z2: -1 … x … 1,  

-2 … y … 2, -3 … z … 36

14. 9
D

xyze-x2 - y2 dV ; D = 51x, y, z2: 0 … x … 1ln 2,  

0 … y … 1ln 4, 0 … z … 16

21. The solid between the sphere x2 + y2 + z2 = 19 and the hyper-
boloid z2 - x2 - y2 = 1, for z 7 0

yx

z

22. The solid bounded below by the cone z = 2x2 + y2 and 
bounded above by the sphere x2 + y2 + z2 = 8

yx

z

x2 1 y2 1 z2 5 8

23. The solid bounded by the cylinder y = 9 - x2 and the paraboloid 
y = 2x2 + 3z2

z

x

y 5 9 2 x2

y 5 2x2 1 3z2 

y

24. The wedge in the first octant bounded by the cylinder x = z2 and 
the planes z = 2 - x, y = 2, y = 0, and z = 0

z

x

y

19. The solid bounded by the 
surfaces z = ey and z = 1 
over the rectangle  
51x, y2: 0 … x … 1, 
0 … y … ln 26

x

y

z

1

ln 2

20. The wedge bounded by the 
parabolic cylinder y = x2 
and the planes z = 3 - y 
and z = 0

x
y

z

17. The wedge above the  
xy-plane formed when the 
cylinder x2 + y2 = 4 is cut 
by the planes z = 0 and 
y = -z

y

z

x

18. The prism in the first octant 
bounded by z = 2 - 4x and 
y = 8

x

y

z

15. The solid in the first  
octant bounded by the plane 
2x + 3y + 6z = 12 and the 
coordinate planes

x

y

z

(0, 4, 0)

(0, 0, 2)

(6, 0, 0) 2x 1 3y 1 6z 5 12

16. The solid in the first octant 
formed when the cylinder 
z = sin y, for 0 … y … p, 
is sliced by the planes y = x 
and x = 0

x
y

z

(0, p, 0)

(p, p, 0)

z 5 sin y

y 5 x

15–29. Volumes of solids Use a triple integral to find the volume of the 
following solids.
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25. The wedge of the cylinder x2 + 4z2 = 4 created by the planes 
y = 3 - x and y = x - 3

z

x

y

26. The solid bounded by x = 0, x = 2, y = 0, y = e-z, z = 0, and 
z = 1

z

y
x

27. The solid bounded by x = 0, x = 1 - z2, y = 0, z = 0, and 
z = 1 - y

yx

z

28. The solid bounded by x = 0, y = z2, z = 0, and z = 2 - x - y

z

yx

29. The solid bounded by x = 0, x = 2, y = z, y = z + 1, z = 0, 
and z = 4

yx

z

30–35. Six orderings Let D be the solid in the first octant bounded by 
the planes y = 0, z = 0, and y = x, and the cylinder 4x2 + z2 = 4.  
Write the triple integral of ƒ1x, y, z2 over D in the given order of  
integration.

x
y

z

30. dz dy dx 31. dz dx dy 32. dy dx dz

33. dy dz dx 34. dx dy dz 35. dx dz dy

36. All six orders Let D be the solid bounded by y = x, z = 1 - y2, 
x = 0, and z = 0. Write triple integrals over D in all six possible 
orders of integration.

37. Changing order of integration Write the integral #2
0 #1

0 #1 - y
0 dz dy dx in the five other possible orders of  

integration.

38–46. Triple integrals Evaluate the following integrals.

38. ∫
p

0
∫

p

0
∫

sin x

0
sin y dz dx dy

39. ∫
2

0
∫

4

0
∫

4

y2
1x dz dx dy

40. ∫
1

0
∫
21-x2

0
∫
21-x2-y2

0
2xz dz dy dx

41. ∫
1

0
∫
21-x2

0
∫
21-x2

0
dz dy dx

42. ∫
6

1
∫

4-2y>3

0
∫

12-2y-3z

0
 
1
y

 dx dz dy
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43. ∫
3

0
∫
29- z2

0
∫
21+x2+ z2

0
dy dx dz

44. ∫
1

0
∫

2-y

y
∫

2-x-y

0
15xy dz dx dy

45. ∫
ln 8

0
∫
1z

1
∫

ln 2y

ln y
ex + y2 - z dx dy dz

46. ∫
1

0
∫
21-x2

0
∫

2-x

0
4yz dz dy dx

47–50. Changing the order of integration Rewrite the following  
integrals using the indicated order of integration, and then evaluate  
the resulting integral.

47. ∫
5

0
∫

0

-1
∫

4x+4

0
dy dx dz in the order dz dx dy

48. ∫
1

0
∫

2

-2
∫
24-y2

0
dz dy dx in the order dy dz dx

49. ∫
1

0
∫
21-x2

0
∫
21-x2

0
dy dz dx in the order dz dy dx

50. ∫
4

0
∫
216-x2

0
∫
216-x2- z2

0
dy dz dx in the order dx dy dz

51–54. Average value Find the following average values.

51. The average value of ƒ1x, y, z2 = 8xy cos z over the points inside 
the box D = 51x, y, z2: 0 … x … 1, 0 … y … 2, 0 … z … p>26

52. The average temperature in the box D = 51x, y, z2: 
0 … x … ln 2, 0 … y … ln 4, 0 … z … ln 86 with a temperature 
distribution of T1x, y, z2 = 128e-x - y - z

53. The average of the squared distance between the origin and points 
in the solid cylinder D = 51x, y, z2: x2 + y2 … 4, 0 … z … 26

54. The average z-coordinate of points on and within a hemisphere of 
radius 4 centered at the origin with its base in the xy-plane

55. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. An iterated integral of a function over the box 
D = 51x, y, z2: 0 … x … a, 0 … y … b, 0 … z … c6 can be 
expressed in eight different ways.

b. One possible iterated integral of ƒ over the prism 
D = 51x, y, z2: 0 … x … 1, 0 … y … 3x - 3, 0 … z … 56 is #3x - 3

0 #1
0 #5

0 ƒ1x, y, z2 dz dx dy.

c. The region D = 51x, y, z2: 0 … x … 1, 0 … y … 21 - x2, 

0 … z … 21 - x26 is a sphere.

Explorations and Challenges
56. Changing the order of integration Use another order of  

integration to evaluate ∫4

1
∫4z

z
∫p

2

0
 
sin 1yz

x3>2  dy dx dz.

57–62. Miscellaneous volumes Use a triple integral to compute the 
volume of the following regions.

57. The wedge of the square column 0 x 0 + 0 y 0 = 1 created by the 
planes z = 0 and x + y + z = 1

T

T

1

1
x

y

z

58. The solid common to the cylinders z = sin x and z = sin y over 
the square R = 51x, y2: 0 … x … p, 0 … y … p6 (The figure 
shows the cylinders, but not the common region.)

x
y

z

p

p

59. The parallelepiped (slanted box) with vertices 10, 0, 02, 11, 0, 02, 
10, 1, 02, 11, 1, 02, 10, 1, 12, 11, 1, 12, 10, 2, 12, and 11, 2, 12 (Use 
integration and find the best order of integration.)

60. The larger of two solids formed when the parallelepiped (slanted 
box) with vertices 10, 0, 02, 12, 0, 02, 10, 2, 02, 12, 2, 02, 10, 1, 12, 
12, 1, 12, 10, 3, 12, and 12, 3, 12 is sliced by the plane y = 2

61. The pyramid with vertices 10, 0, 02, 12, 0, 02, 12, 2, 02, 10, 2, 02, 
and 10, 0, 42

62. The solid in the first octant bounded by the cone 
z = 1 - 2x2 + y2 and the plane x + y + z = 1

1

1

1 y

z

x

63. Two cylinders The x- and y-axes form the axes of two right  
circular cylinders with radius 1 (see figure). Find the volume of 
the solid that is common to the two cylinders.

z

y
x

1
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64. Three cylinders The coordinate axes form the axes of three right 
circular cylinders with radius 1 (see figure). Find the volume of 
the solid that is common to the three cylinders.

z

y
x

1

65. Dividing the cheese Suppose a wedge of cheese fills the region in 
the first octant bounded by the planes y = z, y = 4, and x = 4. 
You could divide the wedge into two pieces of equal volume 
by slicing the wedge with the plane x = 2. Instead find a with 
0 6 a 6 4 such that slicing the wedge with the plane y = a 
 divides the wedge into two pieces of equal volume.

66. Partitioning a cube Consider the region 
D1 = 51x, y, z2: 0 … x … y … z … 16.

a. Find the volume of D1.
b. Let D2, c, D6 be the “cousins” of D1 formed by rearranging  

x, y, and z in the inequality 0 … x … y … z … 1. Show that 
the volumes of D1, c, D6 are equal.

c. Show that the union of D1, c, D6 is a unit cube.

67–71. General volume formulas Find equations for the bounding 
surfaces, set up a volume integral, and evaluate the integral to obtain a 
volume formula for each region. Assume a, b, c, r, R, and h are positive 
constants.

67. Cone Find the volume of a right circular cone with height h and 
base radius r.

68. Tetrahedron Find the volume of a tetrahedron whose vertices are 
located at 10, 0, 02, 1a, 0, 02, 10, b, 02, and 10, 0, c2.

72. Exponential distribution The occurrence of random events (such 
as phone calls or e-mail messages) is often idealized using an 
exponential distribution. If l is the average rate of occurrence of 
such an event, assumed to be constant over time, then the average  
time between occurrences is l-1 (for example, if phone calls 
 arrive at a rate of l = 2>min, then the mean time between phone 
calls is l-1 = 1>2 min). The exponential distribution is given by 
ƒ1t2 = le-lt, for 0 … t 6 ∞ .

a. Suppose you work at a customer service desk and phone  
calls arrive at an average rate of l1 = 0.8>min (meaning the  
average time between phone calls is 1>0.8 = 1.25 min).  
The probability that a phone call arrives during the interval 
30, T4 is p1T2 = #T

0  l1e
-l1t dt. Find the probability that a 

phone call arrives during the first 45 s (0.75 min) that you 
work at the desk.

b. Now suppose walk-in customers also arrive at your desk at an 
average rate of l2 = 0.1>min. The probability that a phone 
call and a customer arrive during the interval 30, T4 is

p1T2 = ∫T

0
∫T

0
l1e

-l1tl2e
-l2s dt ds.

Find the probability that a phone call and a customer arrive 
during the first 45 s that you work at the desk.

c. E-mail messages also arrive at your desk at an average rate  
of l3 = 0.05>min. The probability that a phone call and a  
customer and an e-mail message arrive during the interval 
30, T4 is

p1T2 = ∫T

0
∫T

0
∫T

0
l1e

-l1tl2e
-l2sl3e

-l3udt ds du.

Find the probability that a phone call and a customer and an 
e-mail message arrive during the first 45 s that you work at  
the desk.

73. Hypervolume Find the “volume” of the four-dimensional pyra-
mid bounded by w + x + y + z + 1 = 0 and the coordinate 
planes w = 0, x = 0, y = 0, z = 0.

74. An identity (Putnam Exam 1941) Let ƒ be a continuous function 
on 30, 14. Prove that

∫1

0
∫1

x
∫ y

x
ƒ1x2ƒ1y2ƒ1z2 dz dy dx =

1
6

 a ∫1

0
ƒ1x2 dxb

3

.

QUICK CHECK ANSWERS

1. dx dy dz, dx dz dy, dy dx dz, dy dz dx, dz dx dy, dz dy dx

2. ∫1

0
∫2

0
∫3

0
12 - z2 dx dy dz, ∫2

0
∫1

0
∫3

0
12 - z2 dx dz dy

3. ∫2

0
∫4-2x

0
∫6

0
dz dy dx, ∫6

0
∫4

0
∫2-y>2

0
dx dy dz

4. 0 (sin x, sin y, and sin z are odd functions.)	

69. Spherical cap Find the vol-
ume of the cap of a sphere of 
radius R with height h.

R

h

70. Frustum of a cone Find the 
volume of a truncated cone 
of height h whose ends have 
radii r and R.

R

r

h

71. Ellipsoid Find the volume of an ellipsoid with axes of lengths 2a, 
2b, and 2c.

c

x

y

z

b
a
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1048 Chapter 16  •  Multiple Integration

16.5  Triple Integrals in Cylindrical 
and Spherical Coordinates

When evaluating triple integrals, you may have noticed that some regions (such as spheres, 
cones, and cylinders) have awkward descriptions in Cartesian coordinates. In this section, 
we examine two other coordinate systems in ℝ3 that are easier to use when working with 
certain types of regions. These coordinate systems are helpful not only for integration, but 
also for general problem solving.

Cylindrical Coordinates
When we extend polar coordinates from ℝ2 to ℝ3, the result is cylindrical coordinates. In 
this coordinate system, a point P in ℝ3 has coordinates 1r, u, z2, where r and u are polar 
coordinates for the point P*, which is the projection of P onto the xy-plane (Figure 16.47). 
As in Cartesian coordinates, the z-coordinate is the signed vertical distance between P and 
the xy-plane. Any point in ℝ3 can be represented by cylindrical coordinates using the inter-
vals 0 … r 6 ∞ , 0 … u … 2p, and -∞ 6 z 6 ∞ .

Many sets of points have simple representations in cylindrical coordinates. For 
 example, the set 51r, u, z2: r = a6 is the set of points whose distance from the z-axis is 
a, which is a right circular cylinder of radius a. The set 51r, u, z2: u = u06 is the set of 
points with a constant u coordinate; it is a vertical half-plane emanating from the z-axis in 
the direction u = u0. Table 16.4 summarizes these and other sets that are ideal for integra-
tion in cylindrical coordinates.

➤	 In cylindrical coordinates, r and u are 
the usual polar coordinates, with the 
additional restriction that r Ú 0. Adding 
the z-coordinate lifts points in the polar 
plane into ℝ3.

P(r, u, z)

u

z

r

r

x

y

0 # r , `
0 # u # 2p
2` , z , `

z

P*

P* is the projection
of P onto the xy-plane.

Figure 16.47

Table 16.4 

Name Description Example

Cylinder 51r, u, z2: r = a6, a 7 0

x

y

z

a

Cylindrical shell 51r, u, z2: 0 6 a … r … b6

x

y

z

a b

Vertical half-plane 51r, u, z2: u = u06

x y

z

u0
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 16.5 Triple Integrals in Cylindrical and Spherical Coordinates 1049

EXAMPLE 1 Sets in cylindrical coordinates Identify and sketch the following sets in 
cylindrical coordinates.

a. Q = 51r, u, z2: 1 … r … 3, z Ú 06
b. S = 51r, u, z2: z = 1 - r, 0 … r … 16
SOLUTION

a. The set Q is a cylindrical shell with inner radius 1 and outer radius 3 that extends 
 indefinitely along the positive z-axis (Figure 16.48a). Because u is unspecified, it  
takes on all values.

b. To identify this surface, it helps to work in steps. The set S1 = 51r, u, z2: z = r6 
is a cone that opens upward with its vertex at the origin. Similarly, the set 
S2 = 51r, u, z2: z = -r6 is a cone that opens downward with its vertex at the origin. 
Therefore, S is S2 shifted vertically upward by 1 unit; it is a cone that opens downward 
with its vertex at 10, 0, 12. Because 0 … r … 1, the base of the cone is on the xy-plane  
(Figure 16.48b).

Related Exercise 11	

Table 16.4 (Continued)

Name Description Example

Horizontal plane 51r, u, z2: z = a6
a

x

y

z

Cone 51r, u, z2: z = ar6, a ≠ 0

x
y

z

yx

z

(a)

1

1 1
yx

(b)

z

Figure 16.48

Equations for transforming Cartesian coordinates to cylindrical coordinates, and vice 
versa, are often needed for integration. We simply use the rules for polar coordinates  
(Section 12.2) with no change in the z-coordinate (Figure 16.49).P(r, u, z)

z

u

y 5 r sin u

x 5 r cos u

tan u 5
y
x

x

y

z

Figure 16.49

Transformations Between Cylindrical and Rectangular Coordinates

Rectangular u  Cylindrical Cylindrical u  Rectangular

 r2 = x2 + y2  x = r cos u

 tan u = y>x   y = r sin u

 z = z   z = z

QUICK CHECK 1 Find the cylindrical 
coordinates of the point with 
rectangular coordinates 11, -1, 52. 
Find the rectangular coordinates of 
the point with cylindrical coordinates 
12, p>3, 52.	

Integration in Cylindrical Coordinates
Among the uses of cylindrical coordinates is the evaluation of triple integrals of the form 
9D ƒ1x, y, z2 dV . We begin with a region D in ℝ3 and partition it into cylindrical wedges 
formed by changes of ∆r, ∆u, and ∆z in the coordinate directions (Figure 16.50). Those 
wedges that lie entirely within D are labeled from k = 1 to k = n in some convenient 
 order. We let 1rk

*, uk
*, zk

*2 be the cylindrical coordinates of an arbitrary point in the kth 
wedge. This point also has Cartesian coordinates 1x*

k, y
*
k, z

*
k2 = 1r*

k cos u*
k, r

*
k sin u*

k, z
*
k2.
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1050 Chapter 16  •  Multiple Integration

As shown in Figure 16.50, the base of the kth wedge is a polar rectangle with an 
 approximate area of rk

*∆r∆u (Section 16.3). The height of the wedge is ∆z. Multiplying 
these dimensions together, the approximate volume of the wedge is ∆Vk = rk

*∆r∆u∆z, 
for k = 1, c, n.

We now assume ƒ1x, y, z2 is continuous on D and form a Riemann sum over the 
region by adding function values multiplied by the corresponding approximate volumes:

a
n

k = 1

 ƒ1xk
*, yk

*, zk
*2∆Vk = a

n

k = 1

 ƒ1rk
* cos uk

*, r*
k sin u*

k, zk
*2∆Vk.

Let ∆ be the maximum value of ∆r, ∆u, and ∆z, for k = 1, c, n. As n S ∞  and ∆ S 0, 
the Riemann sums approach a limit called the triple integral of ƒ over D in cylindrical 
coordinates:

9
D

ƒ1x, y, z2 dV = lim
∆S0

 a
n

k = 1
 ƒ1rk

* cos uk
*, r*

k sin u*
k, zk

*2rk
*∆r∆u∆z.

 (++)++*
   ∆Vk

The rightmost sum tells us how to write a triple integral in x, y, and z as an iterated integral 
of ƒ1r cos u, r sin u, z2 r in cylindrical coordinates.

Finding Limits of Integration We show how to find the limits of integration in one com-
mon situation involving cylindrical coordinates. Suppose D is a region in ℝ3 consisting of 
points between the surfaces z = G1x, y2 and z = H1x, y2, where x and y belong to a region 
R in the xy-plane and G1x, y2 … H1x, y2 on R (Figure 16.51). Assuming ƒ is continuous  
on D, the triple integral of ƒ over D may be expressed as the iterated integral

9
D

ƒ1x, y, z2 dV = 6
R

a ∫H1x, y2
G1x, y2  ƒ1x, y, z2 dzb  dA.

The inner integral with respect to z runs from the lower surface z = G1x, y2 to the upper 
surface z = H1x, y2, leaving an outer double integral over R.

If the region R is described in polar coordinates by

51r, u2: g1u2 … r … h1u2, a … u … b6,

then we evaluate the double integral over R in polar coordinates (Section 16.3). The effect 
is a change of variables from rectangular to cylindrical coordinates. Letting x = r cos u 
and y = r sin u, we have the following result, which is another change of variables 
formula.

Du

Dz

Dr

Base area < rk
*DrDu

rk
*

Approximate volume DVk 5 rk
*DrDuDz

cylindrical: (rk
*, uk

*, zk
*)

rectangular: (xk
*, yk

*, zk
*)

Figure 16.50

z 5 H(x, y)

z 5 G(x, y)

r 5 g(u) r 5 h(u)

a

b

R

D

x

y

z

Figure 16.51

THEOREM 16.6 Change of Variables for Triple Integrals in Cylindrical  
Coordinates
Let ƒ be continuous over the region D, expressed in cylindrical coordinates as

D = 51r, u, z2: 0 … g1u2 … r … h1u2, a … u … b, G1x, y2 … z … H1x, y26.

Then ƒ is integrable over D, and the triple integral of ƒ over D is

9
D

ƒ1x, y, z2 dV = ∫b
a
∫h1u2

g1u2 ∫
H1r cos u, r sin u2

G1r cos u, r sin u2  ƒ1r cos u, r sin u, z2 dz r dr du.

➤	 The order of the differentials specifies 
the order in which the integrals are 
evaluated, so we write the volume 
element dV  as dz r dr du. Do not lose 
sight of the factor of r in the integrand. 
It plays the same role as it does in the 
area element dA = r dr du in polar 
coordinates.

Notice that the integrand and the limits of integration are converted from Cartesian 
to cylindrical coordinates. As with triple integrals in Cartesian coordinates, there are two 
immediate interpretations of this integral. If ƒ = 1, then the triple integral 9D dV  equals 
the volume of the region D. Also, if ƒ describes the density of an object occupying the 
region D, the triple integral equals the mass of the object.
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 16.5 Triple Integrals in Cylindrical and Spherical Coordinates 1051

EXAMPLE 2 Switching coordinate systems Evaluate the integral

I = ∫
212

0
∫
28-x2

-28-x2
 ∫

2

-1
21 + x2 + y2 dz dy dx.

SOLUTION Evaluating this integral as it is given in Cartesian coordinates requires a tricky 
trigonometric substitution in the middle integral, followed by an even more difficult 
integral. Notice that z varies between the planes z = -1 and z = 2, while x and y vary 
over half of a disk in the xy-plane. Therefore, D is half of a solid cylinder (Figure 16.52a), 
which suggests a change to cylindrical coordinates.

The limits of integration in cylindrical coordinates are determined as follows:

Inner integral with respect to z A line through the half cylinder parallel to the z-axis 
 enters at z = -1 and leaves at z = 2, so we integrate over the interval -1 … z … 2  
(Figure 16.52b).

Middle integral with respect to r The projection of the half cylinder onto the xy-plane 
is the half disk R of radius 212 centered at the origin, so r varies over the interval 
0 … r … 212 (Figure 16.52c).

Outer integral with respect to U The half disk R is swept out by letting u vary over the 
interval -p>2 … u … p>2 (Figure 16.52c).

y

z

x

y

z

x

y

z

x

21

2E       E       E dz r dr du
0

In cylindrical coordinates,
integrate in z with 21 # z # 2; ...

... then integrate over R with
0 # r # 2    2, 2   # u #    .

R

D

R
u

z 5 21

z 5 2

r 5 0

r 5 2

(b)(a) (c)

   21
R

  2EE(E    dz) dA1 1 r2 1 1 r2

2

2 2

2 2

p/2

2p/2

pp

Figure 16.52

We also convert the integrand to cylindrical coordinates:

ƒ1x, y, z2 = 21 + x2 + y2 = 21 + r2.(11)11*
  r2

The evaluation of the integral in cylindrical coordinates now follows:

 I = ∫
p>2

-p>2∫
212

0
∫

2

-1
21 + r2 dz r dr du Convert to cylindrical coordinates.

 = 3∫
p>2

-p>2∫
212

0
21 + r2 r dr du  Evaluate inner integral with respect to z.

  = ∫
p>2

-p>2
11 + r223>2 `

212

0
 du Evaluate middle integral with respect to r.

 = ∫
p>2

-p>2
26 du = 26p.  Evaluate outer integral with respect to u.

Related Exercises 17–18	

QUICK CHECK 2 Find the limits of 
integration for a triple integral in 
cylindrical coordinates that gives the 
volume of a cylinder with height 20 and 
a circular base of radius 10 centered at 
the origin in the xy-plane.	
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1052 Chapter 16  •  Multiple Integration

As illustrated in Example 2, triple integrals given in rectangular coordinates may be 
more easily evaluated after converting to cylindrical coordinates. Answering the following 
questions may help you choose the best coordinate system for a particular integral.

• In which coordinate system is the region of integration most easily described?

• In which coordinate system is the integrand most easily expressed?

• In which coordinate system is the triple integral most easily evaluated?

In general, if an integral in one coordinate system is difficult to evaluate, consider using a 
different coordinate system.

EXAMPLE 3 Mass of a solid paraboloid Find the mass of the solid D bounded by 
the paraboloid z = 4 - r2 and the plane z = 0 (Figure 16.53a), where the density of the 
solid, given in cylindrical coordinates, is ƒ1r, u, z2 = 5 - z (heavy near the base and 
light near the vertex).

SOLUTION The z-coordinate runs from the base z = 0 to the surface  
z = 4 - r2 (Figure 16.53b). The projection R of the region D onto the xy-plane 
is found by setting z = 0 in the equation of the surface, z = 4 - r2. The posi-
tive value of r satisfying the equation 4 - r2 = 0 is r = 2, so in polar coordinates 
R = 51r, u2: 0 … r … 2, 0 … u … 2p6, which is a disk of radius 2 (Figure 16.53c).

z

x

y y y

z

x

z

x

0

2

0

42r2E    E  E      (5 2 z) dz r dr du
0

2p

z 5 4 2 r2

r 5 0

z 5 0

r 5 2
R

R

D

Integrate first in z
with 0 # z # 4 2 r2; ...

... then integrate over R
with 0 # r # 2, 0 # u # 2p.

z 5 4 2 r2

   0
R

  42r2EE(E      (5 2 z) dz) dA

u

(b)(a) (c)

Figure 16.53

The mass is computed by integrating the density function over D:

 9
D

ƒ1r, u, z2 dV = ∫2p

0
∫2

0
∫4- r2

0
 15 - z2 dz r dr du Integrate density.

 = ∫2p

0
∫2

0
 a5z -

z2

2
b ` 4- r2

0
 r dr du  

 Evaluate inner integral with  
respect to z.

 =
1
2 ∫

2p

0
∫2

0
 124r - 2r3 - r52 dr du Simplify.

 = ∫2p

0
 
44
3

 du  
 Evaluate middle integral  
with respect to r.

 =
88p

3
 .  

 Evaluate outer integral  
with respect to u.

Related Exercises 25–26	

➤	 In Example 3, the integrand is 
independent of u, so the integral with 
respect to u could have been done first, 
producing a factor of 2p.
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EXAMPLE 4 Volume between two surfaces Find the volume of the solid D between 
the cone z = 2x2 + y2 and the inverted paraboloid z = 12 - x2 - y2 (Figure 16.54a).

SOLUTION Because x2 + y2 = r2, the equation of the cone in cylindrical coordinates 
becomes z = r, and the equation of the paraboloid becomes z = 12 - r2. The inner inte-
gral in z runs from the cone z = r (the lower surface) to the paraboloid z = 12 - r2  
(the upper surface) (Figure 16.54b). We project D onto the xy-plane to produce the  
region R, whose boundary is determined by the intersection of the two surfaces. Equat-
ing the z-coordinates in the equations of the two surfaces, we have 12 - r2 = r, or 
1r - 321r + 42 = 0. Because r Ú 0, the relevant root is r = 3. Therefore, the projec-
tion of D onto the xy-plane is the polar region R = 51r, u2: 0 … r … 3, 0 … u … 2p6, 
which is a disk of radius 3 centered at 10, 02 (Figure 16.54c).

➤	 Recall that to find the volume of a region 
D using a triple integral, we set ƒ = 1 
and evaluate

V = 9
D

dV.

x y

z

x y

z z

yx
u

z 5 r

r 5 0

r 5 3

D

R R

Integrate first in z
with r # z # 12 2 r2; ...

... then integrate over R
with 0 # r # 3, 0 # u # 2p.

z 5 12 2 r2

z 5     x2 1 y2

z 5 12 2 x2 2 y2

(a) (b) (c)

Figure 16.54

The volume of the region is

 9
D

dV = ∫2p

0
∫3

0
∫12- r2

r
 dz r dr du

 = ∫2p

0
∫3

0
 112 - r2 - r2 r dr du 

 Evaluate inner integral with  
respect to z.

 = ∫2p

0
 
99
4

 du  
 Evaluate middle integral with  
respect to r.

 =
99p

2
 .  

 Evaluate outer integral with  
respect to u.

Related Exercises 30–31	

Spherical Coordinates
In spherical coordinates, a point P in ℝ3 is represented by three coordinates 1r, w, u2  
(Figure 16.55).

• r is the distance from the origin to P.

• w is the angle between the positive z-axis and the line OP.

• u is the same angle as in cylindrical coordinates; it measures rotation about the z-axis 
relative to the positive x-axis.

All points in ℝ3 can be represented by spherical coordinates using the intervals 
0 … r 6 ∞ , 0 … w … p, and 0 … u … 2p.

➤	 The coordinate r (pronounced “rho”) 
in spherical coordinates should not 
be confused with r in cylindrical 
coordinates, which is the distance from P 
to the z-axis.

➤	 The coordinate w is called the colatitude 
because it is p>2 minus the latitude 
of points in the Northern Hemisphere. 
Physicists may reverse the roles of u and 
w; that is, u is the colatitude and w is the 
polar angle.
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1054 Chapter 16  •  Multiple Integration

Figure 16.56 allows us to find the relationships among rectangular and spherical coor-
dinates. Given the spherical coordinates 1r, w, u2 of a point P, the distance from P to the 
z-axis is r = r sin w. We also see from Figure 16.56 that x = r cos u = r sin w cos u, 
y = r sin u = r sin w sin u, and z = r cos w.

u

r

P(r, w, u)

w

O

0 # r , `
0 # w # p
0 # u # 2p

x

y

z

Figure 16.55

P(r, w, u)

u

y 5 r sin w sin u

r

x 5 r sin w cos u

r

z 5 r cos w

r 5 r sin w

rw
w

x

y

z

Figure 16.56

Transformations Between Spherical and Rectangular Coordinates

Rectangular u  Spherical Spherical u  Rectangular

r2 = x2 + y2 + z2  x = r sin w cos u

Use trigonometry to find  y = r sin w sin u

w and u.  z = r cos w

QUICK CHECK 3 Find the spherical 
coordinates of the point with 
rectangular coordinates 11, 13, 22. 
Find the rectangular coordinates of 
the point with spherical coordinates 
12, p>4, p>42.	

In spherical coordinates, some sets of points have simple representations. For 
 instance, the set 51r, w, u2: r = a6 is the set of points whose r-coordinate is constant, 
which is a sphere of radius a centered at the origin. The set 51r, w, u2: w = w06 is the set 
of points with a constant w-coordinate; it is a cone with its vertex at the origin and whose 
sides make an angle w0 with the positive z-axis.

EXAMPLE 5 Sets in spherical coordinates Express the following sets in rectangular 
coordinates and identify the set. Assume a is a positive real number.

a. 51r, w, u2: r = 2a cos w, 0 … w … p>2, 0 … u … 2p6
b. 51r, w, u2: r = 4 sec w, 0 … w 6 p>2, 0 … u … 2p6
SOLUTION

a. To avoid working with square roots, we multiply both sides of r = 2a cos w 
by r to obtain r2 = 2a r cos w. Substituting rectangular coordinates, we have 
x2 + y2 + z2 = 2az. Completing the square results in the equation

x2 + y2 + 1z - a22 = a2.

This is the equation of a sphere centered at 10, 0, a2 with radius a (Figure 16.57a). 
With the limits 0 … w … p>2 and 0 … u … 2p, the set describes a full sphere.

b. The equation r = 4 sec w is first written r cos w = 4. Noting that z =  r cos w, the 
set consists of all points with z = 4, which is a horizontal plane (Figure 16.57b).

Related Exercises 37–38	

4

x

y

z

a

x

y

z

a

(a)

(b)

r 5 4 sec w

r 5 2a cos w

Figure 16.57
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Table 16.5 summarizes some sets that have simple descriptions in spherical coordinates.

Table 16.5 

Name Description Example

Sphere, radius a,  
center 10, 0, 02

51r, w, u2: r = a6, a 7 0

a

x

y

z

Cone 51r, w, u2: w = w06, w0 ≠ 0, p>2, p

x
y

z

w0

Vertical 
half-plane

51r, w, u2: u = u06

x y

z

u0

Horizontal  
plane, z = a

 a 7 0: 51r, w, u2: r = a sec w, 0 … w 6 p>26
 a 6 0: 51r, w, u2: r = a sec w, p>2 6 w … p6

a

x

y

z

Cylinder,  
radius a 7 0

51r, w, u2: r = a csc w, 0 6 w 6 p6

x

y

z

a

Sphere,  
radius a 7 0,  
center 10, 0, a2

51r, w, u2: r = 2a cos w, 0 … w … p>26

a

x

y

z

➤	 Notice that the set of points 1r, w, u2 
with w = p>2 is the xy-plane, and if 
p>2 6 w0 6 p, the set of points with 
w = w0 is a cone that opens downward.
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1056 Chapter 16  •  Multiple Integration

Integration in Spherical Coordinates
We now investigate triple integrals in spherical coordinates over a region D in ℝ3. The 
region D is partitioned into “spherical boxes” that are formed by changes of ∆r, ∆w, 
and ∆u in the coordinate directions (Figure 16.58). Those boxes that lie entirely within 
D are labeled from k = 1 to k = n. We let 1rk

*, wk
*, uk

*2 be the spherical coordinates for 
an arbitrary point in the kth box. This point also has Cartesian coordinates

1x*
k, y

*
k, z

*
k2 = 1r*

k sin w*
k cos u*

k, r
*
k sin w*

k sin u*
k, r

*
k cos w*

k2.
To approximate the volume of a typical box, note that the length of the box in 

the r-direction is ∆r (Figure 16.58). The approximate length of the kth box in the  
u-direction is the length of an arc of a circle of radius rk

*
 sin wk

* subtended by an angle 
∆u; this length is rk

* sin wk
*∆u. The approximate length of the box in the w-direction is 

the length of an arc of radius rk
* subtended by an angle ∆w; this length is rk

*∆w. Mul-
tiplying these dimensions together, the approximate volume of the kth spherical box is 
∆Vk = r*2

k  sin wk
*∆r∆w∆u, for k = 1, c, n.

We now assume ƒ1x, y, z2 is continuous on D and form a Riemann sum over 
the region by adding function values multiplied by the corresponding approximate 
volumes:

a
n

k = 1
 ƒ1xk

*, yk
*, zk

*2∆Vk = a
n

k = 1
 ƒ1rk

* sin wk
* cos uk

*, r*
k sin wk

* sin u*
k, r

*
k cos w*

k2∆Vk.

We let ∆ denote the maximum value of ∆r, ∆w, and ∆u. As n S ∞  and ∆ S 0, the 
Riemann sums approach a limit called the triple integral of ƒ over D in spherical 
coordinates:

9
D

ƒ1x, y, z2 dV

 = lim
∆S0a

n

k = 1

 ƒ1r*
k sin w*

k cos u*
k, r

*
k sin w*

k sin u*
k, r

*
k cos w*

k2rk
*2 sin w*

k ∆r∆w∆u.
 (+++1)1+++*
    ∆Vk

The rightmost sum tells us how to write a triple integral in x, y, and z as an iterated inte-
gral of ƒ1r sin w cos u, r sin w sin u, r cos w2r2 sin w in spherical coordinates.

z

y

x

Du

Dw

Dr

Approximate volume 5
DVk 5 rk

*2 sin wk
*DrDwDu

<rk
* sin wk

* Du

<rk
* sin wk

* <rk
*Dw

spherical: (rk
*, wk

*, uk
*)

rectangular: (xk
*, yk

*, zk
*)

Dw

Du

Dr

Figure 16.58

➤	 Recall that the length s of a circular arc 
of radius r subtended by an angle u is 
s = ru.

x y

z

u 5 a

u 5 b

w 5 b

w 5 a

a # u # b, a # w # b

x y

z

g(w, u) # r # h(w, u)

r 5 h(w, u)
D

r 5 g(w, u)

Figure 16.59

Finding Limits of Integration We consider a common situation in which the region of 
integration D, expressed in spherical coordinates, has the form

D = 51r, w, u2: 0 … g1w, u2 … r … h1w, u2, a … w … b, a … u … b6.

In other words, D is bounded in the r-direction by two surfaces given by g and h. In the 
angular directions, the region lies between two cones 1a … w … b2 and two half-planes 
1a … u … b2 (Figure 16.59).
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For this type of region, the inner integral is with respect to r, which varies from 
r = g1w, u2 to r = h1w, u2. As r varies between these limits, imagine letting u and w 
vary over the intervals a … w … b and a … u … b. The effect is to sweep out all points 
of D. Notice that the middle and outer integrals, with respect to u and w, may be done in 
either order (Figure 16.60).

y

xx

y

z z
w 5 a

u 5 a

w 5 b

u 5 b

r 5 h(w, u)

r 5 g(w, u)

Integrate first in r
with g(w, u) # r # h(w, u); ...

... then integrate in w and u
with a # w # b, a # u # b.

Figure 16.60

In summary, to integrate over all points of D, we carry out the following steps.

1. Integrate with respect to r from r = g1w, u2 to r = h1w, u2; the result (in general) is 
a function of w and u.

2. Integrate with respect to w from w = a to w = b; the result (in general) is a function of u.

3. Integrate with respect to u from u = a to u = b; the result is (always) a real number.

Another change of variables expresses the triple integral as an iterated integral in spherical 
coordinates.

THEOREM 16.7 Change of Variables for Triple Integrals in Spherical  
Coordinates
Let ƒ be continuous over the region D, expressed in spherical coordinates as

D = 51r, w, u2: 0 … g1w, u2 … r … h1w, u2, a … w … b, a … u … b6.

Then ƒ is integrable over D, and the triple integral of ƒ over D is

9
D

ƒ1x, y, z2 dV

 = ∫b
a
∫b

a
∫h1w, u2

g1w, u2  ƒ1r sin w cos u, r sin w sin u, r cos w2r2 sin w dr dw du.

➤	 The element of volume in spherical 
coordinates is dV = r2 sin w dr dw du.

If the integrand is given in terms of Cartesian coordinates x, y, and z, it must be 
 expressed in spherical coordinates before integrating. As with other triple integrals, if 
ƒ = 1, then the triple integral equals the volume of D. If ƒ is a density function for an 
 object occupying the region D, then the triple integral equals the mass of the object.

EXAMPLE 6 A triple integral Evaluate 9D 1x2 + y2 + z22-3>2 dV, where D is the 
region in the first octant between two spheres of radius 1 and 2 centered at the origin.
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1058 Chapter 16  •  Multiple Integration

SOLUTION Both the integrand ƒ and the region D are greatly simplified when expressed 
in spherical coordinates. The integrand becomes

1x2 + y2 + z22-3>2 = 1r22-3>2 = r-3,

while the region of integration (Figure 16.61) is

D = 51r, w, u2: 1 … r … 2, 0 … w … p>2, 0 … u … p>26.

x

y

z

x

y

z

r 5 1

r 5 2

w 5 

w 5 0

u 5 0

u 5 

(a) (b)

D

r varies from
inner sphere (r 5 1)
to outer sphere (r 5 2).

u varies from
u 5 0 to u 5   .

w varies from
w 5 0 to w 5    .p

2

p

2

p

2

p

2

Figure 16.61

The integral is evaluated as follows:

 9
D

ƒ1x, y, z2 dV = ∫p>2
0
∫p>2

0
∫2

1
 r-3 r2 sin w dr dw du 

 Convert to spherical  
coordinates.

 = ∫p>2
0
∫p>2

0
∫2

1
 r-1 sin w dr dw du  Simplify.

 = ∫p>2
0
∫p>2

0
 ln 0 r 0 ` 2

1
 sin w dw du  

 Evaluate inner integral  
with respect to r.

 = ln 2∫p>2
0
∫p>2

0
 sin w dw du  Simplify.

 = ln 2∫p>2
0

 1-cos w2 ` p>2
0

 du  
 Evaluate middle integral  
with respect to w.

 = ln 2∫p>2
0

 du =
p ln 2

2
 .  

 Evaluate outer integral  
with respect to u.

Related Exercises 41, 43	

EXAMPLE 7 Ice cream cone Find the volume of the solid region D that lies inside the 
cone w = p>6 and inside the sphere r = 4 (Figure 16.62a).

D

x x

y y

x

y

z z z

(a) (b) (c)

r 5 4

w varies from
w 5 0 to w 5    .

u varies from
u 5 0 to u 5 2p.

Region of
integration

r varies
from 0 to 4.

6
6
p

p

Figure 16.62
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SOLUTION To find the volume, we evaluate a triple integral with ƒ = 1. In the radial  
direction, the region extends from the origin r = 0 to the sphere r = 4 (Figure 16.62b). 
To sweep out all points of D, w varies from 0 to p>6, and u varies from 0 to 2p  
(Figure 16.62c). The volume of the region is

 9
D

dV = ∫2p

0
∫p>6

0
∫4

0
 r2 sin w dr dw du Convert to an iterated integral.

 = ∫2p

0
∫p>6

0
 
r3

3
`
4

0
 sin w dw du  Evaluate inner integral with respect to r.

 =
64
3 ∫

2p

0
∫p>6

0
 sin w dw du  Simplify.

 =
64
3 ∫

2p

0
 1-cos w2 ` p>6

0
 du  Evaluate middle integral with respect to w.

(+11)11+*
  1 - 13>2

 =
32
3

 12 - 132∫2p

0
 du  Simplify.

 =
64p

3
 12 - 132.  Evaluate outer integral with respect to u.

Related Exercises 49, 51	

Getting Started
1. Explain how cylindrical coordinates are used to describe a point 

in ℝ3.

2. Explain how spherical coordinates are used to describe a point  
in ℝ3.

3. Describe the set 51r, u, z2: r = 4z6 in cylindrical coordinates.

4. Describe the set 51r, w, u2: w = p>46 in spherical coordinates.

5. Explain why dz r dr du is the volume of a small “box” in cylindri-
cal coordinates.

6. Explain why r2 sin w dr dw du is the volume of a small “box” in 
spherical coordinates.

7. Write the integral 9D w1r, u, z2 dV  as an iterated integral, 
where the region D, expressed in cylindrical coordinates, is 
D = 51r, u, z2: G1r, u2 … z … H1r, u2, g1u2 … r … h1u2, 
a … u … b6.

8. Write the integral 9D w1r, w, u2 dV  as an iterated inte-
gral, where the region D, expressed in spherical coordinates, 
is D = 51r, w, u2: g1 w, u2 … r … h1w, u2, a … w … b, 
a … u … b6.

9. What coordinate system is suggested if the integrand of a triple 
integral involves x2 + y2?

10. What coordinate system is suggested if the integrand of a triple 
integral involves x2 + y2 + z2?

Practice Exercises
11–14. Sets in cylindrical coordinates Identify and sketch the follow-
ing sets in cylindrical coordinates.

11. 51r, u, z2: 0 … r … 3, 0 … u … p>3, 1 … z … 46
12. 51r, u, z2: 0 … u … p>2, z = 16

SECTION 16.5 EXERCISES

13. 51r, u, z2: 2r … z … 46
14. 51r, u, z2: 0 … z … 8 - 2r6
15–22. Integrals in cylindrical coordinates Evaluate the following 
integrals in cylindrical coordinates. The figures, if given, illustrate the 
region of integration.

15. ∫
2p

0
∫

1

0
∫

1

-1
 dz r dr du

1

21

11

x y

z

16. ∫
3

0
∫
29-y2

-29-y2∫
9-32x2+y2

0
dz dx dy

z

x

9

3

3

y

23
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17. ∫
1

-1
∫
21-y2

-21-y2∫
1

-1
1x2 + y223>2 dz dx dy

z

x
y

1
1

21

1 1

18. ∫
3

-3
∫
29-x2

0
∫

2

0

1

1 + x2 + y2 dz dy dx

3 3

23

2

x
y

z

19. ∫
4

0
∫
22>2

0
∫
21-x2

x
e-x2 - y2

dy dx dz

20. ∫
4

-4
∫
216-x2

-216-x2∫
42x2+y2

 dz dy dx

21. ∫
3

0
∫
29-x2

0
∫
2x2+y2

0
1x2 + y22-1>2 dz dy dx

22. ∫
1

-1
∫

1>2

0
∫
21-y223y

1x2 + y221>2 dx dy dz

23–26. Mass from density Find the mass of the following objects  
with the given density functions. Assume 1r, u, z2 are cylindrical  
coordinates.

23. The solid cylinder D = 51r, u, z2: 0 … r … 4, 0 … z … 106 
with density r1r, u, z2 = 1 + z>2

24. The solid cylinder D = 51r, u, z2: 0 … r … 3, 0 … z … 26 with 

density r1r, u, z2 = 5e-r2

25. The solid cone D = 51r, u, z2: 0 … z … 6 - r, 0 … r … 66 
with density r1r, u, z2 = 7 - z

26. The solid paraboloid 
D = 51r, u, z2: 0 … z … 9 - r2, 0 … r … 36 with density 
r1r, u, z2 = 1 + z>9

27. Which weighs more? For 0 … r … 1, the solid bounded by 
the cone z = 4 - 4r and the solid bounded by the paraboloid 
z = 4 - 4r2 have the same base in the xy-plane and the same 
height. Which object has the greater mass if the density of both 
objects is r1r, u, z2 = 10 - 2z?

28. Which weighs more? Which of the objects in Exercise 27 weighs 

more if the density of both objects is r1r, u, z2 = 8
p

 e-z?

29–34. Volumes in cylindrical coordinates Use cylindrical coordi-
nates to find the volume of the following solids.

29. The solid bounded by the plane z = 0 and the hyperboloid 

z = 3 - 21 + x2 + y2

z

x

3

y

30. The solid bounded by the plane z = 25 and the paraboloid 
z = x2 + y2

25

z

x
yz 5 x2 1 y2

31. The solid bounded by the plane z = 129 and the hyperboloid 

z = 24 + x2 + y2

z

x
y

z 5     4 1 x2 1 y2

29

32. The solid cylinder whose height is 4 and whose base is the disk 
51r, u2: 0 … r … 2 cos u6

33. The solid in the first octant bounded by the cylinder r = 1, and 
the planes z = x and z = 0

34. The solid bounded by the cylinders r = 1 and r = 2, and the 
planes z = 4 - x - y and z = 0

35–38. Sets in spherical coordinates Identify and sketch the following 
sets in spherical coordinates.

35. 51r, w, u2: 1 … r … 36
36. 51r, w, u2: r = 2 csc w, 0 6 w 6 p6
37. 51r, w, u2: r = 4 cos w, 0 … w … p>26
38. 51r, w, u2: r = 2 sec w, 0 … w 6 p>26
39–40. Latitude, longitude, and distances Assume Earth is a sphere 
with radius r = 3960 miles, oriented in xyz-space so that its center 
passes through the origin O, the positive z-axis passes through the 
North Pole, and the xz-plane passes through Greenwich, England (the 
intersection of Earth’s surface and the xz-plane is called the prime  
meridian). The location of a point on Earth is given by its latitude  

T
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(degrees north or south of the equator) and its longitude (degrees east 
or west of the prime meridian).

39. Seattle has a latitude of 47.6° North and a longitude of 122.3° West; 
Rome, Italy, has a latitude of 41.9° North and a longitude of 12.5° East.

a. Find the approximate spherical and rectangular coordinates of 
Seattle. Express the angular coordinates in radians.

b. Find the approximate spherical and rectangular coordinates  
of Rome.

c. Consider the intersection curve of a sphere, and a plane pass-
ing through the center of the sphere and two points A and B on 
the sphere. It can be shown that the arc length of the segment 
of the intersection curve from A to B is the shortest distance on 
the sphere from A to B. Find the approximate shortest distance 

from Seattle to Rome. (Hint: Recall that cos u =
u # v

�u � �v �
 ,  

where 0 … u … p is the angle between u and v; use the arc  
length formula s = ru to find the distance.)

u

Center 
of Earth

s

Distance from
Seattle to Rome
is s 5 ru

The intersection of Earth
with the plane passing through
Seattle, Rome, and the center
of Earth is a great circle.

Rome

Seattle

40. Los Angeles has a latitude of 34.05° North and a longitude of 
118.24° West, and New York City has a latitude of 40.71° North 
and a longitude of 74.01° West. Find the approximate shortest  
distance from Los Angeles to New York City.

41–47. Integrals in spherical coordinates Evaluate the following  
integrals in spherical coordinates.

41. 9
D

 1x2 + y2 + z225>2 dV; D is the unit ball.

42. 9
D

 e-1x2 + y2 + z223>2 dV; D is the unit ball.

43. 9
D

 
dV

1x2 + y2 + z223>2 ; D is the solid between the spheres of  

radius 1 and 2 centered at the origin.

44. ∫2p

0
∫p>3

0
∫4 sec w

0
 r2 sin w dr dw du

4

y
x

z

p

3

45. ∫p
0
∫p>6

0
∫4

2 sec w
 r2 sin w dr dw du

yx

z

4

2

p

6

46. ∫2p

0
∫p>4

0
∫2 sec w

1
1r-32  r2 sin w dr dw du

1

2

z

x
y

p

4

47. ∫2p

0
∫p>3
p>6 ∫

2 csc w

0
r2 sin w dr dw du

2

x y

z

p

6
p

3

48–54. Volumes in spherical coordinates Use spherical coordinates 
to find the volume of the following solids.

48. A ball of radius a 7 0

49. The solid bounded by the 
sphere r = 2 cos w and the 
hemisphere r = 1, z Ú 0

1
1

x y

z

50. The solid cardioid of 
revolution D = 51r, w, u2: 
0 … r … 1 + cos w, 
0 … w … p, 0 … u … 2p6

z

yx
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51. The solid outside the cone 
w = p>4 and inside the 
sphere r = 4 cos w

z

y

2

4

x

p

4

52. The solid bounded by the 
cylinders r = 1 and r = 2, 
and the cones w = p>6 and 
w = p>3

z

1

2

yx

p

6 p

3

62–63. Changing order of integration If possible, write an iterated 
integral in cylindrical coordinates of a function g1r, u, z2 for the fol-
lowing regions in the specified orders. Sketch the region of integration.

62. The solid outside the cylinder r = 1 and inside the sphere r = 5, 
for z Ú 0, in the orders dz dr du, dr dz du, and du dz dr

63. The solid above the cone z = r and below the sphere r = 2, for 
z Ú 0, in the orders dz dr du, dr dz du, and du dz dr

64–65. Changing order of integration If possible, write iterated  
integrals in spherical coordinates for the following regions in the  
specified orders. Sketch the region of integration. Assume g is continu-
ous on the region.

64. #2p
0 #p>20 #4 sec w

0 g1r, w, u2r2 sin w dr dw du in the orders dr du dw 

and du dr dw

65. #2p
0 #p>2p>6 #2

csc w g1r, w, u2r2 sin w dr dw du in the orders dr du dw 

and du dr dw

66–71. Miscellaneous volumes Choose the best coordinate system and 
find the volume of the following solids. Surfaces are specified using the 
coordinates that give the simplest description, but the simplest integra-
tion may be with respect to different variables.

66. The solid inside the sphere r = 1 and below the cone w = p>4, 
for z Ú 0

67. That part of the solid cylinder r … 2 that lies between the cones 
w = p>3 and w = 2p>3

68. That part of the ball r … 2 that lies between the cones w = p>3 
and w = 2p>3

69. The solid bounded by the cylinder r = 1, for 0 … z … x + y

70. The solid inside the cylinder r = 2 cos u, for 0 … z … 4 - x

71. The wedge cut from the cardioid cylinder r = 1 + cos u by the 
planes z = 2 - x and z = x - 2

72. Volume of a drilled hemisphere Find the volume of material 
remaining in a hemisphere of radius 2 after a cylindrical hole of 
radius 1 is drilled through the center of the hemisphere perpen-
dicular to its base.

73. Density distribution A right circular cylinder with height 8 cm 
and radius 2 cm is filled with water. A heated filament running 
along its axis produces a variable density in the water given by 
r1r2 = 1 - 0.05e-0.01r2

g>cm3 (r stands for density here, not for 
the radial spherical coordinate). Find the mass of the water in the 
cylinder. Neglect the volume of the filament.

74. Charge distribution A spherical cloud of electric charge has a 
known charge density Q1r2, where r is the spherical coordinate. 
Find the total charge in the cloud in the following cases.

a. Q1r2 = 2 * 10-4

r4  , 1 … r 6 ∞

b. Q1r2 = 12 * 10-42e-0.01r3
, 0 … r 6 ∞

53. That part of the ball r … 4 
that lies between the planes 
z = 2 and z = 213

z

y

2

x

z 5 2

54. The solid lying between the 
planes z = 1 and z = 2  
that is bounded by the  
cone z = 1x2 + y221>2

z

y
x

1

2
z 5 2

z 5 1

55. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. Any point on the z-axis has more than one representation in 
both cylindrical and spherical coordinates.

b. The sets 51r, u, z2: r = z6 in cylindrical coordinates and the 
set 51r, w, u2: w = p>46 in spherical coordinates describe 
the same set of points.

56. Spherical to rectangular Convert the equation r2 = sec 2w, 
where 0 … w 6 p>4, to rectangular coordinates and identify  
the surface.

57. Spherical to rectangular Convert the equation r2 = -sec 2w, 
where p>4 6 w … p>2, to rectangular coordinates and identify 
the surface.

58–61. Mass from density Find the mass of the following solids with 
the given density functions. Note that density is described by the  
function ƒ to avoid confusion with the radial spherical coordinate r.

58. The ball of radius 4 centered at the origin with a density 
ƒ1r, w, u2 = 1 + r

59. The ball of radius 8 centered at the origin with a density 
ƒ1r, w, u2 = 2e-r3

60. The solid cone 51r, u, z2: 0 … z … 4, 0 … r … 13z, 
0 … u … 2p6 with a density ƒ1r, u, z2 = 5 - z

61. The solid cylinder 51r, u, z2: 0 … r … 2, 0 … u … 2p, 
-1 … z … 16 with a density ƒ1r, u, z2=12 - � z � 214 - r2
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Explorations and Challenges
75. Gravitational field due to spherical shell A point mass m is a 

distance d from the center of a thin spherical shell of mass M and 
radius R. The magnitude of the gravitational force on the point 
mass is given by the integral

F1d2 = GMm
4p ∫2p

0
∫p

0

1d - R cos w2 sin w

1R2 + d2 - 2Rd cos w23>2 dw du,

where G is the gravitational constant.

a. Use the change of variable x = cos w to evaluate the integral 
and show that if d 7 R, then F1d2 = GMm>d2, which means 
the force is the same as it would be if the mass of the shell 
were concentrated at its center.

b. Show that if d 6 R (the point mass is inside the shell), then 
F = 0.

76. Water in a gas tank Before a gasoline-powered engine is  
started, water must be drained from the bottom of the fuel tank. 
Suppose the tank is a right circular cylinder on its side with a 
length of 2 ft and a radius of 1 ft. If the water level is 6 in above 
the lowest part of the tank, determine how much water must be 
drained from the tank.

2 ft

1 ft

6 in

77–80. General volume formulas Use integration to find the volume 
of the following solids. In each case, choose a convenient coordinate 
system, find equations for the bounding surfaces, set up a triple inte-
gral, and evaluate the integral. Assume a, b, c, r, R, and h are positive 
constants.

77. Cone Find the volume of a solid right circular cone with height h 
and base radius r.

78. Spherical cap Find the vol-
ume of the cap of a sphere of 
radius R with thickness h.

R

h

79. Frustum of a cone Find the 
volume of a truncated solid 
cone of height h whose ends 
have radii r and R.

R

r

h

16.6 Integrals for Mass Calculations
Intuition says that a thin circular disk (such as a DVD without a hole) should balance on 
a pencil placed at the center of the disk (Figure 16.63). If, however, you were given a thin 
plate with an irregular shape, at what point would it balance? This question asks about the 
center of mass of a thin object (thin enough that it can be treated as a two-dimensional 
 region). Similarly, given a solid object with an irregular shape and variable density, where 
is the point at which all of the mass of the object would be located if it were treated as a 
point mass? In this section, we use integration to compute the center of mass of one-, two-, 
and three-dimensional objects.

Sets of Individual Objects
Methods for finding the center of mass of an object are ultimately based on a well-
known playground principle: If two people with masses m1 and m2 sit at distances d1 and 
d2 from the pivot point of a seesaw (with no mass), then the seesaw balances, provided 
m1d1 = m2d2 (Figure 16.64).

80. Ellipsoid Find the volume of a solid ellipsoid with axes of lengths 
2a, 2b, and 2c.

c

x

y

z

b
a

81. Intersecting spheres One sphere is centered at the origin and 
has a radius of R. Another sphere is centered at 10, 0, r2 and has 
a  radius of r, where r 7 R>2. What is the volume of the region 
common to the two spheres?

QUICK CHECK ANSWERS

1. 112, 7p>4, 52, 11, 13, 52
2. 0 … r … 10, 0 … u … 2p, 0 … z … 20
3. 1212, p>4, p>32, 11, 1, 122	

Circular disk Irregular shape

Center of mass ??Center of mass

Figure 16.63

d1 d2

m1 m2

Figure 16.64
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To generalize the problem, we introduce a coordinate system with the origin at x = 0 
(Figure 16.65). Suppose the location of the balance point x is unknown. The coordinates of 
the two masses m1 and m2 are denoted x1 and x2, respectively, with x1 7 x2. The mass m1 
is a distance x1 - x from the balance point (because distance is positive and x1 7 x). The 
mass m2 is a distance x - x2 from the balance point (because x 7 x2). The playground 
principle becomes

m11x1 - x2 = m21x - x22,  (11)11*    (11)11*
 distance from distance from  
 balance point  balance point  
 to m1 to m2

or m11x1 - x2 + m21x2 - x2 = 0.
Solving this equation for x, we find that the balance point or center of mass of the 

two-mass system is located at

x =
m1x1 + m2x2

m1 + m2

 .

The quantities m1x1 and m2x2 are called moments about the origin (or just moments). The 
location of the center of mass is the sum of the moments divided by the sum of the masses.

For example, an 80-kg man standing 2 m to the right of the origin will balance a 160-kg 
gorilla sitting 4 m to the left of the origin, provided the pivot on their seesaw is placed at

x =
80122 + 1601-42

80 + 160
= -2,

or 2 m to the left of the origin (Figure 16.66).

Several Objects on a Line Generalizing the preceding argument to n objects having 
masses m1, m2, c, and mn with coordinates x1, x2, c, and xn, respectively, the balance 
condition becomes

m11x1 - x2 + m21x2 - x2 + g+  mn1xn - x2 = a
n

k = 1

mk1xk - x2 = 0.

Solving this equation for the location of the center of mass, we find that

x =
m1x1 + m2x2 +  g+  mnxn

m1 + m2 +  g+  mn

=
a

n

k = 1

mkxk

a
n

k = 1

mk

 .

Again, the location of the center of mass is the sum of the moments m1x1, m2x2, c, and mnxn 
divided by the sum of the masses.

QUICK CHECK 1 A 90-kg person sits  
2 m from the balance point of a 
seesaw. How far from that point  
must a 60-kg person sit to balance  
the seesaw? Assume the seesaw has  
no mass.	  

➤	 The center of mass may be viewed as the 
weighted average of the x-coordinates, 
with the masses serving as the weights. 
Notice how the units work out: If x1 and 
x2 have units of meters and m1 and m2 
have units of kilograms, then x has units 
of meters.

23 30

m1m2

x2 x1

x 5
m1x1 1 m2x2

m1 1 m2

Figure 16.65

QUICK CHECK 2 Solve the equation 
m11x1 - x2 + m21x2 - x2 = 0 for x 
to verify the preceding expression for 
the center of mass.	

224 0

Balance point

160 kg
80 kg

Figure 16.66

EXAMPLE 1 Center of mass for four objects Find the point at which the system 
shown in Figure 16.67 balances.

SOLUTION The center of mass is

 x =
m1x1 + m2x2 + m3x3 + m4x4

m1 + m2 + m3 + m4

 =
31-1.22 + 81-0.42 + 110.52 + 7.511.12

3 + 8 + 1 + 7.5

 =
1
10

 .

The balancing point is slightly to the right of the origin.
Related Exercises 7–8	

0

m1 5 3 m2 5 8 m3 5 1 m4 5 7.5

x1 5 21.2

x2 5 20.4 x3 5 0.5

x4 5 1.1

Center of mass
1
10

x 5

Figure 16.67
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Continuous Objects in One Dimension
Now consider a thin rod or wire with density r that varies along the length of the rod  
(Figure 16.68). The density in this case has units of mass per length (for example, g>cm). 
As before, we want to determine the location x at which the rod balances on a pivot.

Using the slice-and-sum strategy, we divide the rod, which corresponds to the interval 

a … x … b, into n subintervals, each with a width of ∆x =
b - a

n
 (Figure 16.69). The 

corresponding grid points are

x0 = a, x1 = a + ∆x, c, xk = a + k ∆x, c, and xn = b.

The mass of the kth segment of the rod is approximately the density at xk multiplied by the 
length of the interval, or mk ≈ r1xk2∆x.

➤	 Density is usually measured in units of 
mass per volume. However, for thin, 
narrow objects such as rods and wires, 
linear density with units of mass per 
length is used. For thin, flat objects such 
as plates and sheets, area density with 
units of mass per area is used.

QUICK CHECK 3 In Figure 16.68, 
suppose a = 0, b = 3, and the density 
of the rod in g>cm is r1x2 = 4 - x. 
Where is the rod lightest? Heaviest?	

x 5 a x 5 b

Density (mass per unit length)
varies with x.

Figure 16.68

x2x1 xkx0 5 a xn 5 b

Dx

Mass 5 mk < r(xk)Dx

Figure 16.69

➤	 An object consisting of two different 
materials that meet at an interface has a 
discontinuous density function. Physical 
density functions either are continuous or 
have a finite number of discontinuities.

➤	 We assume the rod has positive mass 
and the limits in the numerator and 
denominator exist, so the limit of the 
quotient is the quotient of the limits.

We now use the center-of-mass formula for several distinct objects to write the ap-
proximate center of mass of the rod as

x =
a

n

k = 1

mk xk

a
n

k = 1

mk

≈
a

n

k = 1

1r1xk2∆x2 xk

a
n

k = 1

r1xk2∆x
.

To model a rod with a continuous density, we let ∆x S 0 and n S ∞ ; the center of mass 
of the rod is

x = lim
∆xS0

 
a

n

k = 1

1r1xk2∆x2 xk

a
n

k = 1

r1xk2∆x
=

lim
∆xS0

 a
n

k = 1

xk 
r1xk2∆x

lim
∆xS0

 a
n

k = 1

r1xk2∆x
=
∫b

a
xr1x2 dx

∫b

a
r1x2 dx

 .

As discussed in Section 6.7, the denominator of the last fraction, #b
a r1x2 dx, is the mass 

of the rod. The numerator is the “sum” of the moments of the individual pieces of the rod, 
which is called the total moment.

DEFINITION Center of Mass in One Dimension

Let r be an integrable density function on the interval 3a, b4 (which represents a 

thin rod or wire). The center of mass is located at the point x =
M
m

 , where the 

total moment M and mass m are

M = ∫b

a
xr1x2 dx and m = ∫b

a
r1x2 dx.

➤	 The units of a moment are 
mass * length. The center of mass is a 
moment divided by a mass, which has 
units of length. Notice that if the density 
is constant, then r effectively does not 
enter the calculation of x.

Observe the parallels between the discrete and continuous cases:

n individual objects: x =
a

n

k = 1

xk mk

a
n

k = 1

mk

; continuous object: x =
∫b

a
xr1x2 dx

∫b

a
r1x2 dx

 .

M16_BRIG3644_03_SE_C16_1008-1088.indd   1065 25/10/17   2:48 PM



1066 Chapter 16  •  Multiple Integration

EXAMPLE 2 Center of mass of a one-dimensional object Suppose a thin 2-m bar is 
made of an alloy whose density in kg>m is r1x2 = 1 + x2, where 0 … x … 2. Find the 
center of mass of the bar.

SOLUTION The total mass of the bar in kilograms is

m = ∫b

a
r1x2 dx = ∫2

0
11 + x22 dx = ax +

x3

3
b ` 2

0
=

14
3

 .

The total moment of the bar, with units kg-m, is

M = ∫b

a
xr1x2 dx = ∫2

0
x11 + x22 dx = a x2

2
+

x4

4
b ` 2

0
= 6.

Therefore, the center of mass is located at x =
M
m

=
9
7
≈ 1.29 m.

Related Exercises 10–11	

➤	 Notice that the density of the bar 
increases with x. As a consistency check, 
our calculation must result in a center of 
mass to the right of the midpoint of  
the bar.

R

y

x

(x, y)

Density 5 r(x, y)
(mass per unit area)

My

m
x 5 : My involves

distances from y-axis.

Mx
m

y 5 : Mx involves

distances from x-axis.

Figure 16.70

Two-Dimensional Objects
In two dimensions, we start with an integrable density function r1x, y2 defined over a 
closed bounded region R in the xy-plane. The density is now an area density with units of 
mass per area (for example, kg>m2). The region represents a thin plate (or lamina). The 
center of mass is the point at which a pivot must be located to balance the plate. If the den-
sity is constant, the location of the center of mass depends only on the shape of the plate, 
in which case the center of mass is called the centroid.

For a two- or three-dimensional object, the coordinates for the center of mass are 
computed independently by applying the one-dimensional argument in each coordinate 
direction (Figure 16.70). The mass of the plate is the integral of the density function over R:

m = 6
R

r1x, y2 dA.

In analogy with the moment calculation in the one-dimensional case, we now define two 
moments.

DEFINITION Center of Mass in Two Dimensions

Let r be an integrable area density function defined over a closed bounded region R 
in ℝ2. The coordinates of the center of mass of the object represented by R are

x =
My

m
=

1
m6

R

xr1x, y2 dA  and  y =
Mx

m
 =

1
m6

R

yr1x, y2 dA,

where m = 6R r1x, y2 dA is the mass, and My and Mx are the moments with  
respect to the y-axis and x-axis, respectively. If r is constant, the center of mass is 
called the centroid and is independent of the density.

➤	 The moment with respect to the y-axis My 
is a weighted average of distances from 
the y-axis, so it has x in the integrand (the 
distance between a point and the y-axis). 
Similarly, the moment with respect to 
the x-axis Mx is a weighted average of 
distances from the x-axis, so it has y in 
the integrand.

As before, the center-of-mass coordinates are weighted averages of the distances from 
the coordinate axes. For two- and three-dimensional objects, the center of mass need not 
lie within the object (Exercises 51, 61, and 62).

QUICK CHECK 4 Explain why the 
integral for My has x in the integrand. 
Explain why the density drops out of 
the center-of-mass calculation if it is 
constant.	

EXAMPLE 3 Centroid calculation Find the centroid (center of mass) of the  
unit-density, dart-shaped region bounded by the y-axis and the curves y = e-x - 1

2 and 
y = 1

2 - e-x (Figure 16.71).

SOLUTION Because the region is symmetric about the x-axis and the density is constant, 
the y-coordinate of the center of mass is y = 0. This leaves the integrals for m and My to 
evaluate.

0.5

20.5

0.4

y

x(x, y)

R

y 5 e2x 2

y 5     2 e2x

ln 2

2
1

2
1

Figure 16.71
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 16.6 Integrals for Mass Calculations 1067

The first task is to find the point at which the curves intersect. Solving 
e-x - 1

2 = 1
2 - e-x, we find that x = ln 2, from which it follows that y = 0. Therefore, 

the intersection point is 1ln 2, 02. The moment My (with r = 1) is given by

 My = ∫ ln 2

0
∫ e-x-1>2

1>2-e-x
x dy dx  Definition of My

 = ∫ ln 2

0
xa ae-x -

1
2
b - a 1

2
- e-xb b  dx Evaluate inner integral.

 = ∫ ln 2

0
x12e-x - 12 dx.  Simplify.

Using integration by parts for this integral, we find that

 My = ∫ ln 2

0
x 12e-x - 12 dx

     " (++)++*
      

u
    dv

 = -x12e-x + x2 ` ln 2

0
+ ∫ ln 2

0
12e-x + x2 dx Integration by parts

 = 1 - ln 2 -
1
2

 ln2 2 ≈ 0.067.  Evaluate and simplify.

With r = 1, the mass of the region is given by

 m = ∫ ln 2

0
∫ e-x-1>2

1>2-e-x
dy dx  Definition of m

 = ∫ ln 2

0
12e-x - 12 dx  Evaluate inner integral.

 = 1-2e-x - x2 ` ln 2

0
 Evaluate outer integral.

 = 1 - ln 2 ≈ 0.307. Simplify.

Therefore, the x-coordinate of the center of mass is x =
My

m
≈ 0.217. The center of mass 

is located approximately at 10.217, 02.
Related Exercise 18	

➤	 The density does not enter the center-
of-mass calculation when the density is 
constant. So it is easiest to set r = 1.

EXAMPLE 4 Variable-density plate Find the center of mass of the rectangular plate 
R = 51x, y2: -1 … x … 1, 0 … y … 16 with a density of r1x, y2 = 2 - y (heavy at 
the lower edge and light at the top edge; Figure 16.72).

SOLUTION Because the plate is symmetric with respect to the y-axis and because the  
density is independent of x, we have x = 0. We must still compute m and Mx.

 m = 6
R

r1x, y2 dA = ∫1

-1
∫1

0
12 - y2 dy dx =

3
2 ∫

1

-1
dx = 3

 Mx = 6
R

yr1x, y2 dA = ∫1

-1
∫1

0
y12 - y2 dy dx =

2
3 ∫

1

-1
dx =

4
3

Therefore, the center-of-mass coordinates are

x =
My

m
= 0 and y =

Mx

m
=

4>3
3

=
4
9

  .

Related Exercise 21	

y

x

R

r(x, y) 5 2 2 y(0, 1)

(1, 0)(21, 0)

Figure 16.72

➤	 To verify that x = 0, notice that to find 
My, we integrate an odd function in x 
over -1 … x … 1; the result is zero.

Three-Dimensional Objects
We now extend the preceding arguments to compute the center of mass of three-dimensional 
solids. Assume D is a closed bounded region in ℝ3, on which an integrable density func-
tion r is defined. The units of the density are mass per volume (for example, g>cm3). 
The coordinates of the center of mass depend on the mass of the region, which by  

➤	 If possible, try to arrange the 
coordinate system so that at least one 
of the integrations in the center-of-mass 
calculation can be avoided by using 
symmetry. Often the mass (or area) can 
be found using geometry if the density is 
constant.
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1068 Chapter 16  •  Multiple Integration

Section 16.4 is the integral of the density function over D. Three moments enter the pic-
ture: Myz involves distances from the yz-plane; therefore, it has an x in the integrand. Simi-
larly, Mxz involves distances from the xz-plane, so it has a y in the integrand, and Mxy 
involves distances from the xy-plane, so it has a z in the integrand. As before, the coordi-
nates of the center of mass are the total moments divided by the total mass (Figure 16.73).

x

y

z

Myz

m
x 5 : Myz involves distances

from yz-plane.

(x, y, z )
m

z 5 : Mxy involves distances

from xy-plane.

m
y 5 : Mxz involves distances from xz-plane.

Figure 16.73

QUICK CHECK 5 Explain why the 
integral for the moment Mxy has z in 
the integrand.	

EXAMPLE 5 Center of mass with constant density Find the center of mass of the 
constant-density solid cone D bounded by the surface z = 4 - 2x2 + y2 and z = 0 
(Figure 16.74).

SOLUTION Because the cone is symmetric about the z-axis and has uniform density, the 
center of mass lies on the z-axis; that is, x = 0 and y = 0. Setting z = 0, the base of the 
cone in the xy-plane is the disk of radius 4 centered at the origin. Therefore, the cone has 
height 4 and radius 4; by the volume formula, its volume is pr2h>3 = 64p>3. The cone 
has a constant density, so we assume r = 1 and its mass is m = 64p>3.

To obtain the value of z, only Mxy needs to be calculated, which is most easily done 
in cylindrical coordinates. The cone is described by the equation z = 4 - 2x2 + y2 =  
4 - r. The projection of the cone onto the xy-plane, which is the region of integration in 
the xy-plane, is the disk R = 51r, u2: 0 … r … 4, 0 … u … 2p6. The integration for Mxy 
now follows:

 Mxy = 9
D

z dV  Definition of Mxy with r = 1

 = ∫2p

0
∫4

0
∫4- r

0
z dz r dr du  Convert to an iterated integral.

 = ∫2p

0
∫4

0
 
z2

2
`
4- r

0
r dr du  Evaluate inner integral with respect to z.

 =
1
2 ∫

2p

0
∫4

0
r14 - r22 dr du Simplify.

DEFINITION Center of Mass in Three Dimensions

Let r be an integrable density function on a closed bounded region D in ℝ3. The 
coordinates of the center of mass of the region are

 x =
Myz

m
=

1
m

 9
D

xr1x, y, z2 dV, y =
Mxz

m
=

1
m

 9
D

yr1x, y, z2 dV, and

 z =
Mxy

m
=

1
m9

D

zr1x, y, z2 dV,

where m = 9D r1x, y, z2 dV  is the mass, and Myz, Mxz, and Mxy are the moments 
with respect to the coordinate planes.

y

4

4 4
x

z

(x, y, z ) 5 (0, 0, 1)

R 5 {(r, u): 0 # r # 4, 0 # u # 2p}

Figure 16.74
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 16.6 Integrals for Mass Calculations 1069

 =
1
2 ∫

2p

0
 
64
3

 du  Evaluate middle integral with respect to r.

 =
64p

3
.  Evaluate outer integral with respect to u.

The z-coordinate of the center of mass is z =
Mxy

m
=

64p>3
64p>3 = 1, and the center of mass  

is located at 10, 0, 12. It can be shown (Exercise 55) that the center of mass of a constant-
density cone of height h is located h>4 units from the base on the axis of the cone, inde-
pendent of the radius.

Related Exercise 28	

EXAMPLE 6 Center of mass with variable density Find the center of mass of the 
interior of the hemisphere D of radius a with its base on the xy-plane. The density of the 
object given in spherical coordinates is ƒ1r, w, u2 = 2 - r>a (heavy near the center and 
light near the outer surface; Figure 16.75).

SOLUTION The center of mass lies on the z-axis because of the symmetry of both the solid 
and the density function; therefore, x = y = 0. Only the integrals for m and Mxy need to 
be evaluated, and they should be done in spherical coordinates.

The integral for the mass is

 m = 9
D

ƒ1r, w, u2 dV  Definition of m

 = ∫2p

0
∫p>2

0
∫a

0
a2 -

r

a
b  r2 sin w dr dw du Convert to an iterated integral.

 = ∫2p

0
∫p>2

0
a 2r3

3
-

r4

4a
b ` a

0
 sin w dw du  Evaluate inner integral with respect to r.

 = ∫2p

0
∫p>2

0
 
5a3

12
 sin w dw du  Simplify.

 =
5a3

12 ∫
2p

0
1-cos w2 ` p>2

0
 du  Evaluate middle integral with respect to w.

(++)++*
   1

 =
5a3

12 ∫
2p

0
du  Simplify.

 =
5pa3

6
 .  Evaluate outer integral with respect to u.

In spherical coordinates, z = r cos w, so the integral for the moment Mxy is

 Mxy = 9
D

z ƒ1r, w, u2 dV  Definition of Mxy

 = ∫2p

0
∫p>2

0
∫a

0
r cos w a2 -

r

a
b  r2 sin w dr dw du Convert to an iterated integral.(1)1*

  z

 = ∫2p

0
∫p>2

0
ar

4

2
-

r5

5a
b ` a

0 
sin w cos w dw du  

 Evaluate inner integral with  
respect to r.

 = ∫2p

0
∫p>2

0
 
3a4

10
 sin w cos w dw du  Simplify.(+1)1+*
 1sin 2w2>2

 =
3a4

10 ∫
2p

0
a -  

cos 2w

4
b ` p>2

0
 du  

 Evaluate middle integral with  
respect to w.(++1)1++*

   1>2

x y

z

(x, y, z )

Density 5 2 2
r

a

a

Figure 16.75
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1070 Chapter 16  •  Multiple Integration

 =
3a4

20 ∫
2p

0
du  Simplify.

 =
3pa4

10
 .  

 Evaluate outer integral with  
respect to u.

The z-coordinate of the center of mass is z =
Mxy

m
=

3pa4>10

5pa3>6 =
9a
25

= 0.36a. It  

can be shown (Exercise 56) that the center of mass of a uniform-density hemispherical  
solid of radius a is 3a>8 = 0.375a units above the base. In this case, the variable density 
lowers the center of mass toward the base.

Related Exercise 35	

Getting Started
1. Explain how to find the balance point for two people on opposite 

ends of a (massless) plank that rests on a pivot.

2. If a thin 1-m cylindrical rod has a density of r = 1 g>cm for its 
left half and a density of r = 2 g>cm for its right half, what is its 
mass and where is its center of mass?

3. Explain how to find the center of mass of a thin plate with a 
 variable density.

4. In the integral for the moment Mx of a thin plate, why does y 
 appear in the integrand?

5. Explain how to find the center of mass of a three-dimensional 
 object with a variable density.

6. In the integral for the moment Mxz with respect to the xz-plane of a 
solid, why does y appear in the integrand?

Practice Exercises
7–8. Individual masses on a line Sketch the following systems on a 
number line and find the location of the center of mass.

7. m1 = 10 kg located at x = 3 m; m2 = 3 kg located at x = -1 m

8. m1 = 8 kg located at x = 2 m; m2 = 4 kg located at x = -4 m; 
m3 = 1 kg located at x = 0 m

9–14. One-dimensional objects Find the mass and center of mass of 
the thin rods with the following density functions.

9. r1x2 = 1 + sin x, for 0 … x … p

10. r1x2 = 1 + x3, for 0 … x … 1

11. r1x2 = 2 -
x2

16
 , for 0 … x … 4

12. r1x2 = 2 + cos x, for 0 … x … p

13. r1x2 = e1 if 0 … x … 2
1 + x if 2 6 x … 4

14. r1x2 = e x2 if 0 … x … 1
x12 - x2 if 1 6 x … 2

15–20. Centroid calculations Find the mass and centroid (center of 
mass) of the following thin plates, assuming constant density. Sketch 
the region corresponding to the plate and indicate the location of the 
center of mass. Use symmetry when possible to simplify your work.

SECTION 16.6 EXERCISES
15. The region bounded by y = sin x and y = 1 - sin x between 

x = p>4 and x = 3p>4
16. The region in the first quadrant bounded by x2 + y2 = 16

17. The region bounded by y = 1 - � x �  and the x-axis

18. The region bounded by y = ex, y = e-x, x = 0, and x = ln 2

19. The region bounded by y = ln x, the x-axis, and x = e

20. The region bounded by x2 + y2 = 1 and x2 + y2 = 9, for y Ú 0

21–26. Variable-density plates Find the center of mass of the follow-
ing plane regions with variable density. Describe the distribution of 
mass in the region.

21. R = 51x, y2: 0 … x … 4, 0 … y … 26; r1x, y2 = 1 + x>2
22. R = 51x, y2: 0 … x … 1, 0 … y … 56; r1x, y2 = 2e-y>2

23. The triangular plate in the first quadrant bounded by x + y = 4 
with r1x, y2 = 1 + x + y

24. The upper half (y Ú 0) of the disk bounded by the circle 
x2 + y2 = 4 with r1x, y2 = 1 + y>2

25. The upper half (y Ú 0) of the plate bounded by the ellipse 
x2 + 9y2 = 9 with r1x, y2 = 1 + y

26. The quarter disk in the first quadrant bounded by x2 + y2 = 4 
with r1x, y2 = 1 + x2 + y2

27–32. Center of mass of constant-density solids Find the center of 
mass of the following solids, assuming a constant density of 1. Sketch 
the region and indicate the location of the centroid. Use symmetry 
when possible and choose a convenient coordinate system.

27. The upper half of the ball x2 + y2 + z2 … 16 (for z Ú 0)

28. The solid bounded by the paraboloid z = x2 + y2 and the plane 
z = 25

29. The tetrahedron in the first octant bounded by z = 1 - x - y and 
the coordinate planes

30. The solid bounded by the cone z = 16 - r and the plane z = 0

31. The sliced solid cylinder bounded by x2 + y2 = 1, z = 0, and 
y + z = 1

32. The solid bounded by the upper half (z Ú 0) of the ellipsoid 
4x2 + 4y2 + z2 = 16
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33–38. Variable-density solids Find the coordinates of the center of 
mass of the following solids with variable density.

33. R = 51x, y, z2: 0 … x … 4, 0 … y … 1, 0 … z … 16; 
r1x, y, z2 = 1 + x>2

34. The region bounded by the paraboloid z = 4 - x2 - y2 and 
z = 0 with r1x, y, z2 = 5 - z

35. The solid bounded by the upper half of the sphere r = 6 and 
z = 0 with density ƒ1r, w, u2 = 1 + r>4

36. The interior of the cube in the first octant formed by the planes 
x = 1, y = 1, and z = 1, with r1x, y, z2 = 2 + x + y + z

37. The interior of the prism formed by the planes z = x, x = 1, and 
y = 4, and the coordinate planes, with r1x, y, z2 = 2 + y

38. The solid bounded by the cone z = 9 - r and z = 0 with 
r1r, u, z2 = 1 + z

39. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. A thin plate of constant density that is symmetric about the  
x-axis has a center of mass with an x-coordinate of zero.

b. A thin plate of constant density that is symmetric about both 
the x-axis and the y-axis has its center of mass at the origin.

c. The center of mass of a thin plate must lie on the plate.
d. The center of mass of a connected solid region (all in one 

piece) must lie within the region.

40. Limiting center of mass A thin rod of length L has a linear den-
sity given by r1x2 = 2e-x>3 on the interval 0 … x … L. Find the 
mass and center of mass of the rod. How does the center of mass 
change as L S ∞?

41. Limiting center of mass A thin rod of length L has a linear den-

sity given by r1x2 = 10

1 + x2 on the interval 0 … x … L. Find the 

mass and center of mass of the rod. How does the center of mass  
change as L S ∞?

42. Limiting center of mass A thin plate is bounded by the graphs of 
y = e-x, y = -e-x, x = 0, and x = L. Find its center of mass. 
How does the center of mass change as L S ∞?

43–44. Two-dimensional plates Find the mass and center of mass of 
the thin constant-density plates shown in the figure.

43. 

(4, 0)(24, 0)

(22, 2) (2, 2)

y

x

49. The region bounded by one leaf of the rose r = sin 2u, for 
0 … u … p>2

50. The region bounded by the limaçon r = 2 + cos u

51. Semicircular wire A thin (one-dimensional) wire of constant 
density is bent into the shape of a semicircle of radius r. Find the 
location of its center of mass. (Hint: Treat the wire as a thin half-
annulus with width ∆a, and then let ∆a S 0.)

52. Parabolic region A thin plate of unit density occupies the region 
between the parabola y = ax2 and the horizontal line y = b, 
where a 7 0 and b 7 0. Show that the center of mass is  

a0, 
3b
5
b , independent of a.

53. Circular crescent Find the center of mass of the region in the first 
quadrant bounded by the circle x2 + y2 = a2 and the lines x = a 
and y = a, where a 7 0.

54–57. Centers of mass for general objects Consider the following 
two- and three-dimensional regions with variable dimensions. Specify 
the surfaces and curves that bound the region, choose a convenient 
coordinate system, and compute the center of mass assuming constant 
density. All parameters are positive real numbers.

54. A solid rectangular box has sides of lengths a, b, and c. Where is 
the center of mass relative to the faces of the box?

55. A solid cone has a base with a radius of a and a height of h. How 
far from the base is the center of mass?

56. A solid is enclosed by a hemisphere of radius a. How far from the 
base is the center of mass?

57. A region is enclosed by an isosceles triangle with two sides of 
length s and a base of length b. How far from the base is the center 
of mass?

Explorations and Challenges
58. A tetrahedron is bounded by the coordinate planes and the plane 

x>a + y>a + z>a = 1. What are the coordinates of the center of 
mass?

59. A solid is enclosed by the upper half of an ellipsoid with a circular 
base of radius r and a height of a. How far from the base is the 
center of mass?

60. Geographic vs. population center Geographers measure the  
geographical center of a country (which is the centroid) and the 
population center of a country (which is the center of mass com-
puted with the population density). A hypothetical country  
is shown in the figure with the location and population of five 
towns. Assuming no one lives outside the towns, find the  
geographical center of the country and the population center of  
the country.

y

x
(22, 22) (2, 22)

(4, 4)(24, 4)

(22, 2)
Pop. 5 10,000

(23, 22)
Pop. 5 15,000

(2, 3)
Pop. 5 15,000

(4, 24)
Pop. 5 5,000

(2, 0)
Pop. 5 20,000

(24, 24)

44. 

(24, 2)

(24, 24)

(4, 2)

(4, 24)

(22, 0)

(22, 21) (2, 21)

(2, 0)

y

x

45–50. Centroids Use polar coordinates to find the centroid of the  
following constant-density plane regions.

45. The semicircular disk R = 51r, u2: 0 … r … 2, 0 … u … p6
46. The quarter-circular disk R = 51r, u2: 0 … r … 2, 

0 … u … p>26
47. The region bounded by the cardioid r = 1 + cos u

48. The region bounded by the cardioid r = 3 - 3 cos u
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61. Center of mass on the edge Consider the thin constant-density 
plate 51r, u2: 0 6 a … r … 1, 0 … u … p6 bounded by two 
semicircles and the x-axis.

a. Find and graph the y-coordinate of the center of mass of the 
plate as a function of a.

b. For what value of a is the center of mass on the edge of the 
plate?

62. Center of mass on the edge Consider the constant-density solid 
51r, w, u2: 0 6 a … r … 1, 0 … w … p>2, 0 … u … 2p6 
bounded by two hemispheres and the xy-plane.

a. Find and graph the z-coordinate of the center of mass of the 
plate as a function of a.

b. For what value of a is the center of mass on the edge of the 
solid?

63. Draining a soda can A cylindrical soda can has a radius of 4 cm 
and a height of 12 cm. When the can is full of soda, the center 
of mass of the contents of the can is 6 cm above the base on the 
axis of the can (halfway along the axis of the can). As the can is 
drained, the center of mass descends for a while. However, when 
the can is empty (filled only with air), the center of mass is once 
again 6 cm above the base on the axis of the can. Find the depth of 
soda in the can for which the center of mass is at its lowest point. 
Neglect the mass of the can, and assume the density of the soda is 
1 g>cm3 and the density of air is 0.001 g>cm3.

64. Triangle medians A triangular region has a base that connects 
the vertices 10, 02 and 1b, 02, and a third vertex at 1a, h2, where 
a 7 0, b 7 0, and h 7 0.

a. Show that the centroid of the triangle is aa + b
3

 , 
h
3
b .

b. Recall that the three medians of a triangle extend from each 
vertex to the midpoint of the opposite side. Knowing that 
the medians of a triangle intersect in a point M and that each 
median bisects the triangle, conclude that the centroid of the 
triangle is M.

65. The golden earring A disk of radius r is removed from a larger 
disk of radius R to form an earring (see figure). Assume the ear-
ring is a thin plate of uniform density.

a. Find the center of mass of the earring in terms of r and R.  
(Hint: Place the origin of a coordinate system either at the  
center of the large disk or at Q; either way, the earring is  
symmetric about the x-axis.)

b. Show that the ratio 
R
r

 such that the center of mass lies at the 

point P (on the edge of the inner disk) is the golden mean 
1 + 15

2
≈ 1.618.

(Source: P. Glaister, Golden Earrings, Mathematical Gazette, 
80, 1996)

Radius r

Radius R

P Q

QUICK CHECK ANSWERS

1. 3 m 3. It is heaviest at x = 0 and lightest at x = 3.
4. The distance from the point 1x, y2 to the y-axis is x. The 
constant density appears in the integral for the moment, and 
it appears in the integral for the mass. Therefore, the density 
cancels when we divide the two integrals. 5. The distance 
from the xy-plane to a point 1x, y, z2 is z.	

16.7  Change of Variables in  
Multiple Integrals

Converting double integrals from rectangular coordinates to polar coordinates (Section 16.3) 
and converting triple integrals from rectangular coordinates to cylindrical or spherical coor-
dinates (Section 16.5) are examples of a general procedure known as a change of variables. 
The idea is not new: The Substitution Rule introduced in Chapter 5 with single-variable 
integrals is also a change of variables. The aim of this section is to show you how to change 
variables in double and triple integrals.

Recap of Change of Variables
Recall how a change of variables is used to simplify a single-variable integral. For 
 example, to simplify the integral #1

0 212x + 1 dx, we choose a new variable u = 2x + 1, 
which means that du = 2 dx. Therefore,

∫1

0
212x + 1 dx = ∫3

1
1u du.
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4

3

1

432

2

y y

x1

4

3

1

432

2

u1

1

3

0

1

00

Figure 16.76

EXAMPLE 1 Image of a transformation Consider the transformation from polar to 
rectangular coordinates given by

T:  x = g1r, u2 = r cos u and y = h1r, u2 = r sin u.

Find the image under this transformation of the rectangle

S = 51r, u2: 0 … r … 1, 0 … u … p>26.

Similarly, some double and triple integrals can be simplified through a change of 
variables. For example, the region of integration for

∫
1

0
∫
21-x2

0
e1 - x2 - y2

 dy dx

is the quarter disk R = 51x, y2: x Ú 0, y Ú 0, x2 + y2 … 16. Changing variables to po-
lar coordinates with x = r cos u, y = r sin u, and dy dx = r dr du, we have

x = r cos u
y = r sin u

∫
1

0
∫
21-x2

0
e1 - x2 - y2

 dy dx  =   ∫
p>2

0
∫

1

0
 e1 - r2

 r dr du.

In this case, the original region of integration R is transformed into a new region 
S = 51r, u2: 0 … r … 1, 0 … u … p>26, which is a rectangle in the ru-plane.

Transformations in the Plane
A change of variables in a double integral is a transformation that relates two sets of vari-
ables, 1u, v2 and 1x, y2. It is written compactly as 1x, y2 = T1u, v2. Because it relates 
pairs of variables, T  has two components,

T: x = g1u, v2 and y = h1u, v2.
Geometrically, T  takes a region S in the uv-plane and “maps” it point by point to a region 
R in the xy-plane (Figure 16.77). We write the outcome of this process as R = T1S2 and 
call R the image of S under T.

S

(u, v)

(x, y)

R

T:
x 5 g(u, v)
y 5 h(u, v)

Figure 16.77

This equality means that the area under the curve y = 212x + 1 from x = 0 to x = 1 
equals the area under the curve y = 1u from u = 1 to u = 3 (Figure 16.76). The relation 
du = 2 dx relates the length of a small interval on the u-axis to the length of the corre-
sponding interval on the x-axis.

➤	 In Example 1, we have replaced the 
coordinates u and v with the familiar 
polar coordinates r and u.
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SOLUTION If we apply T  to every point of S (Figure 16.78), what is the resulting set R in 
the xy-plane? One way to answer this question is to walk around the boundary of S, let’s 
say counterclockwise, and determine the corresponding path in the xy-plane. In the  
ru-plane, we let the horizontal axis be the r-axis and the vertical axis be the u-axis.
Starting at the origin, we denote the edges of the rectangle S as follows.

 A = 51r, u2: 0 … r … 1, u = 06  Lower boundary

 B = e 1r, u2: r = 1, 0 … u …
p

2
f  Right boundary

 C = e 1r, u2: 0 … r … 1, u =
p

2
f  Upper boundary

 D = e 1r, u2: r = 0, 0 … u …
p

2
f  Left boundary

Table 16.6 shows the effect of the transformation on the four boundaries of S; the corre-
sponding boundaries of R in the xy-plane are denoted A′, B′, C′, and D′ (Figure 16.78).

u

y

r

x

1

T:
x 5 r cos u
y 5 r sin u

C

D

A

A9

E9

E

D9

B

C9

B9

S

R

2

6

6

p

p

p

Figure 16.78

QUICK CHECK 1 How would the image 
of S change in Example 1 if S =
51r, u2: 0 … r … 1, 0 … u … p6?	

Table 16.6 

Boundary of S in  
rU-plane

Transformation  
equations

Boundary of R in  
xy-plane

A: 0 … r … 1, u = 0 x = r cos u = r,
y = r sin u = 0

A′: 0 … x … 1, y = 0

B: r = 1, 0 … u … p>2 x = r cos u = cos u,
y = r sin u = sin u

B′: quarter unit circle

C: 0 … r … 1, u = p>2 x = r cos u = 0,
y = r sin u = r

C′: x = 0, 0 … y … 1

D: r = 0, 0 … u … p>2 x = r cos u = 0,
y = r sin u = 0

D′: single point 10, 02

The image of the rectangular boundary of S is the boundary of R. Furthermore, it  
can be shown that every point in the interior of R is the image of one point in the inte-
rior of S. (For example, the horizontal line segment E in the ru-plane in Figure 16.78 is 
mapped to the line segment E′ in the xy-plane.) Therefore, the image of S is the quarter 
disk R in the xy-plane.

Related Exercises 11–12	

Recall that a function ƒ is one-to-one on an interval I if ƒ1x12 = ƒ1x22 only when 
x1 = x2, where x1 and x2 are points of I. We need an analogous property for transforma-
tions when changing variables. 

DEFINITION One-to-One Transformation

A transformation T  from a region S to a region R is one-to-one on S if 
T1P2 = T1Q2 only when P = Q, where P and Q are points in S.

Notice that the polar coordinate transformation in Example 1 is not one-to-one on the 
rectangle S = 51r, u2: 0 … r … 1, 0 … u … p>26 (because all points with r = 0 map 
to the point 10, 02). However, this transformation is one-to-one on the interior of S.

We can now anticipate how a transformation (change of variables) is used to sim-
plify a double integral. Suppose we have the integral 6R ƒ1x, y2 dA. The goal is to find 
a transformation to a new set of coordinates 1u, v2 such that the new equivalent integral 
6S ƒ1x1u, v2, y1u, v22 dA involves a simple region S (such as a rectangle), a simple inte-
grand, or both. The next theorem allows us to do exactly that, but it first requires a new 
concept.
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DEFINITION Jacobian Determinant of a Transformation of Two Variables

Given a transformation T: x = g1u, v2, y = h1u, v2, where g and h are differentiable 
on a region of the uv-plane, the Jacobian determinant (or Jacobian) of T is

J1u, v2 = 01x, y2
01u, v2 = ∞

0x
0u

0x
0v

0y
0u

0y
0v

∞ = 0x
0u

 
0y
0v

-
0x
0v

 
0y
0u

 .

➤	 The Jacobian is named after the German 
mathematician Carl Gustav Jacob Jacobi 
(1804–1851). In some books, the Jacobian 
is the matrix of partial derivatives. 
In others, as here, the Jacobian is the 
determinant of the matrix of partial 

derivatives. Both J1u, v2 and 
01x, y2
01u, v2 are 

used to refer to the Jacobian.

The proof of this result is technical and is found in advanced texts. The factor 0 J1u, v2 0  
that appears in the second integral is the absolute value of the Jacobian. Matching the area 
elements in the two integrals of Theorem 16.8, we see that dx dy =  0 J1u, v2 0  du dv. This 
expression shows that the Jacobian is a magnification (or reduction) factor: It relates the 
area of a small region dx dy in the xy-plane to the area of the corresponding region du dv 
in the uv-plane. If the transformation equations are linear, then this relationship is exact in 
the sense that area1T1S22 = 0 J1u, v2 0 # area of S (see Exercise 60). The way in which the 
Jacobian arises is explored in Exercise 61.

➤	 In the integral over R, dA corresponds 
to dx dy. In the integral over S, dA 
corresponds to du dv. The relation 
dx dy = 0 J 0  du dv is the analog of 
du = g′1x2 dx in a change of variables 
with one variable.

QUICK CHECK 2 Find J1u, v2 if 
x = u + v, y = 2v.	

The Jacobian is easiest to remember as the determinant of a 2 * 2 matrix of partial 
 derivatives. With the Jacobian in hand, we can state the change-of-variables rule for dou-
ble integrals.

➤	 The condition that g and h have 
continuous first partial derivatives 
ensures that the new integrand is 
integrable.

THEOREM 16.8 Change of Variables for Double Integrals
Let T: x = g1u, v2, y = h1u, v2 be a transformation that maps a closed bounded 
region S in the uv-plane to a region R in the xy-plane. Assume T  is one-to-one on 
the interior of S and g and h have continuous first partial derivatives there. If ƒ is 
continuous on R, then

6
R

ƒ1x, y2 dA = 6
S

ƒ1g1u, v2, h1u, v22 0 J1u, v2 0  dA.

EXAMPLE 2 Jacobian of the polar-to-rectangular transformation Compute the 
 Jacobian of the transformation

T:   x = g1r, u2 = r cos u and y = h1r, u2 = r sin u.

SOLUTION The necessary partial derivatives are

0x
0r

= cos u,    
0x
0u

= -r sin u,    
0y
0r

= sin u,  and 
0y
0u

= r cos u.

Therefore,

J1r, u2 = 01x, y2
01r, u2 = ∞

0x
0r

0x
0u

0y
0r

0y
0u

∞ = ` cos u -r sin u
sin u r cos u

` = r1cos2 u + sin2 u2 = r.

This determinant calculation confirms the change-of-variables formula for polar 
 coordinates: dx dy becomes r dr du.

Related Exercise 20	
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Table 16.7 

1x, y 2 1u, v 2
10, 02 10, 02
10, 12 10, 12
12, 52 11, 12
12, 42 11, 02

y

x21

u

v

1

D BS

A

C

5

4

3

2

1

R

C9

D9

A9

B9

(2, 5)

(2, 4)

u 5

v 5 y 2 2x

x
2

x 5 2u

y 5 4u 1 v
T:

1

Figure 16.79

➤	 The relations that “go the other direction” 
make up the inverse transformation, 
usually denoted T-1.

We are now ready for a change of variables. To transform the integral 6R ƒ1x, y2 dA 
into 6S ƒ1x1u, v2, y1u, v22 0 J1u, v2 0  dA, we must find the transformation x = g1u, v2 and 
y = h1u, v2, and then use it to find the new region of integration S. The next example 
 illustrates how the region S is found, assuming the transformation is given.

EXAMPLE 3 Double integral with a change of variables given Evaluate the inte-
gral 6R 12x1y - 2x2 dA, where R is the parallelogram in the xy-plane with vertices 
10, 02, 10, 12, 12, 42, and 12, 52 (Figure 16.79). Use the transformation

T: x = 2u and y = 4u + v.

SOLUTION To what region S in the uv-plane is R mapped? Because T  takes points in the 
uv-plane and assigns them to points in the xy-plane, we must reverse the process by solv-
ing x = 2u, y = 4u + v for u and v.

 First equation: x = 2u 1  u =
x
2

 Second equation: y = 4u + v 1  v = y - 4u = y - 2x

Rather than walk around the boundary of R in the xy-plane to determine the resulting 
region S in the uv-plane, it suffices to find the images of the vertices of R. You should 
confirm that the vertices map as shown in Table 16.7.

Connecting the points in the uv-plane in order, we see that S is the unit square 
51u, v2: 0 … u … 1, 0 … v … 16 (Figure 16.79). These inequalities determine the limits 
of integration in the uv-plane.

Replacing 2x with 4u and y - 2x with v, the original integrand becomes 12x1y - 2x2 = 14uv. The Jacobian is

J1u, v2 = ∞
0x
0u

0x
0v

0y
0u

0y
0v

∞ = ` 2 0
4 1

` = 2.

The integration now follows:

 6
R

12x1y - 2x2 dA = 6
S

14uv 0 J1u, v2 0  dA  Change variables.
(+)+*

2

 = ∫1

0
∫1

0
14uv 2 du dv  Convert to an iterated integral.

 = 4∫1

0
 
2
3

 1v 1u3>22 ` 1
0
 dv  Evaluate inner integral.

 =
8
3
# 2
3

 1v3>22 ` 1
0
=

16
9

 .  Evaluate outer integral.

The effect of the change of variables is illustrated in Figure 16.80, where we see the sur-
face z = 12x1y - 2x2 over the region R and the surface w = 214uv over the region 
S. The volumes of the solids beneath the two surfaces are equal, but the integral over S is 
easier to evaluate.

➤	 T  is an example of a shearing 
transformation. The greater the  
u-coordinate of a point, the more that  
point is displaced in the v-direction. It 
also involves a uniform stretch in the  
u-direction.
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QUICK CHECK 3 Solve the equations 
u = x + y, v = -x + 2y for x  
and y.	  

x
y

z

u
v

w

R

S

EE     2x(y 2 2x) dA 5 E  E  2    4uv du dv
0

1

0

1

R

z 5     2x(y 2 2x)

w 5 2    4uv

2

2

1

4

1

4
5

Figure 16.80
Related Exercise 29	

In Example 3, the required transformation was given. More practically, we must 
 deduce an appropriate transformation from the form of either the integrand or the region 
of integration.

2
1

2
1

x

v

u

D BS

A

C

2

2

y

R

C9D9

A9 B9

u 5 x 2 y

v 5 x 1 y

x 5    (u 1 v)

y 5    (v 2 u)

(1, 1)

(1, 21)

(2, 0)(0, 0)

Figure 16.81

EXAMPLE 4 Change of variables determined by the integrand Evaluate 

6
R
A x - y

x + y + 1
 dA, where R is the square with vertices 10, 02, 11, -12, 12, 02, and 

11, 12 (Figure 16.81).

SOLUTION Evaluating the integral as it stands requires splitting the region R into two 
subregions; furthermore, the integrand presents difficulties. The terms x + y and x - y in 
the integrand suggest the new variables

u = x - y and  v = x + y.

To determine the region S in the uv-plane that corresponds to R under this transformation, 
we find the images of the vertices of R in the uv-plane and connect them in order. The 
result is the square S = 51u, v2: 0 … u … 2, 0 … v … 26 (Figure 16.81). Before com-
puting the Jacobian, we express x and y in terms of u and v. Adding the two equations and 
solving for x, we have x = 1u + v2>2. Subtracting the two equations and solving for y 
gives y = 1v - u2>2. The Jacobian now follows:

J1u, v2 = ∞
0x
0u

0x
0v

0y
0u

0y
0v

∞ = ∞
1
2

1
2

-  
1
2

1
2

∞ = 1
2

 .

With the choice of new variables, the original integrand A x - y

x + y + 1
 becomes A u

v + 1
 . 

The integration in the uv-plane may now be done:

 6
R
A x - y

x + y + 1
 dA = 6

S
A u

v + 1
 0 J1u, v2 0  dA  Change of variables

 = ∫2

0
∫2

0 A u
v + 1

 
1
2

 du dv  Convert to an iterated integral.

 =
1
2 ∫

2

0
1v + 12-1>2 

2
3

 1u3>22 ` 2
0
 dv Evaluate inner integral.

➤	 The transformation in Example 4 is a 
rotation. It rotates the points of R about 
the origin 45° in the counterclockwise 
direction (it also increases lengths by 
a factor of 12). In this example, the 
change of variables u = x + y and 
v = x - y would work just as well.

➤	 An appropriate change of variables for 
a double integral is not always obvious. 
Some trial and error is often needed 
to come up with a transformation that 
simplifies the integrand and>or the 
region of integration. Strategies are 
discussed at the end of this section.
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 =
23>2

3
 21v + 121>2 `

2

0
  Evaluate outer integral.

 =
412

3
 113 - 12.  Simplify.

Related Exercises 32, 36	

QUICK CHECK 4 In Example 4, what is 
the ratio of the area of S to the area of 
R? How is this ratio related to J?	

R

4

3

2

1

12

16

8

4

864

24

2

y

x

S

u 5 x 2 y2

v 5 x 1 y2

x 5 9 2 y2

(v 5 9)

x 5 16 2 y2

(v 5 16)
x 5 y2 2 4
(u 5 24)

x 5 y2 
(u 5 0)

v

u

Figure 16.82

EXAMPLE 5 Change of variables determined by the region Let R be the region 
in the first quadrant bounded by the parabolas x = y2, x = y2 - 4, x = 9 - y2, and 
x = 16 - y2 (Figure 16.82). Evaluate 6R y2 dA.

SOLUTION Notice that the bounding curves may be written as x - y2 = 0, 
x - y2 = -4, x + y2 = 9, and x + y2 = 16. The first two parabolas have the form 
x - y2 = C, where C is a constant, which suggests the new variable u = x - y2. 
The last two parabolas have the form x + y2 = C, which suggests the new variable 
v = x + y2. Therefore, the new variables are

u = x - y2 and v = x + y2.

The boundary curves of S are u = -4, u = 0, v = 9, and v = 16. Therefore, the new 
region is S = 51u, v2: -4 … u … 0, 9 … v … 166 (Figure 16.82). To compute the 
 Jacobian, we must find the transformation T  by writing x and y in terms of u and v. 
 Solving for x and y, and observing that y Ú 0 for all points in R, we find that

T: x =
u + v

2
  and y = Av - u

2
 .

The points of S satisfy v 7 u, so 1v - u is defined. Now the Jacobian may be 
 computed:

J1u, v2 = ∞
0x
0u

0x
0v

0y
0u

0y
0v

∞ = ∞
1
2

1
2

-  
1

2121v - u2
1

2121v - u2
∞ = 1

2121v - u2  .

The change of variables proceeds as follows:

 6
R

y2 dA = ∫16

9
∫0

-4
 
v - u

2
 

1

2121v - u2 du dv Convert to an iterated integral.
(1)1* (+11)11+*

 y2 0 J1u, v2 0

 =
1

412
 ∫16

9
∫0

-4
 1v - u du dv  Simplify.

 =
1

412
 
2
3

 ∫16

9
1-1v - u23>22 ` 0

-4
 dv  Evaluate inner integral.

 =
1

612
 ∫16

9
11v + 423>2 - v3>22 dv  Simplify.

 =
1

612
 
2
5

 11v + 425>2 - v5>22 ` 16

9
  Evaluate outer integral.

 =
12
30

 132 # 55>2 - 135>2 - 7812  Simplify.

 ≈ 18.79.
Related Exercises 33–34	

Change of Variables in Triple Integrals
With triple integrals, we work with a transformation T  of the form

T:  x = g1u, v, w2,  y = h1u, v, w2, and z = p1u, v, w2.
In this case, T  maps a region S in uvw-space to a region D in xyz-space. As before, the goal 
is to transform the integral 9D ƒ1x, y, z2 dV  into a new integral over the region S that is 
easier to evaluate. First, we need a Jacobian.
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DEFINITION Jacobian Determinant of a Transformation of Three Variables

Given a transformation T: x = g1u, v, w2, y = h1u, v, w2, and z = p1u, v, w2, 
where g, h, and p are differentiable on a region of uvw-space, the Jacobian 
determinant (or Jacobian) of T  is

J1u, v, w2 = 01x, y, z2
01u, v, w2 = 6 0x0u 0x

0v
0x
0w

0y
0u

0y
0v

0y
0w

0z
0u

0z
0v

0z
0w

6 .
THEOREM 16.9 Change of Variables for Triple Integrals
Let T: x = g1u, v, w2, y =  h1u, v, w2, and z = p1u, v, w2 be a transformation that 
maps a closed bounded region S in uvw-space to a region D = T1S2 in xyz-space. 
Assume T  is one-to-one on the interior of S and g, h, and p have continuous first 
partial derivatives there. If ƒ is continuous on D, then

 9
D

ƒ1x, y, z2 dV = 9
S

ƒ1g1u, v, w2, h1u, v, w2, p1u, v, w22 0 J1u, v, w2 0  dV.

➤	 Recall that expanding about the first row 
yields

 †
a11 a12 a13

a21 a22 a23

a31 a32 a33

†

  = a111a22a33 - a23a322
    -  a121a21a33 - a23a312
    +  a131a21a32 - a22a312.

The Jacobian is evaluated as a 3 * 3 determinant and is a function of u, v, and w. A 
change of variables with respect to three variables proceeds in analogy to the two-variable case.

➤	 If we match the elements of 
volume in both integrals, then 
dx dy dz = 0 J1u, v, w2 0  du dv dw. As 
before, the Jacobian is a magnification 
(or reduction) factor, now relating the 
volume of a small region in xyz-space to 
the volume of the corresponding region 
in uvw-space.

EXAMPLE 6 A triple integral Use a change of variables to evaluate 9D xz dV, where 
D is a parallelepiped bounded by the planes

y = x,   y = x + 2,   z = x,   z = x + 3,   z = 0,  and z = 4

(Figure 16.83a).

(a)

(b)

u
v

w

S

2

4

3

D

z 5 4

y

x

z 5 x

y 5 x

z

Front: y 5 x
Right: z 5 x
Bottom: z 5 0

Back: y 5 x 1 2
Left: z 5 x 1 3
Top: z 5 4

Figure 16.83

➤	 To see that triple integrals in cylindrical 
and spherical coordinates as derived 
in Section 16.5 are consistent with this 
change-of-variables formulation, see 
Exercises 46 and 47.
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1080 Chapter 16  •  Multiple Integration

SOLUTION The key is to note that D is bounded by three pairs of parallel planes.

• y - x = 0 and y - x = 2

• z - x = 0 and z - x = 3

• z = 0 and z = 4

These combinations of variables suggest the new variables

u = y - x,   v = z - x,  and w = z.

With this choice, the new region of integration (Figure 16.83b) is the rectangular box

S = 51u, v, w2: 0 … u … 2, 0 … v … 3, 0 … w … 46.

To compute the Jacobian, we must express x, y, and z in terms of u, v, and w. A few steps 
of algebra lead to the transformation

T:  x = w - v,  y = u - v + w,  and z = w.

The resulting Jacobian is

J1u, v, w2 = 6 0x0u 0x
0v

0x
0w

0y
0u

0y
0v

0y
0w

0z
0u

0z
0v

0z
0w

6 = † 0 -1 1
1 -1 1
0 0 1

† = 1.

Noting that the integrand is xz = 1w - v2w = w2 - vw, the integral may now be 
 evaluated:

 9
D

xz dV = 9
S

1w2 - vw2 0 J1u, v, w2 0  dV  Change variables.

 = ∫4

0
∫3

0
∫2

0
 1w2 - vw2 1 du dv dw Convert to an iterated integral."

 0 J1u, v, w2 0
 = ∫4

0
∫3

0
 21w2 - vw2 dv dw  Evaluate inner integral.

 = 2∫4

0
avw2 -

v2w
2
b ` 3

0
 dw  Evaluate middle integral.

 = 2∫4

0
a3w2 -

9w
2
b  dw  Simplify.

 = 2aw3 -
9w2

4
b ` 4

0
= 56.  Evaluate outer integral.

Related Exercises 40–41	

QUICK CHECK 5 Interpret a Jacobian 
with a value of 1 (as in Example 6).	

➤	 It is easiest to expand the Jacobian 
determinant in Example 6 about the third 
row.

Strategies for Choosing New Variables
Sometimes a change of variables simplifies the integrand but leads to an awkward region 
of integration. Conversely, the new region of integration may be simplified at the expense 
of additional complications in the integrand. Here are a few suggestions for finding new 
variables of integration. The observations are made with respect to double integrals, but 
they also apply to triple integrals. As before, R is the original region of integration in the 
xy-plane, and S is the new region in the uv-plane.

1. Aim for simple regions of integration in the uv-plane The new region of integration 
in the uv-plane should be as simple as possible. Double integrals are easiest to evaluate 
over rectangular regions with sides parallel to the coordinate axes.

2. Is 1x, y 2 S 1u, v 2  or 1u, v 2 S 1x, y 2  better? For some problems it is easier to write 
1x, y2 as functions of 1u, v2; in other cases, the opposite is true. Depending on the 

➤	 Inverting the transformation means 
solving for x and y in terms of u and v, or 
vice versa.
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 16.7 Change of Variables in Multiple Integrals  1081

problem, inverting the transformation (finding relations that go in the opposite direc-
tion) may be easy, difficult, or impossible.

 •  If you know 1x, y2 in terms of 1u, v2 (that is, x = g1u, v2 and y = h1u, v2), then 
computing the Jacobian is straightforward, as is sketching the region R given the 
region S. However, the transformation must be inverted to determine the shape of S.

 •  If you know 1u, v2 in terms of 1x, y2 (that is, u = G1x, y2 and v = H1x, y2), then 
sketching the region S is straightforward. However, the transformation must be 
 inverted to compute the Jacobian.

3. Let the integrand suggest new variables New variables are often chosen to simplify 

the integrand. For example, the integrand Ax - y

x + y
 calls for new variables u = x - y 

and v = x + y (or u = x + y, v = x - y). There is, however, no guarantee that this 
change of variables will simplify the region of integration. In cases in which only one 
combination of variables appears, let one new variable be that combination and let the 
other new variable be unchanged. For example, if the integrand is 1x + 4y23>2, try let-
ting u = x + 4y and v = y.

4. Let the region suggest new variables Example 5 illustrates an ideal situation. It 
 occurs when the region R is bounded by two pairs of “parallel” curves in the families 
g1x, y2 = C1 and h1x, y2 = C2 (Figure 16.84). In this case, the new region of integra-
tion is a rectangle S = 51u, v2: a1 … u … a2, b1 … v … b26, where u = g1x, y2 and 
v = h1x, y2.

x

v

u

y

x

yh(x, y) 5 b1

h(x, y) 5 b2

g(x, y) 5 a2

g(x, y) 5 a1

h(x, y) 5 b1

h(x, y) 5 b2

g(x, y) 5 a2

g(x, y) 5 a1

RR

S

Parallelograms and regions
between “parallel” curves
can be mapped to rectangles
in the uv-plane.

Figure 16.84

As another example, suppose the region is bounded by the lines y = x (or y>x = 1) 
and y = 2x (or y>x = 2) and by the hyperbolas xy = 1 and xy = 3. Then the new vari-
ables should be u = xy and v = y>x (or vice versa). The new region of integration is the 
rectangle S = 51u, v2: 1 … u … 3, 1 … v … 26.
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1082 Chapter 16  •  Multiple Integration

Getting Started
1. Suppose S is the unit square in the first quadrant of the uv-plane. 

Describe the image of the transformation T: x = 2u, y = 2v.

2. Explain how to compute the Jacobian of the transformation 
T: x = g1u, v2, y = h1u, v2.

3. Using the transformation T: x = u + v, y = u - v, the image of 
the unit square S = 51u, v2: 0 … u … 1, 0 … v … 16 is a region 
R in the xy-plane. Explain how to change variables in the integral 
6R ƒ1x, y2 dA to find a new integral over S.

4. Suppose S is the unit cube in the first octant of uvw-space with 
one vertex at the origin. What is the image of the transformation 
T: x = u>2, y = v>2, z = w>2?

Practice Exercises
5–12. Transforming a square Let S = 51u, v2: 0 … u … 1, 
0 … v … 16 be a unit square in the uv-plane. Find the image of S in the 
xy-plane under the following transformations.

5. T: x = 2u, y = v>2
6. T: x = -u, y = -v

7. T: x = 1u + v2>2, y = 1u - v2>2
8. T: x = 2u + v, y = 2u

9. T: x = u2 - v2, y = 2uv

10. T: x = 2uv, y = u2 - v2

11. T: x = u cos pv, y = u sin pv

12. T: x = v sin pu, y = v cos pu

13–16. Images of regions Find the image R in the xy-plane of the 
 region S using the given transformation T. Sketch both R and S.

13. S = 51u, v2: v … 1 - u, u Ú 0, v Ú 06; T: x = u, y = v2

14. S = 51u, v2: u2 + v2 … 16; T: x = 2u, y = 4v

15. S = 51u, v2: 1 … u … 3, 2 … v … 46; T: x = u>v, y = v

16. S = 51u, v2: 2 … u … 3, 3 … v … 66; T: x = u, y = v>u
17–22. Computing Jacobians Compute the Jacobian J1u, v2 for the 
following transformations.

17. T: x = 3u, y = -3v

18. T: x = 4v, y = -2u

19. T: x = 2uv, y = u2 - v2

20. T: x = u cos pv, y = u sin pv

21. T: x = 1u + v2>22, y = 1u - v2>22

22. T: x = u>v, y = v

23–26. Solve and compute Jacobians Solve the following relations for 
x and y, and compute the Jacobian J1u, v2.
23. u = x + y, v = 2x - y

24. u = xy, v = x

25. u = 2x - 3y, v = y - x

26. u = x + 4y, v = 3x + 2y

SECTION 16.7 EXERCISES
27–30. Double integrals—transformation given To evaluate the fol-
lowing integrals, carry out these steps.

a. Sketch the original region of integration R in the xy-plane and the 
new region S in the uv-plane using the given change of variables.

b. Find the limits of integration for the new integral with respect to u 
and v.

c. Compute the Jacobian.
d. Change variables and evaluate the new integral.

27. 6
R

xy dA, where R is the square with vertices 10, 02, 11, 12, 12, 02, 
and 11, -12; use x = u + v, y = u - v.

28. 6
R

x2y dA, where R = 51x, y2: 0 … x … 2, x … y … x + 46; 

use x = 2u, y = 4v + 2u.

29. 6
R

x22x + 2y dA, where R = 51x, y2: 0 … x … 2, 

-x>2 … y … 1 - x6; use x = 2u, y = v - u.

30. 6
R

xy dA, where R is bounded by the ellipse 9x2 + 4y2 = 36;  

use x = 2u, y = 3v.

31–36. Double integrals—your choice of transformation Evaluate 
the following integrals using a change of variables. Sketch the original 
and new regions of integration, R and S.

31. ∫1

0
∫ y+2

y
2x - y dx dy

32. 6
R

2y2 - x2 dA, where R is the diamond bounded by y - x = 0, 

y - x = 2, y + x = 0, and y + x = 2

33. 6
R

a y - x

y + 2x + 1
b

4

dA, where R is the parallelogram bounded by 

y - x = 1, y - x = 2, y + 2x = 0, and y + 2x = 4

34. 6
R

exy dA, where R is the region in the first quadrant bounded by 

the hyperbolas xy = 1 and xy = 4, and the lines y>x = 1 and 
y>x = 3

35. 6
R

xy dA, where R is the region bounded by the hyperbolas 

xy = 1 and xy = 4, and the lines y = 1 and y = 3

36. 6
R

1x - y22x - 2y dA, where R is the triangular region bounded 

by y = 0, x - 2y = 0, and x - y = 1

37–40. Jacobians in three variables Evaluate the Jacobians J1u, v, w2 
for the following transformations.

37. x = v + w, y = u + w, z = u + v

38. x = u + v - w, y = u - v + w, z = -u + v + w

39. x = vw, y = uw, z = u2 - v2

40. u = x - y, v = x - z, w = y + z (Hint: Solve for x, y,  
and z first.)
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41–44. Triple integrals Use a change of variables to evaluate the 
 following integrals.

41. 9
D

xy dV; D is bounded by the planes y - x = 0, y - x = 2, 

z - y = 0, z - y = 1, z = 0, and z = 3.

42. 9
D

dV; D is bounded by the planes y - 2x = 0, y - 2x = 1, 

z - 3y = 0, z - 3y = 1, z - 4x = 0, and z - 4x = 3.

43. 9
D

z dV; D is bounded by the paraboloid z = 16 - x2 - 4y2 and 

the xy-plane. Use x = 4u cos v, y = 2u sin v, z = w.

44. 9
D

dV; D is bounded by the upper half of the ellipsoid 

x2>9 + y2>4 + z2 = 1 and the xy-plane. Use x = 3u,  
y = 2v, z = w.

45. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. If the transformation T: x = g1u, v2, y = h1u, v2 is linear in u 
and v, then the Jacobian is a constant.

b. The transformation x = au + bv, y = cu + dv generally 
maps triangular regions to triangular regions.

c. The transformation x = 2v, y = -2u maps circles to circles.

46. Cylindrical coordinates Evaluate the Jacobian for the trans-
formation from cylindrical coordinates 1r, u, Z2 to rectangular 
coordinates 1x, y, z2: x = r cos u, y = r sin u, z = Z. Show that 
J1r, u, Z2 = r.

47. Spherical coordinates Evaluate the Jacobian for the transforma-
tion from spherical to rectangular coordinates: x = r sin w cos u, 
y = r sin w sin u, z = r cos w. Show that J1r, w, u2 = r2 sin w.

48–52. Ellipse problems Let R be the region bounded by the ellipse 
x2>a2 + y2>b2 = 1, where a 7 0 and b 7 0 are real numbers. Let T 
be the transformation x = au, y = bv.

48. Find the area of R.

49. Evaluate 6
R

� xy �dA.

50. Find the center of mass of the upper half of R (y Ú 0) assuming it 
has a constant density.

51. Find the average square of the distance between points of R and 
the origin.

52. Find the average distance between points in the upper half of R 
and the x-axis.

53–56. Ellipsoid problems Let D be the solid bounded by the ellipsoid 
x2>a2 + y2>b2 + z2>c2 = 1, where a 7 0, b 7 0, and c 7 0 are real 
numbers. Let T be the transformation x = au, y = bv, z = cw.

53. Find the volume of D.

54. Evaluate 9
D

� xyz �dV .

55. Find the center of mass of the upper half of D (z Ú 0) assuming it 
has a constant density.

56. Find the average square of the distance between points of D and 
the origin.

Explorations and Challenges
57. Parabolic coordinates Let T be the transformation x = u2 - v2, 

y = 2uv.

a. Show that the lines u = a in the uv-plane map to parabolas in 
the xy-plane that open in the negative x-direction with vertices 
on the positive x-axis.

b. Show that the lines v = b in the uv-plane map to parabolas in 
the xy-plane that open in the positive x-direction with vertices 
on the negative x-axis.

c. Evaluate J1u, v2.
d. Use a change of variables to find the area of the region 

bounded by x = 4 - y2>16 and x = y2>4 - 1.
e. Use a change of variables to find the area of the curved 

rectangle above the x-axis bounded by x = 4 - y2>16, 
x = 9 - y2>36, x = y2>4 - 1, and x = y2>64 - 16.

f. Describe the effect of the transformation x = 2uv, 
y = u2 - v2 on horizontal and vertical lines in the uv-plane.

58. Shear transformations in ℝ2 The transformation T in ℝ2 given 
by x = au + bv, y = cv, where a, b, and c are positive real 
numbers, is a shear transformation. Let S be the unit square 
51u, v2: 0 … u … 1, 0 … v … 16. Let R = T1S2 be the image  
of S.

a. Explain with pictures the effect of T on S.
b. Compute the Jacobian of T.
c. Find the area of R and compare it to the area of S (which is 1).
d. Assuming a constant density, find the center of mass of R (in 

terms of a, b, and c) and compare it to the center of mass of S, 
which is 11

2 , 122.
e. Find an analogous transformation that gives a shear in the  

y-direction.

59. Shear transformations in ℝ3 The transformation T in ℝ3 given by

x = au + bv + cw,  y = dv + ew,  z = w,

 where a, b, c, d, and e are positive real numbers, is one of many 
possible shear transformations in ℝ3. Let S be the unit cube 
51u, v, w2: 0 … u … 1, 0 … v … 1, 0 … w … 16. Let D = T1S2 
be the image of S.

a. Explain with pictures and words the effect of T on S.
b. Compute the Jacobian of T.
c. Find the volume of D and compare it to the volume of S 

(which is 1).
d. Assuming a constant density, find the center of mass of D and 

compare it to the center of mass of S, which is 11
2 , 12 , 122.

60. Linear transformations Consider the linear transformation T in 
ℝ2 given by x = au + bv, y = cu + dv, where a, b, c, and d are 
real numbers, with ad ≠ bc.

a. Find the Jacobian of T.
b. Let S be the square in the uv-plane with vertices 10, 02,  
11, 02, 10, 12, and 11, 12, and let R = T1S2. Show that 
area1R2 = 0 J1u, v2 0 .

c. Let / be the line segment joining the points P and Q in the 
uv-plane. Show that T1/2 (the image of / under T) is the line 
segment joining T1P2 and T1Q2 in the xy-plane. (Hint: Use 
vectors.)

d. Show that if S is a parallelogram in the uv-plane and R = T1S2,  
then area1R2 = 0 J1u, v2 0 # area of S. (Hint: Without loss of 
generality, assume the vertices of S are 10, 02, 1A, 02, 1B, C2, 
and 1A + B, C2, where A, B, and C are positive, and use  
vectors.)
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1084 Chapter 16  •  Multiple Integration

61. Meaning of the Jacobian The Jacobian is a magnification (or 
 reduction) factor that relates the area of a small region near the point 
1u, v2 to the area of the image of that region near the point 1x, y2.
a. Suppose S is a rectangle in the uv-plane with vertices O10, 02, 

P1∆u, 02, 1∆u, ∆v2, and Q10, ∆v2 (see figure). The image  
of S under the transformation x = g1u, v2, y = h1u, v2 is a  
region R in the xy-plane. Let O′, P′, and Q′ be the images of  
O, P, and Q, respectively, in the xy-plane, where O′, P′, and 
Q′ do not all lie on the same line. Explain why the coordinates 
of O′, P′, and Q′ are 1g10, 02, h10, 022, 1g1∆u, 02, h1∆u, 022, 
and 1g10, ∆v2, h10, ∆v22, respectively.

b. Use a Taylor series in both variables to show that

g1∆u, 02 ≈ g10, 02 + gu10, 02∆u,

g10, ∆v2 ≈ g10, 02 + gv10, 02∆v,

h1∆u, 02 ≈ h10, 02 + hu10, 02∆u, and

h10, ∆v2 ≈ h10, 02 + hv10, 02∆v,

where gu10, 02 is 
0x
0u

 evaluated at 10, 02, with similar meanings 

for gv, hu, and hv.
c. Consider the parallelogram determined by the vectors O′P′r  

and O′Q′r . Use the cross product to show that the area of the 
parallelogram is approximately � J1u, v2 � ∆u ∆v.

d. Explain why the ratio of the area of R to the area of S is ap-
proximately � J1u, v2 � .
v y

xu

x 5 g(u, v)
y 5 h(u, v)

Q

O
P

Q9

P9

R

S

O9

Du

Dv

62. Open and closed boxes Consider the region R bounded by three 
pairs of parallel planes: ax + by = 0, ax + by = 1; cx + dz = 0,  
cx + dz = 1; and ey + ƒz = 0, ey + ƒz = 1, where a, b, c, d, e,  
and ƒ are real numbers. For the purposes of evaluating triple 
 integrals, when do these six planes bound a finite region? Carry 
out the following steps.

a. Find three vectors n1, n2, and n3 each of which is normal to 
one of the three pairs of planes.

b. Show that the three normal vectors lie in a plane if their triple 
scalar product n1

# 1n2 * n32 is zero.
c. Show that the three normal vectors lie in a plane if 

ade + bcƒ = 0.
d. Assuming n1, n2, and n3 lie in a plane P, find a vector N that is 

normal to P. Explain why a line in the direction of N does not 
intersect any of the six planes, and therefore the six planes do 
not form a bounded region.

e. Consider the change of variables u = ax + by, v = cx + dz, 
w = ey + ƒz. Show that

J1x, y, z2 = 01u, v, w2
01x, y, z2 = -ade - bcƒ.

 What is the value of the Jacobian if R is unbounded?

QUICK CHECK ANSWERS

1. The image is a semicircular disk of radius 1. 
2. J1u, v2 = 2 3. x = 2u>3 - v>3, y = u>3 + v>3 
4. The ratio is 2, which is 1>J1u, v2. 5. It means that the 
volume of a small region in xyz-space is unchanged when it 
is transformed by T  into a small region in uvw-space.	

1. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. Assuming g is integrable and a, b, c, and d are constants, 

∫d

c
∫b

a
g1x, y2 dx dy = a ∫b

a
g1x, y2 dxb a ∫d

c
g1x, y2 dyb .

b. The spherical equation w = p>2, the cylindrical equation 
z = 0, and the rectangular equation z = 0 all describe the 
same set of points.

c. Changing the order of integration in 9
D

ƒ1x, y, z2 dx dy dz 

from dx dy dz to dy dz dx requires also changing the integrand 
from ƒ1x, y, z2 to ƒ1y, z, x2.

d. The transformation T: x = v, y = -u maps a square in the  
uv-plane to a triangle in the xy-plane.

2–4. Evaluating integrals Evaluate the following integrals as they are 
written.

2. ∫2

1
∫4

1

xy

1x2 + y222 dx dy 3. ∫3

1
∫ ex

1

x
y

 dy dx

4. ∫2

1
∫ ln x

0
x3ey dy dx

5–7. Changing the order of integration Assuming ƒ is integrable, 
change the order of integration in the following integrals.

5. ∫1

-1
∫1

x2
 ƒ1x, y2 dy dx 6. ∫2

0
∫1

y-1
ƒ1x, y2 dx dy

7. ∫1

0
∫21-y2

0
ƒ1x, y2 dx dy

CHAPTER 16 REVIEW EXERCISES
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 Review Exercises 1085

8–10. Area of plane regions Use double integrals to compute the area 
of the following regions. Make a sketch of the region.

8. The region bounded by the lines y = -x - 4, y = x, and 
y = 2x - 4

9. The region bounded by y = � x �  and y = 20 - x2

10. The region between the curves y = x2 and y = 1 + x - x2

11–16. Miscellaneous double integrals Choose a convenient method 
for evaluating the following integrals.

11. 6
R

2y2x4 + 1
 dA; R is the region bounded by x = 1, x = 2, 

y = x3>2, and y = 0.

12. 6
R

x-1>2 ey dA; R is the region bounded by x = 1, x = 4,  

y = 1x, and y = 0.

13. 6
R

1x + y2 dA; R is the disk bounded by the circle r = 4 sin u.

14. 6
R

1x2 + y22 dA; R is the region 51x, y2: 0 … x … 2, 0 … y … x6.

15. ∫1

0
∫1

y1>3 x
10 cos 1px4y2 dx dy

16. ∫2

0
∫4

y2
 x8y21 + x4y2 dx dy

17–18. Cartesian to polar coordinates Evaluate the following inte-
grals over the specified region. Assume 1r, u2 are polar coordinates.

17. 6
R

3x2y dA; R = 51r, u2: 0 … r … 1, 0 … u … p>26

18. 6
R

dA

11 + x2 + y222 ; R = 51r, u2: 1 … r … 4, 0 … u … p6

19–21. Computing areas Sketch the following regions and use a  
double integral to find their areas.

19. The region bounded by all leaves of the rose r = 3 cos 2u

20. The region inside both of the circles r = 2 and r = 4 cos u

21. The region that lies inside both of the cardioids r = 2 - 2 cos u 
and r = 2 + 2 cos u

22–23. Average values

22. Find the average value of z = 216 - x2 - y2 over the disk in 
the xy-plane centered at the origin with radius 4.

23. Find the average distance from the points in the solid cone 
bounded by z = 22x2 + y2 to the z-axis, for 0 … z … 8.

24–26. Changing order of integration Rewrite the following integrals 
using the indicated order of integration.

24. ∫1

0
∫21- z2

0
∫21-x2

0
ƒ1x, y, z2 dy dx dz in the order dz dy dx

25. ∫1

0
∫21-x2

0
∫2

22x2+y2
 ƒ1x, y, z2 dz dy dx in the order dx dz dy

26. ∫2

0
∫9-x2

0
∫ x

0
ƒ1x, y, z2 dy dz dx in the order dz dx dy

27–31. Triple integrals Evaluate the following integrals, changing the 
order of integration if needed.

27. ∫1

0
∫ z

-z
∫21-x2

-21-x2
 dy dx dz 28. ∫p

0
∫ y

0
∫ sin x

0
 dz dx dy

29. ∫9

1
∫1

0
∫2

2y
 
4 sin x21z

 dx dy dz

30. ∫2

0
∫22-x2>2
-22-x2>2∫

8-x2-y2

x2+3y2
 dz dy dx

31. ∫2

0
∫ y1>3

0
∫ y2

0
yz511 + x + y2 + z622 dx dz dy

32–38. Volumes of solids Find the volume of the following solids.

32. The solid beneath the paraboloid ƒ1x, y2 = 12 - x2 - 2y2 and 
above the region R = 51x, y2: 1 … x … 2, 0 … y … 16

z

x y

f (x, y) 5 12 2 x2 2 2y2

112

33. The solid bounded by the surfaces x = 0, y = 0, z = 3 - 2y, 
and z = 2x2 + 1

y

x

z 5 2x2 1 1

z 5 3 2 2y

z
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34. The prism in the first octant bounded by the planes y = 3 - 3x 
and z = 2

1

3

2

x

y

z

35. One of the wedges formed when the cylinder x2 + y2 = 4 is cut 
by the planes z = 0 and y = z

2

x

z

y

36. The solid bounded by the parabolic cylinders z = y2 + 1 and 
z = 2 - x2

x

z

y

37. The solid common to the two cylinders x2 + y2 = 4 and 
x2 + z2 = 4

yx

z

38. The tetrahedron with vertices 10, 0, 02, 11, 0, 02, 11, 1, 02, and 
11, 1, 12

y

x

z

(1, 0, 0)

(1, 1, 1)

(1, 1, 0)

39. Single to double integral Evaluate #1>2
0 1sin -1 2x - sin -1 x2 dx 

by converting it to a double integral.

40. Tetrahedron limits Let D be the tetrahedron with vertices at 
10, 0, 02, 11, 0, 02, 10, 2, 02, and 10, 0, 32. Suppose the volume of 
D is to be found using a triple integral. Give the limits of integra-
tion for the six possible orderings of the variables.

41. Polar to Cartesian Evaluate#p>40 #sec u
0 r3dr du using rectangular 

coordinates, where 1r, u2 are polar coordinates.

42–43. Average value

42. Find the average of the square of the distance be-
tween the origin and the points in the solid paraboloid 
D = 51x, y, z2: 0 … z … 4 - x2 - y26.

43. Find the average x-coordinate of the points in the prism 
D = 51x, y, z2: 0 … x … 1, 0 … y … 3 - 3x, 0 … z … 26.

44–45. Integrals in cylindrical coordinates Evaluate the following 
integrals in cylindrical coordinates.

44. ∫
3

0
∫
29-x2

0
∫

3

0
1x2 + y223>2 dz dy dx

45. ∫
1

-1
∫

2

-2
∫
21-y2

0

1

11 + x2 + y222 dx dz dy

46–47. Volumes in cylindrical coordinates Use integration in cylin-
drical coordinates to find the volume of the following solids.

46. The solid bounded by the hemisphere z = 29 - x2 - y2 and 

the hyperboloid z = 21 + x2 + y2.

y
x

z

1

9

M16_BRIG3644_03_SE_C16_1008-1088.indd   1086 25/10/17   2:49 PM



 Review Exercises 1087

47. The solid cylinder whose height is 4 and whose base is the disk 
51r, u2: 0 … r … 2 cos u6

2
1

4

x
y

z

48–49. Integrals in spherical coordinates Evaluate the following inte-
grals in spherical coordinates.

48. ∫2p

0
∫p>2

0
∫2 cos w

0
r2 sin w dr dw du

49. ∫p
0
∫p>4

0
∫4 sec w

2 sec w
 r2 sin w dr dw du

50–52. Volumes in spherical coordinates Use integration in spherical 
coordinates to find the volume of the following solids.

50. The solid cardioid of revolution D = 51r, w, u2: 
0 … r … 11 - cos w2>2, 0 … w … p, 0 … u … 2p6

x

y

z

51. The solid rose petal of revolution  
D = 51r, w, u2: 0 … r … 4 sin 2w, 
0 … w … p>2, 0 … u … 2p6

x y

z

52. The solid above the cone w = p>4 and inside the sphere 
r = 4 cos w

y
x

z

4

2

53–56. Center of mass of constant-density plates Find the center of 
mass (centroid) of the following thin, constant-density plates. Sketch 
the region corresponding to the plate and indicate the location of the 
center of mass. Use symmetry whenever possible to simplify your work.

53. The region bounded by y = sin x and y = 0 between x = 0 and 
x = p

54. The region bounded by y = x3 and y = x2 between x = 0 and 
x = 1

55. The half-annulus 51r, u2: 2 … r … 4, 0 … u … p6
56. The region bounded by y = x2 and y = a2 - x2, where a 7 0

57–58. Center of mass of constant-density solids Find the center of 
mass of the following solids, assuming a constant density. Use symme-
try whenever possible and choose a convenient coordinate system.

57. The paraboloid bowl bounded by z = x2 + y2 and z = 36

58. The tetrahedron bounded by z = 4 - x - 2y and the coordinate 
planes

59–60. Variable-density solids Find the coordinates of the center of 
mass of the following solids with the given density.

59. The upper half of the ball 51r, w, u2: 0 … r … 16, 0 … w …
p

2
 , 

0 … u … 2p6  with density ƒ1r, w, u2 = 1 + r>4
60. The cube in the first octant bounded by the planes x = 2, y = 2, 

and z = 2, with r1x, y, z2 = 1 + x + y + z

61–64. Center of mass for general objects Consider the following 
two- and three-dimensional regions. Compute the center of mass, 
 assuming constant density. All parameters are positive real numbers.

61. A solid is bounded by a paraboloid with a circular base of radius 
R and height h. How far from the base is the center of mass?

62. Let R be the region enclosed by an equilateral triangle with sides 
of length s. What is the perpendicular distance between the center 
of mass of R and the edges of R?

63. A sector of a circle in the first quadrant is bounded between the  
x-axis, the line y = x, and the circle x2 + y2 = a2. What are the 
coordinates of the center of mass?

64. An ice cream cone is bounded above by the sphere 
x2 + y2 + z2 = a2 and below by the upper half of the cone 
z2 = x2 + y2. What are the coordinates of the center of mass?
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65. Slicing a conical cake A cake is shaped like a solid cone with 
 radius 4 and height 2, with its base on the xy-plane. A wedge of 
the cake is removed by making two slices from the axis of the 
cone outward, perpendicular to the xy-plane and separated by an 
angle of Q radians, where 0 6 Q 6 2p.

a. Use a double integral to find the volume of the slice for 
Q = p>4. Use geometry to check your answer.

b. Use a double integral to find the volume of the slice for any 
0 6 Q 6 2p. Use geometry to check your answer.

66. Volume and weight of a fish tank A spherical fish tank with a 
radius of 1 ft is filled with water to a level 6 in below the top of 
the tank.

a. Determine the volume and weight of the water in the fish tank. 
(The weight density of water is about 62.5 lb>ft3.)

b. How much additional water must be added to completely fill 
the tank?

67–70. Transforming a square Let S = 51u, v2: 0 … u … 1, 
0 … v … 16 be a unit square in the uv-plane. Find the image of S in 
the xy-plane under the following transformations.

67. T: x = v, y = u 68. T: x = -v, y = u

69. T: x = 3u + v, y = u + 3v

70. T: x = u, y = 2v + 2

71–74. Computing Jacobians Compute the Jacobian J1u, v2 of the fol-
lowing transformations.

71. T: x = 4u - v, y = -2u + 3v

72. T: x = u + v, y = u - v

73. T: x = 3u, y = 2v + 2 74. T: x = u2 - v2, y = 2uv

75–78. Double integrals—transformation given To evaluate the 
 following integrals, carry out these steps.

a. Sketch the original region of integration R and the new region S 
 using the given change of variables.

b. Find the limits of integration for the new integral with respect to  
u and v.

c. Compute the Jacobian.
d. Change variables and evaluate the new integral.

75. 6R xy2 dA; R = 51x, y2: y>3 … x … 1y + 62>3, 0 … y … 36; 

use x = u + v>3, y = v.

76. 6R 3xy2 dA; R = 51x, y2: 0 … x … 2, x … y … x + 46; use 

x = 2u, y = 4v + 2u.

77. 6R 1x - y + 121x - y29 dy dx, R = 51x, y2: 0 … y … x … 16;  

use x = u + v, y = v - u.

78. 6R xy2 dA; R is the region between the hyperbolas xy = 1 and 

xy = 4 and the lines y = 1 and y = 4; use x = u>v, y = v.

79–80. Double integrals Evaluate the following integrals using a 
change of variables. Sketch the original and new regions of integration, 
R and S.

79. 6R y4 dA; R is the region bounded by the hyperbolas xy = 1 and 

xy = 4 and the lines y>x = 1 and y>x = 3.

80. 6R 1y2 + xy - 2x22 dA; R is the region bounded by the lines 

y = x, y = x - 3, y = -2x + 3, and y = -2x - 3.

81–82. Triple integrals Use a change of variables to evaluate the fol-
lowing integrals.

81. 9D yz dV; D is bounded by the planes x + 2y = 1, x + 2y = 2, 

x - z = 0, x - z = 2, 2y - z = 0, and 2y - z = 3.

82. 9D x dV; D is bounded by the planes y - 2x = 0, y - 2x = 1, 

z - 3y = 0, z - 3y = 1, z - 4x = 0, and z - 4x = 3.

Chapter 16 Guided Projects

Applications of the material in this chapter and related topics can be found in the following Guided Projects. For additional information, 
see the Preface.

• How big are n-balls?

• Electrical field integrals

• The tilted cylinder problem

• The exponential Eiffel Tower

• Moments of inertia

• Gravitational fields
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17

Chapter Preview This culminating chapter of the text provides a beautiful, 
unifying conclusion to our study of calculus. Many ideas and themes that have appeared 
throughout the text come together in these final pages. First, we combine vector-valued 
functions (Chapter 14) and functions of several variables (Chapter 15) to form vector 
fields. Once vector fields have been introduced and illustrated through their many appli-
cations, we explore the calculus of vector fields. Concepts such as limits and continuity 
carry over directly. The extension of derivatives to vector fields leads to two new opera-
tions that underlie this chapter: the curl and the divergence. When integration is extended 
to vector fields, we discover new versions of the Fundamental Theorem of Calculus. The 
chapter ends with a final look at the Fundamental Theorem of Calculus and the several 
related forms in which it has appeared throughout the text.

17.1 Vector Fields
We live in a world filled with phenomena that can be represented by vector fields. Imagine 
sitting in a window seat looking out at the wing of an airliner. Although you can’t see it, air 
is rushing over and under the wing. Focus on a point near the wing and visualize the mo-
tion of the air at that point at a single instant of time. The motion is described by a velocity 
vector with three components—for example, east-west, north-south, and up-down. At an-
other point near the wing at the same time, the air is moving at a different speed and direc-
tion, and a different velocity vector is associated with that point. In general, at one instant 
in time, every point around the wing has a velocity vector associated with it (Figure 17.1).  
This collection of velocity vectors—a unique vector for each point in space—is a function 
called a vector field.

Other examples of vector fields include the wind patterns in a hurricane (Figure 17.2a) 
and the circulation of water in a heat exchanger (Figure 17.2b). Gravitational, magnetic, 
and electric force fields are also represented by vector fields (Figure 17.2c), as are the 
stresses and strains in buildings and bridges. Beyond physics and engineering, the trans-
port of a chemical pollutant in a lake and human migration patterns can be modeled by 
vector fields.

Vector Calculus

17.1 Vector Fields

17.2 Line Integrals

17.3 Conservative Vector Fields

17.4 Green’s Theorem

17.5 Divergence and Curl

17.6 Surface Integrals

17.7 Stokes’ Theorem

17.8 Divergence Theorem

Figure 17.1
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1090 Chapter 17  •  Vector Calculus

Vector Fields in Two Dimensions
To solidify the idea of a vector field, we begin by exploring vector fields in ℝ2. From 
there, it is a short step to vector fields in ℝ3.

(a)   (b)   (c)

Figure 17.2

➤	 Notice that a vector field is both a vector-
valued function (Chapter 14) and a 
function of several (Chapter 15).

DEFINITION Vector Fields in Two Dimensions

Let ƒ and g be defined on a region R of ℝ2. A vector field in ℝ2 is a function F that 
assigns to each point in R a vector 8ƒ1x, y2, g1x, y29 . The vector field is written as

 F  1x, y2 = 8ƒ1x, y2, g1x, y29 or

 F  1x, y2 = ƒ1x, y2 i + g1x, y2 j.
A vector field F = 8ƒ, g9  is continuous or differentiable on a region R of ℝ2 if ƒ 
and g are continuous or differentiable on R, respectively.

A vector field cannot be represented graphically in its entirety. Instead, we plot a 
representative sample of vectors that illustrates the general appearance of the vector field. 
Consider the vector field defined by

F  1x, y2 = 82x, 2y9 = 2x i + 2y j.

At selected points P1x, y2, we plot a vector with its tail at P equal to the value of F  1x, y2. 
For example, F  11, 12 = 82, 29 , so we draw a vector equal to 82, 29  with its tail at the 
point 11, 12. Similarly, F  1-2, -32 = 8 -4, -69 , so at the point 1-2, -32, we draw a 
vector equal to 8 -4, -69 . We can make the following general observations about the 
vector field F  1x, y2 = 82x, 2y9 .
• For every 1x, y2 except 10, 02, the vector F  1x, y2 points in the direction of 82x, 2y9 , 

which is directly outward from the origin.

• The length of F  1x, y2 is 0F 0 = 0 82x, 2y9 0 = 22x2 + y2, which increases with dis-
tance from the origin.

The vector field F = 82x, 2y9  is an example of a radial vector field because its vec-
tors point radially away from the origin (Figure 17.3). If F represents the velocity of a 
fluid moving in two dimensions, the graph of the vector field gives a vivid image of how 
a small object, such as a cork, moves through the fluid. In this case, at every point of the 
vector field, a particle moves in the direction of the arrow at that point with a speed equal 
to the length of the arrow. For this reason, vector fields are sometimes called flows. When 
sketching vector fields, it is often useful to draw continuous curves that are aligned with 
the vector field. Such curves are called flow curves or streamlines; we examine their prop-
erties in greater detail later in this section.

y

x

Radial vector field
F 5 k2x, 2yl

Lengths of vectors increase
with distance from the origin.

Tail of the vector
F(x, y) is at P(x, y).
Length of the vector
is 2uOPu.

P(x, y)

O

Figure 17.3
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 17.1 Vector Fields 1091

EXAMPLE 1 Vector fields Sketch representative vectors of the following vector fields.

a. F  1x, y2 = 80, x9 = x j (a shear field)

b. F  1x, y2 = 81 - y2, 09 = 11 - y22 i, for 0 y 0 … 1 (channel flow)

c. F  1x, y2 = 8 -y, x9 = -y i + x j (a rotation field)

SOLUTION

a. This vector field is independent of y. Furthermore, because the x-component of F is 
zero, all vectors in the field (for x ≠ 0) point in the y-direction: upward for x 7 0 and 
downward for x 6 0. The magnitudes of the vectors in the field increase with distance 
from the y-axis (Figure 17.4). The flow curves for this field are vertical lines. If F rep-
resents a velocity field, a particle right of the y-axis moves upward, a particle left of 
the y-axis moves downward, and a particle on the y-axis is stationary.

b. In this case, the vector field is independent of x and the y-component of F is zero. Be-
cause 1 - y2 7 0 for 0 y 0 6 1, vectors in this region point in the positive x-direction. 
The x-component of the vector field is zero at the boundaries y = {1 and increases 
to 1 along the center of the strip, y = 0. This vector field might model the flow of 
water in a straight shallow channel (Figure 17.5); its flow curves are horizontal lines, 
indicating motion in the direction of the positive x-axis.

c. It often helps to determine the vector field along the coordinate axes.

• When y = 0 (along the x-axis), we have F  1x, 02 = 80, x9 . With x 7 0, this vector 
field consists of vectors pointing upward, increasing in length as x increases. With 
x 6 0, the vectors point downward, increasing in length as 0 x 0  increases.

• When x = 0 (along the y-axis), we have F  10, y2 = 8 -y, 09 . If y 7 0, the vectors 
point in the negative x-direction, increasing in length as y increases. If y 6 0, the 
vectors point in the positive x-direction, increasing in length as 0 y 0  increases.

A few more representative vectors show that this vector field has a counterclockwise 
rotation about the origin; the magnitudes of the vectors increase with distance from the 
origin (Figure 17.6).

1
1

y

x

Shear vector field
F 5 k0, xl

Figure 17.4

y

x

Channel flow
F 5 k1 2 y2, 0l

1

21

21 1

Figure 17.5

y

x

Rotation vector field
F 5 k2y, xl

2

22

22 2

Figure 17.6
Related Exercises 10, 11, 13	  

➤	 Drawing vectors with their actual length 
often leads to cluttered pictures of vector 
fields. For this reason, most of the vector 
fields in this chapter are illustrated with 
proportional scaling: All vectors are 
multiplied by a scalar chosen to make 
the vector field as understandable as 
possible.

➤	 A useful observation for two-dimensional 
vector fields F = 8ƒ, g9  is that the slope 
of the vector at 1x, y2 is g1x, y2>ƒ1x, y2. 
In Example 1a, the slopes are everywhere 
undefined; in part (b), the slopes are 
everywhere 0, and in part (c), the slopes 
are -x>y.

QUICK CHECK 1 If the vector field in 
Example 1c describes the velocity of 
a fluid and you place a small cork in 
the plane at 12, 02, what path will it 
follow?	

Radial Vector Fields in ℝ2 Radial vector fields in ℝ2 have the property that their vec-
tors point directly toward or away from the origin at all points (except the origin), parallel 
to the position vectors r = 8x, y9 . We will work with radial vector fields of the form

F  1x, y2 = r
0 r 0 p =

8x, y9
0 r 0 p =

r
0 r 0  

1

0 r 0 p - 1 ,
    "  ()*
 unit magnitude 
 vector

where p is a real number. Figure 17.7 illustrates radial fields with p = 1 and p = 3. 
These vector fields (and their three-dimensional counterparts) play an important role 
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1092 Chapter 17  •  Vector Calculus

in many applications. For example, central forces, such as gravitational or electrostatic 
forces between point masses or charges, are described by radial vector fields with p = 3. 
These forces obey an inverse square law in which the magnitude of the force is propor-
tional to 1> 0 r 0 2.

y

x

Radial vector field

F 5     , p 5 1
r
uru

Vectors have unit length.

y

x

Radial vector field

F 5       , p 5 3
r

uru3

Lengths of vectors decrease
with distance from the origin.

Figure 17.7

DEFINITION Radial Vector Fields in ℝ2

Let r = 8x, y9 . A vector field of the form F = ƒ1x, y2 r, where ƒ is a scalar-
valued function, is a radial vector field. Of specific interest are the radial vector 
fields

F  1x, y2 = r
0 r 0 p =

8x, y9
0 r 0 p  ,

where p is a real number. At every point (except the origin), the vectors of this 

field are directed outward from the origin with a magnitude of 0F 0 = 1

0 r 0 p - 1 .

EXAMPLE 2 Normal and tangent vectors Let C be the circle x2 + y2 = a2, where 
a 7 0.

a. Show that at each point of C, the radial vector field F  1x, y2 = r
0 r 0 =

8x, y92x2 + y2
 is 

orthogonal to the line tangent to C at that point.

b. Show that at each point of C, the rotation vector field G1x, y2 = 8 -y, x92x2 + y2
 is parallel 

to the line tangent to C at that point.

SOLUTION Let g1x, y2 = x2 + y2. The circle C described by the equation g1x, y2 = a2 
may be viewed as a level curve of the surface z = x2 + y2. As shown in Theorem 15.12 
(Section 15.5), the gradient ∇g1x, y2 = 82x, 2y9  is orthogonal to the line tangent to C at 
1x, y2 (Figure 17.8).

a. Notice that ∇g1x, y2 is parallel to F = 8x, y9 > 0 r 0  at the point 1x, y2. It follows that F 
is also orthogonal the line tangent to C at 1x, y2.

b. Notice that

∇g1x, y2 # G1x, y2 = 82x, 2y9 # 8 -y, x9
0 r 0 = 0.

Therefore, ∇g1x, y2 is orthogonal to the vector field G at 1x, y2, which implies that G 
is parallel to the tangent line at 1x, y2.

Related Exercises 27–28	  

kx, yl
Ïx2 1 y2

C

G(x, y)

(x, y)

(x, y)

F(x, y)

F(x, y)

=g(x, y) 5 k2x, 2yl

=g(x, y) 5 k2x, 2yl

G(x, y)

Radial field F 5

Rotation field G 5
k2y, xl

Ïx2 1 y2

O

=g(x, y) parallel to F
=g(x, y) ? G 5 0

Figure 17.8

QUICK CHECK 2 In Example 2, verify 
that ∇g1x,  y2 # G1x,  y2 = 0. In parts 
(a) and (b) of Example 2, verify that 
0F 0 = 1 and 0G 0 = 1 at all points 
excluding the origin.	
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Vector Fields in Three Dimensions
Vector fields in three dimensions are conceptually the same as vector fields in two  
dimensions. The vector F now has three components, each of which depends on three 
variables.

DEFINITION Vector Fields and Radial Vector Fields in ℝ3

Let ƒ, g, and h be defined on a region D of ℝ3. A vector field in ℝ3 is a function 
F that assigns to each point in D a vector 8ƒ1x, y, z2, g1x, y, z2, h1x, y, z29 . The 
vector field is written as

 F  1x, y, z2 = 8ƒ1x, y, z2, g1x, y, z2, h1x, y, z29 or

 F  1x, y, z2 = ƒ1x, y, z2 i + g1x, y, z2 j + h1x, y, z2 k.

A vector field F = 8ƒ, g, h9  is continuous or differentiable on a region D of ℝ3 if 
ƒ, g, and h are continuous or differentiable on D, respectively. Of particular impor-
tance are the radial vector fields

F  1x, y, z2 = r
0 r 0 p =

8x, y, z9
0 r 0 p  ,

where p is a real number.

EXAMPLE 3 Vector fields in ℝ3 Sketch and discuss the following vector fields.

a. F  1x, y, z2 = 8x, y, e-z9 , for z Ú 0

b. F  1x, y, z2 = 80, 0, 1 - x2 - y29 , for x2 + y2 … 1

SOLUTION

a. First consider the x- and y-components of F in the xy-plane 1z = 02, where 
F = 8x, y, 19 . This vector field looks like a radial field in the first two components, 
increasing in magnitude with distance from the z-axis. However, each vector also has 
a constant vertical component of 1. In horizontal planes z = z0 7 0, the radial pat-
tern remains the same, but the vertical component decreases as z increases. As z S ∞ , 
e-z S 0 and the vector field approaches a horizontal radial field (Figure 17.9).

z

x
x

y

F 5 kx, y, e2zl, for z $ 0

View from the side View from above

y

Figure 17.9

b. Regarding F as a velocity field for points in and on the cylinder x2 + y2 = 1, there  
is no motion in the x- or y-direction. The z-component of the vector field may be writ-
ten 1 - r2, where r2 = x2 + y2 is the square of the distance from the z-axis. We see 
that the z-component increases from 0 on the boundary of the cylinder 1r = 12 to a 
maximum value of 1 along the centerline of the cylinder 1r = 02 (Figure 17.10). This 
vector field models the flow of a fluid inside a tube (such as a blood vessel).

Related Exercises 20, 22	  

F 5 k0, 0, 1 2 x2 2 y2l,
for x2 1 y2 # 1

Cylinder x2 1 y2 5 1

z

yx

Figure 17.10
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Gradient Fields and Potential Functions One way to generate a vector field is to 
start with a differentiable scalar-valued function w, take its gradient, and let F = ∇w. A 
vector field defined as the gradient of a scalar-valued function w is called a gradient field, 
and w is called a potential function.

Suppose w is a differentiable function on a region R of ℝ2 and consider the sur-
face z = w1x, y2. Recall from Chapter 15 that this function may also be represented 
by level curves in the xy-plane. At each point 1a, b2 on a level curve, the gradient 
∇w1a, b2 = 8wx1a, b2, wy1a, b29  is orthogonal to the level curve at 1a, b2 (Figure 17.11). 
Therefore, the vectors of F = ∇w point in a direction orthogonal to the level curves of w.

The idea extends to gradients of functions of three variables. If w is differentiable on 
a region D of ℝ3, then F = ∇w = 8wx, wy, wz9  is a vector field that points in a direction 
orthogonal to the level surfaces of w.

Gradient fields are useful because of the physical meaning of the gradient. For 
example, if w represents the temperature in a conducting material, then the gradient 
field F = ∇w evaluated at a point indicates the direction in which the temperature 
increases most rapidly at that point. According to a basic physical law, heat diffuses 
in the direction of the vector field -F = -∇w, the direction in which the temperature 
decreases most rapidly; that is, heat flows “down the gradient” from relatively hot 
regions to cooler regions. Similarly, water on a smooth surface tends to flow down the 
elevation gradient.

➤	 Physicists often use the convention that 
a gradient field and its potential function 
are related by F = -∇w (with a negative 
sign).

y

x

The vector field F 5 =w is orthogonal
to the level curves of w at (x, y).

F 5 =w(x, y)

(x, y)

(x, y)

=w(x, y)

=w(x, y)

Level curves
of z 5 w(x, y)

Figure 17.11

QUICK CHECK 3 Find the gradient field associated with the function w1x, y, z2 = xyz.	

DEFINITION Gradient Fields and Potential Functions

Let w be differentiable on a region of ℝ2 or ℝ3. The vector field F = ∇w is a 
gradient field and the function w is a potential function for F.

➤	 A potential function plays the role 
of an antiderivative of a vector field: 
Derivatives of the potential function 
produce the vector field. If w is a 
potential function for a gradient field, 
then w + C is also a potential function 
for that gradient field, for any constant C.

EXAMPLE 4 Gradient fields

a. Sketch and interpret the gradient field associated with the temperature function 
T = 200 - x2 - y2 on the circular plate R = 51x, y2: x2 + y2 … 256.

b. Sketch and interpret the gradient field associated with the velocity potential 
w = tan-1 xy.

SOLUTION

a. The gradient field associated with T  is

F = ∇T = 8 -2x, -2y9 = -28x, y9 .
This vector field points inward toward the origin at all points of R except 10, 02. The 
magnitudes of the vectors,

0F 0 = 21-2x22 + 1-2y22 = 22x2 + y2,

are greatest on the edge of the disk R, where x2 + y2 = 25 and 0F 0 = 10. The 
magnitudes of the vectors in the field decrease toward the center of the plate with 
0F  10, 02 0 = 0. Figure 17.12 shows the level curves of the temperature function with 
several gradient vectors, all orthogonal to the level curves. Note that the plate is hottest 
at the center and coolest on the edge, so heat diffuses outward, in the direction oppo-
site that of the gradient.

b. The gradient of a velocity potential gives the velocity components of a two- 
dimensional flow; that is, F = 8u, v9 = ∇w, where u and v are the velocities in  
the x- and y-directions, respectively. Computing the gradient, we find that

F = 8wx, wy9 = h 1

1 + 1xy22
# y, 

1

1 + 1xy22
# xi = h y

1 + x2y2  , 
x

1 + x2y2 i.

Gradient vectors =T
(not drawn to scale)
are orthogonal to
the level curves.

Level curves of T(x, y) 5 200 2 x2 2 y2

=T

=T

175
180185

190
195

y

x25

25

5

5

Figure 17.12
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Notice that the level curves of w are the hyperbolas xy = C or y = C>x. At all points, 
the vector field is orthogonal to the level curves (Figure 17.13).

Related Exercises 38, 47  

F 5 =w is orthogonal
to level curves.

y

x

Level curves of
w(x, y) 5 tan21xy

Figure 17.13

Equipotential Curves and Surfaces The preceding example illustrates a beautiful geo-
metric connection between a gradient field and its associated potential function. Let w be a 
potential function for the vector field F in ℝ2; that is, F = ∇w. The level curves of a potential 
function are called equipotential curves (curves on which the potential function is constant).

Because the equipotential curves are level curves of w, the vector field F = ∇w is 
everywhere orthogonal to the equipotential curves (Figure 17.14). The vector field may be 
visualized by drawing continuous flow curves or streamlines that are everywhere orthog-
onal to the equipotential curves. These ideas also apply to vector fields in ℝ3, in which 
case the vector field is orthogonal to the equipotential surfaces.

F 5 =w is orthogonal
to the level curves
of w.

=w

Flow curves are
aligned with F
and orthogonal
to level curves.

Equipotential
(level) curves
of w

Level
curve

Flow
curve

Figure 17.14

EXAMPLE 5 Equipotential curves The equipotential curves for the potential function 
w1x, y2 = 1x2 - y22>2 are shown in green in Figure 17.15.

a. Find the gradient field associated with w and verify that the gradient field is orthogonal 
to the equipotential curve at 12, 12.

b. Verify that the vector field F = ∇w is orthogonal to the equipotential curves at all 
points 1x, y2.

SOLUTION

a. The level (or equipotential) curves are the hyperbolas 1x2 - y22>2 = C, where C is a 
constant. The slope at any point on a level curve w1x, y2 = C (Section 15.4) is

dy

dx
= -  

wx

wy
=

x
y

 .

At the point 12, 12, the slope of the level curve is dy>dx = 2, so the vector tan-
gent to the curve points in the direction 81, 29 . The gradient field is given by 
F = ∇w = 8x, -y9 , so F  12, 12 = ∇w12, 12 = 82, -19 . The dot product of the 
tangent vector 81, 29  and the gradient is 81, 29 # 82, -19 = 0; therefore, the two 
vectors are orthogonal.

b. In general, the line tangent to the equipotential curve at 1x, y2 is parallel to the vector 
8y, x9 , and the vector field at that point is F = 8x, -y9 . The vector field and the tan-
gent vectors are orthogonal because 8y, x9 # 8x, -y9 = 0.

Related Exercise 52  

y

x

Flow curve Flow curve

Flow curve Flow curve

=w =w

Level curves of
w(x, y) 5    (x2 2 y2)

Flow curves of F 5 =w
are orthogonal to level
curves of w everywhere.

21

2

22

1
2

2
1

2
1

2
1

Figure 17.15

➤ We use the fact that a line with slope 
a>b points in the direction of the vectors 
81, a>b9  or 8b, a9 .
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Getting Started
1. How is a vector field F = 8ƒ, g, h9  used to describe the motion  

of air at one instant in time?

2. Sketch the vector field F = 8x, y9 .
3. How do you graph the vector field F = 8ƒ1x, y2, g1x, y29?
4. Given a differentiable, scalar-valued function w, why is the  

gradient of w a vector field?

5. Interpret the gradient field of the temperature function 
T = ƒ1x, y2.

6. Show that all the vectors in vector field F =
228x, y92x2 + y2

 have the 

same length, and state the length of the vectors.

7. Sketch a few representative vectors of vector field F = 80, 19   
along the line y = 2.

Practice Exercises
8–23. Sketching vector fields Sketch the following vector fields.

8. F = 81, 09  9. F = 8 -1, 19  
10. F = 81, y9  11. F = 8x, 09
12. F = 8 -x, -y9  13. F = 8x, -y9
14. F = 82x, 3y9  15. F = 8y, -x9
16. F = 8x + y, y9  17. F = 8x, y - x9

18. F = h x2x2 + y2
 , 

y2x2 + y2
i

19. F = 8e-x, 09  20. F = 80, 0, 19

21. F = 81, 0, z9  22. F =
8x, y, z92x2 + y2 + z2

23. F = 8y, -x, 09
24. Matching vector fields with graphs Match vector fields a–d with 

graphs A–D.

a. F = 80, x29  b. F = 8x - y, x9
c. F = 82x, -y9  d. F = 8y, x9

y

x1

1

(A)  

y

x1

1

(B)

T T

T

SECTION 17.1 EXERCISES

y

x

1

1

(C)  

y

x121

1

(D)

25–30. Normal and tangential components For the vector field F and 
curve C, complete the following:

a. Determine the points (if any) along the curve C at which the vector 
field F is tangent to C.

b. Determine the points (if any) along the curve C at which the vector 
field F is normal to C.

c. Sketch C and a few representative vectors of F on C.

25. F = h 1
2

 , 0i; C = 51x, y2: y - x2 = 16

26. F = h y

2
 , -  

x
2
i; C = 51x, y2: y - x2 = 16

27. F = 8x, y9 ; C = 51x, y2: x2 + y2 = 46
28. F = 8y, -x9 ; C = 51x, y2: x2 + y2 = 16
29. F = 8x, y9 ; C = 51x, y2: x = 16
30. F = 8y, x9 ; C = 51x, y2: x2 + y2 = 16
31–34. Design your own vector field Specify the component functions 
of a vector field F in ℝ2 with the following properties. Solutions are  
not unique.

31. F is everywhere normal to the line y = x.

32. F is everywhere normal to the line x = 2.

33. At all points except 10, 02, F has unit magnitude and points away 
from the origin along radial lines.

34. The flow of F is counterclockwise around the origin, increasing in 
magnitude with distance from the origin.

35–42. Gradient fields Find the gradient field F = ∇w for the follow-
ing potential functions w.

35. w1x, y2 = x2y - y2x 36. w1x, y2 = 1xy

37. w1x, y2 = x>y 38. w1x, y2 = tan-1 1x>y2

39. w1x, y, z2 = x2 + y2 + z2

2

40. w1x, y, z2 = ln 11 + x2 + y2 + z22
41. w1x, y, z2 = 1x2 + y2 + z22-1>2

42. w1x, y, z2 = e-z sin 1x + y2
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53. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. The vector field F = 83x2, 19  is a gradient field for both 
w11x, y2 = x3 + y and w21x, y2 = y + x3 + 100.

b. The vector field F =
8y, x92x2 + y2

 is constant in direction and 

magnitude on the unit circle.

c. The vector field F =
8y, x92x2 + y2

 is neither a radial field nor a 

rotation field.

Explorations and Challenges
54. Electric field due to a point charge The electric field in the  

xy-plane due to a point charge at 10, 02 is a gradient field with  

a potential function V1x, y2 = k2x2 + y2
 , where k 7 0 is a  

physical constant.

a. Find the components of the electric field in the x- and  
y-directions, where E1x, y2 = -∇V1x, y2.

b. Show that the vectors of the electric field point in the radial di-
rection (outward from the origin) and the radial component of 

E can be expressed as Er =
k

r2 , where r = 2x2 + y2.

c. Show that the vector field is orthogonal to the equipotential 
curves at all points in the domain of V.

55. Electric field due to a line of charge The electric field in the  
xy-plane due to an infinite line of charge along the z-axis is a gra-

dient field with a potential function V1x, y2 = c ln a r02x2 + y2
b ,  

where c 7 0 is a constant and r0 is a reference distance at which  
the potential is assumed to be 0 (see figure).

a. Find the components of the electric field in the x- and  
y-directions, where E1x, y2 = -∇V1x, y2.

b. Show that the electric field at a point in the xy-plane is directed 
outward from the origin and has magnitude �E � = c>r, where  

r = 2x2 + y2.
c. Show that the vector field is orthogonal to the equipotential 

curves at all points in the domain of V.

z

x
y

Line of charge

(x, y)

56. Gravitational force due to a mass The gravitational force on a 
point mass m due to a point mass M is a gradient field with  

potential U1r2 = GMm>r , where G is the gravitational constant 

and r = 2x2 + y2 + z2 is the distance between the masses.

a. Find the components of the gravitational force in the x-, y-, and 
z-directions, where F1x, y, z2 = -∇U1x, y, z2.

b. Show that the gravitational force points in the radial direction 
(outward from point mass M) and the radial component is 
F1r2 = GMm>r2.

c. Show that the vector field is orthogonal to the equipotential 
surfaces at all points in the domain of U.

43–46. Gradient fields on curves For the potential function w and 
points A, B, C, and D on the level curve w1x, y2 = 0, complete the  
following steps.

a. Find the gradient field F = ∇w.
b. Evaluate F at the points A, B, C, and D.
c. Plot the level curve w1x, y2 = 0 and the vectors F at the points A, 

B, C, and D.

43. w1x, y2 = y - 2x; A1-1, -22, B10, 02, C11, 22, and D12, 42

44. w1x, y2 = 1
2

 x2 - y; A1-2, 22, B1-1, 1>22, C11, 1>22, and  

D12, 22
45. w1x, y2 = -y + sin x; A1p>2 , 12, B1p, 02, C 13p>2, -12,  

and D12p, 02

46. w1x, y2 = 32 - x4 - y4

32
 ; A12, 22, B1-2, 22, C1-2, -22,  

and D12, -22
47–48. Gradient fields Find the gradient field F = ∇w for the poten-
tial function w. Sketch a few level curves of w and a few vectors of F.

47. w1x, y2 = x2 + y2, for x2 + y2 … 16

48. w1x, y2 = x + y, for � x � … 2, � y � … 2

49–52. Equipotential curves Consider the following potential func-
tions and the graphs of their equipotential curves.

a. Find the associated gradient field F = ∇w.
b. Show that the vector field is orthogonal to the equipotential curve at 

the point 11, 12. Illustrate this result on the figure.
c. Show that the vector field is orthogonal to the equipotential curve at 

all points 1x, y2.
d. Sketch two flow curves representing F that are everywhere orthogo-

nal to the equipotential curves.

T

T

49. w1x, y2 = 2x + 3y

y

x1

1

21

21 0

21

23

22

4
3

2

1

0

50. w1x, y2 = x + y2

y

x222

23 22 21 0 1 2 3

51. w1x, y2 = ex - y

y

x2

1
2
3
4

22

22

2

52. w1x, y2 = x2 + 2y2

y

x2

1 2 3 4

22

22

2
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57–61. Flow curves in the plane Let F1x, y2 = 8ƒ1x, y2, g1x, y29  be 
defined on ℝ2.

57. Explain why the flow curves or streamlines of F satisfy 

y′ =
g1x, y2
ƒ1x, y2 and are everywhere tangent to the vector field.

58. Find and graph the flow curves for the vector field F = 81, x9 .
59. Find and graph the flow curves for the vector field F = 8x, x9 .
60. Find and graph the flow curves for the vector field F = 8y, x9 . 

Note that 
d
dx

 1y22 = 2yy′1x2.

61. Find and graph the flow curves for the vector field F = 8 -y, x9 .
62–63. Unit vectors in polar coordinates

62. Vectors in ℝ2 may also be expressed in terms of polar coordinates. 
The standard coordinate unit vectors in polar coordinates are  
denoted ur and uu (see figure). Unlike the coordinate unit vectors 
in Cartesian coordinates, ur and uu change their direction depend-
ing on the point 1r, u2. Use the figure to show that for r 7 0, the 
following relationships among the unit vectors in Cartesian and 
polar coordinates hold:

 ur = cos u i + sin u j  i = ur cos u - uu sin u

 uu = -sin u i + cos u j  j = ur sin u + uu cos u

T

T

T

T

y

x

i

j

u

u

uu

ur

63. Verify that the relationships in Exercise 62 are consistent when 
u = 0, p>2 , p, and 3p>2.

64–66. Vector fields in polar coordinates A vector field in polar coor-
dinates has the form F1r, u2 = ƒ1r, u2 ur + g1r, u2 uu, where the unit 
vectors are defined in Exercise 62. Sketch the following vector fields 
and express them in Cartesian coordinates.

64. F = ur 65. F = uu 66. F = r uu

67. Cartesian vector field to polar vector field Write the vector field 
F = 8 -y, x9  in polar coordinates and sketch the field.

QUICK CHECK ANSWERS

1. The particle follows a circular path around the origin.
3. ∇w = 8yz, xz, xy9 	

17.2 Line Integrals
With integrals of a single variable, we integrate over intervals in ℝ (the real line). With 
double and triple integrals, we integrate over regions in ℝ2 or ℝ3. Line integrals (which re-
ally should be called curve integrals) are another class of integrals that play an important 
role in vector calculus. They are used to integrate either scalar-valued functions or vector 
fields along curves.

Suppose a thin, circular plate has a known temperature distribution and 
you must compute the average temperature along the edge of the plate. The 
required calculation involves integrating the temperature function over the 
curved boundary of the plate. Similarly, to calculate the amount of work 
needed to put a satellite into orbit, we integrate the gravitational force (a 
vector field) along the curved path of the satellite. Both these calculations 
require line integrals. As you will see, line integrals take several different 
forms. It is the goal of this section to distinguish among these various forms 
and show how and when each form should be used.

Scalar Line Integrals in the Plane
We focus first on line integrals of scalar-valued functions over curves 
in the xy-plane. Assume C is a smooth curve of finite length given by 
r1t2 = 8x1t2, y1t29 , for a … t … b. We divide 3a, b4 into n subintervals us-
ing the grid points

a = t0 6 t1 6 g 6 tn - 1 6 tn = b.

This partition of 3a, b4 divides C into n subarcs (Figure 17.16), where 
the arc length of the kth subarc is denoted ∆sk. Let t*

k be a point in the kth 
subinterval 3tk - 1, tk4, which corresponds to a point 1x1t*

k2, y1t*
k22 on the kth 

subarc of C, for k = 1, 2, c, n.

t

x

C: r(t) 5 kx(t), y(t)l,
for a # t # b

(x(t0), y(t0))

(x(t1), y(t1))

(x(tk21), y(tk21)) (x(tk), y(tk))

Dsk

(x(tn), y(tn))
(x(tk ), y(tk ))

t05 a tn5 btk21 tk

tk
*

**

t1
. . . . . .

The parameter t resides on the t-axis. As t
varies from a to b, the curve C in the xy-plane
is generated from (x(a), y(a)) to (x(b), y(b)). 

y

Figure 17.16
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Now consider a scalar-valued function z = ƒ1x, y2 defined on a region containing C. 
Evaluating ƒ at 1x1t*

k2, y1t*
k22 and multiplying this value by ∆sk, we form the sum

Sn = a
n

k = 1
 ƒ1x1t*

k2, y1t*
k22∆sk,

which is similar to a Riemann sum. We now let ∆  be the maximum value of 
5∆s1, c, ∆sn6. If the limit of the sum as n S ∞  and ∆ S 0 exists over all partitions, 
then the limit is called the line integral of ƒ over C.

DEFINITION Scalar Line Integral in the Plane

Suppose the scalar-valued function ƒ is defined on a region containing the smooth 
curve C given by r1t2 = 8x1t2, y1t29 , for a … t … b. The line integral of ƒ over 
C is

∫
C

ƒ1x1t2, y1t22 ds = lim
∆S0

 a
n

k = 1

ƒ1x1t*
k2, y1t*

k22∆sk,

provided this limit exists over all partitions of 3a, b4. When the limit exists, ƒ is 
said to be integrable on C.

The more compact notations #C ƒ1r1t22 ds, #C ƒ1x, y2 ds, and #C ƒ ds are also used for 
the line integral of ƒ over C. It can be shown that if ƒ is continuous on a region containing 
C, then ƒ is integrable over C.

There are several useful interpretations of the line integral of a scalar function. If 
ƒ1x, y2 = 1, the line integral #C ds gives the length of the curve C, just as the ordinary 
integral #b

a dx gives the length of the interval 3a, b4, which is b - a. If ƒ1x, y2 Ú 0 on C, 
then #C ƒ1x, y2 ds can be viewed as the area of one side of the vertical, curtain-like surface 
that lies between the graphs of ƒ and C (Figure 17.17). This interpretation results from re-
garding the product ƒ1x1t*

k2, y1t*
k22∆sk as an approximation to the area of the kth panel of 

the curtain. Similarly, if ƒ is a density function for a thin wire represented by the curve C,  
then #C ƒ1x, y2 ds gives the mass of the wire—the product ƒ1x1t*

k2, y1t*
k22∆sk is an approxi-

mation to the mass of the kth piece of the wire (Exercises 35–36).

Evaluating Line Integrals
The line integral of ƒ over C given in the definition is not an ordinary Riemann integral, 
because the integrand is expressed as a function of t while the variable of integration is the 
arc length parameter s. We need a practical way to evaluate such integrals; the key is to use 
a change of variables to convert a line integral into an ordinary integral. Let C be given by 
r1t2 = 8x1t2, y1t29 , for a … t … b. Recall from Section 14.4 that the length of C over 
the interval 3a, t4 is

s1t2 = ∫ t

a
0 r′1u2 0  du.

Differentiating both sides of this equation and using the Fundamental Theorem of 
Calculus yields s′1t2 = 0 r′1t2 0 . We now make a standard change of variables using the 
relationship

ds = s′1t2 dt = 0 r′1t2 0  dt.

Relying on a result from advanced calculus, the original line integral with respect to s 
can be converted into an ordinary integral with respect to t:

∫
C

ƒ ds = ∫b

a
ƒ1x1t2, y1t22 0 r′1t2 0  dt.

 (+)+*
  ds

x

z

y

C
Dsk

Height 5 f (x(tk*), y(tk*))

(x(tk*), y(tk*))

Area of kth panel 
< f (x(tk*), y(tk*)) Dsk; area

of curtain 5 E  f(x, y) ds
z 5 f (x, y)C

y

He

*))))

Figure 17.17

➤	 If t represents time, then the relationship 
ds = 0 r′1t2 0 dt is a generalization of the 
familiar formula

distance = speed # time.

QUICK CHECK 1 Explain mathematically 
why differentiating the arc length 
integral leads to s′1t2 = 0 r′1t2 0 .	
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If t represents time and C is the path of a moving object, then 0 r′1t2 0  is the speed of 
the object. The speed factor 0 r′1t2 0  that appears in the integral relates distance traveled 
along the curve as measured by s to the elapsed time as measured by the parameter t.

Notice that if ƒ1x, y2 = 1, then the line integral is #b
a 2x′1t22 + y′1t22 dt, which is 

the arc length formula for C. Theorem 17.1 leads to the following procedure for evaluating 
line integrals.

➤	 The value of a line integral of a scalar-
valued function is independent of the 
parameterization of C and independent 
of the direction in which C is traversed 
(Exercises 64–65).

THEOREM 17.1 Evaluating Scalar Line Integrals in ℝ2

Let ƒ be continuous on a region containing a smooth curve C: r1t2 = 8x1t2, y1t29 , 
for a … t … b. Then

 ∫
C

ƒ ds = ∫b

a
ƒ1x1t2, y1t22 0 r′1t2 0  dt

 = ∫b

a
ƒ1x1t2, y1t222x′1t22 + y′1t22 dt.

PROCEDURE Evaluating the Line Integral ∫
C

ƒ ds

1. Find a parametric description of C in the form r1t2 = 8x1t2, y1t29 , for 
a … t … b.

2. Compute 0 r′1t2 0 = 2x′1t22 + y′1t22.

3. Make substitutions for x and y in the integrand and evaluate an ordinary 
integral:

∫
C

ƒ ds = ∫b

a
ƒ1x1t2, y1t22 0 r′1t2 0  dt.

EXAMPLE 1 Average temperature on a circle The temperature of the circular plate 
R = 51x, y2: x2 + y2 … 16 is T1x, y2 = 1001x2 + 2y22. Find the average temperature 
along the edge of the plate.

SOLUTION Calculating the average value requires integrating the temperature function 
over the boundary circle C = 51x, y2: x2 + y2 = 16 and dividing by the length (circum-
ference) of C. The first step is to find a parametric description for C. We use the standard 
parameterization for a unit circle centered at the origin, r = 8x, y9 = 8cos t, sin t9 , for 
0 … t … 2p. Next, we compute the speed factor

0 r′1t2 0 = 2x′1t22 + y′1t22 = 21-sin t22 + 1cos t22 = 1.

We substitute x = cos t and y = sin t into the temperature function and express the line 
integral as an ordinary integral with respect to t:

 ∫
C

T1x, y2 ds = ∫2p

0
1001x1t22 + 2y1t222 0 r′1t2 0  dt  Write the line integral as an ordinary  

integral with respect to t; ds = 0 r′1t2 0  dt.(++++)++++* (1)1*
    T1t2      1

 = 100∫2p

0
1cos2 t + 2 sin2 t2 dt  Substitute for x and y.

 = 100∫2p

0
11 + sin2 t2 dt  cos2 t + sin2 t = 1

        (++++)++++*
              3p

 = 300p.  Use sin2 t =
1 - cos 2t

2
 and integrate.

The geometry of this line integral is shown in Figure 17.18. The temperature function 
on the boundary of C is a function of t. The line integral is an ordinary integral with re-
spect to t over the interval 30, 2p4. To find the average value, we divide the line integral 
of the temperature by the length of the curve, which is 2p. Therefore, the average tem-
perature on the boundary of the plate is 300p>12p2 = 150.

Related Exercise 17	  

➤	 When we compute the average value 
by an ordinary integral, we divide by 
the length of the interval of integration. 
Analogously, when we compute the 
average value by a line integral, we 
divide by the length of the curve L:

ƒ =
1
L ∫

C

 ƒ ds.

x y

T(x, y) 5 100(x2 1 2y2)

C

Temperature
on edge of plate

Edge of plate x2 1 y2 5 1
r 5 kx, yl 5 kcos t, sin tl,
for 0 # t # 2p

200

z

Figure 17.18

➤	 The line integral in Example 1 also gives 
the area of the vertical cylindrical curtain 
that hangs between the surface and C in 
Figure 17.18.
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 17.2 Line Integrals 1101

Line Integrals in ℝ3

The argument that leads to line integrals on plane curves extends immediately to three or 
more dimensions. Here is the corresponding evaluation theorem for line integrals in ℝ3.

QUICK CHECK 2 Suppose r1t2 = 8 t, 09 , 
for a … t … b, is a parametric 
description of C; note that C is the 
interval 3a, b4 on the x-axis. Show that #C ƒ1x, y2 ds = #b

a ƒ1t, 02 dt, which 
is an ordinary, single-variable integral 
introduced in Chapter 5.	

➤	 If ƒ1x, y, z2 = 1, then the line integral 
gives the length of C.

THEOREM 17.2 Evaluating Scalar Line Integrals in ℝ3

Let ƒ be continuous on a region containing a smooth curve 
C: r1t2 = 8x1t2, y1t2, z1t29 , for a … t … b. Then

 ∫
C

ƒ ds = ∫b

a
ƒ1x1t2, y1t2, z1t22 0 r′1t2 0  dt

 = ∫b

a
ƒ1x1t2, y1t2, z1t222x′1t22 + y′1t22 + z′1t22 dt.

EXAMPLE 2 Line integrals in ℝ3 Evaluate #C 1xy + 2z2 ds on the following line 
segments.

a. The line segment from P11, 0, 02 to Q10, 1, 12
b. The line segment from Q10, 1, 12 to P11, 0, 02
SOLUTION

a. A parametric description of the line segment from P11, 0, 02 to Q10, 1, 12 is
r1t2 = 81, 0, 09 + t8 -1, 1, 19 = 81 - t, t, t9 , for 0 … t … 1.

The speed factor is

0 r′1t2 0 = 2x′1t22 + y′1t22 + z′1t22 = 21-122 + 12 + 12 = 13.

Substituting x = 1 - t, y = t, and z = t, the value of the line integral is

 ∫
C

1xy + 2z2 ds = ∫1

0
111 - t2 t + 2t213 dt Substitute for x, y, and z.(1)1* " "

  x   y  2z

 = 13∫1

0
13t - t22 dt  Simplify.

 = 13 a 3t2

2
-

t3

3
b `

0

1
 Integrate.

 =
713

6
 .  Evaluate.

b. The line segment from Q10, 1, 12 to P11, 0, 02 may be described parametrically by

r1t2 = 80, 1, 19 + t81, -1, -19 = 8 t, 1 - t, 1 - t9 , for 0 … t … 1.

The speed factor is

0 r′1t2 0 = 2x′1t22 + y′1t22 + z′1t22 = 212 + 1-122 + 1-122 = 13.

We substitute x = t, y = 1 - t, and z = 1 - t and do a calculation similar to that in 

part (a). The value of the line integral is again 
713

6
 , emphasizing the fact that a scalar  

line integral is independent of the orientation and parameterization of the curve.
Related Exercises 32–33	  

➤	 Recall that a parametric equation of a  
line is

r1t2 = 8x0, y0, z09 + t8a, b, c9 ,
where 8x0, y0, z09  is a position vector as-
sociated with a fixed point on the line and 
8a, b, c9  is a vector parallel to the line.

EXAMPLE 3 Flight of an eagle An eagle soars on the ascending spiral path

C: r1t2 = 8x1t2, y1t2, z1t29 = h2400 cos 
t
2

 , 2400 sin 
t
2

 , 500ti,

where x, y, and z are measured in feet and t is measured in minutes. How far does the 
eagle fly over the time interval 0 … t … 10?
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1102 Chapter 17  •  Vector Calculus

➤	 Because we are finding the length of a 
curve, the integrand in this line integral is 
ƒ1x, y, z2 = 1.

SOLUTION The distance traveled is found by integrating the element of arc length ds 
along C, that is, L = #C ds. We now make a change of variables to the parameter t using

 0 r′1t2 0 = 2x′1t22 + y′1t22 + z′1t22

 = B a -1200 sin 
t
2
b

2

+ a1200 cos 
t
2
b

2

+ 5002 Substitute derivatives.

 = 212002 + 5002 = 1300.  sin2 
t
2

+ cos2 
t
2
= 1

It follows that the distance traveled is

L = ∫
C

ds = ∫10

0
0 r′1t2 0  dt = ∫10

0
1300 dt = 13,000 ft.

Related Exercise 39	  

QUICK CHECK 3 What is the speed of the 
eagle in Example 3?	

Line Integrals of Vector Fields
Line integrals along curves in ℝ2 or ℝ3 may also have integrands that involve vector fields. 
Such line integrals are different from scalar line integrals in two respects.

• Recall that an oriented curve is a parameterized curve for which a direction is specified. 
The positive orientation is the direction in which the curve is generated as the parameter 
increases. For example, the positive orientation of the circle r1t2 = 8cos t, sin t9 , for 
0 … t … 2p, is counterclockwise. As we will see, vector line integrals must be evalu-
ated on oriented curves, and the value of a line integral depends on the orientation.

• The line integral of a vector field F along an oriented curve involves a specific compo-
nent of F relative to the curve. We begin by defining vector line integrals for the  
tangential component of F, a situation that has many physical applications.

Let C: r1s2 = 8x1s2, y1s2, z1s29  be a smooth oriented curve in ℝ3 parameterized by 
arc length and let F be a vector field that is continuous on a region containing C. At each 
point of C, the unit tangent vector T points in the positive direction on C (Figure 17.19). 
The component of F in the direction of T at a point of C is 0F 0  cos u, where u is the angle 
between F and T. Because T is a unit vector,

0F 0  cos u = 0F 0 0T 0  cos u = F # T.

The first line integral of a vector field F that we introduce is the line integral of the scalar 
F # T along the curve C. When we integrate F # T along C, the effect is to add up the com-
ponents of F in the direction of C at each point of C.

F

F

x

y

T
T

T

T

T is consistent with the
positive orientation of C.

F ? T . 0
positive contribution
to line integral

F ? T , 0
negative contribution
to line integral

C

u u

z

Figure 17.19

Just as we did for line integrals of scalar-valued functions, we need a method for eval-
uating vector line integrals when the parameter is not the arc length. Suppose C has a 
parameterization r1t2 = 8x1t2, y1t2, z1t29 , for a … t … b. Recall from Section 14.2  

that the unit tangent vector at a point on the curve is T =
r′1t2
0 r′1t2 0 . Using the fact that 

ds = 0 r′1t2 0  dt, the line integral becomes

∫
C

F # T ds = ∫b

a
F # r′1t2
0 r′1t2 0  0 r′1t2 0  dt = ∫b

a
F # r′1t2 dt.

(1)1*  
(1+)+1*

 T     
ds

DEFINITION Line Integral of a Vector Field

Let F be a vector field that is continuous on a region containing a smooth oriented 
curve C parameterized by arc length. Let T be the unit tangent vector at each point 
of C consistent with the orientation. The line integral of F over C is #C F # T ds.

➤	 The component of F in the direction of 
T is the scalar component of F in the 
direction of T, scalT F, as defined in 
Section 13.3. Note that 0T 0 = 1.

➤	 Some texts let ds stand for T ds. Then 
the line integral #C F # T ds is written #C F # ds.
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 17.2 Line Integrals 1103

This integral may be written in several equivalent forms. If F = 8ƒ, g, h9 , then the line 
integral is expressed in component form as

∫
C

F # T ds = ∫b

a
 F # r′1t2 dt = ∫b

a
1ƒ1t2x′1t2 + g1t2y′1t2 + h1t2z′1t22 dt.

Another useful form is obtained by noting that

dx = x′1t2 dt,   dy = y′1t2 dt,   dz = z′1t2 dt.

Making these replacements in the previous integral results in the form

∫
C

F # T ds = ∫
C

ƒ dx + g dy + h dz.

Finally, if we let dr = 8dx, dy, dz9 , then ƒ dx + g dy + h dz = F # dr, and we have

∫
C

F # T ds = ∫
C

F # dr.

It is helpful to become familiar with these various forms of the line integral.

➤	 Keep in mind that ƒ1t2 stands for 
ƒ1x1t2, y1t2, z1t22 with analogous 
expressions for g1t2 and h1t2.

Different Forms of Line Integrals of Vector Fields

The line integral #C F # T ds may be expressed in the following forms, where 
F = 8ƒ, g, h9  and C has a parameterization r1t2 = 8x1t2, y1t2, z1t29 , for 
a … t … b:

 ∫b

a
F # r′1t2 dt = ∫b

a  1ƒ1t2x′1t2 + g1t2y′1t2 + h1t2z′1t22 dt

 = ∫
C

ƒ dx + g dy + h dz

 = ∫
C

F # dr.

For line integrals in the plane, we let F = 8ƒ, g9  and assume C is parameterized in 
the form r1t2 = 8x1t2, y1t29 , for a … t … b. Then

 ∫b

a
F # r′1t2 dt = ∫b

a
1ƒ1t2x′1t2 + g1t2y′1t22 dt = ∫

C

ƒ dx + g dy = ∫
C

F # dr.

EXAMPLE 4 Different paths Evaluate #C F # T ds with F = 8y - x, x9  on the fol-
lowing oriented paths in ℝ2 (Figure 17.20).

a. The quarter-circle C1 from P10, 12 to Q11, 02
b. The quarter-circle -C1 from Q11, 02 to P10, 12
c. The path C2 from P10, 12 to Q11, 02 via two line segments through O10, 02
SOLUTION

a. Working in ℝ2, a parametric description of the curve C1 with the required (clockwise) 
orientation is r1t2 = 8sin t, cos t9 , for 0 … t … p>2. Along C1, the vector field is

F = 8y - x, x9 = 8cos t - sin t, sin t9 .
The velocity vector is r′1t2 = 8cos t, -sin t9 , so the integrand of the line integral is

F # r′1t2 = 8cos t - sin t, sin t9 # 8cos t, -sin t9 = cos2 t - sin2 t - sin t cos t.(+11)11+*  (+)+*
   cos 2t     1

2 sin 2t

y

x

Vector field F 5 ky 2 x, xl

C1

C2

C2

P(0, 1)

Q(1, 0)O

Figure 17.20

➤	 We use the convention that -C is the 
curve C with the opposite orientation.

P

QC

2C
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1104 Chapter 17  •  Vector Calculus

The value of the line integral of F over C1 is

 ∫p>2
0

F # r′1t2 dt = ∫p>2
0
acos 2t -

1
2

 sin 2tb  dt Substitute for F # r′1t2.

 = a 1
2

 sin 2t +
1
4

 cos 2tb `
0

p>2
 Evaluate integral.

 = -  
1
2

 .  Simplify.

b. A parameterization of the curve -C1 from Q to P is r1t2 = 8cos t, sin t9 , for 
0 … t … p>2. The vector field along the curve is

F = 8y - x, x9 = 8sin t - cos t, cos t9 ,
and the velocity vector is r′1t2 = 8 -sin t, cos t9 . A calculation similar to that in  
part (a) results in

∫
-C1 

F # T ds = ∫p>2
0

F # r′1t2 dt =
1
2

 .

Comparing the results of parts (a) and (b), we see that reversing the orientation of C1 
reverses the sign of the line integral of the vector field.

c. The path C2 consists of two line segments.

• The segment from P to O is parameterized by r1t2 = 80, 1 - t9 , for 0 … t … 1. 
Therefore, r′1t2 = 80, -19  and F = 8y - x, x9 = 81 - t, 09 . On this segment, 
T = 80, -19 .

• The line segment from O to Q is parameterized by r1t2 = 8 t, 09 , for 0 … t … 1. 
Therefore, r′1t2 = 81, 09  and F = 8y - x, x9 = 8 - t, t9 . On this segment, 
T = 81, 09 .

The line integral is split into two parts and evaluated as follows:

 ∫
C2

F # T ds = ∫
PO

F # T ds + ∫
OQ

F # T ds

 = ∫1

0
81 - t, 09 # 80, -19  dt + ∫1

0
8 - t, t9 # 81, 09  dt 

 Substitute  
for x, y, r′.

 = ∫1

0
0 dt + ∫1

0
1- t2 dt  Simplify.

 = -  
1
2

 .  Evaluate integrals.

The line integrals in parts (a) and (c) have the same value and run from P to Q, but 
along different paths. We might ask: For what vector fields are the values of a line  
integral independent of path? We return to this question in Section 17.3.

Related Exercises 42–43  

➤ Line integrals of vector fields satisfy 
properties similar to those of ordinary 
integrals. Suppose C is a smooth curve 
from A to B, C1 is the curve from A to P, 
and C2 is the curve from P to B, where P 
is a point on C between A and B. Then

∫
C

F # dr = ∫
C1

F # dr + ∫
C2

F # dr.

The solutions to parts (a) and (b) of Example 4 illustrate a general result that applies 
to line integrals of vector fields:

∫
-C

F # T ds = -  ∫
C

F # T ds.

Figure 17.21 provides the justification of this fact: Reversing the orientation of C changes 
the sign of F # T at each point of C, which changes the sign of the line integral.

Work Integrals A common application of line integrals of vector fields is computing 
the work done in moving an object in a force field (for example, a gravitational or electric 
field). First recall (Section 6.7) that if F is a constant force field, the work done in moving 
an object a distance d along the x-axis is W = Fx d, where Fx = 0F 0  cos u is the component  

Reversing the orientation of C
changes the sign of F ? T at each
point on C.

F ? T 5 |F| cos u

2 u

F

T
u

C

F ? T 5 |F| cos (   2 u)
5 2|F| cos u

F

T

2C
p

p

Figure 17.21
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 17.2 Line Integrals 1105

of the force along the x-axis (Figure 17.22a). Only the component of F in the direction 
of motion contributes to the work. More generally, if F is a variable force field, the work 
done in moving an object from x = a to x = b is W = #b

a Fx 1x2 dx, where again Fx is the 
component of the force F in the direction of motion (parallel to the x-axis, Figure 17.22b).

QUICK CHECK 4 Suppose a two-
dimensional force field is everywhere 
directed outward from the origin, and 
C is a circle centered at the origin. 
What is the angle between the field 
and the unit vectors tangent to C ?	

➤	 Remember that the value of #C ƒ ds (the 
line integral of a scalar function) does 
not depend on the orientation of C.

u

F F

d

F

Variable force:

W 5 E  Fx(x) dx,

where Fx(x) 5 uF(x)u cos u
a

b

Constant force:
W 5 (uFu cos u) d

Fx 5 uFu cos u

x 5 bx 5 a

Fx(a) Fx(b)

x x

(b)(a)

Figure 17.22

We now take this progression one step further. Let F be a variable force field defined 
in a region D of ℝ3 and suppose C is a smooth oriented curve in D along which an object 
moves. The direction of motion at each point of C is given by the unit tangent vector T. 
Therefore, the component of F in the direction of motion is F # T, which is the tangential 
component of F along C. Summing the contributions to the work at each point of C, the 
work done in moving an object along C in the presence of the force is the line integral of 
F # T (Figure 17.23).

z

x

y

C

Component of F in the
direction of motion:
F ? T 5 uFu cos u

F(r(t))

r(t)
C: r(t)

r(b)

r(a)

T

Work 5 E  F ? T ds

u

Figure 17.23

➤	 Just to be clear, a work integral is nothing 
more than a line integral of the tangential 
component of a force field.

DEFINITION Work Done in a Force Field

Let F be a continuous force field in a region D of ℝ3. Let 

C: r1t2 = 8x1t2, y1t2, z1t29 , for a … t … b, 

be a smooth curve in D with a unit tangent vector T consistent with the orientation. 
The work done in moving an object along C in the positive direction is

W = ∫
C

F # T ds = ∫b

a
F # r′1t2 dt.

EXAMPLE 5 An inverse square force Gravitational and electrical forces between 
point masses and point charges obey inverse square laws: They act along the line joining 
the centers and they vary as 1>r2, where r is the distance between the centers. The force 
of attraction (or repulsion) of an inverse square force field is given by the vector field 

F =
k8x, y, z9

1x2 + y2 + z223>2  , where k is a physical constant. Because r = 8x, y, z9 , this  

force may also be written F =
kr
0 r 0 3. Find the work done in moving an object along the  

following paths.

a. C1 is the line segment from 11, 1, 12 to 1a, a, a2, where a 7 1.

b. C2 is the extension of C1 produced by letting a S ∞ .

SOLUTION

a. A parametric description of C1 consistent with the orientation is r1t2 = 8 t, t, t9 , for 
1 … t … a, with r′1t2 = 81, 1, 19 . In terms of the parameter t, the force field is

F =
k8x, y, z9

1x2 + y2 + z223>2 =
k8 t, t, t9
13t223>2  .

The dot product that appears in the work integral is

F # r′1t2 = k8 t, t, t9
13t223>2

# 81, 1, 19 =
3kt

313 t3 =
k13 t2  .
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1106 Chapter 17  •  Vector Calculus

Therefore, the work done is

W = ∫a

1
F # r′1t2 dt =

k13
 ∫a

1
t-2 dt =

k13
 a1 -

1
a
b .

b. The path C2 is obtained by letting a S ∞  in part (a). The required work is

W = lim
aS∞

k13
 a1 -

1
a
b =

k13
 .

If F is a gravitational field, this result implies that the work required to escape Earth’s 
gravitational field is finite (which makes space flight possible).

Related Exercise 55	  

Circulation and Flux of a Vector Field
Line integrals are useful for investigating two important properties of vector fields:  
circulation and flux. These properties apply to any vector field, but they are particularly 
relevant and easy to visualize if you think of F as the velocity field for a moving fluid.

Circulation We assume F = 8ƒ, g, h9  is a continuous vector field on a region D of ℝ3, 
and we take C to be a closed smooth oriented curve in D. The circulation of F along C is a 
measure of how much of the vector field points in the direction of C. More simply, as you 
travel along C in the positive direction, how much of the vector field is at your back and 
how much of it is in your face? To determine the circulation, we simply “add up” the com-
ponents of F in the direction of the unit tangent vector T at each point. Therefore, circula-
tion integrals are another example of line integrals of vector fields.

➤	 In the definition of circulation, a closed 
curve is a curve whose initial and 
terminal points are the same, as defined 
formally in Section 17.3.

DEFINITION Circulation

Let F be a continuous vector field on a region D of ℝ3, and let C be a closed 
smooth oriented curve in D. The circulation of F on C is #C F # T ds, where T is 
the unit vector tangent to C consistent with the orientation.

➤	 Although we define circulation integrals 
for smooth curves, these integrals may be 
computed on piecewise-smooth curves. 
We adopt the convention that piecewise 
refers to a curve with finitely many 
pieces.

EXAMPLE 6 Circulation of two-dimensional flows Let C be the unit circle with 
counterclockwise orientation. Find the circulation on C of the following vector fields.

a. The radial vector field F = 8x, y9
b. The rotation vector field F = 8 -y, x9
SOLUTION

a. The unit circle with the specified orientation is described parametrically by 
r1t2 = 8cos t, sin t9 , for 0 … t … 2p. Therefore, r′1t2 = 8 -sin t, cos t9  and the 
circulation of the radial field F = 8x, y9  is

 ∫
C

F # T ds = ∫2p

0
F # r′1t2 dt  Evaluation of a line integral

 = ∫2p

0
8cos t, sin t9 # 8 -sin t, cos t9  dt Substitute for F and r′.
 (+1)1+*  (+11)11+*
 F = 8x, y9      r′1t2

 = ∫2p

0
0 dt = 0.  Simplify.

The tangential component of the radial field is zero everywhere on C, so the circula-
tion is zero (Figure 17.24a).

y

x

C

y

x

C

On the unit circle, F 5 kx, yl
is orthogonal to C and has
zero circulation on C.

On the unit circle, F 5 k2y, xl
is tangent to C and has
positive circulation on C.

(b)

(a)

1

1

1

1

Figure 17.24
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b. The circulation for the rotation field F = 8 -y, x9  is

 ∫
C

F # T ds = ∫2p

0
F # r′1t2 dt  Evaluation of a line integral

 = ∫2p

0
8 -sin t, cos t9 # 8 -sin t, cos t9  dt  Substitute for F and r′.

        (+11)11+*  (+11)11+*
          F = 8 -y, x9      r′1t2

 = ∫2p

0
1sin2 t + cos2 t2 dt  Simplify.

        (+11)11+*
             1

 = 2p.

In this case, at every point of C, the rotation field is in the direction of the tangent  
vector; the result is a positive circulation (Figure 17.24b).

Related Exercise 57	  

EXAMPLE 7 Circulation of a three-dimensional flow Find the circulation of the 
vector field F = 8z, x, -y9  on the tilted ellipse C: r1t2 = 8cos t, sin t, cos t9 , for 
0 … t … 2p (Figure 17.25a).

SOLUTION We first determine that

 r′1t2 = 8x′1t2, y′1t2, z′1t29 = 8 -sin t, cos t, -sin t9 .

F 5 kz, x, 2yl
on C

Projection of F on
unit tangent vectors
of C

C

C

z

x

y

z

x

y

(a) (b)

Figure 17.25

Substituting x = cos t, y = sin t, and z = cos t into F = 8z, x, -y9 , the circulation is

 ∫
C

F # T ds = ∫2p

0
F # r′1t2 dt   Evaluation of a  

line integral

 = ∫2p

0
8cos t, cos t, -sin t9 # 8 -sin t, cos t, -sin t9  dt Substitute for F and r′.

 = ∫2p

0
1-sin t cos t + 12 dt  

 Simplify; 
sin2 t + cos2 t = 1.

 = 2p.  Evaluate integral.

Figure 17.25b shows the projection of the vector field on the unit tangent vectors at 
various points on C. The circulation is the “sum” of the scalar components associated 
with these projections, which, in this case, is positive.

Related Exercise 53	  

Flux of Two-Dimensional Vector Fields Assume F = 8ƒ, g9  is a continuous vector 
field on a region R of ℝ2. We let C be a smooth oriented curve in R that does not intersect it-
self; C may or may not be closed. To compute the flux of the vector field across C, we “add 
up” the components of F orthogonal or normal to C at each point of C. Notice that every 

➤	 In the definition of flux, the non-self-
intersecting property of C means that C 
is a simple curve, as defined formally in 
Section 17.3.
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1108 Chapter 17  •  Vector Calculus

point on C has two unit vectors normal to C. Therefore, we let n denote the unit vector in 
the xy-plane normal to C in a direction to be defined momentarily. Once the direction of n 
is defined, the component of F normal to C is F # n, and the flux is the line integral of F # n 
along C, which we denote #C F # n ds.

The first step is to define the unit normal vector at a point P of C. Because C lies 
in the xy-plane, the unit vector T tangent at P also lies in the xy-plane. Therefore, its  
z-component is 0, and we let T = 8Tx, Ty, 09 . As always, k = 80, 0, 19  is the unit vec-
tor in the z-direction. Because a unit vector n in the xy-plane normal to C is orthogonal to 
both T and k, we determine the direction of n by letting n = T * k. This choice has two 
implications.

• If C is a closed curve oriented counterclockwise (when viewed from above), the unit 
normal vector points outward along the curve (Figure 17.26a). When F also points out-
ward at a point on C, the angle u between F and n satisfies 0 … u 6 p

2  (Figure 17.26b). 
At all such points, F # n 7 0 and there is a positive contribution to the flux across C. 
When F points inward at a point on C, p2 6 u … p and F # n 6 0, which means there is 
a negative contribution to the flux at that point.

• If C is not a closed curve, the unit normal vector points to the right (when viewed from 
above) as the curve is traversed in the positive direction.

➤	 Recall that a * b is orthogonal to both  
a and b.

QUICK CHECK 5 Sketch a closed curve 
on a sheet of paper and draw a unit 
tangent vector T on the curve pointing 
in the counterclockwise direction. 
Explain why n = T * k is an 
outward unit normal vector.	

uu

u F

n
y

x

F points inward on C.
F ? n , 0 gives a negative
contribution to flux.

F points outward on C.
F ? n . 0 gives a positive
contribution to flux.n 5 T 3 k points outward

on curves oriented in the
counterclockwise direction.

n

F

T

k

n

T

C
C

T

z

y

x

(b)(a)

0 #    ,

,    #

2

2
p

p
u

p

Figure 17.26

Calculating the cross product that defines the unit normal vector n, we find that

n = T * k = †
i j k

Tx Ty 0
0 0 1

† = Ty i - Tx j.

Because T =
r′1t2
0 r′1t2 0 , the components of T are

T = 8Tx, Ty, 09 =
8x′1t2, y′1t2, 09

0 r′1t2 0 .

We now have an expression for the unit normal vector:

n = Ty i - Tx j =
y′1t2
0 r′1t2 0  i -

x′1t2
0 r′1t2 0  j =

8y′1t2, -x′1t29
0 r′1t2 0 .

To evaluate the flux integral #C F # n ds, we make a familiar change of variables by 
letting ds = 0 r′1t2 0  dt. The flux of F = 8ƒ, g9  across C is then

∫
C

F # n ds = ∫b

a
F # 8y′1t2, -x′1t29

0 r′1t2 0  0 r′1t2 0  dt = ∫b

a
1ƒ1t2y′1t2 - g1t2x′1t22 dt.

(++1)1++* (11)11*
    n      ds
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 17.2 Line Integrals 1109

This is one useful form of the flux integral. Alternatively, we can note that dx = x′1t2 dt 
and dy = y′1t2 dt and write

∫
C

F # n ds = ∫
C

ƒ dy - g dx.

DEFINITION Flux

Let F = 8ƒ, g9  be a continuous vector field on a region R of ℝ2. Let 
C: r1t2 = 8x1t2, y1t29 , for a … t … b, be a smooth oriented curve in R that does 
not intersect itself. The flux of the vector field F across C is

∫
C

F # n ds = ∫b

a
1ƒ1t2y′1t2 - g1t2x′1t22 dt,

where n = T * k is the unit normal vector and T is the unit tangent vector consis-
tent with the orientation. If C is a closed curve with counterclockwise orientation, n 
is the outward normal vector, and the flux integral gives the outward flux across C.

➤	 Like circulation integrals, flux integrals 
may be computed on piecewise-smooth 
curves by finding the flux on each piece 
and adding the results.

The concepts of circulation and flux can be visualized in terms of headwinds and cross-
winds. Suppose the wind patterns in your neighborhood can be modeled with a vector 
field F (that doesn’t change with time). Now imagine taking a walk around the block in a 
counterclockwise direction along a closed path. At different points along your walk, you 
encounter winds from various directions and with various speeds. The circulation of the 
wind field F along your path is the net amount of headwind (negative contribution) and 
tailwind (positive contribution) that you encounter during your walk. The flux of F across 
your path is the net amount of crosswind (positive from your left and negative from your 
right) encountered on your walk.

EXAMPLE 8 Flux of two-dimensional flows Find the outward flux across the unit 
circle with counterclockwise orientation for the following vector fields.

a. The radial vector field F = 8x, y9
b. The rotation vector field F = 8 -y, x9
SOLUTION

a. The unit circle with counterclockwise orientation has a description r1t2 = 8x1t2, y1t29  
=  8cos t, sin t9 , for 0 … t … 2p. Therefore, x′1t2 = -sin t and y′1t2 = cos t. The 
components of F are ƒ = x1t2 = cos t and g = y1t2 = sin t. It follows that the  
outward flux is

 ∫b

a
1ƒ1t2y′1t2 - g1t2x′1t22 dt = ∫2p

0
1cos t cos t - sin t 1-sin t22 dt()* ()*  ()* (1)1*
 ƒ1t2 y′1t2  g1t2  x′1t2

 = ∫2p

0
1 dt = 2p.  cos2 t + sin2 t = 1

Because the radial field points outward and is aligned with the unit normal vectors on 
C, the outward flux is positive (Figure 17.27a).

b. For the rotation field, ƒ = -y1t2 = -sin t and g = x1t2 = cos t. The outward flux is

 ∫b

a
1ƒ1t2y′1t2 - g1t2x′1t22 dt = ∫2p

0
1-sin t cos t - cos t 1-sin t22 dt(1)1* ()*  ()*  (1)1*

 ƒ1t2  y′1t2   g1t2  x′1t2

 = ∫2p

0
0 dt = 0.
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1110 Chapter 17  •  Vector Calculus

Because the rotation field is orthogonal to n at all points of C, the outward flux across C is 
zero (Figure 17.27b). The results of Examples 6 and 8 are worth remembering: On a unit 
circle centered at the origin, the radial vector field 8x, y9  has outward flux 2p and zero 
circulation. The rotation vector field 8 -y, x9  has zero outward flux and circulation 2p.

Related Exercises 59–60	  

y

x

C

y

x

C

(b)(a)

1

1

1

1

On the unit circle, F 5 kx, yl
is orthogonal to C and has
positive outward flux on C.

On the unit circle, F 5 k2y, xl
is tangent to C and has
zero outward flux on C.

Figure 17.27

Getting Started
1. How does a line integral differ from the single-variable integral #b

a ƒ1x2 dx?

2. If a curve C is given by r1t2 = 8 t, t29 , what is 0 r′1t2 0 ?
3. Given that C is the curve r1t2 = 8cos t, t9 , for p>2 … t … p,  

convert the line integral ∫
C

 
x
y
 ds to an ordinary integral. Do not 

evaluate the integral.

4–7. Find a parametric description r1t2 for the following curves.

4. The segment of the curve x = sin py from 10, 02 to 10, 32
5. The line segment from 11, 2, 32 to 15, 4, 02
6. The quarter-circle from 11, 02 to 10, 12 with its center at the origin

7. The segment of the parabola x = y2 + 1 from 15, 22 to 117, 42
8. Find an expression for the vector field F = 8x - y, y - x9  (in 

terms of t) along the unit circle r1t2 = 8cos t, sin t9 .
9. Suppose C is the curve r1t2 = 8 t, t39 , for 0 … t … 2, and 

F = 8x, 2y9. Evaluate #C F # T ds using the following steps.

a. Convert the line integral #C F # T ds to an ordinary integral.
b. Evaluate the integral in part (a).

10. Suppose C is the circle r1t2 = 8cos t, sin t9 , for 0 … t … 2p, 
and F = 81, x9 . Evaluate #C F # n ds using the following steps.

a. Convert the line integral #C F # n ds to an ordinary integral.
b. Evaluate the integral in part (a).

11. State two other forms for the line integral #C F # T ds given that 
F = 8ƒ, g, h9 .

12–13. Assume ƒ is continuous on a region containing the smooth 
curve C from point A to point B and suppose #C ƒ ds = 10.

12. Explain the meaning of the curve -C and state the value of #-C ƒ ds.

SECTION 17.2 EXERCISES
13. Suppose P is a point on the curve C between A and B, where C1 

is the part of the curve from A to P, and C2 is the part of the curve 
from P to B. Assuming #C1

 ƒ ds = 3, find the value of #C2
 ƒ ds.

14. Consider the graph of an ellipse C, oriented counterclockwise. 
Graphs of the vector fields F1, F2, F3, and F4 along the curve C are 
given (see figures). Along C, F1 and F4 are tangent to C, and F2 
and F3 are normal to C. Determine whether the following integrals 
are positive, negative, or equal to 0.

a. ∫
C

F1
# T ds b. ∫

C

F2
# T ds c. ∫

C

F3
# T ds

d. ∫
C

F4
# T ds e. ∫

C

F1
# n ds f. ∫

C

F2
# n ds

g. ∫
C

F3
# n ds h. ∫

C

F4
# n ds

Vectors of F1 along C

x

y

 Vectors of F2 along C

x

y

Vectors of F3 along C

x

y

 Vectors of F4 along C

x

y
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 17.2 Line Integrals 1111

15. How is the circulation of a vector field on a closed smooth ori-
ented curve calculated?

16. Given a two-dimensional vector field F and a smooth oriented 
curve C, what is the meaning of the flux of F across C?

Practice Exercises
17–34. Scalar line integrals Evaluate the following line integrals 
along the curve C.

17. ∫
C

xy ds; C is the unit circle r1t2 = 8cos t, sin t9 , for 0 … t … 2p.

18. ∫
C

1x2 - 2y22  ds; C is the line segment r1t2 = h t12
 , 

t12
i, for 

0 … t … 4.

19. ∫
C

12x + y2 ds; C is the line segment r1t2 = 83t, 4t9 , for 

0 … t … 2.

20. ∫
C

x ds; C is the curve r1t2 = 8 t3, 4t9 , for 0 … t … 1.

21. ∫
C

xy3 ds; C is the quarter-circle r1t2 = 82 cos t, 2 sin t9 , for 

0 … t … p>2.

22. ∫
C

3x cos y ds; C is the curve r1t2 = 8sin t, t9 , for 0 … t … p>2.

23. ∫
C

1y - z2 ds; C is the helix r1t2 = 83 cos t, 3 sin t, 4t9 , for 

0 … t … 2p.

24. ∫
C

1x - y + 2z2 ds; C is the circle r1t2 = 81, 3 cos t, 3 sin t9 , for 

0 … t … 2p.

25. ∫
C

1x2 + y22  ds; C is the circle of radius 4 centered at 10, 02.

26. ∫
C

1x2 + y22  ds; C is the line segment from 10, 02 to 15, 52.

27. ∫
C

 
x

x2 + y2 ds; C is the line segment from 11, 12 to 110, 102.

28. ∫
C

1xy21>3 ds; C is the curve y = x2, for 0 … x … 1.

29. ∫
C

xy ds; C is a portion of the ellipse 
x2

4
+

y2

16
= 1 in the first  

quadrant, oriented counterclockwise.

30. ∫
C

12x - 3y2 ds; C is the line segment from 1-1, 02 to 10, 12  

followed by the line segment from 10, 12 to 11, 02.

31. ∫
C

1x + y + z2 ds; C is the semicircle r1t2 = 82 cos t, 0, 2 sin t9 , 

for 0 … t … p.

32. ∫
C

 
xy

z
 ds; C is the line segment from 11, 4, 12 to 13, 6, 32.

33. ∫
C

xz ds; C is the line segment from 10, 0, 02 to 13, 2, 62 followed 

by the line segment from 13, 2, 62 to 17, 9, 102.

34. ∫
C

xeyz ds; C is r1t2 = 8 t, 2t, -2t9 , for 0 … t … 2.

35–36. Mass and density A thin wire represented by the smooth curve 
C with a density r (mass per unit length) has a mass M = #C r ds. Find 
the mass of the following wires with the given density.

35. C: 51x, y2: y = 2x2, 0 … x … 36; r1x, y2 = 1 + xy

36. C: r1u2 = 8cos u, sin u9 , for 0 … u … p; r1u2 = 2u>p + 1

37–38. Average values Find the average value of the following func-
tions on the given curves.

37. ƒ1x, y2 = x + 2y on the line segment from 11, 12 to 12, 52
38. ƒ1x, y2 = xey on the unit circle centered at the origin

39–40. Length of curves Use a scalar line integral to find the length of 
the following curves.

39. r1t2 = h20 sin 
t
4

 , 20 cos 
t
4

 , 
t
2
i, for 0 … t … 2

40. r1t2 = 830 sin t, 40 sin t, 50 cos t9 , for 0 … t … 2p

41–46. Line integrals of vector fields in the plane Given the follow-
ing vector fields and oriented curves C, evaluate #C F # T ds.

41. F = 8x, y9  on the parabola r1t2 = 84t, t29 , for 0 … t … 1

42. F = 8 -y, x9  on the semicircle r1t2 = 84 cos t, 4 sin t9 , for 
0 … t … p

43. F = 8y, x9  on the line segment from 11, 12 to 15, 102
44. F = 8 -y, x9  on the parabola y = x2 from 10, 02 to 11, 12

45. F =
8x, y9

1x2 + y223>2 on the curve r1t2 = 8 t2, 3t29 , for 1 … t … 2

46. F =
8x, y9

x2 + y2 on the line segment r1t2 = 8 t, 4t9 , for 1 … t … 10

47–48. Line integrals from graphs Determine whether #C F # dr along 
the paths C1 and C2 shown in the following vector fields is positive or 
negative. Explain your reasoning.

a. ∫
C1

F # dr b. ∫
C2

F # dr

47. y

x4222

24

22

2

4

24

C1

C2

T
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48. 

321212223

3

2

1

21

22

23

y

x

C1

C2

49–56. Work integrals Given the force field F, find the work required 
to move an object on the given oriented curve.

49. F = 8y, -x9  on the line segment from 11, 22 to 10, 02 followed 
by the line segment from 10, 02 to 10, 42

50. F = 8x, y9  on the line segment from 1-1, 02 to 10, 82 followed 
by the line segment from 10, 82 to 12, 82

51. F = 8y, x9  on the parabola y = 2x2 from 10, 02 to 12, 82
52. F = 8y, -x9  on the line segment y = 10 - 2x from 11, 82 to 
13, 42

53. F = 8x, y, z9  on the tilted ellipse r1t2 = 84 cos t, 4 sin t, 
4 cos t9 , for 0 … t … 2p

54. F = 8 -y, x, z9  on the helix r1t2 = h2 cos t, 2 sin t, 
t

2p
i, for 

0 … t … 2p

55. F =
8x, y, z9

1x2 + y2 + z223>2 on the line segment from 11, 1, 12 to 

110, 10, 102

56. F =
8x, y, z9

x2 + y2 + z2 on the line segment from 11, 1, 12 to 18, 4, 22

57–58. Circulation Consider the following vector fields F and closed 
oriented curves C in the plane (see figures).

a. Based on the picture, make a conjecture about whether the circula-
tion of F on C is positive, negative, or zero.

b. Compute the circulation and interpret the result.

57. F = 8y - x, x9 ; C: r1t2 = 82 cos t, 2 sin t9 , for 0 … t … 2p

2

2

y

x

F 5 ky 2 x, xl

C: r(t) 5 k2 cos t, 2 sin tl

T

58. F =
8y, -2x924x2 + y2

 ; C: r1t2 = 82 cos t, 4 sin t9 , for 0 … t … 2p

y

x

F 5       
ky, 22xl

26

C: r(t) 5 k2 cos t, 4  sin t l

6

6

26

4x2 1 y2

59–60. Flux Consider the vector fields and curves in Exercises 57–58.

a. Based on the picture, make a conjecture about whether the outward 
flux of F across C is positive, negative, or zero.

b. Compute the flux for the vector fields and curves.

59. F and C given in Exercise 57

60. F and C given in Exercise 58

61. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. If a curve has a parametric description r1t2 = 8x1t2, y1t2, z1t29,  
where t is the arc length, then 0 r′1t2 0 = 1.

b. The vector field F = 8y, x9  has both zero circulation along 
and zero flux across the unit circle centered at the origin.

c. If at all points of a path a force acts in a direction orthogonal  
to the path, then no work is done in moving an object along  
the path.

d. The flux of a vector field across a curve in ℝ2 can be computed 
using a line integral.

62. Flying into a headwind An airplane flies in the xz-plane, where 
x increases in the eastward direction and z Ú 0 represents vertical 
distance above the ground. A wind blows horizontally out of the 
west, producing a force F = 8150, 09 . On which path between 
the points 1100, 502 and 1-100, 502 is more work done overcom-
ing the wind?

a. The line segment r1t2 = 8x1t2, z1t29 = 8 - t, 509 , for 
-100 … t … 100

b. The arc of the circle r1t2 = 8100 cos t, 50 + 100 sin t9 , for 
0 … t … p

63. Flying into a headwind

a. How does the result of Exercise 62 change if the force due to 
the wind is F = 8141, 509  (approximately the same magni-
tude, but a different direction)?

b. How does the result of Exercise 62 change if the force due to 
the wind is F = 8141, -509  (approximately the same magni-
tude, but a different direction)?

64. Changing orientation Let ƒ1x, y2 = x + 2y and let C be the unit 
circle.

a. Find a parameterization of C with a counterclockwise orienta-
tion and evaluate #C ƒ ds.
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b. Find a parameterization of C with a clockwise orientation and 
evaluate #C ƒ ds.

c. Compare the results of parts (a) and (b).

65. Changing orientation Let ƒ1x, y2 = x and let C be the segment 
of the parabola y = x2 joining O10, 02 and P11, 12.
a. Find a parameterization of C in the direction from O to P. 

Evaluate #C ƒ ds.
b. Find a parameterization of C in the direction from P to O. 

Evaluate #C ƒ ds.
c. Compare the results of parts (a) and (b).

66. Work in a rotation field Consider the rotation field F = 8 -y, x9  
and the three paths shown in the figure. Compute the work done 
on each of the three paths. Does it appear that the line integral #C F # T ds is independent of the path, where C is any path from 
11, 02 to 10, 12?

y

x

(0, 1)

(1, 0)

C1

C2

C3

C3

x2 1 y2 5 1,
for 0 # x # 1,
0 # y # 1 

67. Work in a hyperbolic field Consider the hyperbolic force field 
F = 8y, x9  (the streamlines are hyperbolas) and the three paths 
shown in the figure for Exercise 66. Compute the work done in the 
presence of F on each of the three paths. Does it appear that the 
line integral #C F # T ds is independent of the path, where C is any 
path from 11, 02 to 10, 12?

68–72. Assorted line integrals Evaluate each line integral using the 
given curve C.

68. ∫
C

x2 dx + dy + y dz; C is the curve r1t2 = 8 t, 2t, t29 , for 

0 … t … 3.

69. ∫
C

x3y dx + xz dy + 1x + y22 dz; C is the helix 

r1t2 = 82t, sin t, cos t9 , for 0 … t … 4p.

70. ∫
C

 
x2

y4 ds; C is the segment of the parabola x = 3y2 from 13, 12  

to 127, 32.
71. ∫

C

y2x2 + y2
 dx -

x2x2 + y2
 dy; C is a quarter-circle from 

10, 42 to 14, 02.

72. ∫
C

1x + y2 dx + 1x - y2 dy + x dz; C is the line segment from 

11, 2, 42 to 13, 8, 132.
73. Flux across curves in a vector field Consider the vector field 

F = 8y, x9  shown in the figure.

a. Compute the outward flux across the quarter-circle 
C: r1t2 = 82 cos t, 2 sin t9 , for 0 … t … p>2.

b. Compute the outward flux across the quarter-circle 
C: r1t2 = 82 cos t, 2 sin t9 , for p>2 … t … p.

c. Explain why the flux across the quarter-circle in the third 
quadrant equals the flux computed in part (a).

T

T

d. Explain why the flux across the quarter-circle in the fourth 
quadrant equals the flux computed in part (b).

e. What is the outward flux across the full circle?

y

x

F 5 ky, xl

22

2

222

Explorations and Challenges
74–75. Zero circulation fields

74. For what values of b and c does the vector field F = 8by, cx9  
have zero circulation on the unit circle centered at the origin and 
oriented counterclockwise?

75. Consider the vector field F = 8ax + by, cx + dy9 . Show that F 
has zero circulation on any oriented circle centered at the origin, 
for any a, b, c, and d, provided b = c.

76–77. Zero flux fields

76. For what values of a and d does the vector field F = 8ax, dy9  
have zero flux across the unit circle centered at the origin and ori-
ented counterclockwise?

77. Consider the vector field F = 8ax + by, cx + dy9 . Show that F 
has zero flux across any oriented circle centered at the origin, for 
any a, b, c, and d, provided a = -d.

78. Heat flux in a plate A square plate R = 51x, y2: 
0 … x … 1, 0 … y … 16 has a temperature distribution 
T1x, y2 = 100 - 50x - 25y.

a. Sketch two level curves of the temperature in the plate.
b. Find the gradient of the temperature ∇T1x, y2.
c. Assume the flow of heat is given by the vector field 

F = -∇T1x, y2. Compute F.
d. Find the outward heat flux across the boundary 
51x, y2: x = 1, 0 … y … 16.

e. Find the outward heat flux across the boundary 
51x, y2: 0 … x … 1, y = 16.

79. Inverse force fields Consider the radial field 

F =
r

0 r 0 p =
8x, y, z9
0 r 0 p , where p 7 1 (the inverse square law  

corresponds to p = 3). Let C be the line segment from 11, 1, 12 to  
1a, a, a2, where a 7 1, given by r1t2 = 8 t, t, t9 , for 1 … t … a.

a. Find the work done in moving an object along C with p = 2.
b. If a S ∞  in part (a), is the work finite?
c. Find the work done in moving an object along C with p = 4.
d. If a S ∞  in part (c), is the work finite?
e. Find the work done in moving an object along C for any 

p 7 1.
f. If a S ∞  in part (e), for what values of p is the work finite?
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80. Line integrals with respect to dx and dy Given a vector  
field F = 8ƒ, 09  and curve C with parameterization 
r1t2 = 8x1t2, y1t29 , for a … t … b, we see that the line integral #C ƒ dx + g dy simplifies to #C ƒ dx.

a. Show that #C ƒ dx = #b
a ƒ1t2x′1t2 dt.

b. Use the vector field F = 80, g9  to show that #C g dy = #b
a g1t2y′1t2 dt.

c. Evaluate #C xy dx, where C is the line segment from 10, 02  
to 15, 122.

d. Evaluate #C xy dy, where C is a segment of the parabola 
x = y2 from 11, -12 to 11, 12.

81–82. Looking ahead: Area from line integrals The area of a region 
R in the plane, whose boundary is the curve C, may be computed using 
line integrals with the formula

area of R = ∫
C

x dy = - ∫
C

y dx.

81. Let R be the rectangle with vertices 10, 02, 1a, 02, 10, b2, and 
1a, b2, and let C be the boundary of R oriented counterclockwise. 
Use the formula A = #C x dy to verify that the area of the  
rectangle is ab.

82. Let R = 51r, u2: 0 … r … a, 0 … u … 2p6 be the disk of radius 
a centered at the origin, and let C be the boundary of R oriented 
counterclockwise. Use the formula A = - #C y dx to verify that 
the area of the disk is pa2.

QUICK CHECK ANSWERS

1. The Fundamental Theorem of Calculus says that  
d
dt ∫

t

a
 ƒ1u2 du = ƒ1t2, which applies to differentiating  

the arc length integral. 2. Note that x = t, y = 0, 

and 0 r′1t2 0 = 212 + 02 = 1. Therefore, 

∫
C

 ƒ1x, y2 ds = ∫b

a
ƒ1t, 02 dt. 3. 1300 ft>min 4. p>2

5. T and k are unit vectors, so n is a unit vector. By the  
right-hand rule for cross products, n points outward from  
the curve.	

17.3 Conservative Vector Fields
This is an action-packed section in which several fundamental ideas come together. At the 
heart of the matter are two questions:

• When can a vector field be expressed as the gradient of a potential function? A vector 
field with this property will be defined as a conservative vector field.

• What special properties do conservative vector fields have?

After some preliminary definitions, we present a test to determine whether a vector field 
in ℝ2 or ℝ3 is conservative. This test is followed by a procedure to find a potential func-
tion for a conservative field. We then develop several equivalent properties shared by all 
conservative vector fields.

Types of Curves and Regions
Many of the results in the remainder of this text rely on special properties of regions and 
curves. It’s best to collect these definitions in one place for easy reference.

Closed, simple Not closed, simple

Closed, not simple Not closed, not simple

C

C

C

C

Figure 17.28

DEFINITION Simple and Closed Curves

Suppose a curve C (in ℝ2 or ℝ3) is described parametrically by r1t2, where 
a … t … b. Then C is a simple curve if r1t12 ≠ r1t22 for all t1 and t2, with 
a 6 t1 6 t2 6 b; that is, C never intersects itself between its endpoints. The curve 
C is closed if r1a2 = r1b2; that is, the initial and terminal points of C are the same 
(Figure 17.28).

In all that follows, we generally assume that R in ℝ2 (or D in ℝ3) is an open region. 
Open regions are further classified according to whether they are connected and whether 
they are simply connected.

➤	 Recall that all points of an open set are 
interior points. An open set does not 
contain its boundary points.

➤	 Roughly speaking, connected means 
that R is all in one piece and simply 
connected in ℝ2 means that R has 
no holes. ℝ2 and ℝ3 are themselves 
connected and simply connected.
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Test for Conservative Vector Fields
We begin with the central definition of this section.

Connected,
simply connected

Connected,
not simply connected

Not connected,
simply connected

Not connected,
not simply connected

This curve cannot be contracted
to a point and remain in R.

R

R R

R

Figure 17.29

DEFINITION Connected and Simply Connected Regions

An open region R in ℝ2 (or D in ℝ3) is connected if it is possible to connect any 
two points of R by a continuous curve lying in R. An open region R is simply 
connected if every closed simple curve in R can be deformed and contracted to a 
point in R (Figure 17.29).

QUICK CHECK 1 Is a figure-8 curve 
simple? Closed? Is a torus connected? 
Simply connected?	

➤	 The term conservative refers to 
conservation of energy. See Exercise 66 
for an example of conservation of energy 
in a conservative force field.

➤	 Depending on the context and the 
interpretation of the vector field, the 
potential function w may be defined such 
that F = -∇w (with a negative sign).

DEFINITION Conservative Vector Field

A vector field F is said to be conservative on a region (in ℝ2 or ℝ3) if there exists a 
scalar function w such that F = ∇w on that region.

Suppose the components of F = 8ƒ, g, h9  have continuous first partial derivatives 
on a region D in ℝ3. Also assume F is conservative, which means by definition that there 
is a potential function w such that F = ∇w. Matching the components of F and ∇w, we 
see that ƒ = wx, g = wy, and h = wz. Recall from Theorem 15.4 that if a function has 
continuous second partial derivatives, the order of differentiation in the second partial de-
rivatives does not matter. Under these conditions on w, we conclude the following:

• wxy = wyx, which implies that ƒy = gx,

• wxz = wzx, which implies that ƒz = hx, and

• wyz = wzy, which implies that gz = hy.

These observations constitute half of the proof of the following theorem. The remainder of 
the proof is given in Section 17.4.

THEOREM 17.3 Test for Conservative Vector Fields
Let F = 8ƒ, g, h9  be a vector field defined on a connected and simply connected 
region D of ℝ3, where ƒ, g, and h have continuous first partial derivatives on D. 
Then F is a conservative vector field on D (there is a potential function w such that 
F = ∇w) if and only if

0ƒ
0y

=
0g
0x

 ,   
0ƒ
0z

=
0h
0x

 ,  and 
0g
0z

=
0h
0y

 .

For vector fields in ℝ2, we have the single condition 
0ƒ
0y

=
0g
0x

.

EXAMPLE 1 Testing for conservative fields Determine whether the following vector 
fields are conservative on ℝ2 and ℝ3, respectively.

a. F = 8ex cos y, -ex sin y9     b. F = 82xy - z2, x2 + 2z, 2y - 2xz9
SOLUTION

a. Letting ƒ1x, y2 = ex cos y and g1x, y2 = -ex sin y, we see that

0ƒ
0y

= -ex sin y =
0g
0x

 .

The conditions of Theorem 17.3 are met and F is conservative.

b. Letting ƒ1x, y, z2 = 2xy - z2, g1x, y, z2 = x2 + 2z, and h1x, y, z2 = 2y - 2xz,  
we have

0ƒ
0y

= 2x =
0g
0x

,   
0ƒ
0z

= -2z =
0h
0x

,   
0g
0z

= 2 =
0h
0y

.

By Theorem 17.3, F is conservative. Related Exercises 13–14	  
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Finding Potential Functions
Like antiderivatives, potential functions are determined up to an arbitrary additive con-
stant. Unless an additive constant in a potential function has some physical meaning, it is 
usually omitted. Given a conservative vector field, there are several methods for finding a 
potential function. One method is shown in the following example. Another approach is 
illustrated in Exercise 71.

QUICK CHECK 2 Explain why a potential 
function for a conservative vector 
field is determined up to an additive 
constant.	

EXAMPLE 2 Finding potential functions Find a potential function for the conserva-
tive vector fields in Example 1.

a. F = 8ex cos y, -ex sin y9
b. F = 82xy - z2, x2 + 2z, 2y - 2xz9
SOLUTION

a. A potential function w for F = 8ƒ, g9  has the property that F = ∇w and satisfies the 
conditions

wx = ƒ1x, y2 = ex cos y and wy = g1x, y2 = -ex sin y.

The first equation is integrated with respect to x (holding y fixed) to obtain

∫wx dx = ∫ex cos y dx,

which implies that
w1x, y2 = ex cos y + c1y2.

In this case, the “constant of integration” c1y2 is an arbitrary function of y. You 
can check the preceding calculation by noting that

0w
0x

=
0
0x

 1ex cos y + c1y22 = ex cos y = ƒ1x, y2.

To find the arbitrary function c1y2, we differentiate w1x, y2 = ex cos y + c1y2 with 
respect to y and equate the result to g (recall that wy = g):

wy = -ex sin y + c′1y2 and g = -ex sin y.

We conclude that c′1y2 = 0, which implies that c1y2 is any real number, which we 
typically take to be zero. So a potential function is w1x, y2 = ex cos y, a result that 
may be checked by differentiation.

b. The method of part (a) is more elaborate with three variables. A potential function w 
must now satisfy these conditions:

wx = ƒ = 2xy - z2,  wy = g = x2 + 2z, and wz = h = 2y - 2xz.

Integrating the first condition with respect to x (holding y and z fixed), we have

w = ∫12xy - z22 dx = x2y - xz2 + c1y, z2.

Because the integration is with respect to x, the arbitrary “constant” is a function of y 
and z. To find c1y, z2, we differentiate w with respect to y, which results in

wy = x2 + cy1y, z2.
Equating wy and g = x2 + 2z, we see that cy1y, z2 = 2z. To obtain c1y, z2, 
we integrate cy1y, z2 = 2z with respect to y (holding z fixed), which results in 
c1y, z2 = 2yz + d1z2. The “constant” of integration is now a function of z, which we 
call d1z2. At this point, a potential function looks like

w1x, y, z2 = x2y - xz2 + 2yz + d1z2.
To determine d1z2, we differentiate w with respect to z:

wz = -2xz + 2y + d′1z2.

➤	 This procedure may begin with either of 
the two conditions, wx = ƒ or wy = g.

➤	 This procedure may begin with any of the 
three conditions.
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Equating wz and h = 2y - 2xz, we see that d′1z2 = 0, or d1z2 is a real number, which 
we generally take to be zero. Putting it all together, a potential function is

w = x2y - xz2 + 2yz.
Related Exercises 19, 24	  

QUICK CHECK 3 Verify by differentiation 
that the potential functions found in 
Example 2 produce the corresponding 
vector fields.	

PROCEDURE Finding Potential Functions in ℝ3

Suppose F = 8ƒ, g, h9  is a conservative vector field. To find w such that F = ∇w, 
use the following steps:

1. Integrate wx = ƒ with respect to x to obtain w, which includes an arbitrary 
function c1y, z2.

2. Compute wy and equate it to g to obtain an expression for cy1y, z2.
3. Integrate cy1y, z2 with respect to y to obtain c1y, z2, including an arbitrary 

function d1z2.
4. Compute wz and equate it to h to get d1z2.
A similar procedure beginning with wy = g or wz = h may be easier in some cases.

Fundamental Theorem for Line Integrals and Path Independence
Knowing how to find potential functions, we now investigate their properties. The first 
property is one of several beautiful parallels to the Fundamental Theorem of Calculus.

THEOREM 17.4 Fundamental Theorem for Line Integrals
Let R be a region in ℝ2 or ℝ3 and let w be a differentiable potential function defined 
on R. If F = ∇w (which means that F is conservative), then

∫
C

 F # T ds = ∫
C

F # dr = w1B2 - w1A2, 

for all points A and B in R and all piecewise-smooth oriented curves C in R from A 
to B.

➤	 Compare the two versions of the 
Fundamental Theorem.

 ∫b

a
 F  ′1x2 dx = F  1b2 - F  1a2

 ∫
C

∇w # dr = w1B2 - w1A2

Proof: Let the curve C in ℝ3 be given by r1t2 = 8x1t2, y1t2, z1t29 , for a … t … b, where 
r1a2 and r1b2 are the position vectors for the points A and B, respectively. By the Chain 
Rule, the rate of change of w with respect to t along C is

 
dw

dt
=

0w
0x

 
dx
dt

+
0w
0y

 
dy

dt
+

0w
0z

 
dz
dt

 Chain Rule

 = h 0w
0x

, 
0w
0y

, 
0w
0z
i # h dx

dt
, 

dy

dt
, 

dz
dt
i Identify the dot product.

 = ∇w # r′1t2  r = 8x, y, z9
 = F # r′1t2.  F = ∇w

Evaluating the line integral and using the Fundamental Theorem of Calculus, it follows 
that

 ∫
C

F # dr = ∫b

a
F # r′1t2 dt

 = ∫b

a
 
dw

dt
 dt  F # r′1t2 = dw

dt

 = w1B2 - w1A2.  Fundamental Theorem of Calculus; t = b corresponds  
to B and t = a corresponds to A. 
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1118 Chapter 17  •  Vector Calculus

Here is the meaning of Theorem 17.4: If F is a conservative vector field, then the 
value of a line integral of F depends only on the endpoints of the path. For this reason, we 
say the line integral is independent of path, which means that to evaluate line integrals of 
conservative vector fields, we do not need a parameterization of the path.

If we think of w as an antiderivative of the vector field F, then the parallel to the 
Fundamental Theorem of Calculus is clear. The line integral of F is the difference of the 
values of w evaluated at the endpoints. Theorem 17.4 motivates the following definition.

DEFINITION Independence of Path

Let F be a continuous vector field with domain R. If ∫
C1

F # dr = ∫
C2

F # dr for all  

piecewise-smooth curves C1 and C2 in R with the same initial and terminal points, 
then the line integral is independent of path.

An important question concerns the converse of Theorem 17.4. With additional conditions 
on the domain R, the converse turns out to be true.

THEOREM 17.5
Let F be a continuous vector field on an open connected region R in ℝ2. If  

∫
C

F # dr is independent of path, then F is conservative; that is, there exists a  

potential function w such that F = ∇w on R.

➤	 We state and prove Theorem 17.5 in two 
variables. It is easily extended to three or 
more variables.

Proof: Let P1a, b2 and Q1x, y2 be interior points of R and define w1x, y2 = ∫
C

F # dr, 

where C is a piecewise-smooth path from P to Q, and F = 8ƒ,  g9 . Because the integral  
defining w is independent of path, any piecewise-smooth path in R from P to Q can be 
used. The goal is to compute the directional derivative Duw1x,  y2, where u = 8u1,  u29  
is an arbitrary unit vector, and then show that F = ∇w. We let S1x + tu1,  y + tu22 be a 
point in R near Q and then apply the definition of the directional derivative at Q:

 Duw1x, y2 = lim
tS0

 
w1x + tu1, y + tu22 - w1x, y2

t

 = lim
tS0

 
1
t
 a ∫S

P
F # dr - ∫Q

P
 F # drb

 = lim
tS0

 
1
t ∫

S

Q
 F # dr.

Using path independence, we choose the path from Q to S to be a line parameterized by 
r1s2 = 8x + su1, y + su29 , for 0 … s … t. Noting that r′1s2 = u, the directional de-
rivative is

 Duw1x, y2 = lim
tS0

 
1
t ∫

S

Q
F # dr

  = lim
tS0

 
1
t ∫

t

0
 F1x + su1, y + su22 # r′1s2 ds  Change line integral to ordinary  

integral.

    = lim
tS0

 
∫ t

0
F1x + su1, y + su22 # r′1s2 ds - ∫0

0
F1x + su1, y + su22 # r′1s2 ds

t
 Second integral equals 0.

  =
d
dt ∫

t

0
 F1x + su1, y + su22 # u ds `

t=0
 

 Identify difference quotient; 
r′1s2 = u

  = F1x, y2 # u.  Fundamental Theorem of Calculus
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Choosing u = i = 81, 09 , we see that Diw1x, y2 = wx1x, y2 = F1x, y2 # i = ƒ1x, y2. Simi-
larly, choosing u = j = 80, 19 , we have Djw1x, y2 = wy1x, y2 = F1x, y2 # j = g1x, y2. 
Therefore, F = 8ƒ, g9 = 8wx, wy9 = ∇w, and F is conservative. 

EXAMPLE 3 Verifying path independence Consider the potential function 
w1x, y2 = 1x2 - y22>2 and its gradient field F = 8x, -y9 .
• Let C1 be the quarter-circle r1t2 = 8cos t, sin t9 , for 0 … t … p>2, from A11, 02 to 

B10, 12.
• Let C2 be the line r1t2 = 81 - t, t9 , for 0 … t … 1, also from A to B.

Evaluate the line integrals of F on C1 and C2, and show that both are equal to 
w1B2 - w1A2.
SOLUTION On C1, we have r′1t2 = 8 -sin t, cos t9  and F = 8x, -y9 = 8cos t, -sin t9 . 
The line integral on C1 is

 ∫
C1

F # dr = ∫b

a
F # r′1t2 dt

 = ∫p>2
0 
8cos t, -sin t9 # 8 -sin t, cos t9  dt  Substitute for F and r′.
 (++)++*  (++1)1++*
    F       r′1t2 dt

 = ∫p>2
0 
1-sin 2t2 dt  2 sin t cos t = sin 2t

 = a 1
2

 cos 2tb ` p>2
0

= -1.  Evaluate the integral.

On C2, we have r′1t2 = 8 -1, 19  and F = 8x, -y9 = 81 - t, - t9 ; therefore,

 ∫
C2

F # dr = ∫1

0
81 - t, - t9 # 8 -1, 19  dt  Substitute for F and dr.(++)++*  (111)111*
   F      dr

 = ∫1

0
1-12 dt = -1.  Simplify.

The two line integrals have the same value, which is

w1B2 - w1A2 = w10, 12 - w11, 02 = -  
1
2

-
1
2
= -1.

Related Exercises 31–32	  

EXAMPLE 4 Line integral of a conservative vector field Evaluate

∫
C

112xy - z22 i + 1x2 + 2z2 j + 12y - 2xz2 k2 # dr,

where C is a simple curve from A1-3, -2, -12 to B11, 2, 32.
SOLUTION This vector field is conservative and has a potential function 
w = x2y - xz2 + 2yz (Example 2). By the Fundamental Theorem for line integrals,

 ∫
C

112xy - z22 i + 1x2 + 2z2 j + 12y - 2xz2 k2 # dr

  = ∫
C

∇ 1x2y - xz2 + 2yz2 # dr(+++)+++*
     w

  = w11, 2, 32 - w1-3, -2, -12 = 16.

Related Exercise 34	  

QUICK CHECK 4 Explain why the 
vector field ∇1xy + xz - yz2 is 
conservative.	
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Line Integrals on Closed Curves
It is a short step to another characterization of conservative vector fields. Suppose C is a 
simple closed piecewise-smooth oriented curve in ℝ2 or ℝ3. To distinguish line integrals 
on closed curves, we adopt the notation RC F # dr, where the small circle on the integral 
sign indicates that C is a closed curve. Let A be any point on C and think of A as both the 
initial point and the final point of C. Assuming F is a conservative vector field on an open 
connected region R containing C, it follows by Theorem 17.4 that

C
C

F # dr = w1A2 - w1A2 = 0.

Because A is an arbitrary point on C, we see that the line integral of a conservative vector 
field on a closed curve is zero.

An argument can be made in the opposite direction as well: Suppose RC F # dr = 0 
on all simple closed piecewise-smooth oriented curves in a region R, and let A and B be 
distinct points in R. Let C1 denote any curve from A to B, let C2 be any curve from B to A 
(distinct from and not intersecting C1), and let C be the closed curve consisting of C1 fol-
lowed by C2 (Figure 17.30). Then

0 = C
C

F # dr = ∫
C1

F # dr + ∫
C2

F # dr.

Therefore, #C1
 F # dr = - #C2

F # dr = #-C2
F # dr, where -C2 is the curve C2 traversed in 

the opposite direction (from A to B). We see that the line integral has the same value on 
two arbitrary paths between A and B. It follows that the value of the line integral is inde-
pendent of path, and by Theorem 17.5, F is conservative. This argument is a proof of the 
following theorem.

➤	 Notice the analogy to #a
a  ƒ1x2 dx = 0, 

which is true of all integrable functions.

R  F ? dr 5 E   F ? dr 1 E  F ? dr
C2C1C

C 5 C1 < C2

C1

C2

A

B

C

Figure 17.30

THEOREM 17.6 Line Integrals on Closed Curves
Let R be an open connected region in ℝ2 or ℝ3. Then F is a conservative vector 
field on R if and only if RC F # dr = 0 on all simple closed piecewise-smooth  
oriented curves C in R.

EXAMPLE 5 A closed curve line integral in ℝ3 Evaluate #C∇1-xy + xz + yz2 # dr 
on the curve C: r1t2 = 8sin t, cos t, sin t9 , for 0 … t … 2p, without using Theorem 17.4 
or Theorem 17.6.

SOLUTION The components of the vector field are

F = ∇1-xy + xz + yz2 = 8 -y + z, -x + z, x + y9 .
Note that r′1t2 = 8cos t, -sin t, cos t9  and dr = r′1t2 dt. Substituting values of x, y, 
and z, the value of the line integral is

 C
C

F # dr = C
C

8 -y + z, -x + z, x + y9 # dr Substitute for F.

 = ∫2p

0
 sin 2t dt  Substitute for x, y, z, dr.

 = -  
1
2

 cos 2t `
2p

0
= 0.  Evaluate integral.

The line integral of this conservative vector field on the closed curve C is zero. In fact, by 
Theorem 17.6, the line integral vanishes on any simple closed piecewise-smooth oriented 
curve.

Related Exercise 50	  
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Summary of the Properties of Conservative Vector Fields
We have established three equivalent properties of conservative vector fields F defined on 
an open connected region R in ℝ2 (or D in ℝ3).

• There exists a potential function w such that F = ∇w (definition).

• #C F # dr = w1B2 - w1A2 for all points A and B in R and all piecewise-smooth ori-
ented curves C in R from A to B (path independence).

• RC F # dr = 0 on all simple piecewise-smooth closed oriented curves C in R.

The connections between these properties were established by Theorems 17.4, 17.5, and 
17.6 in the following way:

 Theorems 17.4 and 17.5 Theorem 17.6
 # #

Path independence 3 F is conservative 1∇w = F2 3 C
C

 F # dr = 0.

Getting Started
1. Explain with pictures what is meant by a simple curve and a 

closed curve.

2. Explain with pictures what is meant by a connected region and a 
simply connected region.

3. How do you determine whether a vector field in ℝ2 is conservative 
(has a potential function w such that F = ∇w)?

4. How do you determine whether a vector field in ℝ3 is conservative?

5. Briefly describe how to find a potential function w for a conserva-
tive vector field F = 8ƒ, g9 .

6. If F is a conservative vector field on a region R, how do you evalu-
ate #C F # dr, where C is a path between two points A and B in R?

7. If F is a conservative vector field on a region R, what is the value 
of RC F # dr, where C is a simple closed piecewise-smooth ori-
ented curve in R?

8. Give three equivalent properties of conservative vector fields.

Practice Exercises
9–16. Testing for conservative vector fields Determine whether the 
following vector fields are conservative (in ℝ2 or ℝ3).

9. F = 81, 19  10. F = 8x, y9
11. F = 8 -y, x9  12. F = 8 -y, x + y9
13. F = 8e-x cos y, e-x sin y9  14. F = 82x3 + xy2, 2y3 - x2y9
15. F = 8yz cos xz, sin xz, xy cos xz9
16. F = 8yex - z, ex - z, yex - z9
17–30. Finding potential functions Determine whether the following 
vector fields are conservative on the specified region. If so, determine a 
potential function. Let R* and D* be open regions of ℝ2 and ℝ3, respec-
tively, that do not include the origin.

17. F = 8x, y9  on ℝ2 18. F = 8 -y, -x9  on ℝ2

19. F = h x3 - xy, 
x2

2
+ yi on ℝ2

20. F =
8x, y9

x2 + y2 on R* 21. F =
8x, y92x2 + y2

 on R*

SECTION 17.3 EXERCISES

22. F = 8y, x, x - y9  on ℝ3 23. F = 8z, 1, x9  on ℝ3

24. F = 8yz, xz, xy9  on ℝ3 25. F = 8ez, ez, ez 1x - y29  on ℝ3

26. F = 81, -z, y9  on ℝ3

27. F = 8y + z, x + z, x + y9  on ℝ3

28. F =
8x, y, z9

x2 + y2 + z2 on D* 29. F =
8x, y, z92x2 + y2 + z2

 on D*

30. F = 8x3, 2y, -z39  on ℝ3

31–34. Evaluating line integrals Use the given potential function w 
of the gradient field F and the curve C to evaluate the line integral #C F # dr in two ways.

a. Use a parametric description of C and evaluate the integral directly.
b. Use the Fundamental Theorem for line integrals.

31. w1x, y2 = xy; C: r1t2 = 8cos t, sin t9 , for 0 … t … p

32. w1x, y2 = x + 3y; C: r1t2 = 82 - t, t9 , for 0 … t … 2

33. w1x, y, z2 = 1x2 + y2 + z22>2; C: r1t2 = 8cos t, sin t, t>p9 , for 
0 … t … 2p

34. w1x, y, z2 = xy + xz + yz; C: r1t2 = 8 t, 2t, 3t9 , for 0 … t … 4

35–38. Applying the Fundamental Theorem of Line Integrals 
Suppose the vector field F is continuous on ℝ2, F = 8ƒ, g9 = ∇w, 
w11, 22 = 7, w13, 62 = 10, and w16, 42 = 20. Evaluate the following 
integrals for the given curve C, if possible.

35. ∫
C

F # dr; C: r1t2 = 82t - 1, t2 + t9 , for 1 … t … 2

36. ∫
C

F # T ds; C is a smooth curve from 11, 22 to 16, 42.

37. ∫
C

ƒ dx + g dy; C is the path consisting of the line segment from  

A16, 42 to B11, 22 followed by the line segment from B11, 22 to  
C13, 62.

38. C
C

 
F # dr; C is a circle, oriented clockwise, starting and ending at 

the point A16, 42.
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39–44. Using the Fundamental Theorem for line integrals Verify 
that the Fundamental Theorem for line integrals can be used to evalu-
ate the given integral, and then evaluate the integral.

39. ∫
C

82x, 2y9 # dr, where C is a smooth curve from 10, 12 to 13, 42

40. ∫
C

81, 1, 19 # dr, where C is a smooth curve from 11, -1, 22 to 

13, 0, 72

41. ∫
C

∇1e-x cos y2 # dr, where C is the line segment from 10, 02 to 

1ln 2, 2p2

42. ∫
C

∇11 + x2yz2 # dr, where C is the helix r1t2 = 8cos 2t, sin 2t, t9, 

for 0 … t … 4p

43. ∫
C

cos12y - z2 dx - 2x sin12y - z2 dy + x sin12y - z2 dz, 

where C is the curve r1t2 = 8 t2, t, t9 , for 0 … t … p

44. ∫
C

ex y dx + ex dy, where C is the parabola r1t2 = 8 t + 1, t29 , for 

-1 … t … 3

45–50. Line integrals of vector fields on closed curves Evaluate 
RC F # dr for the following vector fields and closed oriented curves C by 
parameterizing C. If the integral is not zero, give an explanation.

45. F = 8x, y9 ; C is the circle of radius 4 centered at the origin ori-
ented counterclockwise.

46. F = 8y, x9 ; C is the circle of radius 8 centered at the origin ori-
ented counterclockwise.

47. F = 8x, y9 ; C is the triangle with vertices 10, {12 and 11, 02 
oriented counterclockwise.

48. F = 8y, -x9 ; C is the circle of radius 3 centered at the origin  
oriented counterclockwise.

49. F = 8x, y, z9 ; C: r1t2 = 8cos t, sin t, 29 , for 0 … t … 2p

50. F = 8y - z, z - x, x - y9 ; C: r1t2 = 8cos t, sin t, cos t9 , for 
0 … t … 2p

51–52. Evaluating line integrals using level curves Suppose the  
vector field F, whose potential function is w, is continuous on ℝ2. Use 
the curves C1 and C2 and level curves of w (see figure) to evaluate the 
following line integrals.

y

x0

2

1

3

C1

C2

1 32 4 5 6

0
2

5
7

9

Level curves of w

51. ∫
C1

 F # dr 52. ∫
C2

 F # dr

53–56. Line integrals Evaluate the following line integrals using a 
method of your choice.

53. C
C

 
F # dr, where F = 82xy + z2, x2, 2xz9  and C is the circle 

r1t2 = 83 cos t, 4 cos t, 5 sin t9 , for 0 … t … 2p

54. C
C

 e-x 1cos y dx + sin y dy2, where C is the square with vertices 

1{1, {12 oriented counterclockwise

55. ∫
C

∇1sin xy2 # dr, where C is the line segment from 10, 02 to 

12, p>42

56. ∫
C

x3 dx + y3 dy, where C is the curve r1t2 = 81 + sin t, cos2 t9 , 

for 0 … t … p>2
57. Explain why or why not Determine whether the following state-

ments are true and give an explanation or counterexample.

a. If F = 8 -y, x9  and C is the circle of radius 4 centered at 
11, 02 oriented counterclockwise, then RC F # dr = 0.

b. If F = 8x, -y9  and C is the circle of radius 4 centered at 
11, 02 oriented counterclockwise, then RC F # dr = 0.

c. A constant vector field is conservative on ℝ2.
d. The vector field F = 8ƒ1x2, g1y29  is conservative on ℝ2  

(assume ƒ and g are defined for all real numbers).
e. Gradient fields are conservative.

58. Closed-curve integrals Evaluate RC ds, RC dx, and RC dy, where C 
is the unit circle oriented counterclockwise.

59–62. Work in force fields Find the work required to move an object 
in the following force fields along a line segment between the given 
points. Check to see whether the force is conservative.

59. F = 8x, 29  from A10, 02 to B12, 42
60. F = 8x, y9  from A11, 12 to B13, -62
61. F = 8x, y, z9  from A11, 2, 12 to B12, 4, 62
62. F = ex + y81, 1, z9  from A10, 0, 02 to B1-1, 2, -42
63. Suppose C is a circle centered at the origin in a vector field F  

(see figure).

a. If C is oriented counterclockwise, is RC F # dr positive,  
negative, or zero?

b. If C is oriented clockwise, is RC F # dr positive, negative,  
or zero?

c. Is F conservative in ℝ2? Explain.

y

x

C

O
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64. A vector field that is continuous in ℝ2 is given (see figure). Is it 
conservative?

y

xO

65. Work by a constant force Evaluate a line integral to show that 
the work done in moving an object from point A to point B in the 
presence of a constant force F = 8a, b, c9  is F # ABr .

Explorations and Challenges
66. Conservation of energy Suppose an object with mass m moves in 

a region R in a conservative force field given by F = -∇w, where 
w is a potential function in a region R. The motion of the object is 
governed by Newton’s Second Law of Motion, F = ma, where 
a is the acceleration. Suppose the object moves from point A to 
point B in R.

a. Show that the equation of motion is m 
dv
dt

= -∇w.

b. Show that 
dv
dt
# v =

1
2

 
d
dt

 1v # v2.
c. Take the dot product of both sides of the equation in part (a) 

with v1t2 = r′1t2 and integrate along a curve between A and 
B. Use part (b) and the fact that F is conservative to show that 

the total energy (kinetic plus potential) 
1
2

 m 0 v 0 2 + w is the  

same at A and B. Conclude that because A and B are arbitrary, 
energy is conserved in R.

67. Gravitational potential The gravitational force between two 
point masses M and m is

F = GMm 
r

0 r 0 3 = GMm 
8x, y, z9

1x2 + y2 + z223>2 ,

where G is the gravitational constant.

a. Verify that this force field is conservative on any region ex-
cluding the origin.

b. Find a potential function w for this force field such that 
F = -∇w.

c. Suppose the object with mass m is moved from a point A to a 
point B, where A is a distance r1 from M, and B is a distance 
r2 from M. Show that the work done in moving the object is 

GMma 1
r2

-
1
r1
b .

d. Does the work depend on the path between A and B?  
Explain.

68. Radial fields in ℝ3 are conservative Prove that the radial field 

F =
r

0 r 0 p, where r = 8x, y, z9  and p is a real number, is conser-

vative on any region not containing the origin. For what values of  
p is F conservative on a region that contains the origin?

69. Rotation fields are usually not conservative

a. Prove that the rotation field F =
8 -y, x9
0 r 0 p , where r = 8x, y9 , 

is not conservative for p ≠ 2.
b. For p = 2, show that F is conservative on any region not  

containing the origin.
c. Find a potential function for F when p = 2.

70. Linear and quadratic vector fields

a. For what values of a, b, c, and d is the field 
F = 8ax + by, cx + dy9  conservative?

b. For what values of a, b, and c is the field 
F = 8ax2 - by2, cxy9  conservative?

71. Alternative construction of potential functions in ℝ2 Assume 
 the vector field F is conservative on ℝ2, so that the line integral  #C F # dr is independent of path. Use the following procedure  
to construct a potential function w for the vector field 
F = 8ƒ, g9 = 82x - y, -x + 2y9 .
a. Let A be 10, 02 and let B be an arbitrary point 1x, y2. Define 

w1x, y2 to be the work required to move an object from A to B, 
where w1A2 = 0. Let C1 be the path from A to 1x, 02 to B, and 
let C2 be the path from A to 10, y2 to B. Draw a picture.

b. Evaluate #C1
 F # dr = #C1

 ƒ dx + g dy and conclude that 

w1x, y2 = x2 - xy + y2.
c. Verify that the same potential function is obtained by evaluat-

ing the line integral over C2.

72–75. Alternative construction of potential functions Use the  
procedure in Exercise 71 to construct potential functions for the  
following fields.

72. F = 8 -y, -x9
73. F = 8x, y9

74. F =
r

0 r 0 , where r = 8x, y9

75. F = 82x3 + xy2, 2y3 + x2y9

QUICK CHECK ANSWERS

1. A figure-8 is closed but not simple; a torus is con-
nected but not simply connected. 2. The vector field is 
obtained by differentiating the potential function. So addi-
tive constants in the potential give the same vector field: 
∇1w + C2 = ∇w, where C is a constant. 3. Show that 
∇1ex cos y2 = 8ex cos y, -ex sin y9 , which is the original  
vector field. A similar calculation may be done for part (b). 
4. The vector field ∇1xy + xz - yz2 is the gradient of 
xy + xz - yz, so the vector field is conservative.	
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17.4 Green’s Theorem
The preceding section gave a version of the Fundamental Theorem of Calculus that ap-
plies to line integrals. In this and the remaining sections of the text, you will see additional 
extensions of the Fundamental Theorem that apply to regions in ℝ2 and ℝ3. All these 
fundamental theorems share a common feature. Part 2 of the Fundamental Theorem of 
Calculus (Chapter 5) says

∫b

a
 
dƒ

dx
 dx = ƒ1b2 - ƒ1a2,

which relates the integral of 
dƒ

dx
 on an interval 3a, b4 to the values of ƒ on the boundary of 

3a, b4. The Fundamental Theorem for line integrals says

∫
C

∇w # dr = w1B2 - w1A2, 

which relates the integral of ∇w on a piecewise-smooth oriented curve C to the boundary 
values of w. (The boundary consists of the two endpoints A and B.)

The subject of this section is Green’s Theorem, which is another step in this progres-
sion. It relates the double integral of derivatives of a function over a region in ℝ2 to func-
tion values on the boundary of that region.

Circulation Form of Green’s Theorem
Throughout this section, unless otherwise stated, we assume curves in the plane are simple 
closed piecewise-smooth oriented curves. By a result called the Jordan Curve Theorem, 
such curves have a well-defined interior such that when the curve is traversed in the coun-
terclockwise direction (viewed from above), the interior is on the left. With this orienta-
tion, there is a unique outward unit normal vector that points to the right (at points where 
the curve is smooth). We also assume curves in the plane lie in regions that are both con-
nected and simply connected.

Suppose the vector field F is defined on a region R whose boundary is the closed curve 
C. As we have seen, the circulation RC F # dr (Section 17.2) measures the net component 
of F in the direction tangent to C. It is easiest to visualize the circulation when F represents 
the velocity of a fluid moving in two dimensions. For example, let C be the unit circle with 
a counterclockwise orientation. The vector field F = 8 -y, x9  has a positive circulation of 
2p on C (Section 17.2) because the vector field is everywhere tangent to C (Figure 17.31).  
A nonzero circulation on a closed curve says that the vector field must have some property 
inside the curve that produces the circulation. You can think of this property as a net rotation.

To visualize the rotation of a vector field, imagine a small paddle wheel, fixed at a 
point in the vector field, with its axis perpendicular to the xy@plane (Figure 17.31). The 
strength of the rotation at that point is seen in the speed at which the paddle wheel spins, 
and the direction of the rotation is the direction in which the paddle wheel spins. At a dif-
ferent point in the vector field, the paddle wheel will, in general, have a different speed 
and direction of rotation.

The first form of Green’s Theorem relates the circulation on C to the double integral, 
over the region R, of a quantity that measures rotation at each point of R.

C

Paddle wheel at one
point of vector field.

F 5 k2y, xl has positive
(counterclockwise)
circulation on C.

x y

Figure 17.31

THEOREM 17.7 Green’s Theorem—Circulation Form
Let C be a simple closed piecewise-smooth curve, oriented counterclockwise, 
that encloses a connected and simply connected region R in the plane. Assume 
F = 8ƒ, g9 , where ƒ and g have continuous first partial derivatives in R. Then

C
C

F # dr = C
C

ƒ dx + g dy = 6
R 

a 0g
0x

-
0ƒ
0y
b  dA.

(1)1*  (++)++*
circulation   circulation

➤	 The circulation form of Green’s Theorem 
is also called the tangential, or curl, 
form.
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The proof of a special case of the theorem is given at the end of this section. Notice that 
the two line integrals on the left side of Green’s Theorem give the circulation of the vec-

tor field on C. The double integral on the right side involves the quantity 
0g
0x

-
0ƒ
0y

 , which 

describes the rotation of the vector field within C that produces the circulation on C. This  
quantity is called the two-dimensional curl of the vector field.

Figure 17.32 illustrates how the curl measures the rotation of a particular vector field 
at a point P. If the horizontal component of the field decreases in the y@direction at P 
1ƒy 6 02 and the vertical component increases in the x@direction at P 1gx 7 02, then 
0g
0x

-
0ƒ
0y

7 0, and the field has a counterclockwise rotation at P. The double integral in  

Green’s Theorem computes the net rotation of the field throughout R. The theorem says 
that the net rotation throughout R equals the circulation on the boundary of R.

gx 2 fy . 0 at P 1
counterclockwise
rotation at P.

x-components of F (blue segments)
decrease with respect to y: fy , 0

y-components of F (green segments)
increase with respect to x: gx . 0

F 5 k f, gl

y

x

P

Figure 17.32

QUICK CHECK 1 Compute 
0g
0x

-
0ƒ
0y

  

for the radial vector field F = 8x, y9 . 
What does this tell you about the 
circulation on a simple closed  
curve?	

Green’s Theorem has an important consequence when applied to a conservative vec-
tor field. Recall from Theorem 17.3 that if F = 8ƒ, g9  is conservative, then its compo-
nents satisfy the condition ƒy = gx. If R is a region of ℝ2 on which the conditions of 
Green’s Theorem are satisfied, then for a conservative field, we have

C
C

F # dr = 6
R 

a 0g
0x

-
0ƒ
0y
b  dA = 0.

(+1)1+*
   0

Green’s Theorem confirms the fact (Theorem 17.6) that if F is a conservative vector 
field in a region, then the circulation RC F # dr is zero on any simple closed curve in the  

region. A two-dimensional vector field F = 8ƒ, g9 for which 
0g
0x

-
0ƒ
0y

= 0 at all points 

of a region is said to be irrotational, because it produces zero circulation on closed 
curves in the region. Irrotational vector fields on simply connected regions in ℝ2 are  
conservative.

➤	 In some cases, the rotation of a vector 
field is not obvious. For example, 
the parallel flow in a channel 
F = 80, 1 - x29 , for 0 x 0 … 1, has a 
nonzero curl for x ≠ 0. See  
Exercise 72.

DEFINITION Two-Dimensional Curl

The two-dimensional curl of the vector field F = 8ƒ, g9  is 
0g
0x

-
0ƒ
0y

. If the curl is 

zero throughout a region, the vector field is irrotational on that region.

Evaluating circulation integrals of conservative vector fields on closed curves is easy. 
The integral is always zero. Green’s Theorem provides a way to evaluate circulation inte-
grals for nonconservative vector fields.
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EXAMPLE 1 Circulation of a rotation field Consider the rotation vector field 
F = 8 -y, x9  on the unit disk R = 51x, y2: x2 + y2 … 16 (Figure 17.31). In Example 6 
of Section 17.2, we showed that RC F # dr = 2p, where C is the boundary of R oriented 
counterclockwise. Confirm this result using Green’s Theorem.

SOLUTION Note that ƒ1x, y2 = -y and g1x, y2 = x; therefore, the curl of F is 
0g
0x

-
0ƒ
0y

= 2. By Green’s Theorem,

C
C

F # dr = 6
R

a 0g
0x

-
0ƒ
0y
b  dA = 6

R

2 dA = 2 * area of R = 2p.
(+1)1+*
   2

The curl 
0g
0x

-
0ƒ
0y

 is nonzero on R, which results in a nonzero circulation on the boundary 

of R. Related Exercises 18, 20	  

Calculating Area by Green’s Theorem A useful consequence of Green’s Theorem 
arises with the vector fields F = 8ƒ, g9 = 80, x9  and F = 8ƒ, g9 = 8y, 09 . In the first 
case, we have gx = 1 and ƒy = 0; therefore, by Green’s Theorem,

C
C

F # dr = C
C

x dy = 6
R

dA = area of R.()*   "

 F # dr  
0g
0x

-
0ƒ
0y

= 1

In the second case, gx = 0 and ƒy = 1, and Green’s Theorem says

C
C

F # dr = C
C

y dx = -6
R

dA = -area of R.

These two results may also be combined in one statement to give the following theorem.

THEOREM 17.8 Area of a Plane Region by Line Integrals
Under the conditions of Green’s Theorem, the area of a region R enclosed by a 
curve C is

C
C

x dy = -  C
C

y dx =
1
2 C

C

1x dy - y dx2.

A remarkably simple calculation of the area of an ellipse follows from this result.

EXAMPLE 2 Area of an ellipse Find the area of the ellipse 
x2

a2 +
y2

b2 = 1.

SOLUTION An ellipse with counterclockwise orientation is described parametrically by 
r1t2 = 8x, y9 = 8a cos t, b sin t9 , for 0 … t … 2p. Noting that dx = -a sin t dt and 
dy = b cos t dt, we have

 x dy - y dx = 1a cos t21b cos t2 dt - 1b sin t21-a sin t2 dt

 = ab 1cos2 t + sin2 t2 dt

 = ab dt.

Expressing the line integral as an ordinary integral with respect to t, the area of the ellipse is

1
2 C

C

 1x dy - y dx2 = ab
2 ∫

2p

0
 dt = pab.

(++)++*
   ab dt

Related Exercises 22–23	  
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Flux Form of Green’s Theorem
Let C be a closed curve enclosing a region R in ℝ2 and let F be a vector field defined on R. 
We assume C and R have the previously stated properties; specifically, C is oriented coun-
terclockwise with an outward normal vector n. Recall that the outward flux of F across C 
is RC F # n ds (Section 17.2). The second form of Green’s Theorem relates the flux across 
C to a property of the vector field within R that produces the flux.

THEOREM 17.9 Green’s Theorem—Flux Form
Let C be a simple closed piecewise-smooth curve, oriented counterclockwise, 
that encloses a connected and simply connected region R in the plane. Assume 
F = 8ƒ, g9 , where ƒ and g have continuous first partial derivatives in R. Then

C
C

F # n ds = C
C

ƒ dy - g dx = 6
R

a 0ƒ
0x

+
0g
0y
b  dA,

 (+)+*  (++1)1++*
outward flux   outward flux

where n is the outward unit normal vector on the curve.

➤	 The flux form of Green’s Theorem is also 
called the normal, or divergence, form.

➤	 The two forms of Green’s Theorem are 
related in the following way: Applying 
the circulation form of the theorem 
to F = 8 -g, ƒ9  results in the flux 
form, and applying the flux form of the 
theorem to F = 8g, -ƒ9  results in the 
circulation form.

The two line integrals on the left side of Theorem 17.9 give the outward flux of the 

vector field across C. The double integral on the right side involves the quantity 
0ƒ
0x

+
0g
0y

 ,  

which is the property of the vector field that produces the flux across C. This quantity is 
called the two-dimensional divergence.

Figure 17.33 illustrates how the divergence measures the flux of a particular vector field 
at a point P. If ƒx 7 0 at P, it indicates an expansion of the vector field in the x-direction  
(if ƒx is negative, it indicates a contraction). Similarly, if gy 7 0 at P, it indicates an ex-
pansion of the vector field in the y@direction. The combined effect of ƒx + gy 7 0 at a 
point is a net outward flux across a small circle enclosing P.

F 5 k f, gl

y

x

P

fx 1 gy . 0 at P 1
outward expansion
at P.

x-components of F (green segments)
increase with respect to x: fx . 0

y-components of F (blue segments)
increase with respect to y: gy . 0

Figure 17.33

If the divergence of F is zero throughout a region on which F satisfies the conditions 
of Theorem 17.9, then the outward flux across the boundary is zero. Vector fields with a 
zero divergence are said to be source free. If the divergence is positive throughout R, the 
outward flux across C is positive, meaning that the vector field acts as a source in R. If the 
divergence is negative throughout R, the outward flux across C is negative, meaning that 
the vector field acts as a sink in R.

DEFINITION Two-Dimensional Divergence

The two-dimensional divergence of the vector field F = 8ƒ, g9  is 
0ƒ
0x

+
0g
0y

. If the 

divergence is zero throughout a region, the vector field is source free on that region.

QUICK CHECK 2 Compute 
0ƒ
0x

+
0g
0y

 for 

the rotation field F = 8 -y, x9 . What  
does this tell you about the outward 
flux of F across a simple closed 
curve?	
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EXAMPLE 3 Outward flux of a radial field Use Green’s Theorem to compute the out-
ward flux of the radial field F = 8x, y9  across the unit circle C = 51x, y2: x2 + y2 = 16  
(Figure 17.34). Interpret the result.

SOLUTION We have already calculated the outward flux of the radial field across C as 
a line integral and found it to be 2p (Example 8, Section 17.2). Computing the outward 
flux using Green’s Theorem, note that ƒ  1x, y2 = x and g1x, y2 = y; therefore, the diver-

gence of F is 
0ƒ
0x

+
0g
0y

= 2. By Green’s Theorem, we have

C
C

F # n ds = 6
R

a 0ƒ
0x

+
0g
0y
b  dA = 6

R

2 dA = 2 * area of R = 2p.
(+1)1+*
   2

The positive divergence on R results in an outward flux of the vector field across the 
boundary of R.

Related Exercise 27	  

As with the circulation form, the flux form of Green’s Theorem can be used in either 
direction: to simplify line integrals or to simplify double integrals.

y

x

C

1

1

fx 1 gy 5 2 on R 1
outward flux across C.

F 5 k x, yl

Figure 17.34

EXAMPLE 4 Line integral as a double integral Evaluate

C
C

 14x3 + sin y22 dy - 14y3 + cos x22 dx,

where C is the boundary of the disk R = 51x, y2: x2 + y2 … 46 oriented counterclockwise.

SOLUTION Letting ƒ  1x, y2 = 4x3 + sin y2 and g1x, y2 = 4y3 + cos x2, Green’s Theorem 
takes the form

C
C

  
14x3 + sin y22 dy - 14y3 + cos x22 dx

  (++1)1++*    (++1)1++*
     ƒ           g

 = 6
R

112x2 + 12y22 dA  Green’s Theorem, flux form
   ()*  ()*
     ƒx    gy

 = 12 ∫2p

0
∫2

0
r2 r dr du  Polar coordinates; x2 + y2 = r2

       (1)1*
          dA

 = 12 ∫2p

0
 
r4

4
`
2

0
 du  Evaluate inner integral.

 = 48 ∫2p

0
du = 96p.  Evaluate outer integral.

Related Exercises 35–36	  

Circulation and Flux on More General Regions
Some ingenuity is required to extend both forms of Green’s Theorem to more complicated 
regions. The next two examples illustrate Green’s Theorem on two such regions: a half-
annulus and a full annulus.

EXAMPLE 5 Circulation on a half-annulus Consider the vector field F = 8y2, x29  
on the half-annulus R = 51x, y2: 1 … x2 + y2 … 9, y Ú 06, whose boundary is C. Find 
the circulation on C, assuming it has the orientation shown in Figure 17.35.

SOLUTION The circulation on C is

C
C

ƒ dx + g dy = C
C

y2 dx + x2 dy.

F 5 k y2, x2l

C

C

R

Circulation on boundary of R is negative.

x31

y

Figure 17.35
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 17.4 Green’s Theorem 1129

With the given orientation, the curve runs counterclockwise on the outer semicircle and 
clockwise on the inner semicircle. Identifying ƒ  1x, y2 = y2 and g1x, y2 = x2, the circula-
tion form of Green’s Theorem converts the line integral into a double integral. The double 
integral is most easily evaluated in polar coordinates using x = r cos u and y = r sin u:

 C
C

y2 dx + x2 dy = 6
R

12x - 2y2 dA  Green’s Theorem, circulation form
      "   "     "  "
 ƒ    g      gx  ƒy

 = 2∫p
0
∫3

1
1r cos u - r sin u2 r dr du Convert to polar coordinates.(1)1*

 dA

 = 2∫p
0
1cos u - sin u2r

3

3
`
3

1
 du  Evaluate inner integral.

 =
52
3 ∫

p

0
1cos u - sin u2 du  Simplify.

 = -  
104
3

 .  Evaluate outer integral.

The vector field (Figure 17.35) suggests why the circulation is negative. The field is 
roughly opposed to the direction of C on the outer semicircle but roughly aligned with the 
direction of C on the inner semicircle. Because the outer semicircle is longer and the field 
has greater magnitudes on the outer curve than on the inner curve, the greater contribu-
tion to the circulation is negative.

Related Exercise 41	  

EXAMPLE 6 Flux across the boundary of an annulus Find the outward 
flux of the vector field F = 8xy2, x2y9  across the boundary of the annulus 
R = 51x, y2: 1 … x2 + y2 … 46, which, when expressed in polar coordinates, is the set 
51r, u2: 1 … r … 2, 0 … u … 2p6 (Figure 17.36).

SOLUTION Because the annulus R is not simply connected, Green’s Theorem does not  
apply as stated in Theorem 17.9. This difficulty is overcome by defining the curve C 
shown in Figure 17.36, which is simple, closed, and piecewise smooth. The connecting 
links L1 and L2 below and above the x@axis are traversed in opposite directions. Letting 
L1 and L2 approach the x-axis, the contributions to the line integral cancel on L1 and L2. 
Because of this cancellation, we take C to be the curve that runs counterclockwise on the 
outer boundary and clockwise on the inner boundary.

Using the flux form of Green’s Theorem and converting to polar coordinates, we have

 C
C

F # n ds = C
C

ƒ dy - g dx = C
C

xy2 dy - x2y dx  Substitute for ƒ and g.

 = 6
R

1y2 + x22 dA  Green’s Theorem, flux form
 "  "
 ƒx  gy

 = ∫2p

0
∫2

1
 1r22 r dr du Polar coordinates; x2 + y2 = r2

 = ∫2p

0
 
r4

4
`
2

1
 du  Evaluate inner integral.

 =
15
4

 ∫2p

0
du  Simplify.

 =
15p

2
 .  Evaluate outer integral.

y

x

F 5 kxy2, x2yl

C

C

R

Net flux across boundary of R is positive.

Outward
normal

Outward
normal

L2

L1

Figure 17.36

➤	 Another way to deal with the flux across 
the annulus is to apply Green’s Theorem 
to the entire disk 0 r 0 … 2 and compute 
the flux across the outer circle. Then 
apply Green’s Theorem to the disk 
0 r 0 … 1 and compute the flux across 
the inner circle. Note that the flux out of 
the inner disk is a flux into the annulus. 
Therefore, the difference of the two 
fluxes gives the net flux for the annulus.
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1130 Chapter 17  •  Vector Calculus

Figure 17.36 shows the vector field and explains why the flux across C is positive.  
Because the field increases in magnitude moving away from the origin, the outward 
flux across the outer boundary is greater than the inward flux across the inner boundary. 
Hence, the net outward flux across C is positive.

Related Exercise 42	  

Stream Functions
We can now see a wonderful parallel between circulation properties (and conservative vec-
tor fields) and flux properties (and source-free fields). We need one more piece to com-
plete the picture; it is the stream function, which plays the same role for source-free fields 
that the potential function plays for conservative fields.

Consider a two-dimensional vector field F = 8ƒ, g9  that is differentiable on a region 
R. A stream function for the vector field—if it exists—is a function c (pronounced psigh 
or psee) that satisfies

0c
0y

= ƒ,   
0c
0x

= -g.

If we compute the divergence of a vector field F = 8ƒ, g9  that has a stream function and 
use the fact that cxy = cyx, then

0ƒ
0x

+
0g
0y

=
0
0x

 a 0c
0y
b +

0
0y

 a -  
0c
0x
b = 0.

(++++1)1++++*
   cyx = cxy

We see that the existence of a stream function guarantees that the vector field has zero 
divergence or, equivalently, is source free. The converse is also true on simply connected 
regions of ℝ2.

As discussed in Section 17.1, the level curves of a stream function are called flow 
curves or streamlines—and for good reason. It can be shown (Exercise 70) that the vector 
field F is everywhere tangent to the streamlines, which means that a graph of the stream-
lines shows the flow of the vector field. Finally, just as circulation integrals of a conser-
vative vector field are independent of path, flux integrals of a source-free field are also 
independent of path (Exercise 69).

Vector fields that are both conservative and source free are quite interesting math-
ematically because they have both a potential function and a stream function. It can be 
shown that the level curves of the potential and stream functions form orthogonal families; 
that is, at each point of intersection, the line tangent to one level curve is orthogonal to the 
line tangent to the other level curve (equivalently, the gradient vector of one function is 
orthogonal to the gradient vector of the other function). Such vector fields have zero curl 
1gx - ƒy = 02 and zero divergence 1ƒx + gy = 02. If we write the zero divergence con-
dition in terms of the potential function w, we find that

0 = ƒx + gy = wxx + wyy.

Writing the zero curl condition in terms of the stream function c, we find that

0 = gx - ƒy = -cxx - cyy.

We see that the potential function and the stream function both satisfy an important 
equation known as Laplace’s equation:

wxx + wyy = 0 and cxx + cyy = 0.

Any function satisfying Laplace’s equation can be used as a potential function or stream 
function for a conservative, source-free vector field. These vector fields are used in fluid 
dynamics, electrostatics, and other modeling applications.

➤	 Potential function for F = 8ƒ, g9 :
wx = ƒ and wy = g

Stream function for F = 8ƒ, g9 :
cx = -g and cy = ƒ

QUICK CHECK 3 Show that 

c =
1
2

 1y2 - x22 is a stream  

function for the vector field  
F = 8y, x9 . Show that F has  
zero divergence.	

➤	 In fluid dynamics, velocity fields that 
are both conservative and source free are 
called ideal flows. They model fluids that 
are irrotational and incompressible.

➤	 Methods for finding solutions of 
Laplace’s equation are discussed in 
advanced mathematics courses.

➤	 Notice that the divergence of the vector 
field in Example 6 (x2 + y2) is positive 
on R, so we expect an outward flux 
across C.
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 17.4 Green’s Theorem 1131

Table 17.1 shows the parallel properties of conservative and source-free vector fields 
in two dimensions. We assume C is a simple piecewise-smooth oriented curve and either 
is closed or has endpoints A and B.

Table 17.1

Conservative Fields F = 8ƒ, g9 Source-Free Fields F = 8ƒ, g9

• curl =
0g
0x

-
0ƒ
0y

= 0

•  Potential function w with 

F = ∇w or ƒ =
0w
0x

,   g =
0w
0y

•  Circulation = RC F # dr = 0 on all  
closed curves C.

•  Evaluation of line integral 

∫
C

F # dr = w1B2 - w1A2

• divergence =
0ƒ
0x

+
0g
0y

= 0

•  Stream function c with 

ƒ =
0c
0y

,   g = -  
0c
0x

•  Flux = RC F # n ds = 0 on all closed  
curves C.

•  Evaluation of line integral 

∫
C

F # n ds = c1B2 - c1A2

Table 17.2

Circulation/work integrals: ∫
C

F # T ds = ∫
C

F # dr = ∫
C

ƒ dx + g dy

C closed C not closed

F conservative  
1F = ∇w2 C

C

F # dr = 0 ∫
C

F # dr = w1B2 - w1A2

F not conservative Green’s Theorem 

C
C

F # dr = 6
R

1gx - ƒy2 dA

Direct evaluation  

∫
C

F # dr = ∫b

a
1ƒx′ + gy′2 dt

Flux integrals: ∫
C

F # n ds = ∫
C

 
ƒ dy - g dx

C closed C not closed

F source free 
1ƒ = cy, g = -cx2 C

C

F # n ds = 0 ∫
C

F # n ds = c1B2 - c1A2

F not source free Green’s Theorem 

C
C

F # n ds = 6
R

1ƒx + gy2 dA

Direct evaluation 

∫
C

F # n ds = ∫b

a
1ƒy′ - gx′2 dt

With Green’s Theorem in the picture, we may also give a concise summary of the various 
cases that arise with line integrals of both the circulation and flux types (Table 17.2).

Proof of Green’s Theorem on Special Regions
The proof of Green’s Theorem is straightforward when restricted to special re-
gions. We consider regions R enclosed by a simple closed smooth curve C oriented in 
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1132 Chapter 17  •  Vector Calculus

the counterclockwise direction, such that the region can be expressed in two ways  
(Figure 17.37):

• R = 51x, y2: a … x … b, G11x2 … y … G21x26 or

• R = 51x, y2: H11y2 … x … H21y2, c … y … d6.

➤	 This restriction on R means that lines 
parallel to the coordinate axes intersect 
the boundary of R at most twice.

y

x

C

C

R
R

C2

C1

C2C1

y 5 G2(x)

y 5 G1(x)

x 5 H1(y)

x 5 H2(y)

a b

c

d

x

y

(a) (b)

Figure 17.37

Under these conditions, we prove the circulation form of Green’s Theorem:

C
C

ƒ dx + g dy = 6
R

a 0g
0x

-
0ƒ
0y
b  dA.

Beginning with the term 6
R

 
0ƒ
0y

 dA, we write this double integral as an iterated inte-

gral, where G11x2 … y … G21x2 in the inner integral and a … x … b in the outer integral  
(Figure 17.37a). The upper curve is labeled C2 and the lower curve is labeled C1. Notice 

that the inner integral of 
0ƒ
0y

 with respect to y gives ƒ  1x, y2. Therefore, the first step of the 

double integration is

 6
R

 
0ƒ
0y

 dA = ∫b

a
∫G21x2

G11x2
 
0ƒ
0y

 dy dx  Convert to an iterated integral.

 = ∫b

a
1ƒ1x, G21x22 - ƒ1x, G11x222 dx.
(+11)11+*  (+11)11+*
  on C2      on C1

Over the interval a … x … b, the points 1x, G21x22 trace out the upper part of C (labeled 
C2) in the negative (clockwise) direction. Similarly, over the interval a … x … b, the 
points 1x, G11x22 trace out the lower part of C (labeled C1) in the positive (counterclock-
wise) direction.

Therefore,

 6
R

 
0ƒ
0y

 dA = ∫b

a
1ƒ1x, G21x22 - ƒ1x, G11x222 dx

 = ∫
-C2

ƒ dx - ∫
C1

ƒ dx

 = - ∫
C2

ƒ dx - ∫
C1

ƒ dx  ∫
-C2

ƒ dx = - ∫
C2

ƒ dx

 = - C
C

ƒ dx.  ∫
C

 ƒ dx = ∫
C1

 ƒ dx + ∫
C2

 ƒ dx
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 17.4 Green’s Theorem 1133

A similar argument applies to the double integral of 
0g
0x

 , except we use the bounding 

curves x = H11y2 and x = H21y2, where C1 is now the left curve and C2 is the right curve  
(Figure 17.37b). We have

 6
R

0g
0x

 dA = ∫d

c
∫H21y2

H11y2  
 
0g
0x

 dx dy Convert to an iterated integral.

 = ∫d

c  1g1H21y2, y2 - g1H11y2, y22 dy ∫ 0g0x  dx = g
(+)+*   (+)+*
  C2      -C1

 = ∫
C2

g dy - ∫
-C1

g dy

 = ∫
C2

g dy + ∫
C1

g dy  ∫
-C1

g dy = - ∫
C1

g dy

 = C
C

g dy.  ∫
C

g dy = ∫
C1

g dy + ∫
C2

g dy

Combining these two calculations results in

6
R

a 0g
0x

-
0ƒ
0y
b  dA = C

C

ƒ dx + g dy.

As mentioned earlier, with a change of notation (replace g with ƒ and ƒ with -g), the 
flux form of Green’s Theorem is obtained. This proof also completes the list of equivalent 
properties of conservative fields given in Section 17.3: From Green’s Theorem, it follows 

that if 
0g
0x

=
0ƒ 

0y
 on a simply connected region R, then the vector field F = 8ƒ, g9  is con-

servative on R.

QUICK CHECK 4 Explain why Green’s 
Theorem proves that if gx = ƒy, 
then the vector field F = 8ƒ, g9  is 
conservative.	

Getting Started
1. Explain why the two forms of Green’s Theorem are analogs of the 

Fundamental Theorem of Calculus.

2. Referring to both forms of Green’s Theorem, match each idea in 
Column 1 to an idea in Column 2:

Line integral for flux Double integral of the curl

Line integral for circulation Double integral of the divergence

3. How do you use a line integral to compute the area of a plane 
region?

4. Why does a two-dimensional vector field with zero curl on a 
region have zero circulation on a closed curve that bounds the 
region?

5. Why does a two-dimensional vector field with zero divergence on 
a region have zero outward flux across a closed curve that bounds 
the region?

6. Sketch a two-dimensional vector field that has zero curl every-
where in the plane.

7. Sketch a two-dimensional vector field that has zero divergence 
everywhere in the plane.

8. Discuss one of the parallels between a conservative vector field 
and a source-free vector field.

SECTION 17.4 EXERCISES
9–14. Assume C is a circle centered at the origin, oriented counter-
clockwise, that encloses disk R in the plane. Complete the following 
steps for each vector field F.

a. Calculate the two-dimensional curl of F.
b. Calculate the two-dimensional divergence of F.
c. Is F irrotational on R?
d. Is F source free on R?

9. F = 8x, y9  10. F = 8y, -x9
11. F = 8y, -3x9  12. F = 8x2 + 2xy, -2xy - y29
13. F = 84x3y, xy2 + x49  14. F = 84x3 + y, 12xy9
15. Suppose C is the boundary of region R = 51x, y2: 

x2 … y … x … 16, oriented counterclockwise (see figure);  
let F = 81, x9 .

C2

C1

x

y

R
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a. Compute the two-dimensional curl of F and determine whether 
F is irrotational.

b. Find parameterizations r11t2 and r21t2 for C1 and C2,  
respectively.

c. Evaluate both the line integral and the double integral in the cir-
culation form of Green’s Theorem and check for consistency.

d. Compute the two-dimensional divergence of F and use the flux 
form of Green’s Theorem to explain why the outward flux is 0.

16. Suppose C is the boundary of region R = 51x, y2: 
2x2 - 2x … y … 06, oriented counterclockwise (see figure);  
let F = 8x, 19 .

C1

C2

x

y

R

a. Compute the two-dimensional curl of F and use the circulation 
form of Green’s Theorem to explain why the circulation is 0.

b. Compute the two-dimensional divergence of F and determine 
whether F is source free.

c. Find parameterizations r11t2 and r21t2 for C1 and C2,  
respectively.

d. Evaluate both the line integral and the double integral in the 
flux form of Green’s Theorem and check for consistency.

Practice Exercises
17–20. Green’s Theorem, circulation form Consider the following 
regions R and vector fields F.

a. Compute the two-dimensional curl of the vector field.
b. Evaluate both integrals in Green’s Theorem and check for  

consistency.

17. F = 82y, -2x9 ; R is the region bounded by y = sin x and  
y = 0, for 0 … x … p.

18. F = 8 -3y, 3x9 ; R is the triangle with vertices 10, 02, 11, 02, and 
10, 22.

19. F = 8 -2xy, x29 ; R is the region bounded by y = x12 - x2 and 
y = 0.

20. F = 80, x2 + y29 ; R = 51x, y2: x2 + y2 … 16
21–26. Area of regions Use a line integral on the boundary to find the 
area of the following regions.

21. A disk of radius 5

22. A region bounded by an ellipse with major and minor axes of 
lengths 12 and 8, respectively

23. 51x, y2: x2 + y2 … 166
24. The region shown in the figure

C2

C1

x2 1 y2 5 1 

x121

1

2
2(2      ,        )2

2
2
2(      ,        )2

2

25. The region bounded by the parabolas r1t2 = 8 t, 2t29  and 
r1t2 = 8 t, 12 - t29 , for -2 … t … 2

26. The region bounded by the curve r1t2 = 8 t11 - t22, 1 - t29 , for 
-1 … t … 1 (Hint: Plot the curve.)

27–30. Green’s Theorem, flux form Consider the following regions R 
and vector fields F.

a. Compute the two-dimensional divergence of the vector field.
b. Evaluate both integrals in Green’s Theorem and check for  

consistency.

27. F = 8x, y9 ; R = 51x, y2: x2 + y2 … 46
28. F = 8x, -3y9 ; R is the triangle with vertices 10, 02, 11, 22,  

and 10, 22.
29. F = 82xy, x29 ; R = 51x, y2: 0 … y … x12 - x26
30. F = 8x2 + y2, 09 ; R = 51x, y2: x2 + y2 … 16
31–40. Line integrals Use Green’s Theorem to evaluate the following 
line integrals. Assume all curves are oriented counterclockwise.  
A sketch is helpful.

31. C
C

83y + 1, 4x2 + 39 # dr, where C is the boundary of the  

rectangle with vertices 10, 02, 14, 02, 14, 22, and 10, 22

32. C
C

8sin y, x9 # dr, where C is the boundary of the triangle with  

vertices 10, 02, ap
2

, 0b , and ap
2

, 
p

2
b

33. C
C

xey dx + x dy, where C is the boundary of the region bounded  

by the curves y = x2, x = 2, and the x-axis

34. C
C

1

1 + y2 dx + y dy, where C is the boundary of the triangle with 

vertices 10, 02, 11, 02, and 11, 12

35. C
C

12x + ey22 dy - 14y2 + ex22 dx, where C is the boundary of the 

square with vertices 10, 02, 11, 02, 11, 12, and 10, 12

36. C
C

12x - 3y2 dy - 13x + 4y2 dx, where C is the unit circle

37. C
C

ƒ dy - g dx, where 8ƒ, g9 = 80, xy9  and C is the triangle with 

vertices 10, 02, 12, 02, and 10, 42

38. C
C

ƒ dy - g dx, where 8ƒ, g9 = 8x2, 2y29  and C is the upper half  

of the unit circle and the line segment -1 … x … 1, oriented  
clockwise

39. The circulation line integral of F = 8x2 + y2, 4x + y39 , where C 
is the boundary of 51x, y2: 0 … y … sin x, 0 … x … p6

40. The flux line integral of F = 8ex - y, ey - x9 , where C is the  
boundary of 51x, y2: 0 … y … x, 0 … x … 16
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41–48. Circulation and flux For the following vector fields, compute (a) 
the circulation on, and (b) the outward flux across, the boundary of the 
given region. Assume boundary curves are oriented counterclockwise.

41. F = 8x, y9 ; R is the half-annulus 51r, u2; 1 … r … 2, 
0 … u … p6.

42. F = 8 -y, x9 ; R is the annulus 51r, u2: 1 … r … 3, 
0 … u … 2p6.

43. F = 82x + y, x - 4y9 ; R is the quarter-annulus 
51r, u2: 1 … r … 4, 0 … u … p>26.

44. F = 8x - y, -x + 2y9 ; R is the parallelogram 
51x, y2: 1 - x … y … 3 - x, 0 … x … 16.

45. F = ∇12x2 + y22; R is the half-annulus 
51r, u2: 1 … r … 3, 0 … u … p6.

46. F = h ln 1x2 + y22, tan-1 
y

x
i; R is the eighth-annulus 

51r, u2: 1 … r … 2, 0 … u … p>46.

47. F = 8x + y2, x2 - y9 ; R = 51x, y2: y2 … x … 2 - y26.

48. F = 8y cos x, -sin x9 ; R is the square 
51x, y2: 0 … x … p>2, 0 … y … p>26.

49. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. The work required to move an object around a closed curve C 
in the presence of a vector force field is the circulation of the 
force field on the curve.

b. If a vector field has zero divergence throughout a region (on 
which the conditions of Green’s Theorem are met), then the 
circulation on the boundary of that region is zero.

c. If the two-dimensional curl of a vector field is positive 
throughout a region (on which the conditions of Green’s  
Theorem are met), then the circulation on the boundary of that 
region is positive (assuming counterclockwise orientation).

50–51. Special line integrals Prove the following identities, where C is 
a simple closed smooth oriented curve.

50. C
C

 dx = C
C

 dy = 0

51. C
C

 ƒ1x2 dx + g1y2 dy = 0, where ƒ and g have continuous  

derivatives on the region enclosed by C

52. Double integral to line integral Use the flux form of Green’s  
Theorem to evaluate 6R 12xy + 4y32 dA, where R is the triangle 
with vertices 10, 02, 11, 02, and 10, 12.

53. Area line integral Show that the value of

C
C

 xy2 dx + 1x2y + 2x2 dy

depends only on the area of the region enclosed by C.

54. Area line integral In terms of the parameters a and b, how is the 
value of RC ay dx + bx dy related to the area of the region en-
closed by C, assuming counterclockwise orientation of C?

55–58. Stream function Recall that if the vector field F = 8ƒ, g9  is 
source free (zero divergence), then a stream function c exists such that 
ƒ = cy and g = -cx.

a. Verify that the given vector field has zero divergence.

b. Integrate the relations ƒ = cy and g = -cx to find a stream  
function for the field.

55. F = 84, 29  56. F = 8y2, x29
57. F = 8 -e-x sin y, e-x cos y9  58. F = 8x2, -2xy9

Explorations and Challenges
59–62. Ideal flow A two-dimensional vector field describes ideal flow 
if it has both zero curl and zero divergence on a simply connected  
region.

a. Verify that both the curl and the divergence of the given field  
are zero.

b. Find a potential function w and a stream function c for the field.
c. Verify that w and c satisfy Laplace’s equation 

wxx + wyy = cxx + cyy = 0.

59. F = 8ex cos y, -ex sin y9  
60. F = 8x3 - 3xy2, y3 - 3x2y9

61. F = h tan-1 
y

x
, 

1
2

 ln 1x2 + y22 i, for x 7 0

62. F =
8x, y9

x2 + y2, for x 7 0, y 7 0

63. Flow in an ocean basin An idealized two-dimensional ocean is 

modeled by the square region R = c -  
p

2
, 
p

2
d * c -  

p

2
, 
p

2
d   

with boundary C. Consider the stream function  
c1x, y2 = 4 cos x cos y defined on R (see figure).

y

x121

21

1

3
2

1
2
1

a. The horizontal (east-west) component of the velocity is 
u = cy and the vertical (north-south) component of the veloc-
ity is v = -cx. Sketch a few representative velocity vectors 
and show that the flow is counterclockwise around the region.

b. Is the velocity field source free? Explain.
c. Is the velocity field irrotational? Explain.
d. Let C be the boundary of R. Find the total outward flux across C.
e. Find the circulation on C assuming counterclockwise  

orientation.

64. Green’s Theorem as a Fundamental Theorem of Calculus 
Show that if the circulation form of Green’s  

Theorem is applied to the vector field h0, 
ƒ1x2

c
i, where c 7 0 

and R = 51x, y2: a … x … b, 0 … y … c6, then the result is the  
Fundamental Theorem of Calculus,

∫b

a
 
dƒ

dx
 dx = ƒ1b2 - ƒ1a2.
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65. Green’s Theorem as a Fundamental Theorem of Calculus Show  
that if the flux form of Green’s Theorem is applied to  

the vector field h ƒ1x2
c

 , 0i, where c 7 0 and 

R = 51x, y2: a … x … b, 0 … y … c6, then the result is the  
Fundamental Theorem of Calculus,

∫b

a
 
dƒ

dx
 dx = ƒ1b2 - ƒ1a2.

66. What’s wrong? Consider the rotation field F =
8 -y, x9
x2 + y2  .

a. Verify that the two-dimensional curl of F is zero, which  
suggests that the double integral in the circulation form of 
Green’s Theorem is zero.

b. Use a line integral to verify that the circulation on the unit 
circle of the vector field is 2p.

c. Explain why the results of parts (a) and (b) do not agree.

67. What’s wrong? Consider the radial field F =
8x, y9

x2 + y2 .

a. Verify that the divergence of F is zero, which suggests that the 
double integral in the flux form of Green’s Theorem is zero.

b. Use a line integral to verify that the outward flux across the 
unit circle of the vector field is 2p.

c. Explain why the results of parts (a) and (b) do not agree.

68. Conditions for Green’s Theorem Consider the radial field 

F = 8ƒ, g9 =
8x, y92x2 + y2

=
r

0 r 0  .

a. Explain why the conditions of Green’s Theorem do not apply 
to F on a region that includes the origin.

b. Let R be the unit disk centered at the origin and compute 

6
R

 a 0ƒ
0x

+
0g
0y
b  dA.

c. Evaluate the line integral in the flux form of Green’s Theorem 
on the boundary of R.

d. Do the results of parts (b) and (c) agree? Explain.

69. Flux integrals Assume the vector field F = 8ƒ, g9  is source 
free (zero divergence) with stream function c. Let C be any 
smooth simple curve from A to the distinct point B. Show that 
the flux integral #C F # n ds is independent of path; that is, #C F # n ds = c1B2 - c1A2.

70. Streamlines are tangent to the vector field Assume the vector 
field F = 8ƒ, g9  is related to the stream function c by cy = ƒ  
and cx = -g on a region R. Prove that at all points of R, the 
vector field is tangent to the streamlines (the level curves of the 
stream function).

71. Streamlines and equipotential lines Assume that on ℝ2, the vec-
tor field F = 8ƒ, g9  has a potential function w such that ƒ = wx 
and g = wy, and it has a stream function c such that ƒ = cy and 
g = -cx. Show that the equipotential curves (level curves of w) 
and the streamlines (level curves of c) are everywhere orthogonal.

72. Channel flow The flow in a long shallow channel is mod-
eled by the velocity field F = 80, 1 - x29 , where 
R = 51x, y2: 0 x 0 … 1 and 0 y 0 6 56.

a. Sketch R and several streamlines of F.
b. Evaluate the curl of F on the lines x = 0, x = 1>4, x = 1>2, 

and x = 1.
c. Compute the circulation on the boundary of the region R.
d. How do you explain the fact that the curl of F is nonzero at 

points of R, but the circulation is zero?

QUICK CHECK ANSWERS

1. gx - ƒy = 0, which implies zero circulation on a 
closed curve. 2. ƒx + gy = 0, which implies zero flux 
across a closed curve. 3. cy = y is the x@component of 
F = 8y, x9 , and -cx = x is the y@component of F. Also, 
the divergence of F is yx + xy = 0. 4. If the curl is zero 
on a region, then all closed-path integrals are zero, which is a 
condition (Section 17.3) for a conservative field.	

17.5 Divergence and Curl
Green’s Theorem sets the stage for the final act in our exploration of calculus. The last 
four sections of this chapter have the following goal: to lift both forms of Green’s Theo-
rem out of the plane 1ℝ22 and into space 1ℝ32. It is done as follows.

• The circulation form of Green’s Theorem relates a line integral over a simple closed ori-
ented curve in the plane to a double integral over the enclosed region. In an analogous 
manner, we will see that Stokes’ Theorem (Section 17.7) relates a line integral over a 
simple closed oriented curve in ℝ3 to a double integral over a surface whose boundary 
is that curve.

• The flux form of Green’s Theorem relates a line integral over a simple closed oriented 
curve in the plane to a double integral over the enclosed region. Similarly, the Diver-
gence Theorem (Section 17.8) relates an integral over a closed oriented surface in ℝ3 to 
a triple integral over the region enclosed by that surface.

In order to make these extensions, we need a few more tools.

• The two-dimensional divergence and two-dimensional curl must be extended to three 
dimensions (this section).

• The idea of a surface integral must be introduced (Section 17.6).
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The Divergence
Recall that in two dimensions, the divergence of the vector field F = 8ƒ, g9  is 

0ƒ
0x

+
0g
0y

 . 

The extension to three dimensions is straightforward. If F = 8ƒ, g, h9  is a differentiable 

vector field defined on a region of ℝ3, the divergence of F is 
0ƒ
0x

+
0g
0y

+
0h
0z

. The interpre-

tation of the three-dimensional divergence is much the same as it is in two dimensions. It 
measures the expansion or contraction of the vector field at each point. If the divergence is 
zero at all points of a region, the vector field is source free on that region.

Recall the del operator ∇ that was introduced in Section 15.5 to define the gradient:

∇ = i 
0
0x

+ j 
0
0y

+ k 
0
0z

= h 0
0x

  , 
0
0y

  , 
0
0z
i.

This object is not really a vector; it is an operation that is applied to a function or a vector 
field. Applying it directly to a scalar function ƒ results in the gradient of ƒ:

∇ƒ =
0ƒ
0x

 i +
0ƒ
0y

 j +
0ƒ
0z

 k = 8ƒx, ƒy, ƒz9 .

However, if we form the dot product of ∇ and a vector field F = 8ƒ, g, h9 , the result is

∇ # F = h 0
0x

 , 
0
0y

 , 
0
0z
i # 8ƒ, g, h9 =

0ƒ
0x

+
0g
0y

+
0h
0z

  ,

which is the divergence of F, also denoted div F. Like all dot products, the divergence is a 
scalar; in this case, it is a scalar-valued function.

➤	 Review: The divergence measures the 
expansion or contraction of a vector 
field at each point. The flux form of 
Green’s Theorem implies that if the two-
dimensional divergence of a vector field 
is zero throughout a simply connected 
plane region, then the outward flux 
across the boundary of the region is zero. 
If the divergence is nonzero, Green’s 
Theorem gives the outward flux across 
the boundary.

➤	 In evaluating ∇ # F as a dot product, 
each component of ∇ is applied to 
the corresponding component of F, 
producing ƒx + gy + hz.

DEFINITION Divergence of a Vector Field

The divergence of a vector field F = 8ƒ, g, h9  that is differentiable on a region of 
ℝ3 is

div F = ∇ # F =
0ƒ
0x

+
0g
0y

+
0h
0z

 .

If ∇ # F = 0, the vector field is source free.

EXAMPLE 1 Computing the divergence Compute the divergence of the following 
vector fields.

a. F = 8x, y, z9  (a radial field)

b. F = 8 -y, x - z, y9  (a rotation field)

c. F = 8 -y, x, z9  (a spiral flow)

SOLUTION

a. The divergence is ∇ # F = ∇ # 8x, y, z9 =
0x
0x

+
0y
0y

+
0z
0z

= 1 + 1 + 1 = 3.

Because the divergence is positive, the flow expands outward at all points  
(Figure 17.38a).

b. The divergence is

∇ # F = ∇ # 8 -y, x - z, y9 =
01-y2

0x
+

01x - z2
0y

+
0y
0z

= 0 + 0 + 0 = 0,

so the field is source free.

c. This field is a combination of the two-dimensional rotation field F = 8 -y, x9  and a 
vertical flow in the z-direction; the net effect is a field that spirals upward for z 7 0 
and spirals downward for z 6 0 (Figure 17.38b). The divergence is

∇ # F = ∇ # 8 -y, x, z9 =
01-y2

0x
+

0x
0y

+
0z
0z

= 0 + 0 + 1 = 1.

Radial field
F 5 kx, y, zl

= ? F 5 3 at all points 1
vector field expands outward
at all points.

z

yx

(a)

(b)

yx

z Spiral flow
F 5 k2y, x, zl

Figure 17.38
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The rotational part of the field in x and y does not contribute to the divergence.  
However, the z-component of the field produces a nonzero divergence.

Related Exercises 10–11	  

QUICK CHECK 1 Show that if 
a vector field has the form 
F = 8ƒ1y, z2, g1x, z2, h1x, y29 , then 
div F = 0.	

Divergence of a Radial Vector Field The vector field considered in Example 1a is 
just one of many radial fields that have important applications (for example, the inverse 
square laws of gravitation and electrostatics). The following example leads to a general 
result for the divergence of radial vector fields.

EXAMPLE 2 Divergence of a radial field Compute the divergence of the radial  
vector field

F =
r
0 r 0 =

8x, y, z92x2 + y2 + z2
 .

SOLUTION This radial field has the property that it is directed outward from the origin 
and all vectors have unit length 1 0F 0 = 12. Let’s compute one piece of the divergence; 
the others follow the same pattern. Using the Quotient Rule, the derivative with respect to 
x of the first component of F is

 
0
0x

 a x

1x2 + y2 + z221>2 b =
1x2 + y2 + z221>2 - x2 1x2 + y2 + z22-1>2

x2 + y2 + z2  Quotient Rule

 =
0 r 0 - x2 0 r 0 -1

0 r 0 2  2x2 + y2 + z2 = 0 r 0

 =
0 r 0 2 - x2

0 r 0 3  .  Simplify.

A similar calculation of the y@ and z@derivatives yields 
0 r 0 2 - y2

0 r 0 3  and 
0 r 0 2 - z2

0 r 0 3 , respectively. 

Adding the three terms, we find that

 ∇ # F =
0 r 0 2 - x2

0 r 0 3 +
0 r 0 2 - y2

0 r 0 3 +
0 r 0 2 - z2

0 r 0 3

 = 3 
0 r 0 2
0 r 0 3 -

x2 + y2 + z2

0 r 0 3  Collect terms.

 =
2

0 r 0  .  x2 + y2 + z2 = 0 r 0 2

Related Exercise 18	  

Examples 1a and 2 give two special cases of the following theorem about the diver-
gence of radial vector fields (Exercise 73).

THEOREM 17.10 Divergence of Radial Vector Fields
For a real number p, the divergence of the radial vector field

F =
r
0 r 0 p =

8x, y, z9
1x2 + y2 + z22p>2 is ∇ # F =

3 - p

0 r 0 p .

EXAMPLE 3 Divergence from a graph To gain some intuition about the divergence, 
consider the two-dimensional vector field F = 8ƒ, g9 = 8x2, y9  and a circle C of  
radius 2 centered at the origin (Figure 17.39).

a. Without computing it, determine whether the two-dimensional divergence is positive 
or negative at the point Q11, 12. Why?

b. Confirm your conjecture in part (a) by computing the two-dimensional divergence at Q.

121

21

1

2

22

22 2

y

x

F 5 kx2, yl

= ? F , 0
for x , 2

= ? F . 0
for x . 2

Q(1, 1)

At Q(1, 1),
fx . 0, gy . 0,

and = ? F . 0.

2
1

2
1

Figure 17.39
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 17.5 Divergence and Curl 1139

c. Based on part (b), over what regions within the circle is the divergence positive and 
over what regions within the circle is the divergence negative?

d. By inspection of the figure, on what part of the circle is the flux across the boundary 
outward? Is the net flux out of the circle positive or negative?

SOLUTION

a. At Q11, 12 the x-component and the y-component of the field are increasing (ƒx 7 0 
and gy 7 0), so the field is expanding at that point and the two-dimensional diver-
gence is positive.

b. Calculating the two-dimensional divergence, we find that

∇ # F =
0
0x

 1x22 +
0
0y

 1y2 = 2x + 1.

At Q11, 12 the divergence is 3, confirming part (a).

c. From part (b), we see that ∇ # F = 2x + 1 7 0, for x 7 -  12, and ∇ # F 6 0, for 
x 6 -  12. To the left of the line x = -  12 the field is contracting, and to the right of the 
line the field is expanding.

d. Using Figure 17.39, it appears that the field is tangent to the circle at two points with 
x ≈ -1. For points on the circle with x 6 -1, the flow is into the circle; for points 
on the circle with x 7 -1, the flow is out of the circle. It appears that the net outward 
flux across C is positive. The points where the field changes from inward to outward 
may be determined exactly (Exercise 46). Related Exercises 21–22	  

➤	 To understand the conclusion of Example 
3a, note that as you move through the 
point Q from left to right, the horizontal 
components of the vectors increase in 
length 1ƒx 7 02. As you move through 
the point Q in the upward direction, the 
vertical components of the vectors also 
increase in length 1gy 7 02.

QUICK CHECK 2 Verify the claim made 
in Example 3d by showing that the net 
outward flux of F across C is positive. 
(Hint: If you use Green’s Theorem to 
evaluate the integral #C ƒ dy - g dx, 
convert to polar coordinates.)	

The Curl
Just as the divergence ∇ # F is the dot product of the del operator and F, the three- 
dimensional curl is the cross product ∇ * F. If we formally use the notation for the cross 
product in terms of a 3 * 3 determinant, we obtain the definition of the curl:

 ∇ * F = ∞
i j k
0
0x

0
0y

0
0z

ƒ g h

∞  
d  Unit Vectors

d  Components of ∇

d  Components of F

 = a 0h
0y

-
0g
0z
b  i + a 0ƒ

0z
-

0h
0x
b  j + a 0g

0x
-

0ƒ
0y

 b  k.

The curl of a vector field, also denoted curl F, is a vector with three components. No-
tice that the k-component of the curl 1gx - ƒy2 is the two-dimensional curl, which gives 
the rotation in the xy-plane at a point. The i- and j-components of the curl correspond to 
the rotation of the vector field in planes parallel to the yz-plane (orthogonal to i) and in 
planes parallel to the xz-plane (orthogonal to j) (Figure 17.40).

➤	 Review: The two-dimensional curl 
gx - ƒy measures the rotation of a vector 
field at a point. The circulation form of 
Green’s Theorem implies that if the two-
dimensional curl of a vector field is zero 
throughout a simply connected region, 
then the circulation on the boundary 
of the region is also zero. If the curl is 
nonzero, Green’s Theorem gives the 
circulation along the curve.

z

k

i
j

y
x

k-component of = 3 F gives rotation
at P about axis parallel to k.

j-component of = 3 F gives rotation
at P about axis parallel to j.

i-component of = 3 F gives rotation
at P about axis parallel to i.

Streamlines of vector
field F 5 k f, g, hl

P

Figure 17.40
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Curl of a General Rotation Vector Field We can clarify the physical meaning of the 
curl by considering the vector field F = a * r, where a = 8a1, a2, a39  is a nonzero con-
stant vector and r = 8x, y, z9 . Writing out its components, we see that

F = a * r = †
i j k

a1 a2 a3

x y z
† = 1a2z - a3y2 i + 1a3x - a1z2 j + 1a1y - a2x2 k.

This vector field is a general rotation field in three dimensions. With a1 = a2 = 0 and 
a3 = 1, we have the familiar two-dimensional rotation field 8 -y, x9  with its axis in the  
k-direction. More generally, F is the superposition of three rotation fields with axes in  
the i-, j-, and k-directions. The result is a single rotation field with an axis in the direction  
of a (Figure 17.41).

Three calculations tell us a lot about the general rotation field. The first calculation 
confirms that ∇ # F = 0 (Exercise 42). Just as with rotation fields in two dimensions, the 
divergence of a general rotation field is zero.

The second calculation (Exercises 43–44) uses the right-hand rule for cross products to  
show that the vector field F = a * r is indeed a rotation field that circles the vector a in a 
counterclockwise direction looking along the length of a from head to tail (Figure 17.41).

The third calculation (Exercise 45) says that ∇ * F = 2a. Therefore, the curl of the 
general rotation field is in the direction of the axis of rotation a (Figure 17.41). The mag-
nitude of the curl is 0 ∇ * F 0 = 2 0 a 0 . It can be shown (Exercise 52) that if F is a velocity 
field, then 0 a 0  is the constant angular speed of rotation of the field, denoted v. The angular 
speed is the rate (radians per unit time) at which a small particle in the vector field rotates 
about the axis of the field. Therefore, the angular speed is half the magnitude of the curl, or

v = 0 a 0 = 1
2

 0 ∇ * F 0 .
The rotation field F = a * r suggests a related question. Suppose a paddle wheel is 

placed in the vector field F at a point P with the axis of the wheel in the direction of a unit 
vector n (Figure 17.42). How should n be chosen so the paddle wheel spins fastest? The 
scalar component of ∇ * F in the direction of n is

1∇ * F2 # n = 0 ∇ * F 0  cos u, 1 0 n 0 = 12
where u is the angle between ∇ * F and n. The scalar component is greatest in magnitude 
and the paddle wheel spins fastest when u = 0 or u = p; that is, when n and ∇ * F are 
parallel. If the axis of the paddle wheel is orthogonal to ∇ * F 1u = {p>22, the wheel 
doesn’t spin.

DEFINITION Curl of a Vector Field

The curl of a vector field F = 8ƒ, g, h9  that is differentiable on a region of ℝ3 is

 ∇ * F = curl F

 = a 0h
0y

-
0g
0z
b  i + a 0ƒ

0z
-

0h
0x
b  j + a 0g

0x
-

0ƒ
0y

 b  k.

If ∇ * F = 0, the vector field is irrotational.

z

x

y

General
rotation field

a 5 k1, 21, 1l
F 5 a 3 r
= 3 F 5 2a

= 3 F

F
a

Figure 17.41

P

= 3 F

= 3 F

F

Paddle wheel at P with axis n measures
rotation about n. Rotation is a
maximum when = 3 F is parallel to n.

n
a

z

y

x

u

Figure 17.42

➤	 Just as ∇ƒ # n is the directional derivative 
in the direction n, 1∇ * F2 # n is the 
directional spin in the direction n.

General Rotation Vector Field

The general rotation vector field is F = a * r, where the nonzero constant 
vector a = 8a1, a2, a39  is the axis of rotation and r = 8x, y, z9 . For all nonzero 
choices of a, 0 ∇ * F 0 = 2 0 a 0  and ∇ # F = 0. If F is a velocity field, then the 
constant angular speed of the field is

v = 0 a 0 = 1
2

 0 ∇ * F 0 .
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EXAMPLE 4 Curl of a rotation field Compute the curl of the rotation field 
F = a * r, where a = 82, -1, 19  and r = 8x, y, z9(Figure 17.41). What are the  
direction and the magnitude of the curl?

SOLUTION A quick calculation shows that

F = a * r = 1-y - z2 i + 1x - 2z2 j + 1x + 2y2 k.

The curl of the vector field is

∇ * F = ∞
i j k
0
0x

0
0y

0
0z

-y - z x - 2z x + 2y

∞ = 4i - 2j + 2k = 2a.

We have confirmed that ∇ * F = 2a and that the direction of the curl is the direction of 
a, which is the axis of rotation. The magnitude of ∇ * F is 0 2a 0 = 216, which is twice 
the angular speed of rotation.

Related Exercises 25–26	  

QUICK CHECK 3 Show that if 
a vector field has the form 
F = 8  ƒ1x2, g1y2, h1z29 , then 
∇ * F = 0.	

Working with Divergence and Curl
The divergence and curl satisfy some of the same properties that ordinary derivatives sat-
isfy. For example, given a real number c and differentiable vector fields F and G, we have 
the following properties.

Divergence Properties Curl Properties

∇ # 1F + G2 = ∇ # F + ∇ # G ∇ * 1F + G2 = 1∇ * F2 + 1∇ * G2
     ∇ # 1cF2 = c1∇ # F2    ∇ * 1cF2 = c1∇ * F2

These and other properties are explored in Exercises 65–72.
Additional properties that have importance in theory and applications are presented in 

the following theorems and examples.

THEOREM 17.11 Curl of a Conservative Vector Field
Suppose F is a conservative vector field on an open region D of ℝ3. Let F = ∇w, 
where w is a potential function with continuous second partial derivatives on D. 
Then ∇ * F = ∇ * ∇w = 0: The curl of the gradient is the zero vector and F  
is irrotational.

Proof: We must calculate ∇ * ∇w:

∇ * ∇w = ∞
i j k
0
0x

0
0y

0
0z

wx wy wz

∞ = 1wzy - wyz2 i + 1wxz - wzx2 j + 1wyx - wxy2 k = 0.
(+1)1+*  (+1)1+*  (+1)1+*
   0        0        0

The mixed partial derivatives are equal by Clairaut’s Theorem (Theorem 15.4).
The converse of this theorem (if ∇ * F = 0, then F is a conservative field) is han-

dled in Section 17.7 by means of Stokes’ Theorem. 

THEOREM 17.12 Divergence of the Curl
Suppose F = 8ƒ, g, h9 , where ƒ, g, and h have continuous second partial deriva-
tives. Then ∇ # 1∇ * F2 = 0: The divergence of the curl is zero.

➤	 First note that ∇ * F is a vector, so it 
makes sense to take the divergence of  
the curl.
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Proof: Again, a calculation is needed:

 ∇ # 1∇ * F2

 =
0
0x

 a 0h
0y

-
0g
0z
b +

0
0y

 a 0ƒ
0z

-
0h
0x
b +

0
0z

 a 0g
0x

-
0ƒ
0y
b

 = 1hyx - hxy2 + 1gxz - gzx2 + 1ƒzy - ƒyz2 = 0.
 (+1)1+*  (+1)1+*  (+1)1+*
   0       0       0

Clairaut’s Theorem (Theorem 15.4) ensures that the mixed partial derivatives are equal. 

The gradient, the divergence, and the curl may be combined in many ways—some of 
which are undefined. For example, the gradient of the curl 1∇1∇ * F22 and the curl of 
the divergence 1∇ * 1∇ # F22 are undefined. However, a combination that is defined and 
is important is the divergence of the gradient ∇ # ∇u, where u is a scalar-valued function. 
This combination is denoted ∇2u and is called the Laplacian of u; it arises in many physi-
cal situations (Exercises 56–58, 62). Carrying out the calculation, we find that

∇ # ∇u =
0
0x

 
0u
0x

+
0
0y

 
0u
0y

+
0
0z

 
0u
0z

=
02u

0x2 +
02u

0y2 +
02u

0z2  .

We close with a result that is useful in its own right but is also intriguing because it 
parallels the Product Rule from single-variable calculus.

THEOREM 17.13 Product Rule for the Divergence
Let u be a scalar-valued function that is differentiable on a region D and let F be a 
vector field that is differentiable on D. Then

∇ # 1uF2 = ∇u # F + u1∇ # F2.

The rule says that the “derivative” of the product is the “derivative” of the first function 
multiplied by the second function plus the first function multiplied by the “derivative” of 
the second function. However, in each instance, “derivative” must be interpreted correctly 
for the operations to make sense. The proof of the theorem requires a direct calculation  
(Exercise 67). Other similar vector calculus identities are presented in Exercises 68–72.

QUICK CHECK 4 Is ∇ # 1uF2 a vector 
function or a scalar function?	

EXAMPLE 5 More properties of radial fields Let r = 8x, y, z9  and let 

w =
1

0 r 0 = 1x
2 + y2 + z22-1>2 be a potential function.

a. Find the associated gradient field F = ∇ a 1

0 r 0 b .

b. Compute ∇ # F.

SOLUTION

a. The gradient has three components. Computing the first component reveals a pattern:

0w
0x

=
0
0x

 1x2 + y2 + z22-1>2 = -  
1
2

 1x2 + y2 + z22-3>2 2x = -  
x

0 r 0 3.

Making a similar calculation for the y@ and z@derivatives, the gradient is

F = ∇ a 1

0 r 0 b = -  
8x, y, z9
0 r 0 3 = -  

r
0 r 0 3 .

This result reveals that F is an inverse square vector field (for example, a gravitational 

or electric field), and its potential function is w =
1

0 r 0 .
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b. The divergence ∇ # F = ∇ # a - r
0 r 0 3 b  involves a product of the vector function 

r = 8x, y, z9  and the scalar function 0 r 0 -3. Applying Theorem 17.13, we find that

∇ # F = ∇ # a - r
0 r 0 3 b = -∇ 

1

0 r 0 3
# r -

1

0 r 0 3 ∇ # r .

A calculation similar to part (a) shows that ∇
1

0 r 0 3 = -  
3 r
0 r 0 5 (Exercise 35). Therefore,

 ∇ # F = ∇ # a - r
0 r 0 3 b = -∇

1

0 r 0 3
# r -

1

0 r 0 3 ∇ # r
 (1)1*     

()*

-3r> 0 r 0 5      
3

 =
3r
0 r 0 5

# r -
3

0 r 0 3  Substitute for ∇
1

0 r 0 3.

 =
3 0 r 0 2
0 r 0 5  -

3

0 r 0 3  r # r = 0 r 0 2

 = 0.

The result is consistent with Theorem 17.10 (with p = 3): The divergence of an  
inverse square vector field in ℝ3 is zero. It does not happen for any other radial fields 
of this form.

Related Exercises 35–36	  

Summary of Properties of Conservative Vector Fields
We can now extend the list of equivalent properties of conservative vector fields F de-
fined on an open connected region. Theorem 17.11 is added to the list given at the end of  
Section 17.3.

Properties of a Conservative Vector Field

Let F be a conservative vector field whose components have continuous second 
partial derivatives on an open connected region D in ℝ3. Then F has the following 
equivalent properties.

1. There exists a potential function w such that F = ∇w (definition).

2. #C F # dr = w1B2 - w1A2 for all points A and B in D and all piecewise-
smooth oriented curves C in D from A to B.

3. RC F # dr = 0 on all simple piecewise-smooth closed oriented curves C in D.

4. ∇ * F = 0 at all points of D.

Getting Started
1. Explain how to compute the divergence of the vector field 

F = 8ƒ, g, h9 .
2. Interpret the divergence of a vector field.

3. What does it mean if the divergence of a vector field is zero 
throughout a region?

4. Explain how to compute the curl of the vector field 
F = 8ƒ, g, h9 .

5. Interpret the curl of a general rotation vector field.

SECTION 17.5 EXERCISES
6. What does it mean if the curl of a vector field is zero throughout a 

region?

7. What is the value of ∇ # 1∇ * F2?
8. What is the value of ∇ * ∇u?

Practice Exercises
9–16. Divergence of vectors fields Find the divergence of the follow-
ing vector fields.

9. F = 82x, 4y, -3z9  10. F = 8 -2y, 3x, z9
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11. F = 812x, -6y, -6z9  12. F = 8x2yz, -xy2z, -xyz29
13. F = 8x2 - y2, y2 - z2, z2 - x29
14. F = 8e-x + y, e-y + z, e-z + x9

15. F =
8x, y, z9

1 + x2 + y2

16. F = 8yz sin x, xz cos y, xy cos z9
17–20. Divergence of radial fields Calculate the divergence of the  
following radial fields. Express the result in terms of the position  
vector r and its length 0 r 0 . Check for agreement with Theorem 17.10.

17. F =
8x, y, z9

x2 + y2 + z2 =
r

0 r 0 2

18. F =
8x, y, z9

1x2 + y2 + z223>2 =
r

0 r 0 3

19. F =
8x, y, z9

1x2 + y2 + z222 =
r

0 r 0 4
20. F = 8x, y, z91x2 + y2 + z22 = r 0 r 0 2
21–22. Divergence and flux from graphs Consider the following  
vector fields, the circle C, and two points P and Q.

a. Without computing the divergence, does the graph suggest that the 
divergence is positive or negative at P and Q? Justify your answer.

b. Compute the divergence and confirm your conjecture in part (a).
c. On what part of C is the flux outward? Inward?
d. Is the net outward flux across C positive or negative?

21. F = 8x, x + y9

1 222 21

21

1

2

22

F 5 k x, x 1 yl

Q(1, 1)P(21, 1)

y

x

22. F = 8x, y29

F 5 k x, y2l

Q(21, 21)

P(21, 1)

1 222 21

21

1

2

22

y

x

23–26. Curl of a rotation field Consider the following vector fields, 
where r = 8x, y, z9 .
a. Compute the curl of the field and verify that it has the same direc-

tion as the axis of rotation.
b. Compute the magnitude of the curl of the field.

23. F = 81, 0, 09 * r 24. F = 81, -1, 09 * r

25. F = 81, -1, 19 * r 26. F = 81, -2, -39 * r

27–34. Curl of a vector field Compute the curl of the following vector 
fields.

27. F = 8x2 - y2, xy, z9  28. F = 80, z2 - y2, -yz9
29. F = 8x2 - z2, 1, 2xz9  30. F = r = 8x, y, z9

31. F =
8x, y, z9

1x2 + y2 + z223>2 =
r

0 r 0 3

32. F =
8x, y, z9

1x2 + y2 + z221>2 =
r

0 r 0
33. F = 8z2 sin y, xz2 cos y, 2xz sin y9
34. F = 83xz3e y

2
, 2xz3e y

2
, 3xz2ey29

35–38. Derivative rules Prove the following identities. Use  
Theorem 17.13 (Product Rule) whenever possible.

35. ∇ a 1

0 r 0 3 b = -  
3r

0 r 0 5 (used in Example 5)

36. ∇ a 1

0 r 0 2 b = -  
2r

0 r 0 4

37. ∇ # ∇ a 1

0 r 0 2 b =
2

0 r 0 4 (Hint: Use Exercise 36.)

38. ∇1ln 0 r 0 2 = r

0 r 0 2
39. Explain why or why not Determine whether the following state-

ments are true and give an explanation or counterexample.

a. For a function ƒ of a single variable, if ƒ′1x2 = 0 for all x in 
the domain, then ƒ is a constant function. If ∇ # F = 0 for all 
points in the domain, then F is constant.

b. If ∇ * F = 0, then F is constant.
c. A vector field consisting of parallel vectors has zero curl.
d. A vector field consisting of parallel vectors has zero  

divergence.
e. curl F is orthogonal to F.

40. Another derivative combination Let F = 8ƒ, g, h9  and let u be 
a differentiable scalar-valued function.

a. Take the dot product of F and the del operator; then apply the 
result to u to show that

 1F # ∇2u = aƒ 
0
0x

+ g 
0
0y

+ h 
0
0z
b  u

 = ƒ 
0u
0x

+ g 
0u
0y

+ h 
0u
0z

 .

b. Evaluate 1F # ∇21xy2z32 at 11, 1, 12, where F = 81, 1, 19 .
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41. Does it make sense? Are the following expressions defined? If 
so, state whether the result is a scalar or a vector. Assume F is a 
sufficiently differentiable vector field and w is a sufficiently differ-
entiable scalar-valued function.

a. ∇ # w b. ∇F c. ∇ # ∇w
d. ∇1∇ # w2 e. ∇1∇ * w2 f. ∇ # 1∇ # F2
g. ∇ * ∇w h. ∇ * 1∇ # F2 i. ∇ * 1∇ * F2

42. Zero divergence of the rotation field Show that the general  
rotation field F = a * r, where a is a nonzero constant vector 
and r = 8x, y, z9 , has zero divergence.

43. General rotation fields

a. Let a = 80, 1, 09 , let r = 8x, y, z9 , and consider the rotation 
field F = a * r. Use the right-hand rule for cross products 
to find the direction of F at the points 10, 1, 12, 11, 1, 02, 
10, 1, -12, and 1-1, 1, 02.

b. With a = 80, 1, 09 , explain why the rotation field F = a * r 
circles the y-axis in the counterclockwise direction looking 
along a from head to tail (that is, in the negative y-direction).

44. General rotation fields Generalize Exercise 43 to show that the 
rotation field F = a * r circles the vector a in the counterclock-
wise direction looking along a from head to tail.

45. Curl of the rotation field For the general rotation field 
F = a * r, where a is a nonzero constant vector and 
r = 8x, y, z9 , show that curl F = 2a.

46. Inward to outward Find the exact points on the circle 
x2 + y2 = 2 at which the field F = 8ƒ, g9 = 8x2, y9  switches 
from pointing inward to pointing outward on the circle, or vice 
versa.

47. Maximum divergence Within the cube 51x, y, z2: 0 x 0 … 1, 
0 y 0 … 1, 0 z 0 … 16, where does div F have the greatest magnitude 
when F = 8x2 - y2, xy2 z, 2xz9?

48. Maximum curl Let F = 8z, 0, -y9 .
a. Find the scalar component of curl F in the direction of the unit 

vector n = 81, 0, 09 .
b. Find the scalar component of curl F in the direction of the unit 

vector n = h 113
 , -  

113
 , 

113
i.

c. Find the unit vector n that maximizes scaln8 -1, 1, 09  and 
state the value of scaln8 -1, 1, 09  in this direction.

49. Zero component of the curl For what vectors n is 
1curl F2 # n = 0 when F = 8y, -2z, -x9?

50–51. Find a vector field Find a vector field F with the given curl. In 
each case, is the vector field you found unique?

50. curl F = 80, 1, 09  51. curl F = 80, z, -y9

Explorations and Challenges
52. Curl and angular speed Consider the rotational velocity 

field v = a * r, where a is a nonzero constant vector and 
r = 8x, y, z9 . Use the fact that an object moving in a circular path 
of radius R with speed 0 v 0  has an angular speed of v = 0 v 0 >R.

a. Sketch a position vector a, which is the axis of rotation for the 
vector field, and a position vector r of a point P in ℝ3. Let u be 
the angle between the two vectors. Show that the perpendicular 
distance from P to the axis of rotation is R = 0 r 0 sin u.

b. Show that the speed of a particle in the velocity field is 
0 a * r 0  and that the angular speed of the object is �a � .

c. Conclude that v =
1
2

 0 ∇ * v 0 .
53. Paddle wheel in a vector field Let F = 8z, 0, 09  and let n be a 

unit vector aligned with the axis of a paddle wheel located on the 
x-axis (see figure).

a. If the paddle wheel is oriented with n = 81, 0, 09 , in what 
direction (if any) does the wheel spin?

b. If the paddle wheel is oriented with n = 80, 1, 09 , in what 
direction (if any) does the wheel spin?

c. If the paddle wheel is oriented with n = 80, 0, 19 , in what 
direction (if any) does the wheel spin?

z

x

y

F 5 k z, 0, 0l

54. Angular speed Consider the rotational velocity field 
v = 8 -2y, 2z, 09 .
a. If a paddle wheel is placed in the xy-plane with its axis normal 

to this plane, what is its angular speed?
b. If a paddle wheel is placed in the xz-plane with its axis normal 

to this plane, what is its angular speed?
c. If a paddle wheel is placed in the yz-plane with its axis normal 

to this plane, what is its angular speed?

55. Angular speed Consider the rotational velocity field 
v = 80, 10z, -10y9 . If a paddle wheel is placed in the plane 
x + y + z = 1 with its axis normal to this plane, how fast does 
the paddle wheel spin (in revolutions per unit time)?

56–58. Heat flux Suppose a solid object in ℝ3 has a temperature 
distribution given by T1x, y, z2. The heat flow vector field in the 
object is F = -k∇T, where the conductivity k 7 0 is a property 
of the material. Note that the heat flow vector points in the direc-
tion opposite to that of the gradient, which is the direction of great-
est temperature decrease. The divergence of the heat flow vector is 
∇ # F = -k∇ # ∇T = -k∇2T (the Laplacian of T). Compute the heat 
flow vector field and its divergence for the following temperature dis-
tributions.

56. T1x, y, z2 = 100e-2x2 + y2 + z2

57. T1x, y, z2 = 100e-x2 + y2 + z2

58. T1x, y, z2 = 10011 + 2x2 + y2 + z2 2
59. Gravitational potential The potential function for the gravita-

tional force field due to a mass M at the origin acting on a mass  
m is w = GMm> 0 r 0 , where r = 8x, y, z9  is the position vector of 
the mass m, and G is the gravitational constant.

a. Compute the gravitational force field F = -∇w.
b. Show that the field is irrotational; that is, show that 

∇ * F = 0.
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60. Electric potential The potential function for the force field due to 

a charge q at the origin is w =
1

4pe0

 
q

0 r 0 , where r = 8x, y, z9  is  

the position vector of a point in the field, and e0 is the permittivity 
of free space.

a. Compute the force field F = -∇w.
b. Show that the field is irrotational; that is, show that 

∇ * F = 0.

61. Navier-Stokes equation The Navier-Stokes equation is the  
fundamental equation of fluid dynamics that models the flow in 
everything from bathtubs to oceans. In one of its many forms  
(incompressible, viscous flow), the equation is

r a 0V
0t

+ 1V # ∇2Vb = -∇p + m1∇ # ∇2V.

In this notation, V = 8u, v, w9  is the three-dimensional veloc-
ity field, p is the (scalar) pressure, r is the constant density of the 
fluid, and m is the constant viscosity. Write out the three compo-
nent equations of this vector equation. (See Exercise 40 for an 
interpretation of the operations.)

62. Stream function and vorticity The rotation of a three- 
dimensional velocity field V = 8u, v, w9  is measured by the  
vorticity v = ∇ * V. If v = 0 at all points in the domain, the 
flow is irrotational.

a. Which of the following velocity fields is irrotational: 
V = 82, -3y, 5z9  or V = 8y, x - z, -y9?

b. Recall that for a two-dimensional source-free flow 
V = 8u, v, 09 , a stream function c1x, y2 may be defined such 
that u = cy and v = -cx. For such a two-dimensional flow, 
let z = k # ∇ * V be the k-component of the vorticity. Show 
that ∇2c = ∇ # ∇c = -z.

c. Consider the stream function c1x, y2 = sin x sin y on the 
square region R = 51x, y2: 0 … x … p, 0 … y … p6. Find 
the velocity components u and v; then sketch the velocity field.

d. For the stream function in part (c), find the vorticity function  
z as defined in part (b). Plot several level curves of the vortic-
ity function. Where on R is it a maximum? A minimum?

63. Ampère’s Law One of Maxwell’s equations for electromagnetic 

waves is ∇ * B = C 
0E
0t

 , where E is the electric field, B is the 

magnetic field, and C is a constant.

a. Show that the fields

E1z, t2 = A sin 1kz - vt2 i and B1z, t2 = A sin 1kz - vt2 j
satisfy the equation for constants A, k, and v, provided 
v = k>C.

b. Make a rough sketch showing the directions of E and B.

64. Splitting a vector field Express the vector field F = 8xy, 0, 09  
in the form V + W, where ∇ # V = 0 and ∇ * W = 0.

T

65. Properties of div and curl Prove the following properties of the 
divergence and curl. Assume F and G are differentiable vector 
fields and c is a real number.

a. ∇ # 1F + G2 = ∇ # F + ∇ # G
b. ∇ * 1F + G2 = 1∇ * F2 + 1∇ * G2
c. ∇ # 1cF2 = c1∇ # F2
d. ∇ * 1cF2 = c1∇ * F2

66. Equal curls If two functions of one variable, ƒ and g, have the 
property that ƒ′ = g′, then ƒ and g differ by a constant. Prove 
or disprove: If F and G are nonconstant vector fields in ℝ2 with 
curl F = curl G and div F = div G at all points of ℝ2, then F  
and G differ by a constant vector.

67–72. Identities Prove the following identities. Assume w is a differ-
entiable scalar-valued function and F and G are differentiable vector 
fields, all defined on a region of ℝ3.

67. ∇ # 1wF2 = ∇w # F + w∇ # F (Product Rule)

68. ∇ * 1wF2 = 1∇w * F2 + 1w∇ * F2 (Product Rule)

69. ∇ # 1F * G2 = G # 1∇ * F2 - F # 1∇ * G2
70. ∇ * 1F * G2 = 1G # ∇2F - G1∇ # F2 - 1F # ∇2G + F1∇ # G2
71. ∇1F # G2 = 1G # ∇2F + 1F # ∇2G + G * 1∇ * F2 +

F * 1∇ * G2
72. ∇ * 1∇ * F2 = ∇1∇ # F2 - 1∇ # ∇2F
73. Divergence of radial fields Prove that for a real number p, with 

r = 8x, y, z9 , ∇ # 8x, y, z9
� r � p =

3 - p

� r � p  .

74. Gradients and radial fields Prove that for a real number p, with 

r = 8x, y, z9 , ∇ a 1

0 r 0 p b =
-pr

0 r 0 p + 2 .

75. Divergence of gradient fields Prove that for a real number p, 

with r = 8x, y, z9 , ∇ # ∇ a 1

0 r 0 p b =
p1p - 12
0 r 0 p + 2  .

QUICK CHECK ANSWERS

1. The x-derivative of the divergence is applied to ƒ1y, z2, 
which gives zero. Similarly, the y@ and z@derivatives are zero.
2. The net outward flux is 4p. 3. In the curl, the first com-
ponent of F is differentiated only with respect to y and z, so 
the contribution from the first component is zero. Similarly, 
the second and third components of F make no contribution 
to the curl. 4. The divergence is a scalar-valued function.	

17.6 Surface Integrals
We have studied integrals on the real line, on regions in the plane, on solid regions in 
space, and along curves in space. One situation is still unexplored. Suppose a sphere has 
a known temperature distribution; perhaps it is cold near the poles and warm near the 
equator. How do you find the average temperature over the entire sphere? In analogy with 
other average value calculations, we should expect to “add up” the temperature values 
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over the sphere and divide by the surface area of the sphere. Because the temperature var-
ies continuously over the sphere, adding up means integrating. How do you integrate a 
function over a surface? This question leads to surface integrals.

It helps to keep curves, arc length, and line integrals in mind as we discuss surfaces, 
surface area, and surface integrals. What we discover about surfaces parallels what we 
already know about curves—all “lifted” up one dimension.

Parallel Concepts

Curves Surfaces

Arc length Surface area

Line integrals Surface integrals

One-parameter  
 description

Two-parameter  
 description

Parameterized Surfaces
A curve in ℝ2 is defined parametrically by r1t2 = 8x1t2, y1t29 , for a … t … b; it requires 
one parameter and two dependent variables. Stepping up one dimension to define a surface 
in ℝ3, we need two parameters and three dependent variables. Letting u and v be param-
eters, the general parametric description of a surface has the form

r1u, v2 = 8x1u, v2, y1u, v2, z1u, v29 .
We make the assumption that the parameters vary over a rectangle R = 51u, v2: 
a … u … b, c … v … d6 (Figure 17.43). As the parameters 1u, v2 vary over R, the vector 
r1u, v2 = 8x1u, v2, y1u, v2, z1u, v29  sweeps out a surface S in ℝ3.

v

y

u

x

a

c

d

b

zr(u, v) 5 kx(u, v), y(u, v), z(u, v)l

A rectangle in the uv-plane is mapped to a surface in xyz-space.

S

R

Figure 17.43

We work extensively with three surfaces that are easily described in parametric form. 
As with parameterized curves, a parametric description of a surface is not unique.

Cylinders In Cartesian coordinates, the set

51x, y, z2: x = a cos u, y = a sin u, 0 … u … 2p, 0 … z … h6,

where a 7 0, is a cylindrical surface of radius a and height h with its axis along the z-axis. 
Using the parameters u = u and v = z, a parametric description of the cylinder is

r1u, v2 = 8x1u, v2, y1u, v2, z1u, v29 = 8a cos u, a sin u, v9 ,
where 0 … u … 2p and 0 … v … h (Figure 17.44).

v

y
u

x

h

R

0 2p

S

r(u, v) 5 ka cos u, a sin u, vl

h

a

z

Figure 17.44

QUICK CHECK 1 Describe the surface 
r1u, v2 = 82 cos u, 2 sin u, v9 , for 
0 … u … p and 0 … v … 1.	
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Cones The surface of a cone of height h and radius a with its vertex at the origin is de-
scribed in cylindrical coordinates by

51r, u, z2: 0 … r … a, 0 … u … 2p, z = rh>a6.

For a fixed value of z, we have r = az>h; therefore, on the surface of the cone,

x = r cos u =
az
h

 cos u and y = r sin u =
az
h

 sin u.

Using the parameters u = u and v = z, the parametric description of the conical surface is

r1u, v2 = 8x1u, v2, y1u, v2, z1u, v29 = h av
h

 cos u, 
av
h

 sin u, vi,

where 0 … u … 2p and 0 … v … h (Figure 17.45).

➤	 Note that when r = 0, z = 0 and when 
r = a, z = h.

➤	 Recall the relationships between polar 
and rectangular coordinates:

x = r cos u, y = r sin u, and
x2 + y2 = r2.

QUICK CHECK 2 Describe the surface 
r1u, v2 = 8v cos u, v sin u, v9 , for 
0 … u … p and 0 … v … 10.	

v

y
u

x

h

R

0 2p

a

S

sin u, vlcos u,r(u, v) 5 k av
h

av
h

h

z

Figure 17.45

➤	 The complete cylinder, cone, and sphere 
are generated as the angle variable 
u varies over the half-open interval 
30, 2p2. As in previous chapters, we will 
use the closed interval 30, 2p4.

Spheres The parametric description of a sphere of radius a centered at the origin comes 
directly from spherical coordinates:

51r, w, u2: r = a, 0 … w … p, 0 … u … 2p6.

Recall the following relationships among spherical and rectangular coordinates (Section 
16.5):

x = a sin w cos u,  y = a sin w sin u,   z = a cos w.

When we define the parameters u = w and v = u, a parametric description of the sphere is

r1u, v2 = 8a sin u cos v, a sin u sin v, a cos u9 ,
where 0 … u … p and 0 … v … 2p (Figure 17.46).

v

y

u

x

2p
z

R

0 p

a
S

r(u, v) 5 ka sin u cos v, a sin u sin v, a cos ul

Figure 17.46

QUICK CHECK 3 Describe the surface 
r1u, v2 = 84 sin u cos v, 4 sin u sin v, 
4 cos u9 , for 0 … u … p>2 and 
0 … v … p.	
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EXAMPLE 1 Parametric surfaces Find parametric descriptions for the following 
surfaces.

a. The plane 3x - 2y + z = 2

b. The paraboloid z = x2 + y2, for 0 … z … 9

SOLUTION

a. Defining the parameters u = x and v = y, we find that

z = 2 - 3x + 2y = 2 - 3u + 2v.

Therefore, a parametric description of the plane is

r1u, v2 = 8u, v, 2 - 3u + 2v9 ,
for -∞ 6 u 6 ∞  and -∞ 6 v 6 ∞ .

b. Thinking in terms of polar coordinates, we let u = u and v = 1z, which means that 
z = v2. The equation of the paraboloid is x2 + y2 = z = v2, so v plays the role of the 
polar coordinate r. Therefore, x = v cos u = v cos u and y = v sin u = v sin u.
A parametric description for the paraboloid is

r1u, v2 = 8v cos u, v sin u, v29 ,
where 0 … u … 2p and 0 … v … 3.

Alternatively, we could choose u = u and v = z. The resulting description is

r1u, v2 = 81v cos u, 1v sin u, v9 ,
where 0 … u … 2p and 0 … v … 9. Related Exercises 9, 12	  

Surface Integrals of Scalar-Valued Functions
We now develop the surface integral of a scalar-valued function ƒ defined on a smooth 
parameterized surface S described by the equation

r1u, v2 = 8x1u, v2, y1u, v2, z1u, v29 ,
where the parameters vary over a rectangle R = 51u, v2: a … u … b, c … v … d6. The 
functions x, y, and z are assumed to have continuous partial derivatives with respect to u 
and v. The rectangular region R in the uv-plane is partitioned into rectangles, with sides 
of length ∆u and ∆v, that are ordered in some convenient way, for k = 1, c, n. The kth 
rectangle Rk, which has area ∆A = ∆u∆v, corresponds to a curved patch Sk on the surface 
S (Figure 17.47), which has area ∆Sk. We let 1uk, vk2 be the lower-left corner point of Rk. 
The parameterization then assigns 1uk, vk2 to a point P1x1uk, vk2, y1uk, vk2, z1uk, vk22, or 
more simply, P1xk, yk, zk2, on Sk. To construct the surface integral, we define a Riemann 
sum, which adds up function values multiplied by areas of the respective patches:

a
n

k = 1

 ƒ1x1uk, vk2, y1uk, vk2, z1uk, vk22∆Sk.

➤	 A more general approach allows 1uk, vk2 
to be an arbitrary point in the kth  
rectangle. The outcome of the two 
approaches is the same.

v

y

u x
a

c

d

b

z

S

Parameterization

r(u, v) 5 kx(u, v), y(u, v), z(u, v)l

Rk maps to Sk;
(uk, vk) maps to P.

P(xk, yk, zk)

Rk

Sk

Dv

Du

uv-parameter plane

(uk, vk)

R

Figure 17.47
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The crucial step is computing ∆Sk, the area of the kth patch Sk.
Figure 17.48 shows the patch Sk and the point P1xk, yk, zk2. Two special vectors are 

tangent to the surface at P; these vectors lie in the plane tangent to S at P.

• tu is a vector tangent to the surface corresponding to a change in u with v constant in the 
uv-plane.

• tv is a vector tangent to the surface corresponding to a change in v with u constant in the 
uv-plane.

Because the surface S may be written r1u, v2 = 8x1u, v2, y1u, v2, z1u, v29 , a tangent vec-
tor corresponding to a change in u with v fixed is

tu =
0r
0u

= h 0x
0u

 , 
0y
0u

 , 
0z
0u
i.

Similarly, a tangent vector corresponding to a change in v with u fixed is

tv =
0r
0v

= h 0x
0v

 , 
0y
0v

 , 
0z
0v
i.

Now consider an increment ∆u in u with v fixed; the corresponding change in r, 
which is r1u + ∆u, v2 - r1u, v2, can be approximated using the definition of the partial 
derivative of r with respect to u. Specifically, when ∆u is small, we have

0r
0u

≈
1
∆u
1r1u + ∆u, v2 - r1u, v22.

Multiplying both sides of this equation by ∆u and recalling that tu =
0r
0u

 , we see that the 

change in r corresponding to the increment ∆u is approximated by the vector

tu∆u ≈ r1u + ∆u, v2 - r1u, v2.(+++++)+++++* 
change in r corresponding to ∆u  

Using a similar line of reasoning, the change in r corresponding to the increment ∆v (with 
u fixed) is approximated by the vector

tv∆v ≈ r1u, v + ∆v2 - r1u, v2.(+++++)+++++* 
change in r corresponding to ∆v

As nonzero scalar multiples of tu and tv, the vectors tu∆u and tv∆v are also tangent 
to the surface. They determine a parallelogram that lies in the plane tangent to S at P  
(Figure 17.48); the area of this parallelogram approximates the area of the kth patch Sk, which  
is ∆Sk.

Appealing to the cross product (Section 13.4), the area of the parallelogram is

0 tu∆u * tv∆v 0 = 0 tu * tv 0  ∆u ∆v ≈ ∆Sk.

Note that tu * tv is evaluated at 1uk, vk2 and is a vector normal to the surface at P, which 
we assume to be nonzero at all points of S.

We write the Riemann sum with the observation that the areas of the parallelograms 
approximate the areas of the patches Sk:

 a
n

k = 1

 ƒ1x1uk, vk2, y1uk, vk2, z1uk, vk22∆Sk

   ≈ a
n

k = 1

 ƒ1x1uk, vk2, y1uk, vk2, z1uk, vk22 0 tu * tv 0 ∆u ∆v.(++1)1++*
   ≈∆Sk

We now assume ƒ is continuous on S. As ∆u and ∆v approach zero, the areas of the  
parallelograms approach the areas of the corresponding patches on S. We define the limit 

y

x

z

P(xk, yk, zk)

tu 3 tv

tuDu

tvDv

kth patch Sk

Parallelogram in tangent
plane has area utuDu 3 tvDvu.

Figure 17.48

➤	 In general, the vectors tu and tv are 
different for each patch, so they 
should carry a subscript k. To keep 
the notation as simple as possible, we 
have suppressed the subscripts on these 
vectors with the understanding that they 
change with k. These tangent vectors are 
given by partial derivatives because in 
each case, either u or v is held constant, 
while the other variable changes.

M17_BRIG3644_03_SE_C17_1089-1184.indd   1150 27/10/17   2:41 PM



 17.6 Surface Integrals 1151

of this Riemann sum to be the surface integral of ƒ over S, which we write 6s ƒ1x, y, z2 dS. 
The surface integral is evaluated as an ordinary double integral over the region R in the  
uv-plane:

 6
S

ƒ1x, y, z2 dS = lim
∆u, ∆vS0

 a
n

k = 1

 ƒ1x1uk, vk2, y1uk, vk2, z1uk, vk22 0 tu * tv 0 ∆u ∆v

 = 6
R

ƒ1x1u, v2, y1u, v2, z1u, v22 0 tu * tv 0  dA.

If R is a rectangular region, as we have assumed, the double integral becomes an 
iterated integral with respect to u and v with constant limits. In the special case that 
ƒ1x, y, z2 = 1, the integral gives the surface area of S.

➤	 The role that the factor 0 tu * tv 0  dA plays 
in surface integrals is analogous to the 
role played by 0 r′1t2 0  dt in line integrals.

DEFINITION Surface Integral of Scalar-Valued Functions  
on Parameterized Surfaces

Let ƒ be a continuous scalar-valued function on a smooth surface S given 
parametrically by r1u, v2 = 8x1u, v2, y1u, v2, z1u, v29 , where u and v vary over 
R = 51u, v2: a … u … b, c … v … d6. Assume also that the tangent vectors 

tu =
0r
0u

= h 0x
0u

 , 
0y
0u

 , 
0z
0u
i and tv =

0r
0v

= h 0x
0v

 , 
0y
0v

 , 
0z
0v
i are continuous on R and  

the normal vector tu * tv is nonzero on R. Then the surface integral of ƒ over S is

6
S

ƒ1x, y, z2 dS = 6
R

ƒ1x1u, v2, y1u, v2, z1u, v22 0 tu * tv 0  dA.

If ƒ1x, y, z2 = 1, this integral equals the surface area of S.

➤	 The condition that tu * tv be nonzero 
means tu and tv are nonzero and not 
parallel. If tu * tv ≠ 0 at all points, 
then the surface is smooth. The value 
of the integral is independent of the 
parameterization of S.

EXAMPLE 2 Surface area of a cylinder and sphere Find the surface area of the fol-
lowing surfaces.

a. A cylinder with radius a 7 0 and height h (excluding the circular ends)

b. A sphere of radius a

SOLUTION The critical step is evaluating the normal vector tu * tv. It needs to be done 
only once for any given surface.

a. As shown before, a parametric description of the cylinder is

r1u, v2 = 8x1u, v2, y1u, v2, z1u, v29 = 8a cos u, a sin u, v9 ,
where 0 … u … 2p and 0 … v … h. The required normal vector is

 tu * tv = 5 i j k
0x
0u

0y
0u

0z
0u

0x
0v

0y
0v

0z
0v

5  Definition of cross product

 = †
i j k

-a sin u a cos u  0 
0 0 1

†  Evaluate derivatives.

 = 8a cos u, a sin u, 09 .  Compute cross product.

Notice that this normal vector points outward from the cylinder, away from the z-axis 
(Figure 17.49). It follows that

0 tu * tv 0 = 2a2 cos2 u + a2 sin2 u = a.

Cylinder: r(u, v) 5 ka cos u, a sin u, vl,
0 # u # 2p and 0 # v # h

a

h

Normal vector
ka cos u, a sin u, 0l,
magnitude 5 a

y
x

z

Figure 17.49
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1152 Chapter 17  •  Vector Calculus

Setting ƒ1x, y, z2 = 1, the surface area of the cylinder is

6
S

1 dS = 6
R

0 tu * tv 0  dA = ∫2p

0
∫h

0
a dv du = 2pah,

(11)11*
  a

confirming the formula for the surface area of a cylinder (excluding the ends).

b. A parametric description of the sphere is

r1u, v2 = 8a sin u cos v, a sin u sin v, a cos u9 ,
where 0 … u … p and 0 … v … 2p. The required normal vector is

 tu * tv = †
i j k

a cos u cos v a cos u sin v -a sin u
-a sin u sin v a sin u cos v 0

†

 = 8a2 sin2 u cos v, a2 sin2 u sin v, a2 sin u cos u9 .
Computing 0 tu * tv 0  requires several steps (Exercise 70). However, the needed result 
is quite simple: 0 tu * tv 0 = a2 sin u and the normal vector tu * tv points outward 
from the surface of the sphere (Figure 17.50). With ƒ1x, y, z2 = 1, the surface area of 
the sphere is

6
S

1 dS = 6
R

0 tu * tv 0  dA = ∫2p

0
∫p

0
a2 sin u du dv = 4pa2,

(11)11*
 a2 sin u

confirming the formula for the surface area of a sphere.

➤	 Recall that for the sphere, u = w and 
v = u, where w and u are spherical 
coordinates. The element of surface 
area in spherical coordinates is 
dS = a2 sin w dw du.

x y

z

Sliced cylinder is generated by
r(u, v) 5 k4 cos u, 4 sin u, vl, where
0 # u # 2p, 0 # v # 16 2 8 cos u.

z 5 16 2 2x

Cylinder r 5 4

yx

z

Figure 17.51

Sphere:
r(u, v) 5 ka sin u cos v, a sin u sin v, a cos ul,
0 # u # p and 0 # v # 2p

a

Normal vector,
magnitude 5 a2 sin u 

y
x

z

Figure 17.50
Related Exercises 19, 22	  

EXAMPLE 3 Surface area of a partial cylinder Find the surface area of the cylinder 
51r, u2: r = 4, 0 … u … 2p6 between the planes z = 0 and z = 16 - 2x (excluding 
the top and bottom surfaces).

SOLUTION Figure 17.51 shows the cylinder bounded by the two planes. With u = u and 
v = z, a parametric description of the cylinder is

r1u, v2 = 8x1u, v2, y1u, v2, z1u, v29 = 84 cos u, 4 sin u, v9 .
The challenge is finding the limits on v, which is the z-coordinate. The plane z = 16 - 2x 
intersects the cylinder in an ellipse; along this ellipse, as u varies between 0 and 2p, the 
parameter v also changes. To find the relationship between u and v along this intersection  
curve, notice that at any point on the cylinder, we have x = 4 cos u (remember that 
u = u). Making this substitution in the equation of the plane, we have

z = 16 - 2x = 16 - 214 cos u2 = 16 - 8 cos u.
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 17.6 Surface Integrals 1153

Substituting v = z, the relationship between u and v is v = 16 - 8 cos u (Figure 17.52). 
Therefore, the region of integration in the uv-plane is

R = 51u, v2: 0 … u … 2p, 0 … v … 16 - 8 cos u6.

Recall from Example 2a that for the cylinder, 0 tu * tv 0 = a = 4. Setting ƒ1x, y, z2 = 1, 
the surface integral for the area is

 6
S

1 dS = 6
R

0 tu * tv 0  dA
(11)11*
  4

 = ∫2p

0
∫16-8 cos u

0
4 dv du

 = 4∫2p

0
116 - 8 cos u2 du Evaluate inner integral.

 = 4116u - 8 sin u2 `
0

2p
 Evaluate outer integral.

 = 128p.  Simplify.
Related Exercise 24	  

v 5 16 2 8 cos u

Region of integration in the uv-plane is
R 5 {(u, v): 0 # u # 2p,
0 # v # 16 2 8 cos u}.

R

v

u2pp

8

0

16

24

Figure 17.52

EXAMPLE 4 Average temperature on a sphere The temperature on the surface of a 
sphere of radius a varies with latitude according to the function T1w, u2 = 10 + 50 sin w, 
for 0 … w … p and 0 … u … 2p (w and u are spherical coordinates, so the temperature 
is 10° at the poles, increasing to 60° at the equator). Find the average temperature over  
the sphere.

SOLUTION We use the parametric description of a sphere. With u = w and v = u, the 
temperature function becomes ƒ1u, v2 = 10 + 50 sin u. Integrating the temperature over 
the sphere using the fact that 0 tu * tv 0 = a2 sin u (Example 2b), we have

 6
S

110 + 50 sin u2 dS = 6
R

110 + 50 sin u2 0 tu * tv 0  dA
(11)11*
 a2 sin u

 = ∫p
0
∫2p

0
110 + 50 sin u2a2 sin u dv du

 = 2pa2∫p
0
110 + 50 sin u2 sin u du  Evaluate inner integral.

 = 10pa214 + 5p2.  Evaluate outer integral.

The average temperature is the integrated temperature 10pa214 + 5p2 divided by the 
surface area of the sphere 4pa2, so the average temperature is 120 + 25p2>2 ≈ 49.3°.

Related Exercise 42	  

Surface Integrals on Explicitly Defined Surfaces Suppose a smooth surface S is 
defined not parametrically, but explicitly, in the form z = g1x, y2 over a region R in the  
xy-plane. Such a surface may be treated as a parameterized surface. We simply define the 
parameters to be u = x and v = y. Making these substitutions into the expression for tu and 
tv, a short calculation (Exercise 71) reveals that tu = tx = 81, 0, zx9 , tv = ty = 80, 1, zy9 , 
and the required normal vector is

tx * ty = 8 -zx, -zy, 19 .
It follows that

0 tx * ty 0 = 0 8 -zx, -zy, 19 0 = 2zx
 2 + zy

 2 + 1.

With these observations, the surface integral over S can be expressed as a double integral 
over a region R in the xy-plane.

➤	 This is a familiar result: A normal to 
the surface z = g1x, y2 at a point is 
a constant multiple of the gradient of 
z - g1x, y2, which is 8 -gx, -gy, 19 =  

8 -zx, -zy, 19 . The factor 2zx
 2 + zy

 2 + 1 

is analogous to the factor 2ƒ′1x22 + 1 
that appears in arc length integrals.
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1154 Chapter 17  •  Vector Calculus

EXAMPLE 5 Area of a roof over an ellipse Find the area of the surface S that lies 
in the plane z = 12 - 4x - 3y directly above the region R bounded by the ellipse 
x2>4 + y2 = 1 (Figure 17.53).

SOLUTION Because we are computing the area of the surface, we take ƒ1x, y, z2 = 1. 
Note that zx = -4 and zy = -3, so the factor 2zx

 2 + zy
 2 + 1 has the value 21-422 + 1-322 + 1 = 126 (a constant because the surface is a plane). The relevant 

surface integral is

6
S

1 dS = 6
R

2zx
 2 + zy

 2 + 1 dA = 1266
R

dA.
(++)++*
   126

The double integral that remains is simply the area of the region R bounded by the ellipse.  
Because the ellipse has semiaxes of length a = 2 and b = 1, its area is pab = 2p. 
Therefore, the area of S is 2p126.

This result has a useful interpretation. The plane surface S is not horizontal, so it has 
a greater area than the horizontal region R beneath it. The factor that converts the area of 
R to the area of S is 126. Notice that if the roof were horizontal, then the surface would 
be z = c, the area conversion factor would be 1, and the area of the roof would equal the 
area of the floor beneath it.

Related Exercises 29–30	  

➤	 If the surface S in Theorem 17.14 is 
generated by revolving a curve in the  
xy-plane about the x-axis, the theorem 
gives the standard surface area formula 
for surfaces of revolution (Exercise 75).

THEOREM 17.14 Evaluation of Surface Integrals of Scalar-Valued Functions 
on Explicitly Defined Surfaces
Let ƒ be a continuous function on a smooth surface S given by z = g1x, y2, for 
1x, y2 in a region R. The surface integral of ƒ over S is

6
S

ƒ1x, y, z2 dS = 6
R

ƒ1x, y, g1x, y222zx
 2 + zy

 2 + 1 dA.

If ƒ1x, y, z2 = 1, the surface integral equals the area of the surface.

y

z

z 5 12 2 4x 2 3y

S is directly above R.

R

Area of S 5 Ï26 3 area of R.

R is bounded by the ellipse
x2

4
1 y2 5 1.

12

4
3

y

x

z

Figure 17.53

QUICK CHECK 4 The plane z = y forms 
a 45° angle with the xy-plane. Suppose 
the plane is the roof of a room and 
the xy-plane is the floor of the room. 
Then 1 ft2 on the floor becomes how 
many square feet when projected on 
the roof?	

EXAMPLE 6 Mass of a conical sheet A thin conical sheet is described by the surface 
z = 1x2 + y221>2, for 0 … z … 4. The density of the sheet in g>cm2 is r = ƒ1x, y, z2 =
18 - z2 (decreasing from 8 g>cm2 at the vertex to 4 g>cm2 at the top of the cone;  
Figure 17.54). What is the mass of the cone?

SOLUTION We find the mass by integrating the density function over the surface of the 
cone. The projection of the cone on the xy-plane is found by setting z = 4 (the top of the 
cone) in the equation of the cone. We find that 1x2 + y221>2 = 4; therefore, the region 
of integration is the disk R = 51x, y2: x2 + y2 … 166. The next step is to compute zx 

and zy in order to evaluate 2zx
 2 + zy

 2 + 1. Differentiating z2 = x2 + y2 implicitly gives 

2zzx = 2x, or zx = x>z. Similarly, zy = y>z. Using the fact that z2 = x2 + y2, we have2zx
 2 + zy

 2 + 1 = 21x>z22 + 1y>z22 + 1 = Bx2 + y2

z2 + 1 = 12.
()*
 1

To integrate the density over the conical surface, we set ƒ1x, y, z2 = 8 - z. Replacing 
z in the integrand by r = 1x2 + y221>2 and using polar coordinates, the mass in grams is 
given by

 6
S

ƒ1x, y, z2 dS = 6
R

ƒ1x, y, z22zx
2 + zy

2 + 1 dA
(++)++*
   12

 = 126
R

18 - z2 dA  Substitute.

Density function of
sheet is r 5 8 2 z.

z 5 Ïx2 1 y2

4

yx

z

4 4
R

Figure 17.54
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 17.6 Surface Integrals 1155

 = 126
R

18 - 2x2 + y22 dA  z = 2x2 + y2

 = 12∫2p

0
∫4

0
 18 - r2 r dr du  Polar coordinates

 = 12∫2p

0
a4r2 -

r3

3
b `

0

 4 
 du  Evaluate inner integral.

 =
12822

3
 ∫2p

0
du  Simplify.

 =
256p12

3
≈ 379.  Evaluate outer integral.

As a check, note that the surface area of the cone is pr2r2 + h2 ≈ 71 cm2. If the entire 
cone had the maximum density r = 8 g>cm2, its mass would be approximately 568 g. If 
the entire cone had the minimum density r = 4 g>cm2, its mass would be approximately 
284 g. The actual mass is between these extremes and closer to the low value because the 
cone is lighter at the top, where the surface area is greater.

Related Exercise 36	  

Table 17.3 summarizes the essential relationships for the explicit and parametric de-
scriptions of cylinders, cones, spheres, and paraboloids. The listed normal vectors are cho-
sen to point away from the z-axis.

Table 17.3

Explicit Description z = g 1x, y 2 Parametric Description

Surface Equation Normal vector; magnitude Equation Normal vector; magnitude

t 8−zx, −zy, 19; ∣8−zx, −zy, 19 ∣ tu : tv; ∣ tu : tv ∣

Cylinder x2 + y2 = a2, 
0 … z … h

8x, y, 09 ; a r = 8a cos u, a sin u, v9 , 
0 … u … 2p, 0 … v … h

8a cos u, a sin u, 09 ; a

Cone z2 = x2 + y2, 
0 … z … h

8x>z, y>z, -19 ; 12 r = 8v cos u, v sin u, v9 , 
0 … u … 2p, 0 … v … h

8v cos u, v sin u, -v9 ; 12v

Sphere x2 + y2 + z2 = a2 8x>z, y>z, 19 ; a>z r = 8a sin u cos v, 
a sin u sin v, a cos u9 , 
0 … u … p, 0 … v … 2p

8a2 sin2 u cos v, a2 sin2 u sin v, 
a2 sin u cos u9 ; a2 sin u

Paraboloid z = x2 + y2, 
0 … z … h

82x, 2y, -19 ; 21 + 41x2 + y22 r = 8v cos u, v sin u, v29 , 
0 … u … 2p, 0 … v … 1h

82v2 cos u, 2v2 sin u, -v9 ; v21 + 4v2

QUICK CHECK 5 Explain why the 
explicit description for a cylinder 
x2 + y2 = a2 cannot be used for a 
surface integral over a cylinder,  
and a parametric description must  
be used.	

Surface Integrals of Vector Fields
Before beginning a discussion of surface integrals of vector fields, we must address two 
technical issues about surfaces and normal vectors.

The surfaces we consider in this text are called two-sided, or orientable, surfaces. 
To be orientable, a surface must have the property that the normal vectors vary continu-
ously over the surface. In other words, when you walk on any closed path on an orientable 
surface and return to your starting point, your head must point in the same direction it did 
when you started. A well-known example of a nonorientable surface is the Möbius strip 
(Figure 17.55). Suppose you start walking the length of the Möbius strip at a point P with 
your head pointing upward. When you return to P, your head points in the opposite direc-
tion, or downward. Therefore, the Möbius strip is not orientable.

At any point of a parameterized orientable surface, there are two unit normal vectors. 
Therefore, the second point concerns the orientation of the surface or, equivalently, the 
direction of the normal vector. Once the direction of the normal vector is determined, the 
surface becomes oriented.

Start

P

Figure 17.55
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1156 Chapter 17  •  Vector Calculus

We make the common assumption that—unless specified otherwise—a closed orient-
able surface that fully encloses a region (such as a sphere) is oriented so that the normal 
vectors point in the outward direction. For a surface that does not enclose a region in ℝ3, 
the orientation must be specified in some way. For example, we might specify that the 
normal vectors for a particular surface point in the general direction of the positive z-axis; 
that is, in an upward direction (Figure 17.56).

Now recall that the parameterization of a surface defines a normal vector tu * tv at 
each point. In many cases, the normal vectors are consistent with the specified orientation, 
in which case no adjustments need to be made. If the direction of tu * tv is not consistent 
with the specified orientation, then the sign of tu * tv must be reversed before doing cal-
culations. This process is demonstrated in the following examples.

Flux Integrals It turns out that the most common surface integral of a vector field is 
a flux integral. Consider a vector field F = 8ƒ, g, h9 , continuous on a region in ℝ3, that 
represents the flow of a fluid or the transport of a substance. Given a smooth oriented 
surface S, we aim to compute the net flux of the vector field across the surface. In a small 
region containing a point P, the flux across the surface is proportional to the component of 
F in the direction of the unit normal vector n at P. If u is the angle between F and n, then 
this component is F # n = 0F 0 0 n 0  cos u = 0F 0  cos u (because 0 n 0 = 1; Figure 17.57a). We 
have the following special cases.

• If F and the unit normal vector are aligned at P (u = 0), then the component of F in the 
direction n is F # n = 0F 0 ; that is, all of F flows across the surface in the direction of n 
(Figure 17.57b).

• If F and the unit normal vector point in opposite directions at P (u = p), then the com-
ponent of F in the direction n is F # n = - 0F 0 ; that is, all of F flows across the surface 
in the direction opposite that of n (Figure 17.57c).

• If F and the unit normal vector are orthogonal at P (u = p>2), then the component of 
F in the direction n is F # n = 0; that is, none of F flows across the surface at that point 
(Figure 17.57d).

Surfaces that enclose a region
are oriented so normal vectors
point in the outward direction.

For other surfaces, the orientation
of the surface must be specified.

Figure 17.56

Unit normal n

F ? n 5 uFu

F

P

S

u 5 0

Unit normal n

F ? n 5 uFu cos u

F

P

S

u

F ? n 5 2uFu

u 5 p

Unit normal n

F

P

S

Unit normal n

F

P

S

u 5

F ? n 5 0

No flow
through S
at P.

(a) (c)(b) (d)

2
p

Figure 17.57

The flux integral, denoted 6S F # n dS or 6S F # dS, simply adds up the components 
of F normal to the surface at all points of the surface. Notice that F # n is a scalar-valued 
function. Here is how the flux integral is computed.

Suppose the smooth oriented surface S is parameterized in the form

r1u, v2 = 8x1u, v2, y1u, v2, z1u, v29 ,
where u and v vary over a region R in the uv-plane. The required vector normal to the 
surface at a point is tu * tv, which we assume to be consistent with the orientation of S.  
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 17.6 Surface Integrals 1157

Therefore, the unit normal vector consistent with the orientation is n =
tu * tv

0 tu * tv 0
.  

Appealing to the definition of the surface integral for parameterized surfaces, the flux  
integral is

 6
S

F # n dS = 6
R

F # n 0 tu * tv 0  dA  Definition of surface integral

 = 6
R

F # tu * tv

0 tu * tv 0
0 tu * tv 0  dA Substitute for n.

(11)11*
  n

 = 6
R

F # 1tu * tv2 dA.  Convenient cancellation

The remarkable occurrence in the flux integral is the cancellation of the factor 0 tu * tv 0 .
The special case in which the surface S is specified in the form z = s1x, y2 fol-

lows directly by recalling that the required normal vector is tu * tv = 8 -zx, -zy, 19 . 
In this  case,  with F = 8ƒ, g, h9 ,  the integrand of the surface integral  is 
F # 1tu * tv2 = -ƒzx - gzy + h.

➤	 If tu * tv is not consistent with the 
specified orientation, its sign must be 
reversed.

➤	 The value of the surface integral is 
independent of the parameterization. 
However, in contrast to a surface integral 
of a scalar-valued function, the value 
of a surface integral of a vector field 
depends on the orientation of the surface. 
Changing the orientation changes the 
sign of the result.

DEFINITION Surface Integral of a Vector Field

Suppose F = 8ƒ, g, h9  is a continuous vector field on a region of ℝ3 
containing a smooth oriented surface S. If S is defined parametrically as 
r1u, v2 = 8x1u, v2, y1u, v2, z1u, v29 , for 1u, v2 in a region R, then

6
S

F # n dS = 6
R

F # 1tu * tv2 dA,

where tu =
0r
0u

= h 0x
0u

, 
0y
0u

, 
0z
0u
i and tv =

0r
0v

= h 0x
0v

, 
0y
0v

, 
0z
0v
i are continuous on R,  

the normal vector tu * tv is nonzero on R, and the direction of the normal vector  
is consistent with the orientation of S. If S is defined in the form z = s1x, y2, for 
1x, y2 in a region R, then

6
S

F # n dS = 6
R

1-ƒzx - gzy + h2 dA.

EXAMPLE 7 Rain on a roof Consider the vertical vector field F = 80, 0, -19 , cor-
responding to a constant downward flow. Find the flux in the downward direction across 
the surface S, which is the plane z = 4 - 2x - y in the first octant.

SOLUTION In this case, the surface is given explicitly. With z = 4 - 2x - y, 
we have zx = -2 and zy = -1. Therefore, the required normal vector is 
8 -zx, -zy, 19 = 82, 1, 19 , which points upward (the z-component of the vector is posi-
tive). Because we are interested in the downward flux of F across S, the surface must be 
oriented such that the normal vectors point downward. So we take the normal vector to be 
8 -2, -1, -19  (Figure 17.58). Letting R be the region in the xy-plane beneath S and not-
ing that F = 8ƒ, g, h9 = 80, 0, -19 , the flux integral is

6
S

F # n dS = 6
R

80, 0, -19 # 8 -2, -1, -19  dA = 6
R

dA = area of R.

The base R is a triangle in the xy-plane with vertices 10, 02, 12, 02, and 10, 42, so its 
area is 4. Therefore, the downward flux across S is 4. This flux integral has an interesting 
interpretation. If the vector field F represents the rate of rainfall with units of, say, g>m2 

k22, 21, 21l
points
downward
at all points
of the plane.

F 5 k0, 0, 21l

S: z 5 4 2 2x 2 y

EE F ? n dS 5 area of R 5 4
S

y

x

z

Figure 17.58
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1158 Chapter 17  •  Vector Calculus

per unit time, then the flux integral gives the mass of rain (in grams) that falls on the sur-
face in a unit of time. This result says that (because the vector field is vertical) the mass 
of rain that falls on the roof equals the mass that would fall on the floor beneath the roof 
if the roof were not there. This property is explored further in Exercise 73.

Related Exercises 43–44	  

EXAMPLE 8 Flux of the radial field Consider the radial vector field 
F = 8ƒ, g, h9 = 8x, y, z9 . Is the upward flux of the field greater across the hemisphere 
x2 + y2 + z2 = 1, for z Ú 0, or across the paraboloid z = 1 - x2 - y2, for z Ú 0? 
Note that the two surfaces have the same base in the xy-plane and the same high point 
10, 0, 12. Use the explicit description for the hemisphere and a parametric description for 
the paraboloid.

SOLUTION The base of both surfaces in the xy-plane is the unit disk 
R = 51x, y2: x2 + y2 … 16, which, when expressed in polar coordinates, is the set 
51r, u2: 0 … r … 1, 0 … u … 2p6. To use the explicit description for the hemisphere, 
we must compute zx and zy. Differentiating x2 + y2 + z2 = 1 implicitly, we find that 
zx = -x>z and zy = -y>z. Therefore, the required normal vector is 8x>z, y>z, 19 , which 
points upward on the surface. The flux integral is evaluated by substituting for ƒ, g, h, zx, 
and zy; eliminating z from the integrand; and converting the integral in x and y to an inte-
gral in polar coordinates:

 6
S

F # n dS = 6
R

1-ƒzx - gzy + h2 dA

 = 6
R

ax 
x
z

+ y 
y
z

+ zb  dA  Substitute.

 = 6
R

a x2 + y2 + z2

z
b  dA  Simplify.

 = 6
R

a 1
z
b  dA  x2 + y2 + z2 = 1

 = 6
R

a 121 - x2 - y2
b  dA  z = 21 - x2 - y2

 = ∫2p

0
∫1

0
a 121 - r2

b  r dr du Polar coordinates

 = ∫2p

0
1-21 - r22 `

0

1 
 du  

 Evaluate inner integral  
as an improper integral.

 = ∫2p

0
du = 2p.  Evaluate outer integral.

For the paraboloid z = 1 - x2 - y2, we use the parametric description (Example 1b 
or Table 17.3)

r1u, v2 = 8x, y, z9 = 8v cos u, v sin u, 1 - v29 ,
for 0 … u … 2p and 0 … v … 1. The required vector normal to the surface is

 tu * tv = †
i j k

-v sin u v cos u 0
cos u sin u -2v

†

 = 8 -2v2 cos u, -2v2 sin u, -v9 .
Notice that the normal vectors point downward on the surface (because the z-component 
is negative for 0 6 v … 1). In order to find the upward flux, we negate the normal vector 
and use the upward normal vector

-1tu * tv2 = 82v2 cos u, 2v2 sin u, v9 .

➤	 Recall that the required normal vector for 
an explicitly defined surface z = s1x, y2 
is 8 -zx, -zy, 19 .
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 17.6 Surface Integrals 1159

The flux integral is evaluated by substituting for F = 8x, y, z9  and -1tu * tv2 and then 
evaluating an iterated integral in u and v:

 6
S

F # n dS = ∫1

0
∫2p

0
8v cos u, v sin u, 1 - v29 # 82v2 cos u, 2v2 sin u, v9  du dv

 Substitute for F and -1tu * tv2.
 = ∫1

0
∫2p

0
1v3 + v2 du dv Simplify.

 = 2pa v4

4
+

v2

2
b ` 1

0
=

3p
2

. Evaluate integrals.

We see that the upward flux is greater for the hemisphere than for the paraboloid.
Related Exercises 45, 47	  

QUICK CHECK 6 Explain why the upward 
flux for the radial field in Example 8 
is greater for the hemisphere than for 
the paraboloid.	

Getting Started
1. Give a parametric description for a cylinder with radius a and 

height h, including the intervals for the parameters.

2. Give a parametric description for a cone with radius a and height 
h, including the intervals for the parameters.

3. Give a parametric description for a sphere with radius a, including 
the intervals for the parameters.

4. Explain how to compute the surface integral of a scalar-valued 
function ƒ over a cone using an explicit description of the cone.

5. Explain how to compute the surface integral of a scalar-valued 
function ƒ over a sphere using a parametric description of the 
sphere.

6. Explain what it means for a surface to be orientable.

7. Describe the usual orientation of a closed surface such as a sphere.

8. Why is the upward flux of a vertical vector field F = 80, 0, 19  
across a surface equal to the area of the projection of the surface 
in the xy-plane?

Practice Exercises
9–14. Parametric descriptions Give a parametric description of the 
form r1u, v2 = 8x1u, v2, y1u, v2, z1u, v29  for the following surfaces. 
The descriptions are not unique. Specify the required rectangle in the 
uv-plane.

9. The plane 2x - 4y + 3z = 16

10. The cap of the sphere x2 + y2 + z2 = 16, for 212 … z … 4

11. The frustum of the cone z2 = x2 + y2, for 2 … z … 8

12. The cone z2 = 41x2 + y22, for 0 … z … 4

13. The portion of the cylinder x2 + y2 = 9 in the first octant, for 
0 … z … 3

14. The cylinder y2 + z2 = 36, for 0 … x … 9

15–18. Identify the surface Describe the surface with the given para-
metric representation.

15. r1u, v2 = 8u, v, 2u + 3v - 19 , for 1 … u … 3, 2 … v … 4

16. r1u, v2 = 8u, u + v, 2 - u - v9 , for 0 … u … 2, 0 … v … 2

SECTION 17.6 EXERCISES

17. r1u, v2 = 8v cos u, v sin u, 4v9 , for 0 … u … p, 0 … v … 3

18. r1u, v2 = 8v, 6 cos u, 6 sin u9 , for 0 … u … 2p, 0 … v … 2

19–24. Surface area using a parametric description Find the area of 
the following surfaces using a parametric description of the surface.

19. The half-cylinder 51r, u, z2: r = 4, 0 … u … p, 0 … z … 76
20. The plane z = 3 - x - 3y in the first octant

21. The plane z = 10 - x - y above the square � x � … 2, � y � … 2

22. The hemisphere x2 + y2 + z2 = 100, for z Ú 0

23. A cone with base radius r and height h, where r and h are positive 
constants

24. The cap of the sphere x2 + y2 + z2 = 4, for 1 … z … 2

25–28. Surface integrals using a parametric description Evaluate 
the surface integral 6S ƒ dS using a parametric description of the  
surface.

25. ƒ1x, y, z2 = x2 + y2, where S is the hemisphere 
x2 + y2 + z2 = 36, for z Ú 0

26. ƒ1x, y, z2 = y, where S is the cylinder x2 + y2 = 9, 0 … z … 3

27. ƒ1x, y, z2 = x, where S is the cylinder x2 + z2 = 1, 0 … y … 3

28. ƒ1r, w, u2 = cos w, where S is the part of the unit sphere in the 
first octant

29–34. Surface area using an explicit description Find the area of 
the following surfaces using an explicit description of the surface.

29. The part of the plane z = 2x + 2y + 4 over the region R 
bounded by the triangle with vertices 10, 02, 12, 02, and 12, 42

30. The part of the plane z = x + 3y + 5 over the region 
R = 51x, y2: 1 … x2 + y2 … 46

31. The cone z2 = 41x2 + y22, for 0 … z … 4

32. The trough z =
1
2

 x2, for -1 … x … 1, 0 … y … 4

33. The paraboloid z = 21x2 + y22, for 0 … z … 8

34. The part of the hyperbolic paraboloid z = 3 + x2 - y2 above the 
sector R = 51r, u2: 0 … r … 12, 0 … u … p>26

T
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1160 Chapter 17  •  Vector Calculus

35–38. Surface integrals using an explicit description Evaluate the 
surface integral 6S ƒ1x, y, z2 dS using an explicit representation of the 
surface.

35. ƒ1x, y, z2 = xy; S is the plane z = 2 - x - y in the first octant.

36. ƒ1x, y, z2 = x2 + y2; S is the paraboloid z = x2 + y2, for 
0 … z … 1.

37. ƒ1x, y, z2 = 25 - x2 - y2; S is the hemisphere centered at the 
origin with radius 5, for z Ú 0.

38. ƒ1x, y, z2 = ez; S is the plane z = 8 - x - 2y in the first octant.

39–42. Average values

39. Find the average temperature on that part of the plane 
2x + 2y + z = 4 over the square 0 … x … 1, 0 … y … 1, where 
the temperature is given by T1x, y, z2 = e2x + y + z - 3.

40. Find the average squared distance between the origin and the 
points on the paraboloid z = 4 - x2 - y2, for z Ú 0.

41. Find the average value of the function ƒ1x, y, z2 = xyz on the unit 
sphere in the first octant.

42. Find the average value of the temperature function 
T1x, y, z2 = 100 - 25z on the cone z2 = x2 + y2, for 
0 … z … 2.

43–48. Surface integrals of vector fields Find the flux of the following 
vector fields across the given surface with the specified orientation. You 
may use either an explicit or a parametric description of the surface.

43. F = 80, 0, -19  across the slanted face of the tetrahedron 
z = 4 - x - y in the first octant; normal vectors point upward.

44. F = 8x, y, z9  across the slanted face of the tetrahedron 
z = 10 - 2x - 5y in the first octant; normal vectors point  
upward.

45. F = 8x, y, z9  across the slanted surface of the cone z2 = x2 + y2,  
for 0 … z … 1; normal vectors point upward.

46. F = 8e-y, 2z, xy9  across the curved sides of the surface 
S = 51x, y, z2: z = cos y, 0 y 0 … p, 0 … x … 46; normal vectors 
point upward.

47. F = r> � r � 3 across the sphere of radius a centered at the origin, 
where r = 8x, y, z9 ; normal vectors point outward.

48. F = 8 -y, x, 19  across the cylinder y = x2, for 0 … x … 1, 
0 … z … 4; normal vectors point in the general direction of the 
positive y-axis.

49. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. If the surface S is given by 51x, y, z2: 0 … x … 1, 0 … y … 1, 

z = 106, then 6S ƒ1x, y, z2 dS = #1
0 #1

0 ƒ1x, y, 102 dx dy.

b. If the surface S is given by 51x, y, z2: 0 … x … 1, 0 … y … 1, 

z = x6, then 6S ƒ1x, y, z2 dS = #1
0 #1

0 ƒ1x, y, x2 dx dy.

c. The surface r = 8v cos u, v sin u, v29 , for 0 … u … p,  
0 … v … 2, is the same as the surface r = 81v cos 2u, 1v sin 2u, v9 , for 0 … u … p>2, 0 … v … 4.

d. Given the standard parameterization of a sphere, the normal 
vectors tu * tv are outward normal vectors.

T

50–53. Miscellaneous surface integrals Evaluate the following  
integrals using the method of your choice. Assume normal vectors  
 point either outward or upward.

50. 6
S

∇ln � r � # n dS, where S is the hemisphere x2 + y2 + z2 = a2, 

for z Ú 0, and where r = 8x, y, z9

51. 6
S

0 r 0  dS, where S is the cylinder x2 + y2 = 4, for 0 … z … 8, 

where r = 8x, y, z9

52. 6
S

xyz dS, where S is that part of the plane z = 6 - y that lies in 

the cylinder x2 + y2 = 4

53. 6
S

8x, 0, z92x2 + z2
# n dS, where S is the cylinder x2 + z2 = a2, 

� y � … 2

54. Cone and sphere The cone z2 = x2 + y2, for z Ú 0, cuts the 
sphere x2 + y2 + z2 = 16 along a curve C.

a. Find the surface area of the sphere below C, for z Ú 0.
b. Find the surface area of the sphere above C.
c. Find the surface area of the cone below C, for z Ú 0.

55. Cylinder and sphere Consider the sphere x2 + y2 + z2 = 4 and 
the cylinder 1x - 122 + y2 = 1, for z Ú 0. Find the surface area 
of the cylinder inside the sphere.

56. Flux on a tetrahedron Find the upward flux of the field 

F = 8x, y, z9  across the plane 
x
a

+
y

b
+

z
c
= 1 in the first octant, 

where a, b, and c are positive real numbers. Show that the flux 
equals c times the area of the base of the region. Interpret the  
result physically.

57. Flux across a cone Consider the field F = 8x, y, z9  and the cone 

z2 =
x2 + y2

a2  , for 0 … z … 1.

a. Show that when a = 1, the outward flux across the cone is 
zero. Interpret the result.

b. Find the outward flux (away from the z-axis), for any a 7 0. 
Interpret the result.

58. Surface area formula for cones Find the general formula for the 
surface area of a cone with height h and base radius a (excluding 
the base).

59. Surface area formula for spherical cap A sphere of radius a is 
sliced parallel to the equatorial plane at a distance a - h from the 
equatorial plane (see figure). Find the general formula for the sur-
face area of the resulting spherical cap (excluding the base) with 
thickness h.

a

h

T
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Explorations and Challenges
60. Radial fields and spheres Consider the radial field F = r> 0 r 0 p, 

where r = 8x, y, z9  and p is a real number. Let S be the sphere 
of radius a centered at the origin. Show that the outward flux of F 
across the sphere is 4p>a p - 3. It is instructive to do the calculation 
using both an explicit and a parametric description of the sphere.

61–63. Heat flux The heat flow vector field for conducting objects 
is F = -k∇T, where T1x, y, z2 is the temperature in the object and 
k 7 0 is a constant that depends on the material. Compute the outward 
flux of F across the following surfaces S for the given temperature  
distributions. Assume k = 1.

61. T1x, y, z2 = 100e-x - y; S consists of the faces of the cube 0 x 0 … 1, 
0 y 0 … 1, 0 z 0 … 1.

62. T1x, y, z2 = 100e-x2 - y2 - z2
; S is the sphere x2 + y2 + z2 = a2.

63. T1x, y, z2 = - ln 1x2 + y2 + z22; S is the sphere 
x2 + y2 + z2 = a2.

64. Flux across a cylinder Let S be the cylinder x2 + y2 = a2, for 
-L … z … L.

a. Find the outward flux of the field F = 8x, y, 09  across S.

b. Find the outward flux of the field F =
8x, y, 09
1x2 + y22p>2 =

r

0 r 0 p  

across S, where 0 r 0  is the distance from the z-axis and p is a  
real number.

c. In part (b), for what values of p is the outward flux finite as 
a S ∞  (with L fixed)?

d. In part (b), for what values of p is the outward flux finite as 
L S ∞  (with a fixed)?

65. Flux across concentric spheres Consider the radial fields 

F =
8x, y, z9

1x2 + y2 + z22p>2 =
r

0 r 0 p , where p is a real number. Let  

S consist of the spheres A and B centered at the origin with radii  
0 6 a 6 b, respectively. The total outward flux across S consists 
of the flux out of S across the outer sphere B minus the flux into S 
across the inner sphere A.

a. Find the total flux across S with p = 0. Interpret the result.
b. Show that for p = 3 (an inverse square law), the flux across S 

is independent of a and b.

66–69. Mass and center of mass Let S be a surface that represents a 
thin shell with density r. The moments about the coordinate planes (see 
Section 16.6) are Myz = 6S xr1x, y, z2 dS, Mxz = 6S yr1x, y, z2 dS,  

and Mxy = 6S zr1x, y, z2 dS. The coordinates of the center of mass of  

the shell are x =
Myz

m
 , y =

Mxz

m
 , and z =

Mxy

m
 , where m is the mass of 

the shell. Find the mass and center of mass of the following shells. Use 
symmetry whenever possible.

66. The constant-density hemispherical shell x2 + y2 + z2 = a2, 
z Ú 0

67. The constant-density cone with radius a, height h, and base in the 
xy-plane

68. The constant-density half-cylinder x2 + z2 = a2, -  
h
2

… y …
h
2

 , 
z Ú 0

69. The cylinder x2 + y2 = a2, 0 … z … 2, with density 
r1x, y, z2 = 1 + z

70. Outward normal to a sphere Show that 0 tu * tv 0 = a2 sin u 
for a sphere of radius a defined parametrically by 
r1u, v2 = 8a sin u cos v, a sin u sin v, a cos u9 , where 
0 … u … p and 0 … v … 2p.

71. Special case of surface integrals of scalar-valued functions  
Suppose a surface S is defined as z = g1x, y2 on a region R.  
Show that tx * ty = 8 -zx, -zy, 19  and that 

6S ƒ1x, y, z2 dS = 6R ƒ1x, y, g1x, y222zx
2 + zy

2 + 1 dA.

72. Surfaces of revolution Suppose y = ƒ1x2 is a continuous and 
positive function on 3a, b4. Let S be the surface generated when 
the graph of ƒ on 3a, b4 is revolved about the x-axis.

a. Show that S is described parametrically by 
r1u, v2 = 8u, ƒ1u2 cos v, ƒ1u2 sin v9 , for a … u … b, 
0 … v … 2p.

b. Find an integral that gives the surface area of S.
c. Apply the result of part (b) to the surface generated with 

ƒ1x2 = x3, for 1 … x … 2.
d. Apply the result of part (b) to the surface generated with 

ƒ1x2 = 125 - x221>2, for 3 … x … 4.

73. Rain on roofs Let z = s1x, y2 define a surface over a region R in 
the xy-plane, where z Ú 0 on R. Show that the downward flux of 
the vertical vector field F = 80, 0, -19  across S equals the area 
of R. Interpret the result physically.

74. Surface area of a torus

a. Show that a torus with radii R 7 r (see figure) may be  
described parametrically by r1u, v2 = 81R + r cos u2 cos v, 
1R + r cos u2 sin v, r sin u9 , for 0 … u … 2p, 0 … v … 2p.

b. Show that the surface area of the torus is 4p2Rr.

R

r

75. Surfaces of revolution—single variable Let ƒ be differentiable 
and positive on the interval 3a, b4. Let S be the surface generated 
when the graph of ƒ on 3a, b4 is revolved about the x-axis.  
Use Theorem 17.14 to show that the area of S (as given in  
Section 6.6) is

∫b

a
2pƒ1x221 + ƒ′1x22 dx.

QUICK CHECK ANSWERS

1. A half-cylinder with height 1 and radius 2 with its axis  
along the z-axis 2. A half-cone with height 10 and radius 10
3. A quarter-sphere with radius 4 4. 12 5. The cylinder 
x2 + y2 = a2 does not represent a function, so zx and zy  
cannot be computed. 6. The vector field is everywhere  
orthogonal to the hemisphere, so the hemisphere has maxi-
mum flux at every point.	
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17.7 Stokes’ Theorem
With the divergence, the curl, and surface integrals in hand, we are ready to present two 
of the crowning results of calculus. Fortunately, all the heavy lifting has been done. In this 
section, you will see Stokes’ Theorem, and in the next section, we present the Divergence 
Theorem.

Stokes’ Theorem
Stokes’ Theorem is the three-dimensional version of the circulation form of Green’s  
Theorem. Recall that if C is a closed simple piecewise-smooth oriented curve in the  
xy-plane enclosing a simply connected region R, and F = 8ƒ, g9  is a differentiable vector 
field on R, then Green’s Theorem says that

C
C

F # dr = 6
R

1gx - ƒy2 dA.

(1)1*   
(+)+*

circulation 
curl or rotation

The line integral on the left gives the circulation along the boundary of R. The double 
integral on the right sums the curl of the vector field over all points of R. If F represents 
a fluid flow, the theorem says that the cumulative rotation of the flow within R equals the 
circulation along the boundary.

In Stokes’ Theorem, the plane region R in Green’s Theorem becomes an oriented sur-
face S in ℝ3. The circulation integral in Green’s Theorem remains a circulation integral, 
but now over the closed simple piecewise-smooth oriented curve C that forms the bound-
ary of S. The double integral of the curl in Green’s Theorem becomes a surface integral of 
the three-dimensional curl (Figure 17.59).

➤	 Born in Ireland, George Gabriel 
Stokes (1819–1903) led a long and 
distinguished life as one of the prominent 
mathematicians and physicists of his day. 
He entered Cambridge University as a 
student and remained there as a professor 
for most of his life, taking the Lucasian 
chair of mathematics once held by Sir 
Isaac Newton. The first statement of 
Stokes’ Theorem was given by William 
Thomson (Lord Kelvin).

Circulation form
of Green’s Theorem:

R F ? dr 5 EE (= 3 F) ? k dA
C R C S

Stokes’ Theorem:

R F ? dr 5 EE (= 3 F) ? n dS

R

C

S

C

Figure 17.59

Stokes’ Theorem involves an oriented curve C and an oriented surface S on which 
there are two unit normal vectors at every point. These orientations must be consistent and 
the normal vectors must be chosen correctly. Here is the right-hand rule that relates the 
orientations of S and C and determines the choice of the normal vectors:

If the fingers of your right hand curl in the positive direction around C, then your right 
thumb points in the (general) direction of the vectors normal to S (Figure 17.60).

A common situation occurs when C has a counterclockwise orientation when viewed from 
above; then the vectors normal to S point upward.

S

n

n
n

n

C

Figure 17.60

➤	 The right-hand rule tells you which of 
two normal vectors at a point of S to use. 
Remember that the direction of normal 
vectors changes continuously on an 
oriented surface.

THEOREM 17.15 Stokes’ Theorem
Let S be an oriented surface in ℝ3 with a piecewise-smooth closed boundary C 
whose orientation is consistent with that of S. Assume F = 8ƒ, g, h9  is a vector 
field whose components have continuous first partial derivatives on S. Then

C
C

F # dr = 6
S

1∇ * F2 # n dS,

where n is the unit vector normal to S determined by the orientation of S.
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The meaning of Stokes’ Theorem is much the same as for the circulation form of 
Green’s Theorem: Under the proper conditions, the accumulated rotation of the vector 
field over the surface S (as given by the normal component of the curl) equals the net cir-
culation on the boundary of S. An outline of the proof of Stokes’ Theorem is given at the 
end of this section. First, we look at some special cases that give further insight into the 
theorem.

If F is a conservative vector field on a domain D, then it has a potential function w 
such that F = ∇w. Because ∇ * ∇w = 0, it follows that ∇ * F = 0 (Theorem 17.11); 
therefore, the circulation integral is zero on all closed curves in D. Recall that the circula-
tion integral is also a work integral for the force field F, which emphasizes the fact that no 
work is done in moving an object on a closed path in a conservative force field. Among 
the important conservative vector fields are the radial fields F = r> 0 r 0 p, which generally 
have zero curl and zero circulation on closed curves.

QUICK CHECK 1 Suppose S is a region in 
the xy-plane with a boundary oriented 
counterclockwise. What is the normal 
to S? Explain why Stokes’ Theorem 
becomes the circulation form of 
Green’s Theorem.	

➤	 Recall that for a constant nonzero vector 
a and the position vector r = 8x, y, z9 , 
the field F = a * r is a rotation field.  
In Example 1,

F = 80, 1, 19 * 8x, y, z9 .

EXAMPLE 1 Verifying Stokes’ Theorem Confirm that Stokes’ Theorem holds for 
the vector field F = 8z - y, x, -x9 , where S is the hemisphere x2 + y2 + z2 = 4, for 
z Ú 0, and C is the circle x2 + y2 = 4 oriented counterclockwise.

SOLUTION The orientation of C implies that vectors normal to S should point in the 
outward direction. The vector field is a rotation field a * r, where a = 80, 1, 19  and 
r = 8x, y, z9 ; so the axis of rotation points in the direction of the vector 80, 1, 19  
(Figure 17.61). We first compute the circulation integral in Stokes’ Theorem. The 
curve C with the given orientation is parameterized as r1t2 = 82 cos t, 2 sin t, 09 , for 
0 … t … 2p; therefore, r′1t2 = 8 -2 sin t, 2 cos t, 09 . The circulation integral is

 C
C

F # dr = ∫2p

0
 F # r′1t2 dt  Definition of line integral

 = ∫2p

0
8z - y, x, -x9 # 8 -2 sin t, 2 cos t, 09  dt Substitute.
 ()*
-2 sin t

 = ∫2p

0
 41sin2 t + cos2 t2 dt  Simplify.

 = 4∫2p

0
 dt  sin2 t + cos2 t = 1

 = 8p.  Evaluate integral.

The surface integral requires computing the curl of the vector field:

∇ * F = ∇ * 8z - y, x, -x9 = 4 i j k
0
0x

0
0y

0
0z

z - y x -x

4 = 80, 2, 29 .

Recall from Section 17.6 (Table 17.3) that the required outward normal to the hemi-
sphere is 8x>z, y>z, 19 . The region of integration is the base of the hemisphere in the  
xy-plane, which is

R = 51x, y2: x2 + y2 … 46, or, in polar coordinates,  
51r, u2: 0 … r … 2, 0 … u … 2p6.

Combining these results, the surface integral in Stokes’ Theorem is

 6
S

1∇ * F2 # n dS = 6
R

80, 2, 29 # h x
z

 , 
y
z

 , 1i dA   Substitute and convert to a 
double integral over R.

  

(+)+*

   

80, 2, 29

 = 6
R

a 2y24 - x2 - y2
+ 2b  dA   Simplify and use 

z = 24 - x2 - y2.

 = ∫2p

0
∫2

0
a 2r sin u24 - r2

+ 2b  r dr du. Convert to polar coordinates.

S: x2 1 y2 1 z2 5 4
z $ 0

F 5 kz 2 y, x, 2xl

Axis of rotation
of F is k0, 1, 1l.

n

C
y

x

z

2

Figure 17.61
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We integrate first with respect to u because the integral of sin u from 0 to 2p is zero and 
the first term in the integral is eliminated. Therefore, the surface integral reduces to

 6
S

1∇ * F2 # n dS = ∫2

0
∫2p

0
a 2r2 sin u24 - r2

+ 2rb  du dr

 = ∫2

0
∫2p

0
 2r du dr  ∫2p

0
sin u du = 0

 = 4p∫2

0
 r dr  Evaluate inner integral.

 = 8p.  Evaluate outer integral.

Computed either as a line integral or as a surface integral, the vector field has a positive  
circulation along the boundary of S, which is produced by the net rotation of the field 
over the surface S.

Related Exercises 5–6	  

In Example 1, it was possible to evaluate both the line integral and the surface integral 
that appear in Stokes’ Theorem. Often the theorem provides an easier way to evaluate dif-
ficult line integrals.

➤	 In eliminating the first term of this 
double integral, we note that the 

improper integral ∫2

0
 

r224 - r2
 dr has a 

finite value.

EXAMPLE 2 Using Stokes’ Theorem to evaluate a line integral Evaluate the line 
integral RC F # dr, where F = z i - z j + 1x2 - y22  k and C consists of the three line 
segments that bound the plane z = 8 - 4x - 2y in the first octant, oriented as shown in 
Figure 17.62.

SOLUTION Evaluating the line integral directly involves parameterizing the three line seg-
ments. Instead, we use Stokes’ Theorem to convert the line integral to a surface integral, 
where S is that portion of the plane z = 8 - 4x - 2y that lies in the first octant. The curl 
of the vector field is

∇ * F = ∇ * 8z, -z, x2 - y29 = 4 i j k
0
0x

0
0y

0
0z

z -z x2 - y2

4 = 81 - 2y, 1 - 2x, 09 .

The appropriate vector normal to the plane z = 8 - 4x - 2y is 8 -zx, -zy, 19 =
84, 2, 19 , which points upward, consistent with the orientation of C. The triangular  
region R in the xy-plane beneath S is found by setting z = 0 in the equation of the plane; 
we find that R = 51x, y2: 0 … x … 2, 0 … y … 4 - 2x6. The surface integral in Stokes’ 
Theorem may now be evaluated:

 6
S

1∇ * F2 # n dS = 6
R

81 - 2y, 1 - 2x, 09 # 84, 2, 19  dA  Substitute and convert to 
a double integral over R.  (11)11*

81 - 2y, 1 - 2x, 09

 = ∫2

0
∫4-2x

0
16 - 4x - 8y2 dy dx  Simplify.

 = -  
88
3

.  Evaluate integrals.

The circulation around the boundary of R is negative, indicating a net circulation in the 
clockwise direction on C (looking from above).

Related Exercises 13, 16	  

In other situations, Stokes’ Theorem may be used to convert a difficult surface inte-
gral into a relatively easy line integral, as illustrated in the next example.

S: z 5 8 2 4x 2 2y

(0, 4, 0)(2, 0, 0)

R 5 {(x, y): 0 # x # 2, 0 # y # 4 2 2x}

y

x

z

(0, 0, 8)

R

n

C

C

C

Figure 17.62

➤	 Recall that for an explicitly defined 
surface S given by z = s1x, y2 over a 
region R with F = 8ƒ, g, h9 ,

6
S

F # n dS = 6
R

1-ƒzx - gzy + h2 dA.

In Example 2, F is replaced with ∇ * F.
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z

x

y

C

z 5 4 2 x2 2 3y2 

z 5 3x2 1 y2 

n

n

Outward normal
vector for
Example 3a

Inward normal
vector for
Example 3b

Outward normal
vector for
Example 3cy2

C

2

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

nnn

n

Figure 17.63

➤ Recall that x = cos t, y = sin t is 
a standard parameterization for the 
unit circle centered at the origin with 
counterclockwise orientation. The 
parameterization x = sin t, y = cos t 
reverses the orientation.

EXAMPLE 3 Using Stokes’ Theorem to evaluate a surface integral Evaluate 
6S 1∇ * F2 # n dS, where F = -y i + x j + z k, in the following cases.

a. S is the part of the paraboloid z = 4 - x2 - 3y2 that lies within the  
paraboloid z = 3x2 + y2 (the blue surface in Figure 17.63). Assume n points 
in the upward direction on S.

b. S is the part of the paraboloid z = 3x2 + y2 that lies within the paraboloid 
z = 4 - x2 - 3y2, with n pointing in the upward direction on S.

c. S is the surface in part (b), but n pointing in the downward direction on S.

SOLUTION

a. Finding a parametric description for S is challenging, so we use Stokes’ 
Theorem to convert the surface integral into a line integral along the curve 
C that bounds S. Note that C is the intersection between the paraboloids 
z = 4 - x2 - 3y2 and z = 3x2 + y2. Eliminating z from these equations, 

we find that the projection of C onto the xy-plane is the circle x2 + y2 = 1, which 
suggests that we choose x = cos t and y = sin t for the x- and y-components of the 
equations for C. To find the z-component, we substitute x and y into the equation of ei-
ther paraboloid. Choosing z = 3x2 + y2, we find that a parametric description of C is 
r1t2 = 8cos t, sin t, 3 cos2 t + sin2 t9 ; note that C is oriented in the counterclockwise 
direction, consistent with the orientation of S.

To evaluate the line integral in Stokes’ Theorem, it is helpful to first compute F # r′1t2.  
Along C, the vector field is F = 8 -y, x, z9 = 8 -sin t, cos t, 3 cos2 t + sin2 t9 . Dif-
ferentiating r yields r′1t2 = 8 -sin t, cos t, -4 cos t sin t9 , which leads to

 F # r′1t2 = 8 -sin t, cos t, 3 cos2 t + sin2 t9 # 8 -sin t, cos t, -4 cos t sin t9
 = sin2 t + cos2 t - 12 cos3 t sin t - 4 sin3 t cos t.(++)++*

   1

Noting that sin2 t + cos2 t = 1, we are ready to evaluate the integral:

  6
S

1∇ * F2 # n dS = C
C

F # dr Stokes’ Theorem

 = ∫2p

0
F # r′1t2 dt  Definition of line 

integral

 = ∫2p

0
11 - 12 cos3 t sin t - 4 cos t sin3 t2 dt Substitute.

 = ∫2p

0
1 dt - ∫2p

0
12 cos3 t sin t dt - ∫2p

0
4 cos t sin3 t dt 

 (+++)+++*   (+++)+++*
     0           0 
 Split integral.

 = 2p. Evaluate integrals.

A standard substitution in the last two integrals of the final step shows that both  
integrals equal 0.

b. Because the lower surface 1z = 3x2 + y22 shares the same boundary C with the up-
per surface 1z = 4 - x2 - 3y22, and because both surfaces have an upward-pointing 
normal vector, the line integral resulting from an application of Stokes’ Theorem is 
identical to the integral in part (a). For this surface S with its associated normal vector, 
we conclude that 6S 1∇ * F2 # n dS = RC F # dr = 2p. In fact, the value of this inte-
gral is 2p for any surface whose boundary is C and whose normal vectors point in the 
upward direction.

c. In this case, n points downward. We use the parameterization 
r1t2 = 8sin t, cos t, 3 cos2 t + sin2 t9  for C so that C is oriented in the clockwise di-
rection, consistent with the orientation of S. You should verify that, when duplicating 
the calculations in part (a) with a new description for C, we have

F # r′1t2 = -sin2 t - cos2 t - 12 cos3 t sin t - 4 sin3 t cos t.(++1)1++*
    -1
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Therefore, the required integral is

 6
S

1∇ * F2 # n dS = C
C

F # dr = ∫2p

0
F # r′1t2 dt

 = ∫2p

0
1-1 - 12 cos3 t sin t - 4 cos t sin3 t2 dt

 = -2p.

This result is perhaps not surprising when compared to parts (a) and (b): The reversal 
of the orientation of S requires a reversal of the orientation of C, and we know from 
Section 17.2 that #C F # dr = - #-C F # dr. As we discuss at the end of this section, it 
follows that the surface integral over the closed surface enclosed by both paraboloids 
(with normal vectors everywhere outward) has the value 2p - 2p = 0.

Related Exercises 21–22	  

QUICK CHECK 2 In Example 3a, 
we used the parameterization 
r1t2 = 8cos t, sin t, 3 cos2 t + sin2 t9  
for C. Confirm that the 
parameterization C: r1t2 = 8cos t, 
sin t, 4 - cos2 t - 3 sin2 t9  also 
results in an answer of 2p.	

Interpreting the Curl
Stokes’ Theorem leads to another interpretation of the curl at a point in a vector field. We 
need the idea of the average circulation. If C is the boundary of an oriented surface S, we 
define the average circulation of F over S as

1
area of S

 C
C

 F # dr =
1

area of S
 6

S

1∇ * F2 # n dS,

where Stokes’ Theorem is used to convert the circulation integral to a surface integral.
First consider a general rotation field F = a * r, where a = 8a1, a2, a39  is a con-

stant nonzero vector and r = 8x, y, z9 . Recall that F describes the rotation about an axis 
in the direction of a with angular speed v = 0 a 0 . We also showed that F has a constant 
curl, ∇ * F = ∇ * 1a * r2 = 2a. We now take S to be a small circular disk centered at 
a point P, whose normal vector n makes an angle u with the axis a (Figure 17.64). Let C be 
the boundary of S with a counterclockwise orientation.

The average circulation of this vector field on S is

1
area of S

 6
S

1∇ * F2 # n dS Definition
(++)++*
  constant

  =
1

area of S
 1∇ * F2 # n #  area of S 6

S

dS = area of S

  = 1∇ * F2 # n  Simplify.
   (1)1*
     2a

  = 2 0 a 0  cos u.  0 n 0 = 1, 0 ∇ * F 0 = 2 0 a 0
If the normal vector n is aligned with ∇ * F (which is parallel to a), then u = 0 and the 
average circulation on S has its maximum value of 2 0 a 0 . However, if the vector normal to 
the surface S is orthogonal to the axis of rotation (u = p>2), the average circulation is 
zero.

We see that for a general rotation field F = a * r, the curl of F has the following 
interpretations, where S is a small disk centered at a point P with a normal vector n.

• The scalar component of ∇ * F at P in the direction of n, which is 
1∇ * F2 # n = 2 0 a 0  cos u, is the average circulation of F on S.

• The direction of ∇ * F at P is the direction that maximizes the average circulation of F 
on S. Equivalently, it is the direction in which the axis of a paddle wheel should be ori-
ented to obtain the maximum angular speed.

A similar argument may be applied to a general vector field (with a variable curl) to give 
an analogous interpretation of the curl at a point (Exercise 48).

Average circulation
5 2uau cos u
5 (= 3 F) ? n

a

Fn

P
S

C

u

Figure 17.64

➤	 Recall that n is a unit normal vector with 
0 n 0 = 1. By definition, the dot product 
gives a # n = 0 a 0  cos u.
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EXAMPLE 4 Horizontal channel flow Consider the velocity field 
v = 80, 1 - x2, 09 , for 0 x 0 … 1 and 0 z 0 … 1, which represents a horizontal flow in the  
y-direction (Figure 17.65a).

a. Suppose you place a paddle wheel at the point P11
2, 0, 02. Using physical arguments, 

in which of the coordinate directions should the axis of the wheel point in order for the 
wheel to spin? In which direction does it spin? What happens if you place the wheel at 
Q1-  12, 0, 02?

b. Compute and graph the curl of v and provide an interpretation.

x y

z

x

y

z
Horizontal channel flow
v 5 k0, 1 2 x2, 0l

Paddle wheel with vertical axis
spins clockwise, for x . 0, and
counterclockwise, for x , 0.

= 3 v 5 k0, 0, 22xl

(= 3 v) ? k 5 22x , 0, for x . 0
(clockwise rotation)

(= 3 v) ? k 5 22x . 0,
for x , 0
(counterclockwise
rotation)1

1

21

1

21

(b)(a)

P

Q

Figure 17.65

SOLUTION

a. If the axis of the wheel is aligned with the x-axis at P, the flow strikes the upper and 
lower halves of the wheel symmetrically and the wheel does not spin. If the axis of the 
wheel is aligned with the y-axis, the flow is parallel to the axis of the wheel and the 
wheel does not spin. If the axis of the wheel is aligned with the z-axis at P, the flow in 
the y-direction is greater for x 6 1

2 than it is for x 7 1
2 . Therefore, a wheel located at 

P11
2, 0, 02 spins in the clockwise direction, looking from above (Figure 17.65a). Us-

ing a similar argument, we conclude that a vertically oriented paddle wheel placed at 
Q1-  12, 0, 02 spins in the counterclockwise direction (when viewed from above).

b. A short calculation shows that

∇ * v = 4 i j k
0
0x

0
0y

0
0z

0 1 - x2 0

4 = -2x k.

As shown in Figure 17.65b, the curl points in the z-direction, which is the direction of 
the paddle wheel axis that gives the maximum angular speed of the wheel. Consider 
the z-component of the curl, which is 1∇ * v2 # k = -2x. At x = 0, this component 
is zero, meaning the wheel does not spin at any point along the y-axis when its axis is 
aligned with the z-axis. For x 7 0, we see that 1∇ * v2 # k 6 0, which corresponds 
to clockwise rotation of the vector field. For x 6 0, we have 1∇ * v2 # k 7 0, corre-
sponding to counterclockwise rotation.

Related Exercise 26	  

QUICK CHECK 3 In Example 4, explain 
why a paddle wheel with its axis 
aligned with the z-axis does not spin 
when placed on the y-axis.	
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Proof of Stokes’ Theorem
The proof of the most general case of Stokes’ Theorem is intricate. However, a proof of a 
special case is instructive and relies on several previous results.

Consider the case in which the surface S is the graph of the function z = s1x, y2, 
defined on a region in the xy-plane. Let C be the curve that bounds S with a counterclock-
wise orientation, let R be the projection of S in the xy-plane, and let C′ be the projection of 
C in the xy-plane (Figure 17.66).

Letting F = 8ƒ, g, h9 , the line integral in Stokes’ Theorem is

C
C

 F # dr = C
C

 ƒ dx + g dy + h dz.

The key observation for this integral is that along C (which is the boundary of S), 
dz = zx dx + zy dy. Making this substitution, we convert the line integral on C to a line 
integral on C′ in the xy-plane:

 C
C

 F # dr = C
C′

 ƒ dx + g dy + h1zx dx + zy dy2
 (++1)1++*
    dz

 = C
C′

1ƒ + hzx2 dx + 1g + hzy2 dy.
(+1)1+*   (+1)1+*
  M1x, y2      N1x, y2

We now apply the circulation form of Green’s Theorem to this line integral with 
M1x, y2 = ƒ + hzx and N1x, y2 = g + hzy; the result is

C
C′

M dx + N dy = 6
R

1Nx - My2 dA.

A careful application of the Chain Rule (remembering that z is a function of x and y,  
Exercise 49) reveals that

 My = ƒy + ƒzzy + hzxy + zx1hy + hzzy2 and

 Nx = gx + gzzx + hzyx + zy1hx + hzzx2.
Making these substitutions in the line integral and simplifying (note that zxy = zyx is 
needed), we have

C
C

F # dr = 6
R

1zx1gz - hy2 + zy1hx - ƒz2 + 1gx - ƒy22 dA. (1)

Now let’s look at the surface integral in Stokes’ Theorem. The upward vector normal to 
the surface is 8 -zx, -zy, 19 . Substituting the components of ∇ * F, the surface integral 
takes the form

6
S

1∇ * F2 # n dS = 6
R

11hy - gz21-zx2 + 1 ƒz - hx21-zy2 + 1gx - ƒy22 dA,

which upon rearrangement becomes the integral in (1).

Two Final Notes on Stokes’ Theorem

1. Stokes’ Theorem allows a surface integral 6S 1∇ * F2 # n dS to be evaluated using 
only the values of the vector field on the boundary C. This means that if a closed curve 
C is the boundary of two different smooth oriented surfaces S1 and S2, which both have 
an orientation consistent with that of C, then the integrals of 1∇ * F2 # n on the two 
surfaces are equal; that is,

6
S1

1∇ * F2 # n1 dS = 6
S2

1∇ * F2 # n2 dS,

where n1 and n2 are the respective unit normal vectors consistent with the orientation of 
the surfaces (Figure 17.67a; see Example 3).

y

x

z

C

R

Figure 17.66

S

EE (= 3 F) ? n dS 5 0

(b)

C

C

S2S1

EE (= 3 F) ? n1 dS 5 EE (= 3 F) ? n2 dS

n1

n15 n

n2

n25 2n

n

S1

S1

S2

S2

S 5 S1 < S2

(a)

Figure 17.67
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Now let’s take a different perspective. Suppose S is a closed surface consisting 
of S1 and S2 with a common boundary curve C (Figure 17.67b). Let n represent the 
outward unit normal vector for the entire surface S. It follows that n points in the same 
direction as n1 and in the direction opposite to that of n2 (Figure 17.67b). Therefore, 
6S1

 1∇ * F2 # n dS and 6S2
 1∇ * F2 # n dS are equal in magnitude and of opposite 

sign, from which we conclude that

6
S

1∇ * F2 # n dS = 6
S1

1∇ * F2 # n dS + 6
S2

1∇ * F2 # n dS = 0.

This argument can be adapted to show that 6S 1∇ * F2 # n dS = 0 over any closed 
oriented surface S (Exercise 50).

2. We can now resolve an assertion made in Section 17.5. There we proved (Theorem 17.11) 
that if F is a conservative vector field, then ∇ * F = 0; we claimed, but did not prove, 
that the converse is true. The converse follows directly from Stokes’ Theorem.

THEOREM 17.16 Curl F = 0 Implies F Is Conservative
Suppose ∇ * F = 0 throughout an open simply connected region D of ℝ3. Then 
RC F # dr = 0 on all closed simple smooth curves C in D, and F is a conservative 
vector field on D.

Proof: Given a closed simple smooth curve C, an advanced result states that C is the 
boundary of at least one smooth oriented surface S in D. By Stokes’ Theorem,

C
C

F # dr = 6
S

1∇ * F2 # n dS = 0.
(+)+*
  0

Because the line integral equals zero over all such curves in D, the vector field is conser-
vative on D by Theorem 17.6. 

Getting Started
1. Explain the meaning of the integral RC F # dr in Stokes’ Theorem.

2. Explain the meaning of the integral 6S 1∇ * F2 # n dS in  
Stokes’ Theorem.

3. Explain the meaning of Stokes’ Theorem.

4. Why does a conservative vector field produce zero circulation 
around a closed curve?

Practice Exercises
5–10. Verifying Stokes’ Theorem Verify that the line integral and the 
surface integral of Stokes’ Theorem are equal for the following vector 
fields, surfaces S, and closed curves C. Assume C has counterclockwise 
orientation and S has a consistent orientation.

5. F = 8y, -x, 109 ; S is the upper half of the sphere 
x2 + y2 + z2 = 1 and C is the circle x2 + y2 = 1 in the  
xy-plane.

6. F = 80, -x, y9 ; S is the upper half of the sphere 
x2 + y2 + z2 = 4 and C is the circle x2 + y2 = 4 in the  
xy-plane.

7. F = 8x, y, z9 ; S is the paraboloid z = 8 - x2 - y2, for 
0 … z … 8, and C is the circle x2 + y2 = 8 in the xy-plane.

SECTION 17.7 EXERCISES

8. F = 82z, -4x, 3y9 ; S is the cap of the sphere 
x2 + y2 + z2 = 169 above the plane z = 12 and C is the  
boundary of S.

9. F = 8y - z, z - x, x - y9 ; S is the cap of the sphere 
x2 + y2 + z2 = 16 above the plane z = 17 and C is the  
boundary of S.

10. F = 8 -y, -x - z, y - x9 ; S is the part of the plane z = 6 - y 
that lies in the cylinder x2 + y2 = 16 and C is the boundary of S.

11–16. Stokes’ Theorem for evaluating line integrals Evaluate the 
line integral RC F # dr by evaluating the surface integral in Stokes’ 
Theorem with an appropriate choice of S. Assume C has a counter-
clockwise orientation.

11. F = 82y, -z, x9 ; C is the circle x2 + y2 = 12 in the plane 
z = 0.

12. F = 8y, xz, -y9 ; C is the ellipse x2 + y2>4 = 1 in the plane 
z = 1.

13. F = 8x2 - z2, y, 2xz9 ; C is the boundary of the plane 
z = 4 - x - y in the first octant.

14. F = 8x2 - y2, z2 - x2, y2 - z29 ; C is the boundary of the 
square 0 x 0 … 1, 0 y 0 … 1 in the plane z = 0.
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15. F = 8y2, -z2, x9 ; C is the circle r1t2 = 83 cos t, 4 cos t, 5 sin t9, 
for 0 … t … 2p.

16. F = 82xy sin z, x2 sin z, x2y cos z9 ; C is the boundary of the 
plane z = 8 - 2x - 4y in the first octant.

17–24. Stokes’ Theorem for evaluating surface integrals Evaluate 
the line integral in Stokes’ Theorem to determine the value of the  
surface integral 6S 1∇ * F2 # n dS. Assume n points in an upward 
direction.

17. F = 8x, y, z9 ; S is the upper half of the ellipsoid 
x2>4 + y2>9 + z2 = 1.

18. F = r> 0 r 0 ; S is the paraboloid x = 9 - y2 - z2, for 0 … x … 9 
(excluding its base), and r = 8x, y, z9 .

19. F = 82y, -z, x - y - z9 ; S is the cap of the sphere 
x2 + y2 + z2 = 25, for 3 … x … 5 (excluding its base).

20. F = 8x + y, y + z, z + x9 ; S is the tilted disk enclosed by 
r1t2 = 8cos t, 2 sin t, 13 cos t9 .

21. F = 8y, z - x, -y9 ; S is the part of the paraboloid 
z = 2 - x2 - 2y2 that lies within the cylinder x2 + y2 = 1.

22. F = 84x, -8z, 4y9 ; S is the part of the paraboloid 
z = 1 - 2x2 - 3y2 that lies within the paraboloid z = 2x2 + y2.

23. F = 8y, 1, z9 ; S is the part of the surface z = 21x that lies 

within the cone z = 2x2 + y2.

24. F = 8ex, 1>z, y9 ; S is the part of the surface z = 4 - 3y2 that 
lies within the paraboloid z = x2 + y2.

25–28. Interpreting and graphing the curl For the following velocity 
fields, compute the curl, make a sketch of the curl, and interpret the curl.

25. v = 80, 0, y9  26. v = 81 - z2, 0, 09
27. v = 8 -2z, 0, 19  28. v = 80, -z, y9
29. Explain why or why not Determine whether the following state-

ments are true and give an explanation or counterexample.

a. A paddle wheel with its axis in the direction 
80, 1, -19  would not spin when put in the vector field 
F = 81, 1, 29 * 8x, y, z9 .

b. Stokes’ Theorem relates the flux of a vector field F across a 
surface to values of F on the boundary of the surface.

c. A vector field of the form F = 8a + ƒ1x2, b + g1y2, 
c + h1z29 , where a, b, and c are constants, has zero circula-
tion on a closed curve.

d. If a vector field has zero circulation on all simple closed 
smooth curves C in a region D, then F is conservative on D.

30–33. Conservative fields Use Stokes’ Theorem to find the circulation 
of the following vector fields around any simple closed smooth curve C.

30. F = 82x, -2y, 2z9  31. F = ∇1x sin yez2
32. F = 83x2y, x3 + 2yz2, 2y2z9
33. F = 8y2z3, 2xyz3, 3xy2z29
34–38. Tilted disks Let S be the disk enclosed by the curve 
C: r1t2 = 8cos w cos t, sin t, sin w cos t9 , for 0 … t … 2p, where 
0 … w … p>2 is a fixed angle.

34. What is the area of S? Find a vector normal to S.

35. What is the length of C?

36. Use Stokes’ Theorem and a surface integral to find the circulation 
on C of the vector field F = 8 -y, x, 09  as a function of w. For 
what value of w is the circulation a maximum?

37. What is the circulation on C of the vector field F = 8 -y, -z, x9  
as a function of w? For what value of w is the circulation a  
maximum?

38. Consider the vector field F = a * r, where a = 8a1, a2, a39  is a 
constant nonzero vector and r = 8x, y, z9 . Show that the circula-
tion is a maximum when a points in the direction of the normal to S.

39. Circulation in a plane A circle C in the plane x + y + z = 8 
has a radius of 4 and center 12, 3, 32. Evaluate RC F # dr for 
F = 80, -z, 2y9 , where C has a counterclockwise orientation when 
viewed from above. Does the circulation depend on the radius of the 
circle? Does it depend on the location of the center of the circle?

40. No integrals Let F = 82z, z, 2y + x9 , and let S be the hemi-
sphere of radius a with its base in the xy-plane and center at the 
origin.

a. Evaluate 6S 1∇ * F2 # n dS by computing ∇ * F and appeal-
ing to symmetry.

b. Evaluate the line integral using Stokes’ Theorem to check  
part (a).

41. Compound surface and boundary Begin with the paraboloid 
z = x2 + y2, for 0 … z … 4, and slice it with the plane y = 0. 
Let S be the surface that remains for y Ú 0 (including the planar 
surface in the xz-plane) (see figure). Let C be the semicircle and 
line segment that bound the cap of S in the plane z = 4 with coun-
terclockwise orientation. Let F = 82z + y, 2x + z, 2y + x9 .
a. Describe the direction of the vectors normal to the surface that 

are consistent with the orientation of C.
b. Evaluate 6S 1∇ * F2 # n dS.

c. Evaluate RC F # dr and check for agreement with part (b).

z 5 x2 1 y2

z

C

yx

S

4

42. Ampère’s Law The French physicist André-Marie Ampère 
(1775–1836) discovered that an electrical current I in a wire 
produces a magnetic field B. A special case of Ampère’s Law 
relates the current to the magnetic field through the equation 
RC B # dr = mI, where C is any closed curve through which the 
wire passes and m is a physical constant. Assume the current I is 
given in terms of the current density J as I = 6S J # n dS, where S 
is an oriented surface with C as a boundary. Use Stokes’ Theorem 
to show that an equivalent form of Ampère’s Law is ∇ * B = mJ.

43. Maximum surface integral Let S be the paraboloid 
z = a11 - x2 - y22, for z Ú 0, where a 7 0 is a real number. 
Let F = 8x - y, y + z, z - x9 . For what value(s) of a (if any) 
does 6S1∇ * F2 # n dS have its maximum value?

M17_BRIG3644_03_SE_C17_1089-1184.indd   1170 27/10/17   2:42 PM



 17.8 Divergence Theorem 1171

Explorations and Challenges
44. Area of a region in a plane Let R be a region in a plane that 

has a unit normal vector n = 8a, b, c9  and boundary C. Let 
F = 8bz, cx, ay9 .
a. Show that ∇ * F = n.
b. Use Stokes’ Theorem to show that

area of R = C
C

 F # dr.

c. Consider the curve C given by r = 85 sin t, 13 cos t, 12 sin t9, 
for 0 … t … 2p. Prove that C lies in a plane by showing that 
r * r′ is constant for all t.

d. Use part (b) to find the area of the region enclosed by C in  
part (c). (Hint: Find the unit normal vector that is consistent 
with the orientation of C.)

45. Choosing a more convenient surface The goal is to evaluate 
A = 6S 1∇ * F2 # n dS, where F = 8yz, -xz, xy9  and S is the 
surface of the upper half of the ellipsoid x2 + y2 + 8z2 = 1 
1z Ú 02.
a. Evaluate a surface integral over a more convenient surface to 

find the value of A.
b. Evaluate A using a line integral.

46. Radial fields and zero circulation Consider the radial vector 
fields F = r> 0 r 0 p, where p is a real number and r = 8x, y, z9 . 
Let C be any circle in the xy-plane centered at the origin.

a. Evaluate a line integral to show that the field has zero circula-
tion on C.

b. For what values of p does Stokes’ Theorem apply? For those 
values of p, use the surface integral in Stokes’ Theorem to 
show that the field has zero circulation on C.

47. Zero curl Consider the vector field 

F = -  
y

x2 + y2  i +
x

x2 + y2  j + z k.

a. Show that ∇ * F = 0.
b. Show that RC F # dr is not zero on a circle C in the xy-plane 

enclosing the origin.
c. Explain why Stokes’ Theorem does not apply in this case.

48. Average circulation Let S be a small circular disk of radius R 
centered at the point P with a unit normal vector n. Let C be the 
boundary of S.

a. Express the average circulation of the vector field F on S as a 
surface integral of ∇ * F.

b. Argue that for small R, the average circulation approaches 
1∇ * F2 � P

# n (the component of ∇ * F in the direction of n 
evaluated at P) with the approximation improving as R S 0.

49. Proof of Stokes’ Theorem Confirm the following step in the 
proof of Stokes’ Theorem. If z = s1x, y2 and ƒ, g, and h are func-
tions of x, y, and z, with M = ƒ + hzx and N = g + hzy, then

 My = ƒy + ƒzzy + hzxy + zx1hy + hzzy2 and

 Nx = gx + gzzx + hzyx + zy1hx + hzzx2.
50. Stokes’ Theorem on closed surfaces Prove that if F satisfies the 

conditions of Stokes’ Theorem, then 6S 1∇ * F2 # n dS = 0, 
where S is a smooth surface that encloses a region.

51. Rotated Green’s Theorem Use Stokes’ Theorem to write the cir-
culation form of Green’s Theorem in the yz-plane.

QUICK CHECK ANSWERS

1. If S is a region in the xy-plane, n = k and 1∇ * F2 # n 
becomes gx - ƒy. 3. The vector field is symmetric about 
the y-axis.	

17.8 Divergence Theorem
Vector fields can represent electric or magnetic fields, air velocities in hurricanes, or blood 
flow in an artery. These and other vector phenomena suggest movement of a “substance.” 
A frequent question concerns the amount of a substance that flows across a surface—for 
example, the amount of water that passes across the membrane of a cell per unit time. 
Such flux calculations may be done using flux integrals as in Section 17.6. The Diver-
gence Theorem offers an alternative method. In effect, it says that instead of integrating 
the flow into and out of a region across its boundary, you may also add up all the sources 
(or sinks) of the flow throughout the region.

Divergence Theorem
The Divergence Theorem is the three-dimensional version of the flux form of Green’s The-
orem. Recall that if R is a region in the xy-plane, C is the simple closed piecewise-smooth 
oriented boundary of R, and F = 8ƒ, g9  is a vector field, then Green’s Theorem says that

C
C

 F # n ds = 6
R

1ƒx + gy2 dA.

(+)+*   
(+)+*

flux across C    
divergence

The line integral on the left gives the flux across the boundary of R. The double inte-
gral on the right measures the net expansion or contraction of the vector field within R. If F 
represents a fluid flow or the transport of a material, the theorem says that the cumulative 
effect of the sources (or sinks) of the flow within R equals the net flow across its boundary.

➤	 Circulation form of
Green’s Theorem S  Stokes’ Theorem

Flux form of Green’s
Theorem S  Divergence Theorem
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The Divergence Theorem is a direct extension of Green’s Theorem. The plane region 
in Green’s Theorem becomes a solid region D in ℝ3, and the closed curve in Green’s 
Theorem becomes the oriented surface S that encloses D. The flux integral in Green’s 
Theorem becomes a surface integral over S, and the double integral in Green’s Theorem 
becomes a triple integral over D of the three-dimensional divergence (Figure 17.68).

S

DR

C

Flux form of
Green’s Theorem:

R F ? n ds 5 EE div F dA
C R S D

Divergence Theorem:

EE F ? n dS 5 EEE div F dV

Figure 17.68

THEOREM 17.17 Divergence Theorem
Let F be a vector field whose components have continuous first partial derivatives 
in a connected and simply connected region D in ℝ3 enclosed by an oriented sur-
face S. Then

6
S

 F # n dS = 9
D

∇ # F dV,

where n is the outward unit normal vector on S.

The surface integral on the left gives the flux of the vector field across the boundary; a 
positive flux integral means there is a net flow of the field out of the region. The triple inte-
gral on the right is the cumulative expansion or contraction of the field over the region D.  
The proof of a special case of the theorem is given later in this section.

QUICK CHECK 1 Interpret the 
Divergence Theorem in the case that 
F = 8a, b, c9  is a constant vector 
field and D is a ball.	

EXAMPLE 1 Verifying the Divergence Theorem Consider the radial field 
F = 8x, y, z9  and let S be the sphere x2 + y2 + z2 = a2 that encloses the region D.  
Assume n is the outward unit normal vector on the sphere. Evaluate both integrals of the 
Divergence Theorem.

SOLUTION The divergence of F is

∇ # F =
0
0x

 1x2 +
0
0y

 1y2 +
0
0z

 1z2 = 3.

Integrating over D, we have

9
D

∇ # F dV = 9
D

3 dV = 3 * volume of D = 3 # 4
3

 pa3 = 4pa3.

To evaluate the surface integral, we parameterize the sphere (Section 17.6, Table 17.3) in 
the form

r = 8x, y, z9 = 8a sin u cos v, a sin u sin v, a cos u9 ,
where R = 51u, v2: 0 … u … p, 0 … v … 2p6 (u and v are the spherical coordinates w 
and u, respectively). The surface integral is

6
S

 F # n dS = 6
R

 F # 1tu * tv2 dA,
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where the required vector normal to the surface is

tu * tv = 8a2 sin2 u cos v, a2 sin2 u sin v, a2 sin u cos u9 .
Substituting for F = 8x, y, z9  and tu * tv, we find after simplifying that 
F # 1tu * tv2 = a3 sin u. Therefore, the surface integral becomes

 6
S

 F # n dS = 6
R

 F # 1tu * tv2 dA
(+1)1+*
 a3 sin u

 = ∫2p

0
∫p

0
a3 sin u du dv Substitute for F and tu * tv.

 = 4pa3.  Evaluate integrals.

The two integrals of the Divergence Theorem are equal.
Related Exercise 9	  

➤	 See Exercise 32 for an alternative 
evaluation of the surface integral.

EXAMPLE 2 Divergence Theorem with a rotation field Consider the rotation field

F = a * r = 81, 0, 19 * 8x, y, z9 = 8 -y, x - z, y9 .
Let S be the hemisphere x2 + y2 + z2 = a2, for z Ú 0, together with its base in the  
xy-plane. Find the net outward flux across S.

SOLUTION To find the flux using surface integrals, two surfaces must be considered (the 
hemisphere and its base). The Divergence Theorem gives a simpler solution. Note that

∇ # F =
0
0x

 1-y2 +
0
0y

 1x - z2 +
0
0z

 1y2 = 0.

We see that the flux across the hemisphere is zero.
Related Exercise 13	  

EXAMPLE 3 Computing flux with the Divergence Theorem Find the net 
outward flux of the field F = xyz81, 1, 19  across the boundaries of the cube 
D = 51x, y, z2: 0 … x … 1, 0 … y … 1, 0 … z … 16.

SOLUTION Computing a surface integral involves the six faces of the cube. The Diver-
gence Theorem gives the outward flux with a single integral over D. The divergence of 
the field is

∇ # F =
0
0x

 1xyz2 +
0
0y

 1xyz2 +
0
0z

 1xyz2 = yz + xz + xy.

The integral over D is a standard triple integral:

 9
D

∇ # F dV = 9
D

1yz + xz + xy2 dV

 = ∫1

0
∫1

0
∫1

0
1yz + xz + xy2 dx dy dz Convert to a triple integral.

 =
3
4

 .  Evaluate integrals.

On three faces of the cube (those that lie in the coordinate planes), we see that 
F  10, y, z2 = F  1x, 0, z2 = F  1x, y, 02 = 0, so there is no contribution to the flux on these 
faces (Figure 17.69). On the other three faces, the vector field has components out of the 
cube. Therefore, the net outward flux is positive, as calculated.

Related Exercises 18–19	  

F 5 k0, 0, 0l

F 5 xyzk1, 1, 1l

F 5 k0, 0, 0l

(0, 1, 0)

(1, 0, 0)

(0, 0, 1)

y

x

z

Figure 17.69

With Stokes’ Theorem, rotation fields are noteworthy because they have a nonzero curl. 
With the Divergence Theorem, the situation is reversed. As suggested by Example 2, pure 
rotation fields of the form F = a * r have zero divergence (Exercise 16). However, with 
the Divergence Theorem, radial fields are interesting and have many physical applications.
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Interpretation of the Divergence Theorem Using Mass Transport Suppose v is 
the velocity field of a material, such as water or molasses, and r is its constant density. The 
vector field F = rv = 8ƒ, g, h9  describes the mass transport of the material, with units 
of 1mass>vol2 * 1length>time2 = mass>1area # time2; typical units of mass transport are 
g>m2>s. This means that F gives the mass of material flowing past a point (in each of the 
three coordinate directions) per unit of surface area per unit of time. When F is multiplied 
by an area, the result is the flux, with units of mass>unit time.

Now consider a small cube located in the vector field with its faces parallel to the co-
ordinate planes. One vertex is located at 10, 0, 02, the opposite vertex is at 1∆x, ∆y, ∆z2, 
and 1x, y, z2 is an arbitrary point in the cube (Figure 17.70). The goal is to compute the ap-
proximate flux of material across the faces of the cube. We begin with the flux across the 
two parallel faces x = 0 and x = ∆x.

The outward unit vectors normal to the faces x = 0 and x = ∆x are n1 = 8 -1, 0, 09  
and n2 = 81, 0, 09 , respectively. Each face has area ∆y ∆z, so the approximate net flux 
across these faces is

 F  1∆x, y, z2 #  n2 ∆y ∆z + F  10, y, z2 #  n1 ∆y ∆z(+1)1+*  "     (+)+*   "
x = ∆x face  81, 0, 09     x = 0 face 8 -1, 0, 09

 = 1ƒ1∆x, y, z2 - ƒ10, y, z22 ∆y ∆z.

Note that if ƒ1∆x, y, z2 7 ƒ10, y, z2, the net flux across these two faces of the cube is 
positive, which means the net flow is out of the cube. Letting ∆V = ∆x ∆y ∆z be the 
volume of the cube, we rewrite the net flux as

 1  ƒ1∆x, y, z2 - ƒ10, y, z22 ∆y ∆z

 =
ƒ1∆x, y, z2 - ƒ10, y, z2

  ∆x 
 ∆x ∆y ∆z Multiply by 

∆x
∆x

 .

 =
ƒ1∆x, y, z2 - ƒ10, y, z2

∆x
 ∆V.  ∆V = ∆x ∆y ∆z

A similar argument can be applied to the other two pairs of faces. The approximate net 
flux across the faces y = 0 and y = ∆y is

g1x, ∆y, z2 - g1x, 0, z2
∆y

 ∆V,

and the approximate net flux across the faces z = 0 and z = ∆z is

h1x, y, ∆z2 - h1x, y, 02
∆z

 ∆V.

Adding these three individual fluxes gives the approximate net flux out of the cube:

 net flux out of cube ≈ a ƒ1∆x, y, z2 - ƒ10, y, z2
∆x

+
g1x, ∆y, z2 - g1x, 0, z2

∆y
          (++++1)1++++*  (++++1)1++++*
               ≈  

0ƒ
0x

 10, 0, 02        ≈  
0g
0y

 10, 0, 02

 +
h1x, y, ∆z2 - h1x, y, 02

∆z
b  ∆V

           (++++1)1++++*
                ≈  

0h
0z

 10, 0, 02

 ≈ a 0ƒ
0x

+
0g
0y

+
0h
0z
b ` 10, 0, 02 ∆V

 = 1∇ # F210, 0, 02 ∆V.

Notice how the three quotients approximate partial derivatives when ∆x, ∆y, and ∆z are 
small. A similar argument may be made at any point in the region.

Taking one more step, we show informally how the Divergence Theorem arises. Sup-
pose the small cube we just analyzed is one of many small cubes of volume ∆V  that fill 

QUICK CHECK 2 In Example 3, does the 
vector field have negative components 
anywhere in the cube D? Is the 
divergence negative anywhere in D?	

➤	 The mass transport is also called the flux 
density; when multiplied by an area, it 
gives the flux. We use the convention 
that flux has units of mass per unit time.

➤	 Check the units: If F has units of 
mass>1area # time2, then the flux has 
units of mass>time (n has no units).

n1 5 k21, 0, 0l
n2 5 k1, 0, 0l

(0, 0, Dz)

(0, Dy, 0)
(Dx, 0, 0) (0, 0, 0)

Flux 5 F(0, y, z) ? n1 Dy Dz

Flux 5 F(Dx, y, z) ? n2 Dy Dz

Area 5 Dy Dz y

x

z

Figure 17.70

M17_BRIG3644_03_SE_C17_1089-1184.indd   1174 27/10/17   2:42 PM



 17.8 Divergence Theorem 1175

a region D. We label the cubes k = 1, c, n and apply the preceding argument to each 
cube, letting 1∇ # F2k be the divergence evaluated at a point in the kth cube. Adding the 
individual contributions to the net flux from each cube, we obtain the approximate net flux 
across the boundary of D:

net flux out of D ≈ a
n

k = 1

 1∇ # F2k ∆V.

Letting the volume of the cubes ∆V  approach 0, and letting the number of cubes n in-
crease, we obtain an integral over D:

net flux out of D = lim
nS∞

 a
n

k = 1

1∇ # F2k ∆V = 9
D

∇ # F dV.

The net flux across the boundary of D is also given by 6S F # n dS. Equating the surface 
integral and the volume integral gives the Divergence Theorem. Now we look at a formal 
proof.

Proof of the Divergence Theorem
We prove the Divergence Theorem under special conditions on the region D. Let R be the 
projection of D in the xy-plane (Figure 17.71); that is,

R = 51x, y2: 1x, y, z2 is in D6.

Assume the boundary of D is S and let n be the unit vector normal to S that points outward.
Letting F = 8ƒ, g, h9 = ƒ i + g j + h k, the surface integral in the Divergence 

Theorem is

 6
S

 F # n dS = 6
S

1ƒ i + g j + h k2 # n dS

 = 6
S

ƒ i # n dS + 6
S

g j # n dS + 6
S

h k # n dS.

The volume integral in the Divergence Theorem is

9
D

∇ # F dV = 9
D

a 0ƒ
0x

+
0g
0y

+
0h
0z
b  dV.

Matching terms of the surface and volume integrals, the theorem is proved by showing 
that

6
S

ƒ i # n dS = 9
D

 
0ƒ
0x

 dV,  (1)

6
S

g j # n dS = 9
D

 
0g
0y

 dV, and (2)

6
S

h k # n dS = 9
D

 
0h
0z

 dV. (3)

We work on equation (3) assuming special properties for D. Suppose D is bounded by 
two surfaces S1: z = p1x, y2 and S2: z = q1x, y2, where p1x, y2 … q1x, y2 on R (Fig-
ure 17.71). The Fundamental Theorem of Calculus is used in the triple integral to show that

 9
D

 
0h
0z

 dV = 6
R

∫q1x, y2
p1x, y2  

0h
0z

 dz dx dy

 = 6
R

1h1x, y, q1x, y22 - h1x, y, p1x, y222 dx dy. Evaluate inner integral.

Now let’s turn to the surface integral in equation (3), 6S h k # n dS, and note that S 
consists of three pieces: the lower surface S1, the upper surface S2, and the vertical sides S3 
of the surface (if they exist). The normal to S3 is everywhere orthogonal to k, so k # n = 0 

➤	 In making this argument, notice that for 
two adjacent cubes, the flux into one 
cube equals the flux out of the other cube 
across the common face. Therefore, there 
is a cancellation of fluxes throughout the 
interior of D.

QUICK CHECK 3 Draw the unit cube 
D = 51x, y, z2: 0 … x … 1, 
0 … y … 1, 0 … z … 16 and sketch 
the vector field F = 8x, -y, 2z9  on 
the six faces of the cube. Compute and 
interpret div F.	

R

S2: z 5 q(x, y)

S1: z 5 p(x, y)

n

n

D

z

yx

Figure 17.71
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and the S3 integral makes no contribution. What remains is to compute the surface inte-
grals over S1 and S2.

The required outward normal to S2 (which is the graph of z = q1x, y2) is 
8 -qx, -qy, 19 . The outward normal to S1 (which is the graph of z = p1x, y2) points 
downward, so it is given by 8px, py, -19 . The surface integral of (3) becomes

 6
S

h k # n dS = 6
S2

h1x, y, z2 k # n dS + 6
S1

h1x, y, z2 k # n dS

 = 6
R

h1x, y, q1x, y22 k # 8 -qx, -qy, 19  dx dy
(+++)+++*
    1

 +6
R

h1x, y, p1x, y22 k # 8px, py, -19  dx dy
(++1)1++*
   -1

 = 6
R

h1x, y, q1x, y22 dx dy - 6
R

h1x, y, p1x, y22 dx dy. Simplify.

Observe that both the volume integral and the surface integral of (3) reduce to the same 

integral over R. Therefore, 6S h k # n dS = 9D 
0h
0z

 dV.

Equations (1) and (2) are handled in a similar way.

• To prove (1), we make the special assumption that D is also bounded by two surfaces, 
S1: x = s1y, z2 and S2: x = t1y, z2, where s1y, z2 … t1y, z2.

• To prove (2), we assume D is bounded by two surfaces, S1: y = u1x, z2 and 
S2: y = v1x, z2, where u1x, z2 … v1x, z2.

When combined, equations (1), (2), and (3) yield the Divergence Theorem. 

Divergence Theorem for Hollow Regions
The Divergence Theorem may be extended to more general solid regions. Here we con-
sider the important case of hollow regions. Suppose D is a region consisting of all points 
inside a closed oriented surface S2 and outside a closed oriented surface S1, where S1 lies 
within S2 (Figure 17.72). Therefore, the boundary of D consists of S1 and S2, which we 
denote S. (Note that D is simply connected.)

We let n1 and n2 be the outward unit normal vectors for S1 and S2, respectively. Note 
that n1 points into D, so the outward normal to S on S1 is -n1. With this observation, the 
Divergence Theorem takes the following form.

n1 is the outward unit normal
to S1 and points into D.
The outward unit normal to S
on S1 is 2n1.

D

S

S1

S2n1

n2

2n1

Figure 17.72

➤	 It’s important to point out again that n1 is 
the unit normal that we would use for S1 
alone, independent of S. It is the outward 
unit normal to S1, but it points into D.

THEOREM 17.18 Divergence Theorem for Hollow Regions
Suppose the vector field F satisfies the conditions of the Divergence Theorem on a 
region D bounded by two oriented surfaces S1 and S2, where S1 lies within S2. Let 
S be the entire boundary of D 1S = S1 h  S22 and let n1 and n2 be the outward unit 
normal vectors for S1 and S2, respectively. Then

9
D

∇ # F dV = 6
S

F # n dS = 6
S2

F # n2 dS - 6
S1

F # n1 dS.

This form of the Divergence Theorem is applicable to vector fields that are not differ-
entiable at the origin, as is the case with some important radial vector fields.

EXAMPLE 4 Flux for an inverse square field Consider the inverse square vector field

F =
r
0 r 0 3 =

8x, y, z9
1x2 + y2 + z223>2  .
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a. Find the net outward flux of F across the surface of the region 
D = 51x, y, z2: a2 … x2 + y2 + z2 … b26 that lies between concentric spheres with 
radii a and b.

b. Find the outward flux of F across any sphere that encloses the origin.

SOLUTION

a. Although the vector field is undefined at the origin, it is defined and differentiable in 
D, which excludes the origin. In Section 17.5 (Exercise 73) it was shown that the  

divergence of the radial field F =
 r 
0 r 0 p with p = 3 is 0. We let S be the union  

of S2, the larger sphere of radius b, and S1, the smaller sphere of radius a. Because  

9D∇ # F dV = 0, the Divergence Theorem implies that

6
S

F # n dS = 6
S2

F # n2 dS - 6
S1

F # n1 dS = 0.

Therefore, the next flux across S is zero.

b. Part (a) implies that

6
S2

F # n2 dS = 6
S1

F # n1 dS.

(++)++*  (++)++*
  out of D     into D

We see that the flux out of D across S2 equals the flux into D across S1. To find that 
flux, we evaluate the surface integral over S1 on which 0 r 0 = a. (Because the fluxes 
are equal, S2 could also be used.)

The easiest way to evaluate the surface integral is to note that on the sphere S1, the 
unit outward normal vector is n1 = r> 0 r 0 . Therefore, the surface integral is

 6
S1

F # n1 dS = 6
S1

 
r
0 r 0 3

# r
0 r 0  dS Substitute for F and n1.

 = 6
S1

 
0 r 0 2
0 r 0 4 dS  r # r = 0 r 0 2

 = 6
S1

 
1

a2 dS  0 r 0 = a

 =
4pa2

a2  Surface area = 4pa2

 = 4p.

The same result is obtained using S2 or any smooth surface enclosing the origin. The 
flux of the inverse square field across any surface enclosing the origin is 4p. As shown 
in Exercise 46, among radial fields, this property holds only for the inverse square field 
1p = 32.

Related Exercises 26–27	  

➤	 Recall that an inverse square force is 
proportional to 1> 0 r 0 2 multiplied by a 
unit vector in the radial direction, which 
is r> 0 r 0 . Combining these two factors 
gives F = r> 0 r 0 3.

Gauss’ Law
Applying the Divergence Theorem to electric fields leads to one of the fundamental laws 
of physics. The electric field due to a point charge Q located at the origin is given by the 
inverse square law,

E1x, y, z2 = Q

4pe0

 
r
0 r 0 3 ,

where r = 8x, y, z9  and e0 is a physical constant called the permittivity of free space.
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According to the calculation of Example 4, the flux of the field 
r
0 r 0 3 across any sur-

face that encloses the origin is 4p. Therefore, the flux of the electric field across any 

surface enclosing the origin is 
Q

4pe0

# 4p =
Q
e0

 (Figure 17.73a). This is one statement of  

Gauss’ Law: If S is a surface that encloses a point charge Q, then the flux of the electric  
field across S is

6
S

E # n dS =
Q
e0

.

(a) (b)

Gauss’ Law:
Flux of electric field across S
due to point charge Q

5 EE E ? n dS 5
S DS

Gauss’ Law:
Flux of electric field across S
due to charge distribution q

5 EE E ? n dS 5  EEE q dV

Charge distribution
density q

D
DS

S

Q

E

E

Q
e0 e0

1

Figure 17.73

In fact, Gauss’ Law applies to more general charge distributions (Exercise 39). If q1x, y, z2 
is a charge density (charge per unit volume) defined on a region D enclosed by S, then the 
total charge within D is Q = 9D q1x, y, z2 dV  (Figure 17.73b). Replacing Q with this 
triple integral, Gauss’ Law takes the form

6
S

E # n dS =
1
e0

 9
D

q1x, y, z2 dV.

(+++)+++*
    Q

Gauss’ Law applies to other inverse square fields. In a slightly different form, it also 
governs heat transfer. If T  is the temperature distribution in a solid body D, then the heat 
flow vector field is F = -k∇T. (Heat flows down the temperature gradient.) If q1x, y, z2 
represents the sources of heat within D, Gauss’ Law says

6
S

F # n dS = -k6
S

∇T # n dS = 9
D

q1x, y, z2 dV.

We see that, in general, the flux of material (fluid, heat, electric field lines) across the 
boundary of a region is the cumulative effect of the sources within the region.

A Final Perspective
Table 17.4 offers a look at the progression of fundamental theorems of calculus that have 
appeared throughout this text. Each theorem builds on its predecessors, extending the 
same basic idea to a different situation or to higher dimensions.

In all cases, the statement is effectively the same: The cumulative (integrated) effect 
of the derivatives of a function throughout a region is determined by the values of the 
function on the boundary of that region. This principle underlies much of our understand-
ing of the world around us.
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Getting Started
1. Explain the meaning of the surface integral in the Divergence 

Theorem.

2. Interpret the volume integral in the Divergence Theorem.

3. Explain the meaning of the Divergence Theorem.

4. What is the net outward flux of the rotation field 
F = 82z + y, -x, -2x9  across the surface that encloses any 
region?

5. What is the net outward flux of the radial field F = 8x, y, z9  
across the sphere of radius 2 centered at the origin?

6. What is the divergence of an inverse square vector field?

7. Suppose div F = 0 in a region enclosed by two concentric 
spheres. What is the relationship between the outward fluxes 
across the two spheres?

8. If div F 7 0 in a region enclosed by a small cube, is the net flux 
of the field into or out of the cube?

Practice Exercises
9–12. Verifying the Divergence Theorem Evaluate both integrals of 
the Divergence Theorem for the following vector fields and regions. 
Check for agreement.

9. F = 82x, 3y, 4z9 ; D = 51x, y, z2: x2 + y2 + z2 … 46
10. F = 8 -x, -y, -z9 ;  

D = 51x, y, z2: 0 x 0 … 1, 0 y 0 … 1, 0 z 0 … 16

SECTION 17.8 EXERCISES

11. F = 8z - y, x, -x9 ; 
D = 51x, y, z2: x2>4 + y2>8 + z2>12 … 16

12. F = 8x2, y2, z29 ; D = 51x, y, z2: 0 x 0 … 1, 0 y 0 … 2, 0 z 0 … 36
13–16. Rotation fields

13. Find the net outward flux of the field F = 82z - y, x, -2x9  
across the sphere of radius 1 centered at the origin.

14. Find the net outward flux of the field 
F = 8z - y, x - z, y - x9  across the boundary of the cube 
51x, y, z2: 0 x 0 … 1, 0 y 0 … 1, 0 z 0 … 16.

15. Find the net outward flux of the field 
F = 8bz - cy, cx - az, ay - bx9  across any smooth closed sur-
face in ℝ3, where a, b, and c are constants.

16. Find the net outward flux of F = a * r across any smooth 
closed surface in ℝ3, where a is a constant nonzero vector and 
r = 8x, y, z9 .

17–24. Computing flux Use the Divergence Theorem to compute the 
net outward flux of the following fields across the given surface S.

17. F = 8x, -2y, 3z9 ; S is the sphere 51x, y, z2: x2 + y2 + z2 = 66.

18. F = 8x2, 2xz, y29 ; S is the surface of the cube cut from the first 
octant by the planes x = 1, y = 1, and z = 1.

19. F = 8x, 2y, z9 ; S is the boundary of the tetrahedron in the first 
octant formed by the plane x + y + z = 1.

20. F = 8x2, y2, z29 ; S is the sphere 51x, y, z2: x2 + y2 + z2 = 256.

Table 17.4

Fundamental Theorem 
of Calculus

∫b

a
 ƒ′1x2 dx = ƒ1b2 - ƒ1a2 xa b

Fundamental Theorem 
for Line Integrals

∫
C

∇ƒ # dr = ƒ1B2 - ƒ1A2 A
C

B

Green’s Theorem  
(Circulation form)

6
R

1gx - ƒy2 dA = C
C

 ƒ dx + g dy

R

C

Stokes’ Theorem 6
S

1∇ * F2 # n dS = C
C

F # dr
S

C

Divergence Theorem 9
D

∇ # F dV = 6
S

F # n dS

S

D

M17_BRIG3644_03_SE_C17_1089-1184.indd   1179 27/10/17   2:42 PM



1180 Chapter 17  •  Vector Calculus

21. F = 8y - 2x, x3 - y, y2 - z9 ; S is the sphere 
51x, y, z2: x2 + y2 + z2 = 46.

22. F = 8y + z, x + z, x + y9 ; S consists of the faces of the cube 
51x, y, z2: 0 x 0 … 1, 0 y 0 … 1, 0 z 0 … 16.

23. F = 8x, y, z9 ; S is the surface of the paraboloid 
z = 4 - x2 - y2, for z Ú 0, plus its base in the xy-plane.

24. F = 8x, y, z9 ; S is the surface of the cone z2 = x2 + y2, for 
0 … z … 4, plus its top surface in the plane z = 4.

25–30. Divergence Theorem for more general regions Use the Diver-
gence Theorem to compute the net outward flux of the following vector 
fields across the boundary of the given regions D.

25. F = 8z - x, x - y, 2y - z9 ; D is the region between the spheres 
of radius 2 and 4 centered at the origin.

26. F = r 0 r 0 = 8x, y, z92x2 + y2 + z2; D is the region between 
the spheres of radius 1 and 2 centered at the origin.

27. F =
r

0 r 0 =
8x, y, z92x2 + y2 + z2

 ; D is the region between the spheres 

of radius 1 and 2 centered at the origin.

28. F = 8z - y, x - z, 2y - x9 ; D is the region between two cubes: 
51x, y, z2: 1 … 0 x 0 … 3, 1 … 0 y 0 … 3, 1 … 0 z 0 … 36.

29. F = 8x2, -y2, z29 ; D is the region in the first octant between the 
planes z = 4 - x - y and z = 2 - x - y.

30. F = 8x, 2y, 3z9 ; D is the region between the cylinders 
x2 + y2 = 1 and x2 + y2 = 4, for 0 … z … 8.

31. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. If ∇ # F = 0 at all points of a region D, then F # n = 0 at all 
points of the boundary of D.

b. If 6S F # n dS = 0 on all closed surfaces in ℝ3, then F is  
constant.

c. If 0F 0 6 1, then @9D ∇ # F dV @  is less than the area of the  
surface of D.

32. Flux across a sphere Consider the radial field F = 8x, y, z9  
and let S be the sphere of radius a centered at the origin. Com-
pute the outward flux of F across S using the representation 
z = {2a2 - x2 - y2 for the sphere (either symmetry or two 
surfaces must be used).

33–35. Flux integrals Compute the outward flux of the following  
vector fields across the given surfaces S. You should decide which  
integral of the Divergence Theorem to use.

33. F = 8x2ey cos z, -4xey cos z, 2xey sin z9 ; S is the boundary of the 
ellipsoid x2>4 + y2 + z2 = 1.

34. F = 8 -yz, xz, 19 ; S is the boundary of the ellipsoid 
x2>4 + y2>4 + z2 = 1.

35. F = 8x sin y, -cos y, z sin y9 ; S is the boundary of the region 
bounded by the planes x = 1, y = 0, y = p>2, z = 0, and  
z = x.

36. Radial fields Consider the radial vector field 

F =
r

� r � p =
8x, y, z9

1x2 + y2 + z22p>2. Let S be the sphere of radius a 

centered at the origin.

a. Use a surface integral to show that the outward flux of F 
across S is 4pa3 - p. Recall that the unit normal to the sphere  
is r> 0 r 0 .

b. For what values of p does F satisfy the conditions of the  
Divergence Theorem? For these values of p, use the fact  

(Theorem 17.10) that ∇ # F =
3 - p

� r � p  to compute the flux 

across S using the Divergence Theorem.

37. Singular radial field Consider the radial field 

F =
r

0 r 0 =
8x, y, z9

1x2 + y2 + z221>2 .

a. Evaluate a surface integral to show that 6S F # n dS = 4pa2,  
where S is the surface of a sphere of radius a centered at the 
origin.

b. Note that the first partial derivatives of the components of F 
are undefined at the origin, so the Divergence Theorem does 
not apply directly. Nevertheless, the flux across the sphere as 
computed in part (a) is finite. Evaluate the triple integral of 
the Divergence Theorem as an improper integral as follows. 
Integrate div F over the region between two spheres of radius a 
and 0 6 e 6 a. Then let e S 0+ to obtain the flux computed 
in part (a).

38. Logarithmic potential Consider the potential function 

w1x, y, z2 = 1
2

 ln 1x2 + y2 + z22 = ln 0 r 0 , where r = 8x, y, z9 .
a. Show that the gradient field associated with w is 

F =
r

0 r 0 2 =
8x, y, z9

x2 + y2 + z2 .

b. Show that 6S F # n dS = 4pa, where S is the surface of a 
sphere of radius a centered at the origin.

c. Compute div F.
d. Note that F is undefined at the origin, so the Divergence  

Theorem does not apply directly. Evaluate the volume integral 
as described in Exercise 37.

39. Gauss’ Law for electric fields The electric field due to a point 

charge Q is E =
Q

4pe0

 
r

0 r 0 3, where r = 8x, y, z9 , and e0 is a  

constant.

a. Show that the flux of the field across a sphere of radius a cen-

tered at the origin is 6S E # n dS =
Q

e0
.

b. Let S be the boundary of the region between two spheres cen-
tered at the origin of radius a and b, respectively, with a 6 b. 
Use the Divergence Theorem to show that the net outward flux 
across S is zero.

c. Suppose there is a distribution of charge within a region D.  
Let q1x, y, z2 be the charge density (charge per unit volume). 
Interpret the statement that

6
S

 E # n dS =
1
e0
9
D

q1x, y, z2 dV.

d. Assuming E satisfies the conditions of the Divergence  

Theorem on D, conclude from part (c) that ∇ # E =
q

e0
 .

e. Because the electric force is conservative, it has a potential 

function w. From part (d), conclude that ∇2w = ∇ # ∇w =
q

e0
 .
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40. Gauss’ Law for gravitation The gravitational force due to a point 
mass M at the origin is proportional to F = GMr> 0 r 0 3, where 
r = 8x, y, z9  and G is the gravitational constant.

a. Show that the flux of the force field across a sphere of radius a 
centered at the origin is 6S F # n dS = 4pGM.

b. Let S be the boundary of the region between two spheres cen-
tered at the origin of radius a and b, respectively, with a 6 b. 
Use the Divergence Theorem to show that the net outward flux 
across S is zero.

c. Suppose there is a distribution of mass within a region D. Let 
r1x, y, z2 be the mass density (mass per unit volume). Interpret 
the statement that

6
S

 F # n dS = 4pG9
D

r1x, y, z2 dV.

d. Assuming F satisfies the conditions of the Divergence  
Theorem on D, conclude from part (c) that ∇ # F = 4pGr.

e. Because the gravitational force is conservative, it has a poten-
tial function w. From part (d), conclude that ∇2w = 4pGr.

41–45. Heat transfer Fourier’s Law of heat transfer (or heat conduc-
tion) states that the heat flow vector F at a point is proportional to the 
negative gradient of the temperature; that is, F = -k∇T, which means 
that heat energy flows from hot regions to cold regions. The constant 
k 7 0 is called the conductivity, which has metric units of J>(m-s-K). 
A temperature function for a region D is given. Find the net outward 
heat flux 6S F # n dS = -k6S ∇T # n dS across the boundary S of D.  
In some cases, it may be easier to use the Divergence Theorem and 
evaluate a triple integral. Assume k = 1.

41. T1x, y, z2 = 100 + x + 2y + z; 
D = 51x, y, z2: 0 … x … 1, 0 … y … 1, 0 … z … 16

42. T1x, y, z2 = 100 + x2 + y2 + z2; 
D = 51x, y, z2: 0 … x … 1, 0 … y … 1, 0 … z … 16

43. T1x, y, z2 = 100 + e-z; 
D = 51x, y, z2: 0 … x … 1, 0 … y … 1, 0 … z … 16

44. T1x, y, z2 = 100 + x2 + y2 + z2; D is the unit sphere centered at 
the origin.

45. T1x, y, z2 = 100e-x2 - y2 - z2
; D is the sphere of radius a centered at 

the origin.

Explorations and Challenges
46. Inverse square fields are special Let F be a radial field 

F = r> 0 r 0 p, where p is a real number and r = 8x, y, z9 . With 
p = 3, F is an inverse square field.

a. Show that the net flux across a sphere centered at the origin is 
independent of the radius of the sphere only for p = 3.

b. Explain the observation in part (a) by finding the flux 
of F = r> 0 r 0 p across the boundaries of a spherical box 
51r, w, u2: a … r … b, w1 … w … w2, u1 … u … u26 for  
various values of p.

47. A beautiful flux integral Consider the potential function 
w1x, y, z2 = G1r2, where G is any twice differentiable function 

and r = 2x2 + y2 + z2 ; therefore, G depends only on the  
distance from the origin.

a. Show that the gradient vector field associated with w is 

F = ∇w = G′1r2 r
r

, where r = 8x, y, z9  and r = 0 r 0 .

T

b. Let S be the sphere of radius a centered at the origin and let D 
be the region enclosed by S. Show that the flux of F across S is 
6S F # n dS = 4pa2G′1a2.

c. Show that ∇ # F = ∇ # ∇w =
2G′1r2

r
+ G″1r2.

d. Use part (c) to show that the flux across S (as given in part (b)) 
is also obtained by the volume integral 9D ∇ # F dV.  
(Hint: Use spherical coordinates and integrate by parts.)

48. Integration by parts (Gauss’ Formula) Recall the Product Rule 
of Theorem 17.13: ∇ # 1uF2 = ∇u # F + u1∇ # F2.
a. Integrate both sides of this identity over a solid region D with 

a closed boundary S, and use the Divergence Theorem to prove 
an integration by parts rule:

9
D

u1∇ # F2 dV = 6
S

uF # n dS - 9
D

∇u # F dV.

b. Explain the correspondence between this rule and the integra-
tion by parts rule for single-variable functions.

c. Use integration by parts to evaluate 9D 1x2y + y2z + z2x2 dV, 
where D is the cube in the first octant cut by the planes x = 1, 
y = 1, and z = 1.

49. Green’s Formula Write Gauss’ Formula of Exercise 48 in two  
dimensions—that is, where F = 8ƒ, g9 , D is a plane region R and 
C is the boundary of R. Show that the result is Green’s Formula:

6
R

u1ƒx + gy2 dA = C
C

u1F # n2 ds - 6
R

1ƒux + guy2 dA.

Show that with u = 1, one form of Green’s Theorem appears. 
Which form of Green’s Theorem is it?

50. Green’s First Identity Prove Green’s First Identity for twice diffe-
rentiable scalar-valued functions u and v defined on a region D:

9
D

1u∇2v + ∇u # ∇v2 dV = 6
S

u∇v # n dS,

where ∇2v = ∇ # ∇v. You may apply Gauss’ Formula in  
Exercise 48 to F = ∇v or apply the Divergence Theorem to 
F = u∇v.

51. Green’s Second Identity Prove Green’s Second Identity for 
scalar-valued functions u and v defined on a region D:

9
D

1u∇2v - v∇2u2 dV = 6
S

1u∇v - v∇u2 # n dS.

(Hint: Reverse the roles of u and v in Green’s First Identity.)

52–54. Harmonic functions A scalar-valued function w is harmonic 
on a region D if ∇2w = ∇ # ∇w = 0 at all points of D.

52. Show that the potential function w1x, y, z2 = 0 r 0 -p is harmonic 
provided p = 0 or p = 1, where r = 8x, y, z9 . To what vector 
fields do these potentials correspond?

53. Show that if w is harmonic on a region D enclosed by a surface S, 
then 6S ∇w # n dS = 0.

54. Show that if u is harmonic on a region D enclosed by a surface S, 
then 6S u∇u # n dS = 9D 0 ∇u 0 2 dV .

55. Miscellaneous integral identities Prove the following identities.

a. 9D ∇ * F dV = 6S 1n * F2 dS  (Hint: Apply the  
Divergence Theorem to each component of the identity.)

b. 6S 1n * ∇w2 dS = RC w dr  (Hint: Apply Stokes’ Theorem 
to each component of the identity.)
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QUICK CHECK ANSWERS

1. If F is constant, then div F = 0,  so 9D ∇ # F dV =  
6S F # n dS = 0. This means that all the “material” that 
flows into one side of D flows out of the other side of D.
2. The vector field and the divergence are positive through-
out D. 3. The vector field has no flow into or out of the 

cube on the faces x = 0, y = 0, and z = 0 because the vec-
tors of F on these faces are parallel to the faces. The vector 
field points out of the cube on the x = 1 and z = 1 faces 
and into the cube on the y = 1 face. div F = 2, so there is a 
net flow out of the cube.	

1. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

a. The rotation field F = 8 -y, x9  has zero curl and zero divergence.
b. ∇ * ∇w = 0
c. Two vector fields with the same curl differ by a constant vector 

field.
d. Two vector fields with the same divergence differ by a constant 

vector field.
e. If F = 8x, y, z9  and S encloses a region D, then 6S F # n dS is 

three times the volume of D.

2. Matching vector fields Match vector fields a–f with the graphs 
A–F. Let r = 8x, y9 .
a. F = 8x, y9  b. F = 8 -2y, 2x9
c. F = r> 0 r 0  d. F = 8y - x, x9
e. F = 8e-y, e-x9  f. F = 8sin px, sin py9
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3–4. Gradient fields in ℝ2 Find the vector field F = ∇w for the fol-
lowing potential functions. Sketch a few level curves of w and a few 
vectors of F along the level curves.

3. w1x, y2 = x2 + 4y2, for 0 x 0 … 5, 0 y 0 … 5

4. w1x, y2 = 1x2 - y22>2, for 0 x 0 … 2, 0 y 0 … 2

5–6. Gradient fields in ℝ3 Find the vector field F = ∇w for the  
following potential functions.

5. w1x, y, z2 = 1> 0 r 0 , where r = 8x, y, z9

6. w1x, y, z2 = 1
2

 e-x2 - y2 - z2

7. Normal component Let C be the circle of radius 2 centered at the 
origin with counterclockwise orientation. Give the unit outward 
normal vector at any point 1x, y2 on C.

8–10. Line integrals Evaluate the following line integrals.

8. ∫
C

1x2 - 2xy + y22 ds; C is the upper half of a circle 

r1t2 = 85 cos t, 5 sin t9 , for 0 … t … p.

9. ∫
C

ye-xz ds; C is the path r1t2 = 82t, 3t, -6t9 , for 0 … t … 2.

10. ∫
C

1xz - y22  ds; C is the line segment from 10, 1, 22 to 1-3, 7, -12.

11. Two parameterizations Verify that RC 1x - 2y + 3z2 ds has 

the same value when C is given by r1t2 = 82 cos t, 2 sin t, 09 , 
for 0 … t … 2p, and by r1t2 = 82 cos t2, 2 sin t2, 09 , for 

0 … t … 12p.

12. Work integral Find the work done in moving an object 
from P11, 0, 02 to Q10, 1, 02 in the presence of the force 
F = 81, 2y, -4z9  along the following paths.

a. The line segment from P to Q
b. The line segment from P to O10, 0, 02 followed by the line 

segment from O to Q
c. The arc of the quarter circle from P to Q
d. Is the work independent of the path?

13–14. Work integrals in ℝ3 Given the force field F, find the work  
required to move an object on the given curve.

13. F = 8 -y, z, x9  on the path consisting of the line segment from 
10, 0, 02 to 10, 1, 02 followed by the line segment from 10, 1, 02 
to 10, 1, 42

14. F =
8x, y, z9

1x2 + y2 + z223>2 on the path r1t2 = 8 t2, 3t2, - t29 ,  
for 1 … t … 2
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35–36. Circulation and flux Consider the following vector fields.

a. Compute the circulation on the boundary of the region R (with 
counterclockwise orientation).

b. Compute the outward flux across the boundary of R.

35. F = r> 0 r 0 , where r = 8x, y9  and R is the half-annulus 
51r, u2: 1 … r … 3, 0 … u … p6

36. F = 8 -sin y, x cos y9 , where R is the square 
51x, y2: 0 … x … p>2, 0 … y … p>26

37. Parameters Let F = 8ax + by, cx + dy9 , where a, b, c, and d 
are constants.

a. For what values of a, b, c, and d is F conservative?
b. For what values of a, b, c, and d is F source free?
c. For what values of a, b, c, and d is F conservative and  

source free?

38–41. Divergence and curl Compute the divergence and curl of  
the following vector fields. State whether the field is source free or  
irrotational.

38. F = 8yz, xz, xy9
39. F = r � r � = 8x, y, z92x2 + y2 + z2

40. F = 8sin xy, cos yz, sin xz9
41. F = 82xy + z4, x2, 4xz39

42. Identities Prove that ∇ a 1

0 r 0 4 b = -  
4r

0 r 0 6 and use the result to 

prove that ∇ # ∇ a 1

0 r 0 4 b =
12

0 r 0 6.

43. Maximum curl Let F = 8z, x, -y9 .
a. What is the scalar component of curl F in the direction of 

n = 81, 0, 09?
b. What is the scalar component of curl F in the direction of 

n = 80, -1>12, 1>129?
c. In the direction of what unit vector n is the scalar component 

of curl F a maximum?

44. Paddle wheel in a vector field Let F = 80, 2x, 09  and let n be a 
unit vector aligned with the axis of a paddle wheel located on the 
y-axis.

a. If the axis of the paddle wheel is aligned with n = 81, 0, 09 , 
how fast does it spin?

b. If the axis of the paddle wheel is aligned with n = 80, 0, 19 , 
how fast does it spin?

c. For what direction n does the paddle wheel spin fastest?

45–48. Surface areas Use a surface integral to find the area of the  
following surfaces.

45. The hemisphere x2 + y2 + z2 = 9, for z Ú 0

46. The frustum of the cone z2 = x2 + y2, for 2 … z … 4 (excluding 
the bases)

47. The plane z = 6 - x - y above the square � x � … 1, � y � … 1

48. The surface ƒ1x, y2 = 12 xy above the polar region 
51r, u2: 0 … r … 2, 0 … u … 2p6

49–51. Surface integrals Evaluate the following surface integrals.

49. 6S 11 + yz2 dS; S is the plane x + y + z = 2 in the first octant.

15–18. Circulation and flux Find the circulation and the outward flux 
of the following vector fields for the curve r1t2 = 82 cos t, 2 sin t9 , for 
0 … t … 2p.

15. F = 8y - x, y9  16. F = 8x, y9
17. F = r> 0 r 0 2, where r = 8x, y9
18. F = 8x - y, x9
19. Flux in channel flow Consider the flow of water in a channel 

whose boundaries are the planes y = {L and z = {1>2. The 
velocity field in the channel is v = 8v01L2 - y22, 0, 09 . Find the 
flux across the cross section of the channel at x = 0 in terms  
of v0 and L.

20–23. Conservative vector fields and potentials Determine whether 
the following vector fields are conservative on their domains. If so, find 
a potential function.

20. F = 8y2, 2xy9  21. F = 8y, x + z2, 2yz9
22. F = 8ex cos y, -ex sin y9  23. F = ez8y, x, xy9
24–27. Evaluating line integrals Evaluate the line integral #C F # dr 
for the following vector fields F and curves C in two ways.

a. By parameterizing C
b. By using the Fundamental Theorem for line integrals, if possible

24. F = ∇1x2y2; C: r1t2 = 89 - t2, t9 , for 0 … t … 3

25. F = ∇1xyz2; C: r1t2 = 8cos t, sin t, t>p9 , for 0 … t … p

26. F = 8x, -y9 ; C is the square with vertices 1{1, {12 with 
counterclockwise orientation.

27. F = 8y, z, -x9 ; C: r1t2 = 8cos t, sin t, 49 , for 0 … t … 2p

28. Radial fields in ℝ2 are conservative Prove that the radial field 
F = r> 0 r 0 p, where r = 8x, y9  and p is a real number, is conser-
vative on ℝ2 with the origin removed. For what value of p is F 
conservative on ℝ2 (including the origin)?

29–32. Green’s Theorem for line integrals Use either form of Green’s 
Theorem to evaluate the following line integrals.

29. C
C

 
xy2 dx + x2y dy; C is the triangle with vertices 10, 02, 12, 02, 

and 10, 22 with counterclockwise orientation.

30. C
C

1-3y + x3>22  dx + 1x - y2>32  dy; C is the boundary of the  

half-disk 51x, y2: x2 + y2 … 2, y Ú 06 with counterclockwise  
orientation.

31. C
C

1x3 + xy2 dy + 12y2 - 2x2y2 dx; C is the square with vertices 

1{1, {12 with counterclockwise orientation.

32. C
C

 
3x3 dy - 3y3 dx; C is the circle of radius 4 centered at the origin 

with clockwise orientation.

33–34. Areas of plane regions Find the area of the following regions 
using a line integral.

33. The region enclosed by the ellipse x2 + 4y2 = 16

34. The region bounded by the hypocycloid r1t2 = 8cos3 t, sin3 t9 , 
for 0 … t … 2p
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50. 6S 80, y, z9 # n dS; S is the curved surface of the cylinder 
y2 + z2 = a2, for 0 x 0 … 8, with outward normal vectors.

51. 6S 1x - y + z2 dS; S is the entire surface, including the base, of 
the hemisphere x2 + y2 + z2 = 4, for z Ú 0.

52–53. Flux integrals Find the flux of the following vector fields 
across the given surface. Assume the vectors normal to the surface 
point outward.

52. F = 8x, y, z9  across the curved surface of the cylinder 
x2 + y2 = 1, for 0 z 0 … 8

53. F = r> 0 r 0  across the sphere of radius a centered at the origin, 
where r = 8x, y, z9

54. Three methods Find the surface area of the paraboloid 
z = x2 + y2, for 0 … z … 4, in three ways.

a. Use an explicit description of the surface.
b. Use the parametric description r = 8v cos u, v sin u, v29 .
c. Use the parametric description r = 81v cos u, 1v sin u, v9 .

55. Flux across hemispheres and paraboloids Let S be the hemi-
sphere x2 + y2 + z2 = a2, for z Ú 0, and let T be the paraboloid 
z = a - 1x2 + y22>a, for z Ú 0, where a 7 0. Assume the  
surfaces have outward normal vectors.

a. Verify that S and T have the same base 1x2 + y2 … a22 and the 
same high point 10, 0, a2.

b. Which surface has the greater area?
c. Show that the flux of the radial field F = 8x, y, z9  across S is 

2pa3.
d. Show that the flux of the radial field F = 8x, y, z9  across T is 

3pa3>2.

56. Surface area of an ellipsoid Consider the ellipsoid 
x2>a2 + y2>b2 + z2>c2 = 1, where a, b, and c are positive real 
numbers.

a. Show that the surface is described by the parametric equations

r1u, v2 = 8a cos u sin v, b sin u sin v, c cos v9
for 0 … u … 2p, 0 … v … p.

b. Write an integral for the surface area of the ellipsoid.

57–58. Stokes’ Theorem for line integrals Evaluate the line integral 
RC F # dr using Stokes’ Theorem. Assume C has counterclockwise  
orientation.

57. F = 8xz, yz, xy9 ; C is the circle x2 + y2 = 4 in the xy-plane.

58. F = 8x2 - y2, x, 2yz9 ; C is the boundary of the plane 
z = 6 - 2x - y in the first octant.

59–60. Stokes’ Theorem for surface integrals Use Stokes’ Theorem 
to evaluate the surface integral 6S 1∇ * F2 # n dS. Assume n is the 
outward normal.

59. F = 8 -z, x, y9 , where S is the hyperboloid 

z = 10 - 21 + x2 + y2, for z Ú 0

60. F = 8x2 - z2, y2, xz9 , where S is the hemisphere 
x2 + y2 + z2 = 4, for y Ú 0

61. Conservative fields Use Stokes’ Theorem to find the circula-
tion of the vector field F = ∇110 - x2 + y2 + z22 around any 
smooth closed curve C with counterclockwise orientation.

62–64. Computing fluxes Use the Divergence Theorem to compute the 
outward flux of the following vector fields across the given surfaces S.

62. F = 8 -x, x - y, x - z9 ; S is the surface of the cube cut from 
the first octant by the planes x = 1, y = 1, and z = 1.

63. F = 8x3, y3, z39 >3; S is the sphere 51x, y, z2: x2 + y2 + z2 = 96.
64. F = 8x2, y2, z29 ; S is the cylinder 51x, y, z2: x2 + y2 = 4, 

0 … z … 86.

65–66. General regions Use the Divergence Theorem to compute the 
outward flux of the following vector fields across the boundary of the 
given regions D.

65. F = 8x3, y3, 109 ; D is the region between the hemispheres of 
radius 1 and 2 centered at the origin with bases in the xy-plane.

66. F =
r

0 r 0 3 =
8x, y, z9

1x2 + y2 + z223>2 ; D is the region between two 

spheres with radii 1 and 2 centered at 15, 5, 52.
67. Flux integrals Compute the outward flux of the field 

F = 8x2 + x sin y, y2 + 2 cos y, z2 + z sin y9  across the  
surface S that is the boundary of the prism bounded by the planes 
y = 1 - x, x = 0, y = 0, z = 0, and z = 4.

68. Stokes’ Theorem on a compound surface Consider the surface 
S consisting of the quarter-sphere x2 + y2 + z2 = a2, for z Ú 0 
and x Ú 0, and the half-disk in the yz-plane y2 + z2 … a2, for 
z Ú 0. The boundary of S in the xy-plane is C, which consists 
of the semicircle x2 + y2 = a2, for x Ú 0, and the line segment 
3-a, a4 on the y-axis, with a counterclockwise orientation. Let 
F = 82z - y, x - z, y - 2x9 .
a. Describe the direction in which the normal vectors point on S.
b. Evaluate RC F # dr
c. Evaluate 6S 1∇ * F2 # n dS and check for agreement with 

part (b).

Chapter 17 Guided Projects

Applications of the material in this chapter and related topics can be found in the following Guided Projects. For additional information, 
see the Preface.

• Ideal fluid flow

• Maxwell’s equations

• Planimeters and vector fields

• Vector calculus in other coordinate systems
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