
CHAPTER 

1 Introduction

In the sciences and engineering, mathematical models are developed to aid in the understanding 
of physical phenomena. These models often yield an equation that contains some derivatives 
of an unknown function. Such an equation is called a differential equation. Two examples of 
models developed in calculus are the free fall of a body and the decay of a radioactive substance.

In the case of free fall, an object is released from a certain height above the ground and 
falls under the force of gravity.† Newton’s second law, which states that an object’s mass times 
its acceleration equals the total force acting on it, can be applied to the falling object. This 
leads to the equation (see Figure 1.1)

m 
d2h

dt2 = -mg ,

where m is the mass of the object, h is the height above the ground, d2h>dt2 is its acceleration, g 
is the (constant) gravitational acceleration, and -mg is the force due to gravity. This is a differ-
ential equation containing the second derivative of the unknown height h as a function of time.

Fortunately, the above equation is easy to solve for h. All we have to do is divide by m and 
integrate twice with respect to t. That is,

d2h

dt2 = -g ,

so

dh
dt

= -gt + c1

and

h = h1t2 =
-gt2

2
+ c1t + c2 .

1.1 Background

1

†We are assuming here that gravity is the only force acting on the object and that this force is constant. More general 
models would take into account other forces, such as air resistance.

h-mg

Figure 1.1 Apple in free fall
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2     Chapter 1  Introduction

We will see that the constants of integration, c1 and c2, are determined if we know the initial 
height and the initial velocity of the object. We then have a formula for the height of the object 
at time t.

In the case of radioactive decay (Figure 1.2), we begin from the premise that the rate of 
decay is proportional to the amount of radioactive substance present. This leads to the equation

dA
dt

= -kA ,    k 7 0 ,

where A17  02 is the unknown amount of radioactive substance present at time t and k is the 
proportionality constant. To solve this differential equation, we rewrite it in the form

1
A

 dA = -k dt

and integrate to obtain

L
 

 

1
A

 dA = L
 

 
-k dt

ln A + C1 = -kt + C2 .

Solving for A yields

A = A1t2 = e ln A = e-kt eC2 - C1 = Ce-kt,

where C is the combination of integration constants eC2 - C1. The value of C, as we will see later, 
is determined if the initial amount of radioactive substance is given. We then have a formula 
for the amount of radioactive substance at any future time t.

Even though the above examples were easily solved by methods learned in calculus, they 
do give us some insight into the study of differential equations in general. First, notice that 
the solution of a differential equation is a function, like h1t2 or A1t2, not merely a number. 
Second, integration† is an important tool in solving differential equations (not surprisingly!). 
Third, we cannot expect to get a unique solution to a differential equation, since there will 
be arbitrary “constants of integration.” The second derivative d2h>dt2 in the free-fall equation 
gave rise to two constants, c1 and c2, and the first derivative in the decay equation gave rise, 
ultimately, to one constant, C.

Whenever a mathematical model involves the rate of change of one variable with respect 
to another, a differential equation is apt to appear. Unfortunately, in contrast to the examples for 
free fall and radioactive decay, the differential equation may be very complicated and difficult 
to analyze.

†For a review of integration techniques, see Appendix A.

A

Figure 1.2 Radioactive decay
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Section 1.1  Background     3

Differential equations arise in a variety of subject areas, including not only the physi-
cal sciences but also such diverse fields as economics, medicine, psychology, and operations 
research. We now list a few specific examples.

1. In banking practice, if P1t2 is the number of dollars in a savings bank account that 
pays a yearly interest rate of r % compounded continuously, then P satisfies the dif-
ferential equation

(1) 
dP
dt

=
r

100
 P  , t in years.

2. A classic application of differential equations is found in the study of an electric cir-
cuit consisting of a resistor, an inductor, and a capacitor driven by an electromotive 
force (see Figure 1.3). Here an application of Kirchhoff’s laws† leads to the equation

(2) L 
d2q

dt2 + R 
dq

dt
+

1
C

 q = E1t2 ,

where L is the inductance, R is the resistance, C is the capacitance, E1t2 is the elec-
tromotive force, q1t2 is the charge on the capacitor, and t is the time.

3. In psychology, one model of the learning of a task involves the equation

(3)  
dy>dt

y3>211 - y23>2 =
2p1n

 .

Here the variable y represents the learner’s skill level as a function of time t. The con-
stants p and n depend on the individual learner and the nature of the task.

4. In the study of vibrating strings and the propagation of waves, we find the partial dif-
ferential equation

(4) 
02u

0 t2 - c2 
02u

0 x2 = 0 ,‡

where t represents time, x the location along the string, c the wave speed, and u the 
displacement of the string, which is a function of time and location.

C

R L

emf

+

-

Figure 1.3 Schematic for a series RLC circuit

†We will discuss Kirchhoff’s laws in Section 3.5.
‡Historical Footnote: This partial differential equation was first discovered by Jean le Rond d’Alembert (1717–1783) 
in 1747.
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4     Chapter 1  Introduction

To begin our study of differential equations, we need some common terminology. If an 
equation involves the derivative of one variable with respect to another, then the former is 
called a dependent variable and the latter an independent variable. Thus, in the equation

(5) 
d2x

dt2 + a 
dx
dt

+ kx = 0 ,

t is the independent variable and x is the dependent variable. We refer to a and k as coefficients 
in equation (5). In the equation

(6) 
0u
0x

-
0u
0y

= x - 2y ,

x and y are independent variables and u is the dependent variable.
A differential equation involving only ordinary derivatives with respect to a single indepen-

dent variable is called an ordinary differential equation. A differential equation involving partial 
derivatives with respect to more than one independent variable is a partial differential equation. 
Equation (5) is an ordinary differential equation, and equation (6) is a partial differential equation.

The order of a differential equation is the order of the highest-order derivatives present in the 
equation. Equation (5) is a second-order equation because d2x>dt2 is the highest-order derivative 
present. Equation (6) is a first-order equation because only first-order partial derivatives occur.

It will be useful to classify ordinary differential equations as being either linear or nonlin-
ear. Remember that lines (in two dimensions) and planes (in three dimensions) are especially 
easy to visualize, when compared to nonlinear objects such as cubic curves or quadric surfaces. 
For example, all the points on a line can be found if we know just two of them. Correspond-
ingly, linear differential equations are more amenable to solution than nonlinear ones. Observe 
that the equations for lines ax + by = c and planes ax + by + cz = d have the feature that the 
variables appear in additive combinations of their first powers only. By analogy a linear differ-
ential equation is one in which the dependent variable y and its derivatives appear in additive 
combinations of their first powers.

More precisely, a differential equation is linear if it has the format

(7) an1x2 
dny

dxn + an - 11x2 
dn − 1y

dxn − 1 + P + a11x2 
dy

dx
+ a01x2y = F1x2 ,

where an1x2, an - 11x2, . . . , a01x2 and F1x2 depend only on the independent variable x. The 
additive combinations are permitted to have multipliers (coefficients) that depend on x; no 
restrictions are made on the nature of this x-dependence. If an ordinary differential equation is 
not linear, then we call it nonlinear. For example,

d2y

dx2 + y3 = 0

is a nonlinear second-order ordinary differential equation because of the y3 term, whereas

t3 
dx
dt

= t3 + x

is linear (despite the t3 terms). The equation

d2y

dx2 - y 
dy

dx
= cos x

is nonlinear because of the y dy>dx term.
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Section 1.1  Background     5

Although the majority of equations one is likely to encounter in practice fall into the 
nonlinear category, knowing how to deal with the simpler linear equations is an important first 
step (just as tangent lines help our understanding of complicated curves by providing local 
approximations).

In Problems 1–12, a differential equation is given along with 
the field or problem area in which it arises. Classify each as 
an ordinary differential equation (ODE) or a partial differen-
tial equation (PDE), give the order, and indicate the indepen-
dent and dependent variables. If the equation is an ordinary 
differential equation, indicate whether the equation is linear 
or nonlinear.

1. 5 
d2x

dt2 + 4 
dx
dt

 +  9x =  2 cos 3t

(mechanical vibrations, electrical circuits, seismology)

2. 
d2y

dx2 - 2x 
dy

dx
+ 2y = 0

(Hermite’s equation, quantum-mechanical harmonic 
oscillator)

3. 
dy

dx
=

y12 - 3x2
x11 - 3y2

(competition between two species, ecology)

4. 
0  

2u

0x2 +
0  

2u

0y2 = 0

(Laplace’s equation, potential theory, electricity, heat, 
aerodynamics)

5. y c 1 + ady

dx
b

2

d = C, where C is a constant

(brachistochrone problem,† calculus of variations)

6. 
dx
dt

= k14 - x211 - x2, where k is a constant

(chemical reaction rates)

7. 
dp

dt
= kp1P - p2, where k and P are constants

(logistic curve, epidemiology, economics)

8. 11 - y 
d2y

dx2 + 2x 
dy

dx
= 0

(Kidder’s equation, flow of gases through a porous 
medium)

9. x 
d2y

dx2 +
dy

dx
+ xy = 0

(aerodynamics, stress analysis)

10. 8
d4y

dx4 = x11 - x2
(deflection of beams)

11. 
0N
0  t

=
0  

2N

0  r2 +
1
r
 
0N
0  r

+ kN, where k is a constant

(nuclear fission)

12. 
d2y

dx2 - 0.111 - y22  
dy

dx
+ 9y = 0

(van der Pol’s equation, triode vacuum tube)

In Problems 13–16, write a differential equation that fits the 
physical description.

13. The rate of change of the population p of bacteria at 
time t is proportional to the population at time t.

14. The velocity at time t of a particle moving along a straight 
line is proportional to the fourth power of its position x.

15. The rate of change in the temperature T of coffee at 
time t is proportional to the difference between the tem-
perature M of the air at time t and the temperature of the 
coffee at time t.

16. The rate of change of the mass A of salt at time t is 
proportional to the square of the mass of salt present 
at time t.

17. Drag Race. Two drivers, Alison and Kevin, are par-
ticipating in a drag race. Beginning from a standing start, 
they each proceed with a constant acceleration. Alison 
covers the last 1>4 of the distance in 3 seconds, whereas 
Kevin covers the last 1>3 of the distance in 4 seconds. 
Who wins and by how much time?

1.1 EXERCISES

†Historical Footnote: In 1630 Galileo formulated the brachistochrone problem 1bráxísto% = shortest, xróno% = time), that is, to determine a 
path down which a particle will fall from one given point to another in the shortest time. It was reproposed by John Bernoulli in 1696 and solved 
by him the following year.
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6     Chapter 1  Introduction

An nth-order ordinary differential equation is an equality relating the independent variable 
to the nth derivative (and usually lower-order derivatives as well) of the dependent variable. 
Examples are

x2 
d2y

dx2 + x 
dy

dx
+ y = x3 (second-order, x independent, y dependent)

B1 - a d2y

dt2 b - y = 0 (second-order, t independent, y dependent)

d4x

dt4 = xt (fourth-order, t independent, x dependent).

Thus, a general form for an nth-order equation with x independent, y dependent, can be 
expressed as

(1) F ax, y, 
dy

dx
, . . . , 

dny

dxn b = 0 ,

where F is a function that depends on x, y, and the derivatives of y up to order n; that is, on x, 
y, . . . , dny>dxn. We assume that the equation holds for all x in an open interval I (a 6 x 6 b, 
where a or b could be infinite). In many cases we can isolate the highest-order term dny>dxn 
and write equation (1) as

(2) 
dny

dx  

n = f  ax, y, 
dy

dx
, . . . , 

dn - 1y

dx  

n - 1 b  ,

which is often preferable to (1) for theoretical and computational purposes.

1.2 Solutions and Initial Value Problems

Explicit Solution

Definition 1. A function f1x2 that when substituted for y in equation (1) [or (2)]  
satisfies the equation for all x in the interval I is called an explicit solution to the  
equation on I.

Show that f1x2 = x2 - x-1 is an explicit solution to the linear equation

(3) 
d2y

dx2 -
2

x2 y = 0 ,

but c1x2 = x3 is not.

Example 1

Solution The functions f1x2 = x2 - x-1, f′1x2 = 2x + x-2, and f″1x2 = 2 - 2x-3 are defined for 
all x ≠ 0. Substitution of f1x2 for y in equation (3) gives

12 - 2x-32 -
2

x2 1x2 - x-12 = 12 - 2x-32 - 12 - 2x-32 = 0 .
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Section 1.2  Solutions and Initial Value Problems     7

Since this is valid for any x ≠ 0, the function f1x2 = x2 - x-1 is an explicit solution to (3) on 
1- ∞ , 02 and also on 10, ∞ 2.

For c1x2 = x3 we have c′1x2 = 3x2, c″1x2 = 6x, and substitution into (3) gives

6x -
2

x2 x3 = 4x = 0 ,

which is valid only at the point x = 0 and not on an interval. Hence c1x2 is not a solution. ◆

Example 2 Show that for any choice of the constants c1 and c2, the function

f1x2 = c1e
-x + c2e

2x

is an explicit solution to the linear equation

(4) y″ - y′ - 2y = 0 .

Solution We compute f′1x2 = -c1e
-x + 2c2e

2x and f″1x2 = c1e
-x + 4c2e

2x. Substitution of f, f′, 
and f″ for y, y′, and y″ in equation (4) yields

1c1e
-x + 4c2e

2x2 - 1-c1e
-x + 2c2e

2x2 - 21c1e
-x + c2e

2x2
= 1c1 + c1 - 2c12e-x + 14c2 - 2c2 - 2c22e2x = 0 .

Since equality holds for all x in 1- ∞ , ∞ 2, then f1x2 = c1e
-x + c2e

2x is an explicit solution to 
(4) on the interval 1- ∞ , ∞ 2 for any choice of the constants c1 and c2. ◆

As we will see in Chapter 2, the methods for solving differential equations do not always 
yield an explicit solution for the equation. We may have to settle for a solution that is defined 
implicitly. Consider the following example.

Example 3 Show that the relation

(5) y2 - x3 + 8 = 0

implicitly defines a solution to the nonlinear equation

(6) 
dy

dx
=

3x2

2y

on the interval 12, ∞ 2.
Solution When we solve (5) for y, we obtain y = {2x3 - 8. Let’s try f1x2 = 2x3 - 8 to see if it 

is an explicit solution. Since df>dx = 3x2> 122x3 - 82 , both f and df>dx are defined on 
12, ∞ 2. Substituting them into (6) yields

3x2

22x3 - 8
=

3x2

212x3 - 82  ,

which is indeed valid for all x in 12, ∞ 2. [You can check that c1x2 = -2x3 - 8 is also an 
explicit solution to (6).] ◆

M01_NAGL7069_09_SE_C01_001-037.indd   7 20/07/16   5:05 PM



8     Chapter 1  Introduction

Implicit Solution

Definition 2. A relation G1x, y2 = 0 is said to be an implicit solution to equation (1) 
on the interval I if it defines one or more explicit solutions on I.

†See Vector Calculus, 6th ed, by J. E. Marsden and A. J. Tromba (Freeman, San Francisco, 2013).

Example 4 Show that

(7) x + y + e xy = 0

is an implicit solution to the nonlinear equation

(8) 11 + xe xy2  
dy

dx
+ 1 + ye xy = 0 .

Solution First, we observe that we are unable to solve (7) directly for y in terms of x alone. However, for 
(7) to hold, we realize that any change in x requires a change in y, so we expect the relation (7) 
to define implicitly at least one function y1x2. This is difficult to show directly but can be rigor-
ously verified using the implicit function theorem† of advanced calculus, which guarantees 
that such a function y1x2 exists that is also differentiable (see Problem 30).

Once we know that y is a differentiable function of x, we can use the technique of implicit 
differentiation. Indeed, from (7) we obtain on differentiating with respect to x and applying the 
product and chain rules,

d
dx

 1x + y + e xy2 = 1 +
dy

dx
+ e xyay + x 

dy

dx
b = 0

or

11 + xe xy2  
dy

dx
+ 1 + ye xy = 0 ,

which is identical to the differential equation (8). Thus, relation (7) is an implicit solution on 
some interval guaranteed by the implicit function theorem. ◆

Example 5 Verify that for every constant C the relation 4x2 - y2 = C is an implicit solution to

(9) y 
dy

dx
- 4x = 0 .

Graph the solution curves for C = 0, {1, {4. (We call the collection of all such solutions a 
one-parameter family of solutions.)

Solution When we implicitly differentiate the equation 4x2 - y2 = C with respect to x, we find

8x - 2y 
dy

dx
= 0 ,
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Section 1.2  Solutions and Initial Value Problems     9

which is equivalent to (9). In Figure 1.4 we have sketched the implicit solutions for 
C = 0, {1, {4. The curves are hyperbolas with common asymptotes y = {2x. Notice that 
the implicit solution curves (with C arbitrary) fill the entire plane and are nonintersecting for 
C ≠ 0. For C = 0, the implicit solution gives rise to the two explicit solutions y = 2x and 
y = -2x, both of which pass through the origin. ◆

For brevity we hereafter use the term solution to mean either an explicit or an implicit 
solution.

In the beginning of Section 1.1, we saw that the solution of the second-order free-fall 
equation invoked two arbitrary constants of integration c1, c2:

h1t2 =
-gt2

2
+ c1t + c2 ,

whereas the solution of the first-order radioactive decay equation contained a single constant C:

A1t2 = Ce-kt .

It is clear that integration of the simple fourth-order equation

d4y

dx4 = 0

brings in four undetermined constants:

y1x2 = c1x
3 + c2x

2 + c3x + c4 .

It will be shown later in the text that in general the methods for solving nth-order differential 
equations evoke n arbitrary constants. In most cases, we will be able to evaluate these constants 
if we know n initial values y1x02, y′1x02, . . . , y1n - 121x02.

x 

C = 0 

C = 1 

C = -4

C = 4 C = 4 

C = 0 

C = 1 

-1 1 

2 

-2

C = -1

y

Figure 1.4 Implicit solutions 4x2 - y2 = C
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10     Chapter 1  Introduction

In the case of a first-order equation, the initial conditions reduce to the single requirement

y1x02 = y0 ,

and in the case of a second-order equation, the initial conditions have the form

y1x02 = y0 ,    
dy

dx
 1x02 = y1 .

The terminology initial conditions comes from mechanics, where the independent variable 
x represents time and is customarily symbolized as t. Then if t0 is the starting time, y1t02 = y0 
represents the initial location of an object and y′1t02 gives its initial velocity.

Initial Value Problem

Definition 3. By an initial value problem for an nth-order differential equation

Fax, y, 
dy

dx
, . . . , 

dny

dxn b = 0 ,

we mean: Find a solution to the differential equation on an interval I that satisfies at x0 
the n initial conditions

 y1x02 = y0 ,

 
dy

dx
1x02 = y1 ,

f

 
dn - 1y

dxn - 1 1x02 = yn - 1 ,

where x0 ∈ I and y0, y1, . . . , yn - 1 are given constants.

Example 6 Show that f1x2 = sin x - cos x is a solution to the initial value problem

(10) 
d2y

dx2 + y = 0 ;    y102 = -1 ,    
dy

dx
 102 = 1 .

Solution Observe that f1x2 = sin x - cos x, df>dx =  cos x + sin x, and d2f>dx2 = -sin x + cos x 
are all defined on 1- ∞ , ∞ 2. Substituting into the differential equation gives

1-sin x + cos x2 + 1sin x - cos x2 = 0 ,

which holds for all x ∈ 1- ∞ , ∞ 2. Hence, f1x2 is a solution to the differential equation in 
(10) on 1- ∞ , ∞ 2. When we check the initial conditions, we find

f102 = sin 0 - cos 0 = -1 ,

df

dx
 102 = cos 0 + sin 0 = 1 ,

which meets the requirements of (10). Therefore, f1x2 is a solution to the given initial value 
problem. ◆
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Section 1.2  Solutions and Initial Value Problems     11

Example 7 As shown in Example 2, the function f1x2 = c1e
-x + c2e

2x is a solution to

d2y

dx2 -
dy

dx
- 2y = 0

for any choice of the constants c1 and c2. Determine c1 and c2 so that the initial conditions

y102 = 2   and   
dy

dx
 102 = -3

are satisfied.

Solution To determine the constants c1 and c2, we first compute df>dx to get df>dx =  -c1e
-x + 2c2e

2x. 
Substituting in our initial conditions gives the following system of equations:

•
f102 = c1e

0 + c2e
0 = 2  ,

df

dx
 102 = -c1e

0 + 2c2e
0 = -3  ,

     or    •
c1 + c2 = 2  ,

-c1 + 2c2 = -3  .

Adding the last two equations yields 3c2 = -1, so c2 = -1>3. Since c1 + c2 = 2, we find  
c1 = 7>3. Hence, the solution to the initial value problem is f1x2 = 17>32e-x - 11>32e2x. ◆

We now state an existence and uniqueness theorem for first-order initial value problems. 
We presume the differential equation has been cast into the format

dy

dx
= ƒ1x, y2  .

Of course, the right-hand side, f1x, y2, must be well defined at the starting value x0 for x and at 
the stipulated initial value y0 = y1x02 for y. The hypotheses of the theorem, moreover, require 
continuity of both f and 0f>0y for x in some interval a 6 x 6 b containing x0, and for y in 
some interval c 6 y 6 d containing y0. Notice that the set of points in the xy-plane that satisfy  
a 6 x 6 b and c 6 y 6 d constitutes a rectangle. Figure 1.5 on page 12 depicts this “rectangle 
of continuity” with the initial point 1x0, y02 in its interior and a sketch of a portion of the solution 
curve contained therein.

Existence and Uniqueness of Solution

Theorem 1. Consider the initial value problem

dy

dx
= f1x, y2  ,    y1x02 = y0  .

If f and 0f>0y are continuous functions in some rectangle

R = 51x, y2: a 6 x 6 b, c 6 y 6 d6
that contains the point 1x0, y02, then the initial value problem has a unique solution 
f1x2 in some interval x0 - d 6 x 6 x0 + d, where d is a positive number.†

†We remark that the continuity of f alone in such a rectangle is enough to guarantee the existence of a solution to the 
initial value problem in some open interval containing x0, but uniqueness may not hold (see Example 9).
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12     Chapter 1  Introduction

The preceding theorem tells us two things. First, when an equation satisfies the hypotheses 
of Theorem 1, we are assured that a solution to the initial value problem exists. Naturally, it is 
desirable to know whether the equation we are trying to solve actually has a solution before 
we spend too much time trying to solve it. Second, when the hypotheses are satisfied, there is 
a unique solution to the initial value problem. This uniqueness tells us that if we can find a 
solution, then it is the only solution for the initial value problem. Graphically, the theorem says 
that there is only one solution curve that passes through the point 1x0, y02. In other words, for 
this first-order equation, two solutions cannot cross anywhere in the rectangle. Notice that the 
existence and uniqueness of the solution holds only in some neighborhood 1x0 - d, x0 + d2. 
Unfortunately, the theorem does not tell us the span 12d2 of this neighborhood (merely that it 
is not zero). Problem 18 elaborates on this feature.

Problem 19 gives an example of an equation with no solution. Problem 29 displays an ini-
tial value problem for which the solution is not unique. Of course, the hypotheses of Theorem 1 
are not met for these cases.

When initial value problems are used to model physical phenomena, many practitioners 
tacitly presume the conclusions of Theorem 1 to be valid. Indeed, for the initial value problem 
to be a reasonable model, we certainly expect it to have a solution, since physically “something 
does happen.” Moreover, the solution should be unique in those cases when repetition of the 
experiment under identical conditions yields the same results.†

The proof of Theorem 1 involves converting the initial value problem into an integral 
equation and then using Picard’s method to generate a sequence of successive approximations 
that converge to the solution. The conversion to an integral equation and Picard’s method are 
discussed in Project A at the end of this chapter. A detailed discussion and proof of the theorem 
are given in Chapter 13.‡

y

x

d

y0

c

y =    (x)

a bx0 - d x0 x0 + d

Figure 1.5 Layout for the existence–uniqueness theorem

†At least this is the case when we are considering a deterministic model, as opposed to a probabilistic model.
‡All references to Chapters 11–13 refer to the expanded text, Fundamentals of Differential Equations and Boundary 
Value Problems, 7th ed.
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Section 1.2  Solutions and Initial Value Problems     13

Example 8 For the initial value problem

(11) 3 
dy

dx
= x2 - xy3  ,  y112 = 6  ,

does Theorem 1 imply the existence of a unique solution?

Solution Dividing by 3 to conform to the statement of the theorem, we identify f1x, y2 as 1x2 - xy32/3 
and 0f>0y as -xy2. Both of these functions are continuous in any rectangle containing the point 
(1, 6), so the hypotheses of Theorem 1 are satisfied. It then follows from the theorem that 
the initial value problem (11) has a unique solution in an interval about x = 1 of the form 
11 - d, 1 + d2, where d is some positive number. ◆

Example 9 For the initial value problem

(12) 
dy

dx
= 3y2>3  ,    y122 = 0  ,

does Theorem 1 imply the existence of a unique solution?

Solution Here f1x, y2 = 3y2>3 and 0f>0y = 2y-1>3. Unfortunately 0f>0y is not continuous or even 
defined when y = 0. Consequently, there is no rectangle containing 12, 02 in which both f 
and 0f>0y are continuous. Because the hypotheses of Theorem 1 do not hold, we cannot use 
Theorem 1 to determine whether the initial value problem does or does not have a unique 
solution. It turns out that this initial value problem has more than one solution. We refer you to 
Problem 29 and Project G of Chapter 2 for the details. ◆

In Example 9 suppose the initial condition is changed to y122 = 1. Then, since f and 
0f>0y are continuous in any rectangle that contains the point 12, 12 but does not intersect the 
x-axis—say, R = 51x, y2: 0 6 x 6 10, 0 6 y 6 56—it follows from Theorem 1 that this new 
initial value problem has a unique solution in some interval about x = 2.

1. (a)  Show that f1x2 = x 2 is an explicit solution to

x 
dy

dx
= 2y

 on the interval 1- ∞ , ∞ 2.
 (b)  Show that f1x2 = ex - x is an explicit solution to

dy

dx
+ y2 = e2x + 11 - 2x2ex + x2 - 1

 on the interval 1- ∞ , ∞ 2.
 (c)  Show that f1x2 = x2 - x-1 is an explicit solution  

to x2d2y>dx2 = 2y on the interval 10, ∞ 2.
2. (a)  Show that y2 + x - 3 = 0 is an implicit solution  

to dy>dx = -1> 12y2 on the interval 1- ∞ , 32.

 (b)  Show that xy3 - xy3 sin x = 1 is an implicit solution to

dy

dx
=
1x cos x + sin x - 12y

31x - x sin x2
 on the interval 10, p>22.

In Problems 3–8, determine whether the given function is a 
solution to the given differential equation.

3. y = sin x + x2 , 
d2y

dx2 + y = x2 + 2

4. x = 2 cos t - 3 sin t , x″ + x = 0

5. u = 2e3t - e2t , 
d2u

dt2 - u 
du
dt

+ 3u = -2e2t

1.2 EXERCISES
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14     Chapter 1  Introduction

6. x = cos 2t , 
dx
dt

+ tx = sin 2t

7. y = e2x - 3e-x , 
d2y

dx2 -
dy

dx
- 2y = 0

8. y = 3 sin 2x + e-x , y″ + 4y = 5e-x

In Problems 9–13, determine whether the given relation is an 
implicit solution to the given differential equation. Assume 
that the relationship does define y implicitly as a function of x 
and use implicit differentiation.

9. x2 +  y2 = 4 , 
dy

dx
=

x
y

10. y - ln y = x2 + 1 , 
dy

dx
=

2xy

y - 1

11. e xy + y = x - 1 , 
dy

dx
=

e-xy - y

e-xy + x

12. x2 - sin1x + y2 = 1 , 
dy

dx
=  2x sec1x + y2 - 1 

13. sin y + xy - x3 = 2 ,

y″ =
6xy′ + 1y′23sin y - 21y′22

3x2 - y

14. Show that f1x2 = c1 sin x + c2 cos x is a solution to 
d2y>dx2 + y = 0 for any choice of the constants c1 and 
c2. Thus, c1 sin x + c2 cos x is a two-parameter family of 
solutions to the differential equation.

15. Verify that f1x2 = 2> 11 - cex2, where c is an arbitrary 
constant, is a one-parameter family of solutions to

dy

dx
=

y1y - 22
2

 .

Graph the solution curves corresponding to c = 0,
{1, {2 using the same coordinate axes.

16. Verify that x2 + cy2 = 1, where c is an arbitrary nonzero 
constant, is a one-parameter family of implicit solutions to

dy

dx
=

xy

x2 - 1
and graph several of the solution curves using the same 
coordinate axes.

17. Show that f1x2 = Ce3x + 1 is a solution to  
dy>dx - 3y = -3 for any choice of the constant C. 
Thus, Ce3x + 1 is a one-parameter family of solutions to 
the differential equation. Graph several of the solution 
curves using the same coordinate axes.

18. Let c 7 0. Show that the function f1x2 = 1c2 - x22-1 
is a solution to the initial value problem dy>dx = 2xy2,  
y102 = 1>c2, on the interval -c 6 x 6 c. Note that this 
solution becomes unbounded as x approaches {c. Thus, 
the solution exists on the interval 1-d, d2 with d = c,  
but not for larger d. This illustrates that in Theorem 1 
the existence interval can be quite small (if c is small) 

or quite large (if c is large). Notice also that there is no 
clue from the equation dy>dx = 2xy2 itself, or from the 
initial value, that the solution will “blow up” at x = {c.

19. Show that the equation 1dy>dx22 + y2 + 4 = 0 has no 
(real-valued) solution.

20. Determine for which values of m the function 
f1x2 = emx is a solution to the given equation.

 (a)  
d2y

dx2 + 6 
dy

dx
+ 5y = 0

 (b)  
d3y

dx3 + 3 
d2y

dx2 + 2 
dy

dx
= 0

21. Determine for which values of m the function 
f1x2 = xm is a solution to the given equation.

 (a) 3x2 
d2y

dx2 + 11x 
dy

dx
- 3y = 0

 (b) x2 
d2y

dx2 - x 
dy

dx
- 5y = 0

22. Verify that the function f1x2 = c1e  

x + c2e
-2x is a solu-

tion to the linear equation

d2y

dx2 +
dy

dx
- 2y = 0

for any choice of the constants c1 and c2. Determine c1 
and c2 so that each of the following initial conditions is 
satisfied.

 (a) y102 = 2 ,  y′102 = 1
 (b) y112 = 1 ,  y′112 = 0

In Problems 23–28, determine whether Theorem 1 implies 
that the given initial value problem has a unique solution.

23. 
dy

dx
= y4 - x4 , y102 = 7

24. 
dy

dt
- ty = sin2t , y1p2 = 5

25. 3x 
dx
dt

+ 4t = 0 , x122 = -p

26. 
dx
dt

+ cos x = sin t , x1p2 = 0

27. y 
dy

dx
= x , y112 = 0

28. 
dy

dx
= 3x - 23 y - 1 , y122 = 1

29. (a)  For the initial value problem (12) of Example 9, 
show that f11x2 K 0 and f21x2 = 1x - 223 are 
solutions. Hence, this initial value problem has mul-
tiple solutions. (See also Project G in Chapter 2.)

 (b)  Does the initial value problem y′ = 3y2>3, 
y102 = 10-7, have a unique solution in a neighbor-
hood of x = 0?
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Section 1.3  Direction Fields     15

30. Implicit Function Theorem. Let G1x, y2 have con-
tinuous first partial derivatives in the rectangle 
R = 51x, y2: a 6 x 6 b, c 6 y 6 d6 containing the 
point 1x0, y02. If G1x0, y02 = 0 and the partial derivative
Gy1x0, y02 ≠ 0, then there exists a differentiable function 
y = f1x2, defined in some interval I = 1x0 - d, x0 + d2, 
that satisfies G1x, f1x2 2 = 0 for all x ∈ I.

The implicit function theorem gives conditions under 
which the relationship G1x, y2 = 0 defines y implicitly 
as a function of x. Use the implicit function theorem 
to show that the relationship x + y + e  

xy = 0, given in 
Example 4, defines y implicitly as a function of x near the 
point 10, -12.

31. Consider the equation of Example 5,

(13)  y 
dy

dx
- 4x = 0 .

 (a)  Does Theorem 1 imply the existence of a unique 
solution to (13) that satisfies y1x02 = 0?

 (b)  Show that when x0 ≠ 0, equation (13) can’t possibly 
have a solution in a neighborhood of x = x0 that sat-
isfies y1x02 = 0.

 (c)  Show that there are two distinct solutions to (13)  
satisfying y102 = 0 (see Figure 1.4 on page 9).

The existence and uniqueness theorem discussed in Section 1.2 certainly has great value, but it 
stops short of telling us anything about the nature of the solution to a differential equation. For 
practical reasons we may need to know the value of the solution at a certain point, or the inter-
vals where the solution is increasing, or the points where the solution attains a maximum value. 
Certainly, knowing an explicit representation (a formula) for the solution would be a consider-
able help in answering these questions. However, for many of the differential equations that we 
are likely to encounter in real-world applications, it will be impossible to find such a formula. 
Moreover, even if we are lucky enough to obtain an implicit solution, using this relationship to 
determine an explicit form may be difficult. Thus, we must rely on other methods to analyze or 
approximate the solution.

One technique that is useful in visualizing (graphing) the solutions to a first-order differen-
tial equation is to sketch the direction field for the equation. To describe this method, we need 
to make a general observation. Namely, a first-order equation

dy

dx
= f1x, y2

specifies a slope at each point in the xy-plane where f is defined. In other words, it gives  
the direction that a graph of a solution to the equation must have at each point. Consider, for 
example, the equation

(1) 
dy

dx
= x2 - y .

The graph of a solution to (1) that passes through the point 1-2, 12 must have slope 1-222 - 1 = 3 
at that point, and a solution through 1-1, 12 has zero slope at that point.

A plot of short line segments drawn at various points in the xy-plane showing the slope 
of the solution curve there is called a direction field for the differential equation. Because 
the direction field gives the “flow of solutions,” it facilitates the drawing of any particular 
solution (such as the solution to an initial value problem). In Figure 1.6(a) on page 16 we 
have sketched the direction field for equation (1) and in Figure 1.6(b) we have drawn several 
solution curves in color.

1.3 Direction Fields
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16     Chapter 1  Introduction

Some other interesting direction field patterns are displayed in Figure 1.7. Depicted  
in Figure 1.7(a) is the pattern for the radioactive decay equation dy>dx = -2y (recall that in 
Section 1.1 we analyzed this equation in the form dA>dt = -kA). From the flow patterns, we 
can see that all solutions tend asymptotically to the positive x-axis as x gets larger. In other 
words, any material decaying according to this law eventually dwindles to practically nothing. 
This is consistent with the solution formula we derived earlier,

A = Ce-kt ,  or  y = Ce-2x .

From the direction field in Figure 1.7(b), we can anticipate that all solutions to 
dy>dx =  -y>x also approach the x-axis as x approaches infinity (plus or minus infinity, in 

(a) (b)

1

1

01

1

0

y

x x

y

Figure 1.6 (a) Direction field for dy>dx = x2 - y (b) Solutions to dy>dx = x2 - y

y

x

1

10

y

x

1

10

dy
dx

(a) = -2y
dy
dx

(b) = - yx

Figure 1.7 (a) Direction field for dy>dx = -2y (b) Direction field for dy>dx = -y>x
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Section 1.3  Direction Fields     17

fact). But more interesting is the observation that no solution can make it across the y-axis; 
0 y1x2 0  “blows up” as x goes to zero from either direction. Exception: On close examination, it 
appears the function y1x2 K 0 might just make it through this barrier. As a matter of fact, in Problem 
19 you are invited to show that the solutions to this differential equation are given by y = C>x,  
with C an arbitrary constant. So they do diverge at x = 0, unless C = 0.

Let’s interpret the existence–uniqueness theorem of Section 1.2 for these direction fields. 
For Figure 1.7(a), where dy>dx = f1x, y2 = -2y, we select a starting point x0 and an initial 
value y1x02 = y0, as in Figure 1.8(a). Because the right-hand side f1x, y2 = -2y is continu-
ously differentiable for all x and y, we can enclose any initial point 1x0, y02 in a “rectangle 
of continuity.” We conclude that the equation has one and only one solution curve passing 
through 1x0, y02, as depicted in the figure.

For the equation

dy

dx
= f1x, y2 = -  

y
x
 ,

the right-hand side f1x, y2 = -y>x does not meet the continuity conditions when x = 0 
(i.e., for points on the y-axis). However, for any nonzero starting value x0 and any initial 
value y1x02 = y0, we can enclose 1x0, y02  in a rectangle of continuity that excludes the 
y-axis, as in Figure 1.8(b). Thus, we can be assured of one and only one solution curve 
passing through such a point.

The direction field for the equation

dy

dx
= 3y2>3

is intriguing because Example 9 of Section 1.2 showed that the hypotheses of Theorem 1  
do not hold in any rectangle enclosing the initial point x0 = 2, y0 = 0. Indeed, Problem 29 of 
that section demonstrated the violation of uniqueness by exhibiting two solutions, y1x2 K 0 
and y1x2 = 1x - 223, passing through 12, 02. Figure 1.9(a) on page 18 displays this direction 
field, and Figure 1.9(b) demonstrates how both solution curves can successfully “negotiate” this 
flow pattern.

(a)

0 x0

y0

(b)

0 x0

y0

y

x

y

x

Figure 1.8 (a) A solution for dy>dx = -2y (b) A solution for dy>dx = -y>x
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18     Chapter 1  Introduction

Solution

Clearly, a sketch of the direction field of a first-order differential equation can be helpful in 
visualizing the solutions. However, such a sketch is not sufficient to enable us to trace, unam-
biguously, the solution curve passing through a given initial point 1x0, y02. If we tried to trace 
one of the solution curves in Figure 1.6(b) on page 16, for example, we could easily “slip” over 
to an adjacent curve. For nonunique situations like that in Figure 1.9(b), as one negotiates the 
flow along the curve y = 1x - 223 and reaches the inflection point, one cannot decide whether 
to turn or to (literally) go off on the tangent 1y = 02.

(a)

1

1

0

(b)

12 2

1

0

y

x
y(x) = 0 

y(x) = (x - 2)3
y

x

Figure 1.9 (a) Direction field for dy>dx = 3y2>3 (b) Solutions for dy>dx = 3y2>3, y122 = 0

Example 1 The logistic equation for the population p (in thousands) at time t of a certain species is 
given by

(2) 
dp

dt
= p12 - p2 .

(Of course, p is nonnegative. The interpretation of the terms in the logistic equation is dis-
cussed in Section 3.2.) From the direction field sketched in Figure 1.10 on page 19, answer the 
following:

(a) If the initial population is 3000 3that is, p102 = 34, what can you say about the lim-
iting population limtS + ∞  p1t2?

(b) Can a population of 1000 ever decline to 500?

(c) Can a population of 1000 ever increase to 3000?

(a) The direction field indicates that all solution curves 3other than p1t2 K 04 will 
approach the horizontal line p = 2 as t S + ∞ ; that is, this line is an asymptote for 
all positive solutions. Thus, limtS + ∞  p1t2 = 2.

(b) The direction field further shows that populations greater than 2000 will steadily 
decrease, whereas those less than 2000 will increase. In particular, a population of 
1000 can never decline to 500.
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t
43210

p (in thousands)

4

3

2

1

Figure 1.10 Direction field for logistic equation

†Appendix G describes various web sites and commercial software that sketch direction fields and automate most of 
the differential equation algorithms discussed in this book.

(c) As mentioned in part (b), a population of 1000 will increase with time. But the direc-
tion field indicates it can never reach 2000 or any larger value; i.e., the solution curve 
cannot cross the line p = 2. Indeed, the constant function p1t2 K 2 is a solution to 
equation (2), and the uniqueness part of Theorem 1, page 11, precludes intersections 
of solution curves. ◆

Notice that the direction field in Figure 1.10 has the nice feature that the slopes do not depend 
on t; that is, the slopes are the same along each horizontal line. The same is true for Figures 1.8(a) 
and 1.9. This is the key property of so-called autonomous equations y′ = f1y2, where the 
right-hand side is a function of the dependent variable only. Project B, page 33, investigates 
such equations in more detail.

Hand sketching the direction field for a differential equation is often tedious. Fortunately, 
several software programs have been developed to obviate this task†. When hand sketching is 
necessary, however, the method of isoclines can be helpful in reducing the work.

The Method of Isoclines
An isocline for the differential equation

y′ = f1x, y2

is a set of points in the xy-plane where all the solutions have the same slope dy>dx; thus, it is a 
level curve for the function f1x, y2. For example, if

(3) y′ = f1x, y2 = x +  y ,

the isoclines are simply the curves (straight lines) x + y = c or y = -x + c. Here c is an arbi-
trary constant. But c can be interpreted as the numerical value of the slope dy>dx of every solu-
tion curve as it crosses the isocline. (Note that c is not the slope of the isocline itself; the latter 
is, obviously, -1.) Figure 1.11(a) on page 20 depicts the isoclines for equation (3).
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y

x

y

x

y

x

(b)

1

1

0

(c)

1

1

0

(a)

1

c = -5

1

0

c = -4 c = -3 c = -2 c = -1

c = 0

c = 1

c = 2

c = 3

c = 4

c = 5

Figure 1.11 (a) Isoclines for y′ = x + y (b) Direction field for y′ = x + y (c) Solutions to y′ = x + y

To implement the method of isoclines for sketching direction fields, we draw hash marks 
with slope c along the isocline f1x, y2 = c for a few selected values of c. If we then erase the 
underlying isocline curves, the hash marks constitute a part of the direction field for the dif-
ferential equation. Figure 1.11(b) depicts this process for the isoclines shown in Figure 1.11(a), 
and Figure 1.11(c) displays some solution curves.

Remark. The isoclines themselves are not always straight lines. For equation (1) at the 
beginning of this section (page 15), they are parabolas x2 - y = c. When the isocline curves 
are complicated, this method is not practical.
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1. The direction field for dy>dx = 4x>y is shown in  
Figure 1.12.

 (a)  Verify that the straight lines y = {2x are solution 
curves, provided x ≠ 0.

 (b)  Sketch the solution curve with initial condition  
y102 = 2.

 (c)  Sketch the solution curve with initial condition  
y122 = 1.

 (d)  What can you say about the behavior of the above 
solutions as x S + ∞? How about x S - ∞?

 (b)  Sketch the solution curve that passes through 
1-1, 32.

 (c)  What can you say about the solution in part (b) as 
x S + ∞ ? How about x S - ∞ ?

3. A model for the velocity y at time t of a certain object 
falling under the influence of gravity in a viscous 
medium is given by the equation

dv

dt
= 1 -

v

8
 .

From the direction field shown in Figure 1.14, sketch 
the solutions with the initial conditions v102 = 5, 8, 
and 15. Why is the value v = 8 called the “terminal 
velocity”?

1.3 EXERCISES

0

y
y = -2x y = 2x

x
1 32 4

1

2

3

4

Figure 1.12 Direction field for dy>dx = 4x>y

2. The direction field for dy>dx = 2x + y is shown in  
Figure 1.13.

 (a)  Sketch the solution curve that passes through 
10, -22. From this sketch, write the equation for the 
solution.

0

y

x

1

2

3

4

5

6

1 3 52 4 6

Figure 1.13 Direction field for dy>dx = 2x + y

u

t
0

1

1

8

Figure 1.14 Direction field for 
dv

dt
= 1 -

v

8

4. If the viscous force in Problem 3 is nonlinear, a possible 
model would be provided by the differential equation

dv

dt
= 1 -

v

3

8
 .

Redraw the direction field in Figure 1.14 to incorporate 
this v3 dependence. Sketch the solutions with initial con-
ditions v102 = 0, 1, 2, 3. What is the terminal velocity 
in this case?

5. The logistic equation for the population (in thousands) of 
a certain species is given by

dp

dt
= 3p - 2p2 .

 (a)  Sketch the direction field by using either a computer 
software package or the method of isoclines.
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 (b)  If the initial population is 3000 3that is, p102 =  34,  
what can you say about the limiting population 
limtS + ∞  p1t2?

 (c)  If p102 = 0.8, what is limtS + ∞  p1t2?
 (d)  Can a population of 2000 ever decline to 800?

6. Consider the differential equation

dy

dx
= x + sin y .

 (a)  A solution curve passes through the point 11, p>22. 
What is its slope at this point?

 (b)  Argue that every solution curve is increasing for  
x 7 1.

 (c)  Show that the second derivative of every solution 
satisfies

d2y

dx2 = 1 + x cos y +
1
2

 sin 2y .

 (d)  A solution curve passes through 10, 02. Prove  
that this curve has a relative minimum at 10, 02.

7. Consider the differential equation

dp

dt
= p1p - 1212 - p2

for the population p (in thousands) of a certain species 
at time t.

 (a)  Sketch the direction field by using either a computer 
software package or the method of isoclines.

 (b)  If the initial population is 4000 3that is, p102 = 44,  
what can you say about the limiting population 
limtS + ∞  p1t2?

 (c)  If p102 = 1.7, what is limtS + ∞  p1t2?
 (d)  If p102 = 0.8, what is limtS + ∞  p1t2?
 (e)  Can a population of 900 ever increase to 1100?

8. The motion of a set of particles moving along the x-axis 
is governed by the differential equation

dx
dt

= t3 - x3 ,

where x1t2 denotes the position at time t of the particle.
 (a)  If a particle is located at x = 1 when t = 2, what is 

its velocity at this time?
 (b)  Show that the acceleration of a particle is given by

d2x

dt2 = 3t2 - 3t3x2 + 3x5 .

 (c)  If a particle is located at x = 2 when t = 2.5,  
can it reach the location x = 1 at any later time? 
3Hint: t3 - x3 = 1t - x21t2 + xt + x22.4

9. Let f1x2 denote the solution to the initial value problem

dy

dx
= x - y ,    y102 = 1 .

 (a)  Show that f″1x2 = 1 - f′1x2 = 1 - x + f1x2.

 (b)  Argue that the graph of f is decreasing for x 
near zero and that as x increases from zero, f1x2 
decreases until it crosses the line y = x, where its 
derivative is zero.

 (c)  Let x* be the abscissa of the point where the solution 
curve y = f1x2 crosses the line y = x. Consider 
the sign of f″1x*2 and argue that f has a relative 
minimum at x*.

 (d)  What can you say about the graph of y = f1x2 for 
x 7 x*?

 (e)  Verify that y = x - 1 is a solution to dy>dx = x - y 
and explain why the graph of f1x2 always stays 
above the line y = x - 1.

 (f)  Sketch the direction field for dy>dx = x - y by using 
the method of isoclines or a computer software package.

 (g)  Sketch the solution y = f1x2 using the direction 
field in part 1f2.

10. Use a computer software package to sketch the direc-
tion field for the following differential equations. Sketch 
some of the solution curves.

 (a)  dy>dx = sin x
 (b)  dy>dx = sin y
 (c)  dy>dx = sin x sin y
 (d)  dy>dx = x2 + 2y2

 (e)  dy>dx = x2 - 2y2

In Problems 11–16, draw the isoclines with their direction 
markers and sketch several solution curves, including the 
curve satisfying the given initial conditions.

11. dy>dx = -x>y , y102 = 4

12. dy>dx = y , y102 = 1

13. dy>dx = 2x , y102 = -1

14. dy>dx = x>y , y102 = -1

15. dy>dx = 2x2 - y , y102 = 0

16. dy>dx = x + 2y , y102 = 1

17. From a sketch of the direction field, what can one say 
about the behavior as x approaches + ∞  of a solution to 
the following?

dy

dx
= 3 - y +

1
x

18. From a sketch of the direction field, what can one say 
about the behavior as x approaches + ∞  of a solution to 
the following?

dy

dx
= -y

19. By rewriting the differential equation dy>dx = -y>x in 
the form

1
y

 dy =
-1
x

 dx

integrate both sides to obtain the solution y = C>x for 
an arbitrary constant C.
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20. A bar magnet is often modeled as a magnetic dipole with 
one end labeled the north pole N and the opposite end 
labeled the south pole S. The magnetic field for the mag-
netic dipole is symmetric with respect to rotation about 
the axis passing lengthwise through the center of the 
bar. Hence we can study the magnetic field by restricting 
ourselves to a plane with the bar magnet centered on the 
x-axis.

For a point P that is located a distance r from the 
origin, where r is much greater than the length of the 
magnet, the magnetic field lines satisfy the differential 
equation

(4) 
dy

dx
=

3xy

2x2 − y2

and the equipotential lines satisfy the equation

(5) 
dy

dx
=

y2 − 2x2

3xy
 .

 (a)  Show that the two families of curves are perpendicu-
lar where they intersect. [Hint: Consider the slopes 
of the tangent lines of the two curves at a point of 
intersection.]

 (b)  Sketch the direction field for equation (4) for 
-5 … x … 5, -5 … y … 5. You can use a software 
package to generate the direction field or use the 
method of isoclines. The direction field should remind 
you of the experiment where iron filings are sprinkled 
on a sheet of paper that is held above a bar magnet. 
The iron filings correspond to the hash marks.

 (c)  Use the direction field found in part (b) to help sketch 
the magnetic field lines that are solutions to (4).

 (d)  Apply the statement of part (a) to the curves in 
part (c) to sketch the equipotential lines that are 
solutions to (5). The magnetic field lines and the 
equipotential lines are examples of orthogonal 
trajectories. (See Problem 32 in Exercises 2.4, 
page 65.)†

Euler’s method (or the tangent-line method) is a procedure for constructing approximate solu-
tions to an initial value problem for a first-order differential equation

(1) y′ = f1x, y2 ,    y1x02 = y0 .

It could be described as a “mechanical” or “computerized” implementation of the informal 
procedure for hand sketching the solution curve from a picture of the direction field. As 
such, we will see that it remains subject to the failing that it may skip across solution curves. 
However, under fairly general conditions, iterations of the procedure do converge to true 
solutions.

The method is illustrated in Figure 1.15 on page 24. Starting at the initial point 1x0, y02,  
we follow the straight line with slope f1x0, y02, the tangent line, for some distance to the 
point 1x1, y12. Then we reset the slope to the value f1x1, y12 and follow this line to 1x2, y22. 
In this way we construct polygonal (broken line) approximations to the solution. As we take 
smaller spacings between points (and thus employ more points), we may expect to converge 
to the true solution.

To be more precise, assume that the initial value problem (1) has a unique solution f1x2 
in some interval centered at x0. Let h be a fixed positive number (called the step size) and con-
sider the equally spaced points‡

xn J x0 + nh ,    n = 0, 1, 2, . . .  .

1.4 The Approximation Method of Euler

† Equations (4) and (5) can be solved using the method for homogeneous equations in Section 2.6 (see Exercises 2.6, 
Problem 46).
‡The symbol J means “is defined to be.”
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24     Chapter 1  Introduction

The construction of values yn that approximate the solution values f1xn2 proceeds as follows. 
At the point 1x0, y02, the slope of the solution to (1) is given by dy>dx = f1x0, y02. Hence, the 
tangent line to the solution curve at the initial point 1x0, y02 is

y = y0 + 1x - x02f1x0, y02 .

Using this tangent line to approximate f1x2, we find that for the point x1 = x0 + h

f1x12 ≈ y1 J y0 + h f1x0, y02 .

Next, starting at the point 1x1, y12, we construct the line with slope given by the direction  
field at the point 1x1, y12—that is, with slope equal to f  1x1, y12. If we follow this line†  
3namely, y = y1 + 1x - x12f1x1, y124 in stepping from x1 to x2 = x1 + h, we arrive at the 
approximation

f1x22 ≈ y2 J y1 + h f1x1, y12 .

Repeating the process (as illustrated in Figure 1.15), we get

f1x32 ≈ y3 J y2 + h f1x2, y22 ,
f1x42 ≈ y4 J y3 + h f1x3, y32 ,     etc.

This simple procedure is Euler’s method and can be summarized by the recursive formulas

(2) xn + 1 = xn + h ,

(3) yn + 1 = yn + h f1xn, yn2 ,    n = 0, 1, 2, . . .  .

0 x 0 x 1 x 2 x 3 

( x 0 , y 0 ) 

( x 1 , y 1 ) 
( x 2 , y 2 ) 

( x 3 , y 3 ) 

Slope 
f ( x 0 , y 0 ) 

Slope 
f ( x 1 , y 1 ) 

Slope 
f ( x 2 , y 2 ) 

y

x

Figure 1.15 Polygonal-line approximation given by Euler’s method

†Because y1 is an approximation to f1x12, we cannot assert that this line is tangent to the solution curve y = f1x2.
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Example 1 Use Euler’s method with step size h = 0.1 to approximate the solution to the initial value 
problem

(4) y′ = x2y ,    y112 = 4

at the points x = 1.1, 1.2, 1.3, 1.4, and 1.5.

Solution Here x0 = 1, y0 = 4, h = 0.1, and f1x, y2 = x2y. Thus, the recursive formula (3) for yn is

yn + 1 = yn + h f1xn, yn2 = yn + 10.12  xn2yn .

Substituting n = 0, we get

x1 = x0 + 0.1 = 1 + 0.1 = 1.1 ,

y1 = y0 + 10.12  x02y0 = 4 + 10.1211224 = 4.2 .

Putting n = 1 yields

x2 = x1 + 0.1 = 1.1 + 0.1 = 1.2 ,

y2 = y1 + 10.12  x12y1 = 4.2 + 10.1211.1224.2 ≈ 4.42543 .

Continuing in this manner, we obtain the results listed in Table 1.1. For comparison we have 
included the exact value (to five decimal places) of the solution f1x2 = 1x2 + 722>16 to (4), 
which can be obtained using separation of variables (see Section 2.2). As one might expect, the 
approximation deteriorates as x moves farther away from 1. ◆

TABLE 1.1  Computations for y′ = x1y ,  y (1) = 4

n xn

Euler’s  
Method Exact Value

0 1 4 4
1 1.1 4.2 4.21276
2 1.2 4.42543 4.45210
3 1.3 4.67787 4.71976
4 1.4 4.95904 5.01760
5 1.5 5.27081 5.34766

Given the initial value problem (1) and a specific point x, how can Euler’s method be used 
to approximate f1x2? Starting at x0, we can take one giant step that lands on x, or we can take 
several smaller steps to arrive at x. If we wish to take N steps, then we set h = 1x - x02 >N  
so that the step size h and the number of steps N are related in a specific way. For example, if  
x0 = 1.5 and we wish to approximate f122 using 10 steps, then we would take h =  
12 - 1.52 >10 = 0.05. It is expected that the more steps we take, the better will be the 
approximation. (But keep in mind that more steps mean more computations and hence greater  
accumulated roundoff error.)
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26     Chapter 1  Introduction

Remark. Observe that the solution to (5) is just f1x2 = ex, so Euler’s method will generate 
algebraic approximations to the transcendental number e = 2.71828. . . .

Solution Here f1x, y2 = y, x0 = 0, and y0 = 1. The recursive formula for Euler’s method is

yn + 1 = yn + hyn = 11 + h2yn .

To obtain approximations at x = 1 with N steps, we take the step size h = 1>N. For N = 1, 
we have

f112 ≈ y1 = 11 + 12112 = 2 .

For N = 2, f1x22 = f112 ≈ y2. In this case we get

 y1 = 11 + 0.52112 = 1.5 ,

 f112 ≈ y2 = 11 + 0.5211.52 = 2.25 .

For N = 4, f1x42 = f112 ≈ y4, where

 y1 = 11 + 0.252112 = 1.25 ,

 y2 = 11 + 0.25211.252 = 1.5625 ,

 y3 = 11 + 0.25211.56252 = 1.95313 ,

 f112 ≈ y4 = 11 + 0.25211.953132 = 2.44141 .

(In the above computations, we have rounded to five decimal places.) Similarly, taking N = 8 
and 16, we obtain even better estimates for f112. These approximations are shown in Table 1.2. 
For comparison, Figure 1.16 on page 27 displays the polygonal-line approximations to ex using 
Euler’s method with h = 1>4 1N = 42 and h = 1>8 1N = 82. Notice that the smaller step 
size yields the better approximation. ◆

TABLE 1.2  Euler’s Method for y′ = y,  y(0) = 1

 N h
Approximation  
for F 11 2 = e

 1 1.0 2.0
 2 0.5 2.25
 4 0.25 2.44141
 8 0.125 2.56578
16 0.0625 2.63793

Example 2 Use Euler’s method to find approximations to the solution of the initial value problem

(5) y′ = y ,    y102 = 1

at x = 1, taking 1, 2, 4, 8, and 16 steps.
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Section 1.4  The Approximation Method of Euler     27

How good (or bad) is Euler’s method? In judging a numerical scheme, we must begin with 
two fundamental questions. Does the method converge? And, if so, what is the rate of conver-
gence? These important issues are discussed in Section 3.6, where improvements in Euler’s 
method are introduced (see also Problems 12 and 13 of this section).

y = e x 

1.25 

1

1.5 

1.75 

2 

2.25 

2.5 

2.75 

0 1 / 8 
1 / 4 

3 / 8 
1 / 2 

5 / 8 
3 / 4 

7 / 8 1 

h = 1 / 8 

h = 1 / 4 

y

x

Figure 1.16 Approximations of ex using Euler’s method with h = 1>4 and 1>8

h = 0.1 v10.22 ≈ 0.4380 v10.32 ≈ 0.0996 v10.42 ≈ -0.2024
h = 0.05 v10.22 ≈ 0.6036 v10.352 ≈ 0.0935 v10.42 ≈ -0.0574
h = 0.025 v10.22 ≈ 0.6659 v10.3752 ≈ 0.0750 v10.42 ≈ -0.0003
h = 0.0125 v10.22 ≈ 0.6938    
h = 0.00625 v10.22 ≈ 0.7071    

Acknowledging the remote possibility that finer values of h might reveal aberrations, we state 
with reasonable confidence that v10.22 = 0.7 { 0.1. The Intermediate Value Theorem would 
imply that v1t02 = 0 at some time t0 satisfying 0.375 6 t0 6 0.4 if the computations were 
perfect; they clearly provide evidence that t0 = 0.4 { 0.1. ◆

Example 3 Suppose v1t2 satisfies the initial value problem

dv
dt

= -3 - 2v2 , v102 = 2 .

By experimenting with Euler’s method, determine to within one decimal place 1{0.12 the 
value of v10.22 and the time it will take v1t2 to reach zero.

Solution Determining rigorous estimates of the accuracy of the answers obtained by Euler’s method can 
be quite a challenging problem. The common practice is to repeatedly approximate v10.22 and 
the zero crossing, using smaller and smaller values of h, until the digits of the computed values 
stabilize at the required accuracy level. For this example, Euler’s algorithm yields the following 
values:
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28     Chapter 1  Introduction

In many of the problems below, it will be helpful to have a 
calculator or computer available.† You may also find it con-
venient to write a program for solving initial value problems 
using Euler’s method. (Remember, all trigonometric calcula-
tions are done in radians.)

In Problems 1– 4, use Euler’s method to approximate the 
solution to the given initial value problem at the points 
x =  0.1, 0.2, 0.3, 0.4, and 0.5, using steps of size 0.1 
1h = 0.12.
1. dy>dx = -x>y ,     y102 = 4

2. dy>dx = y12 - y2 ,     y102 = 3

3. dy>dx = x + y ,     y102 = 1

4. dy>dx = x>y ,     y102 = -1

5. Use Euler’s method with step size h = 0.1 to approximate 
the solution to the initial value problem

y′ = x - y2 ,    y112 = 0

at the points x = 1.1, 1.2, 1.3, 1.4, and 1.5.

6. Use Euler’s method with step size h = 0.2 to approxi-
mate the solution to the initial value problem

y′ =
1
x

 1y2 + y2 ,    y112 = 1

at the points x = 1.2, 1.4, 1.6, and 1.8.

7. Use Euler’s method to find approximations to the solu-
tion of the initial value problem

y′ = 1 - sin y ,    y102 = 0

at x = p, taking 1, 2, 4, and 8 steps.

8. Use Euler’s method to find approximations to the solu-
tion of the initial value problem

dx
dt

= 1 + t sin1tx2 ,    x102 = 0

at t = 1, taking 1, 2, 4, and 8 steps.

9. Use Euler’s method with h = 0.1 to approximate the 
solution to the initial value problem

y′ =
1

x2 -
y

x
- y2 ,    y112 = -1

on the interval 1 … x … 2. Compare these approximations 
with the actual solution y = -1>x (verify!) by graphing 
the polygonal-line approximation and the actual solution 
on the same coordinate system.

10. Use the strategy of Example 3 to find a value of h for 
Euler’s method such that y112 is approximated to within 
{0.01, if y1x2 satisfies the initial value problem

y′ = x - y ,    y102 = 0 .

Also find, to within {0.05, the value of x0 such that 
y1x02 = 0.2. Compare your answers with those given by 
the actual solution y = e-x + x - 1 (verify!). Graph the 
polygonal-line approximation and the actual solution on 
the same coordinate system.

11. Use the strategy of Example 3 to find a value of h for 
Euler’s method such that x112 is approximated to within 
{0.01, if x1t2 satisfies the initial value problem

dx
dt

= 1 + x2 ,    x102 = 0 .

Also find, to within {0.02, the value of t0 such that 
x1t02 = 1. Compare your answers with those given by 
the actual solution x =  tan t (verify!).

12. In Example 2 we approximated the transcendental num-
ber e by using Euler’s method to solve the initial value 
problem

y′ = y ,    y102 = 1 .

Show that the Euler approximation yn obtained by using 
the step size 1>n is given by the formula

yn = a1 +
1
n
b

n

 ,    n = 1, 2, . . .

Recall from calculus that

lim
nS ∞

 a1 +
1
n
b

n

= e ,

and hence Euler’s method converges (theoretically) to 
the correct value.

13. Prove that the “rate of convergence” for Euler’s method 
in Problem 12 is comparable to 1>n by showing that

lim
nS ∞

 
e - yn

1>n =
e
2

 .

[Hint: Use L’Hôpital’s rule and the Maclaurin expansion 
for ln11 + t2.]

14. Use Euler’s method with the spacings h = 0.5, 0.1, 0.05, 
0.01 to approximate the solution to the initial value problem

y′ = 2xy2 ,    y102 = 1

on the interval 0 … x … 2. (The explanation for the erratic 
results lies in Problem 18 of Exercises 1.2.)

Heat Exchange. There are basically two mechanisms 
by which a physical body exchanges heat with its environ-
ment. The contact heat transfer across the body’s surface 
is driven by the difference in the body’s temperature and  

1.4 EXERCISES

†Appendix G describes various web sites and commercial software that sketch direction fields and automate most of the differential equation  
algorithms discussed in this book.
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that of the environment; this is known as Newton’s law of 
cooling. However, heat transfer also occurs due to ther-
mal radiation, which according to Stefan’s law of radi-
ation is governed by the difference of the fourth powers 
of these temperatures. In most cases one of these modes 
dominates the other. Problems 15 and 16 invite you to 
simulate each mode numerically for a given set of initial 
conditions.

15. Newton’s Law of Cooling. Newton’s law of cooling 
states that the rate of change in the temperature T1t2 of 
a body is proportional to the difference between the tem-
perature of the medium M1t2 and the temperature of the 
body. That is,

dT
dt

= K3M1t2 - T1t24 ,

where K is a constant. Let K = 0.04 (min)-1 and the tem-
perature of the medium be constant, M1t2 K 293 kelvins. 
If the body is initially at 360 kelvins, use Euler’s method 

with h = 3.0 min to approximate the temperature of the 
body after

 (a)  30 minutes.
 (b)  60 minutes.

16. Stefan’s Law of Radiation. Stefan’s law of radiation 
states that the rate of change in temperature of a body at 
T1t2 kelvins in a medium at M1t2 kelvins is proportional 
to M4 - T4. That is,

dT
dt

= K1M1t24 - T1t242 ,

where K is a constant. Let K = 2.9 * 10-10 (min)-1 
and assume that the medium temperature is constant, 
M1t2 K 293 kelvins. If T102 = 360 kelvins, use Euler’s 
method with h = 3.0 min to approximate the temperature 
of the body after

 (a)  30 minutes.
 (b)  60 minutes.

Chapter 1 Summary

In this chapter we introduced some basic terminology for differential equations. The order of 
a differential equation is the order of the highest derivative present. The subject of this text is 
ordinary differential equations, which involve derivatives with respect to a single independent 
variable. Such equations are classified as linear or nonlinear.

An explicit solution of a differential equation is a function of the independent variable 
that satisfies the equation on some interval. An implicit solution is a relation between the 
dependent and independent variables that implicitly defines a function that is an explicit solu-
tion. A differential equation typically has infinitely many solutions. In contrast, some theorems 
ensure that a unique solution exists for certain initial value problems in which one must find a 
solution to the differential equation that also satisfies given initial conditions. For an nth-order 
equation, these conditions refer to the values of the solution and its first n - 1 derivatives at 
some point.

Even if one is not successful in finding explicit solutions to a differential equation, several 
techniques can be used to help analyze the solutions. One such method for first-order equations 
views the differential equation dy>dx = f1x, y2 as specifying directions (slopes) at points on 
the plane. The conglomerate of such slopes is the direction field for the equation. Knowing 
the “flow of solutions” is helpful in sketching the solution to an initial value problem. Further-
more, carrying out this method algebraically leads to numerical approximations to the desired 
solution. This numerical process is called Euler’s method.

In Problems 1– 6, identify the independent variable, dependent 
variable, and determine whether the equation is linear or 
nonlinear.

1. 5 
dx
dt

+ 5x2 + 3 = 0

REVIEW PROBLEMS FOR CHAPTER 1

2. 3r - cos u 
dr
du

= sin u

3. y3 
d2x

dy2 + 3x -
8

y - 1
= 0
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Section 2.2  Separable Equations     41

Separable Equation

Definition 1. If the right-hand side of the equation

dy

dx
= ƒ1x, y2

can be expressed as a function g1x2 that depends only on x times a function p1y2 that 
depends only on y, then the differential equation is called separable.†

A simple class of first-order differential equations that can be solved using integration is the 
class of separable equations. These are equations

(1) 
dy

dx
= ƒ1x, y2 ,

that can be rewritten to isolate the variables x and y (together with their differentials dx and dy) 
on opposite sides of the equation, as in

h1y2  dy = g1x2  dx .

So the original right-hand side f1x, y2 must have the factored form

ƒ1x, y2 = g1x2 # 1
h1y2  .

More formally, we write p1y2 = 1>h1y2 and present the following definition.

2.2 Separable Equations

In other words, a first-order equation is separable if it can be written in the form

dy

dx
= g1x2  p1y2 .

For example, the equation

dy

dx
=

2x + xy

y2 + 1

is separable, since (if one is sufficiently alert to detect the factorization)

2x + xy

y2 + 1
= x  

2 + y

y2 + 1
= g1x2  p1y2 .

However, the equation

dy

dx
= 1 + xy

admits no such factorization of the right-hand side and so is not separable.
Informally speaking, one solves separable equations by performing the separation and 

then integrating each side.

†Historical Footnote: A procedure for solving separable equations was discovered implicitly by Gottfried Leibniz in 
1691. The explicit technique called separation of variables was formalized by John Bernoulli in 1694.
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42 Chapter 2  First-Order Differential Equations

Caution: Constant functions y K c such that p1c2 = 0 are also solutions to (2), but will 
not be included in (3) (see remarks on page 45).

We will look at the mathematical justification of this “streamlined” procedure shortly, but 
first we study some examples.

Example 1 Solve the nonlinear equation

dy

dx
=

x - 5

y2  .

Solution Following the streamlined approach, we separate the variables and rewrite the equation in the form

y2 dy = 1x - 52  dx .

Integrating, we have

 Ly2 dy = L 1x - 52  dx

 
y3

3
=

x2

2
- 5x + C ,

and solving this last equation for y gives

y = a 3x2

2
- 15x + 3Cb

1>3
 .

Since C is a constant of integration that can be any real number, 3C can also be any real num-
ber. Replacing 3C by the single symbol K, we then have

y = a 3x2

2
- 15x + Kb

1>3
 .

If we wish to abide by the custom of letting C represent an arbitrary constant, we can go one 
step further and use C instead of K in the final answer. This solution family is graphed in 
Figure 2.3 on page 43. ◆

Method for Solving Separable Equations

To solve the equation

(2) 
dy

dx
= g1x2  p1y2

multiply by dx and by h1y2 J 1>p1y2 to obtain

h1y2  dy = g1x2  dx .

Then integrate both sides:

Lh1y2  dy = Lg1x2  dx ,

(3) H1y2 = G1x2 + C ,

where we have merged the two constants of integration into a single symbol C. The last 
equation gives an implicit solution to the differential equation.
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As Example 1 attests, separable equations are among the easiest to solve. However, the 
procedure does require a facility for computing integrals. Many of the procedures to be dis-
cussed in the text also require a familiarity with the techniques of integration. For this reason 
we have provided a review of integration methods in Appendix A and a brief table of integrals 
at the back of the book.

y

x

1
1

K 5 24

K 5 0
K 5 212

K 5 224
K 5 12

Figure 2.3 Family of solutions for Example 1†

Example 2 Solve the initial value problem

(4) 
dy

dx
=

y - 1

x + 3
 ,    y1-12 = 0 .

Solution Separating the variables and integrating gives

 
dy

y - 1
=

dx
x + 3

 ,

 L
dy

y - 1
= L

dx
x + 3

 ,

(5)  ln 0 y - 1 0 = ln 0 x + 3 0 + C .

At this point, we can either solve for y explicitly (retaining the constant C) or use the initial 
condition to determine C and then solve explicitly for y. Let’s try the first approach.

Exponentiating equation (5), we have

 eln 0y - 1 0 = eln 0x + 3 0 + C = eCeln 0x + 3 0 ,

(6)  0 y - 1 0 = eC 0 x + 3 0 = C1 0 x + 3 0  ,
where C1 J eC.‡ Now, depending on the values of y, we have 0 y - 1 0 = { 1y - 12; and  
similarly, 0 x + 3 0 = { 1x + 32. Thus, (6) can be written as

y - 1 = {C11x + 32  or  y = 1 { C11x + 32 ,

†The gaps in the curves reflect the fact that in the original differential equation, y appears in the denominator, so that  
y = 0 must be excluded.
‡Recall that the symbol J means “is defined to be.”
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44 Chapter 2  First-Order Differential Equations

where the choice of sign depends (as we said) on the values of x and y. Because C1 is a positive 
constant (recall that C1 = eC 7 0), we can replace {C1 by K, where K now represents an arbi-
trary nonzero constant. We then obtain

(7) y = 1 + K1x + 32 .
Finally, we determine K such that the initial condition y1-12 = 0 is satisfied. Putting x = -1 
and y = 0 in equation (7) gives

0 = 1 + K1-1 + 32 = 1 + 2K ,

and so K = -1>2. Thus, the solution to the initial value problem is

(8) y = 1 -
1
2

 1x + 32 = -  
1
2

 1x + 12 .

Alternative Approach. The second approach is to first set x = -1 and y = 0 in equation (5) 
and solve for C. In this case, we obtain

 ln 0 0 - 1 0 = ln 0 -1 + 3 0 + C ,

 0 = ln 1 = ln 2 + C ,

and so C = - ln 2. Thus, from (5), the solution y is given implicitly by

ln11 - y2 = ln1x + 32 - ln 2 .

Here we have replaced 0 y - 1 0  by 1 - y and 0 x + 3 0  by x + 3, since we are interested in x and y 
near the initial values x = -1, y = 0 (for such values, y - 1 6 0 and x + 3 7 0). Solving for 
y, we find

 ln11 - y2 = ln1x + 32 - ln 2 = lna x + 3
2
b  ,

 1 - y =
x + 3

2
 ,

 y = 1 -
1
2

 1x + 32 = -
1
2

 1x + 12 ,

which agrees with the solution (8) found by the first method. ◆

Example 3 Solve the nonlinear equation

(9) 
dy

dx
=

6x5 - 2x + 1
cos y + ey  .

Solution Separating variables and integrating, we find

 1cos y + ey2  dy = 16x5 - 2x + 12  dx ,

 L 1cos y + ey2  dy = L 16x5 - 2x + 12  dx ,

 sin y + ey = x6 - x2 + x + C .

At this point, we reach an impasse. We would like to solve for y explicitly, but we cannot. This 
is often the case in solving nonlinear first-order equations. Consequently, when we say “solve 
the equation,” we must on occasion be content if only an implicit form of the solution has been 
found. ◆
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The separation of variables technique, as well as several other techniques discussed in this 
book, entails rewriting a differential equation by performing certain algebraic operations on 
it. “Rewriting dy>dx = g1x2p1y2 as h1y2  dy = g1x2  dx” amounts to dividing both sides by 
p1y2. You may recall from your algebra days that doing this can be treacherous. For example, 
the equation x1x - 22 = 41x - 22 has two solutions: x = 2 and x = 4. But if we “rewrite” 
the equation as x = 4 by dividing both sides by 1x - 22, we lose track of the root x = 2. 
Thus, we should record the zeros of 1x - 22 itself before dividing by this factor.

By the same token we must take note of the zeros of p1y2 in the separable equation 
dy>dx = g1x2p1y2 prior to dividing. After all, if (say) g1x2p1y2 = 1x - 2221y - 132, then  
observe that the constant function y1x2 K 13 solves the differential equation dy>dx = g1x2p1y2:

 
dy

dx
=

d1132
dx

= 0 ,

 g1x2p1y2 = 1x - 222113 - 132 = 0 .

Indeed, in solving the equation of Example 2,

dy

dx
=

y - 1

x + 3
 ,

we obtained y = 1 + K1x + 32 as the set of solutions, where K was a nonzero constant (since 
K replaced { eC). But notice that the constant function y K 1 (which in this case corresponds 
to K = 0) is also a solution to the differential equation. The reason we lost this solution can be 
traced back to a division by y - 1 in the separation process. (See Problem 30 for an example of 
where a solution is lost and cannot be retrieved by setting the constant K = 0.)

Formal Justification of Method
We close this section by reviewing the separation of variables procedure in a more rigorous 
framework. The original differential equation (2) is rewritten in the form

(10) h1y2  
dy

dx
= g1x2 ,

where h1y2 J 1>p1y2. Letting H1y2 and G1x2 denote antiderivatives (indefinite integrals) 
of h1y2 and g1x2, respectively—that is,

H′1y2 = h1y2 ,    G′1x2 = g1x2 ,
we recast equation (10) as

H′1y2  
dy

dx
= G′1x2 .

By the chain rule for differentiation, the left-hand side is the derivative of the composite func-
tion H1y1x2 2 :

d
dx

 H1y1x2 2 = H′1y1x2 2dy

dx
 .

Thus, if y1x2 is a solution to equation (2), then H1y1x2 2  and G1x2 are two functions of x that 
have the same derivative. Therefore, they differ by a constant:

(11) H1y1x2 2 = G1x2 + C .

Equation (11) agrees with equation (3), which was derived informally, and we have thus 
verified that the latter can be used to construct implicit solutions.
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In Problems 1–6, determine whether the given differential 
equation is separable.

1. 
dy

dx
- sin1x + y2 = 0

differential equation, it is often helpful to use definite 
integration (integrals with variable upper limit). For 
example, consider the initial value problem

dy

dx
= ex2

y2 ,    y122 = 1 .

The differential equation separates if we divide by y2 and 
multiply by dx. We integrate the separated equation from 
x = 2 to x = x1 and find

 L
x = x1

x = 2
ex2

 dx = L
x = x1

x = 2

dy

y2

 = -
1
y

 `
x = x1

x = 2

 = -
1

y1x12 +
1

y122  .

If we let t be the variable of integration and replace x1 by 
x and y122 by 1, then we can express the solution to the 
initial value problem by

y1x2 = a1 - L
x

2
et 

2
dtb

-1

 .

Use definite integration to find an explicit solution to the 
initial value problems in parts (a)– (c).

 (a)  dy>dx = ex2
 ,    y102 = 0

 (b)  dy>dx = ex2
y-2 ,    y102 = 1

 (c)  dy>dx = 21 + sin x 11 + y22 ,    y102 = 1
 (d)  Use a numerical integration algorithm (such as 

Simpson’s rule, described in Appendix C) to approx-
imate the solution to part (b) at x = 0.5 to three 
decimal places.

28. Sketch the solution to the initial value problem

dy

dt
= 2y - 2yt ,    y102 = 3

and determine its maximum value.

29. Uniqueness Questions. In Chapter 1 we indicated that 
in applications most initial value problems will have a 
unique solution. In fact, the existence of unique solutions 
was so important that we stated an existence and unique-
ness theorem, Theorem 1, page 11. The method for sepa-
rable equations can give us a solution, but it may not give 
us all the solutions (also see Problem 30). To illustrate 
this, consider the equation dy>dx = y1>3.

 (a)  Use the method of separation of variables to show that

y = a2x
3

+ Cb
3>2

 is a solution.

2.2 EXERCISES

2. 
dy

dx
= 4y2 - 3y + 1

3. 
ds
dt

= t ln1s2t2 + 8t2
4. 

dy

dx
=

yex + y

x2 + 2
5. 1xy2 + 3y22  dy - 2x dx = 0

6. s2 +
ds
dt

=
s + 1

st

In Problems 7–16, solve the equation.

7. x
dy

dx
=

1

y3
8. 

dx
dt

= 3xt2

9. 
dx
dt

=
t

xet+ 2x 10. 
dy

dx
=

x

y221 + x

11. x 
dv

dx
=

1 - 4v

2

3v

12. 
dy

dx
=

sec2y

1 + x2

13. 
dy

dx
= 3x211 + y223/2 14. 

dx
dt

- x3 = x

15. 1x + xy22  dx + ex2
y dy = 0

16. y-1 dy + yecos x sin x dx = 0

In Problems 17–26, solve the initial value problem.

17. 
dy

dx
= 11 + y22tan x ,    y102 = 23

18. y′ = x311 - y2 ,   y102 = 3

19. 
1
2

 
dy

dx
= 2y + 1   cos  x ,    y1p2 = 0

20. x2 
dy

dx
=

4x2 - x - 2
1x + 121y + 12  ,    y112 = 1

21. 
1
u

 
dy

du
=

y  sin u

y2 + 1
 ,    y1p2 = 1

22. x2 dx + 2y dy = 0 ,    y102 = 2

23. 
dy

dt
= 2t cos 2y ,    y102 = p/4

24. 
dy

dx
= 8x3e-2y ,    y112 = 0

25. 
dy

dx
= x211 + y2 ,    y102 = 3

26. 2y  dx + 11 + x2  dy = 0 ,    y102 = 1

27. Solutions Not Expressible in Terms of Elementary 
Functions. As discussed in calculus, certain indefi-
nite integrals (antiderivatives) such as 1ex2

dx cannot 
be expressed in finite terms using elementary functions. 
When such an integral is encountered while solving a 
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 (b)  Show that the initial value problem dy>dx =
y1>3 with y102 = 0 is satisfied for C = 0 by 
y = 12x>323>2 for x Ú 0.

 (c)  Now show that the constant function y K 0 also 
satisfies the initial value problem given in part (b). 
Hence, this initial value problem does not have a 
unique solution.

 (d)  Finally, show that the conditions of Theorem 1 on 
page 11 are not satisfied.

(The solution y K 0 was lost because of the division by 
zero in the separation process.)

30. As stated in this section, the separation of equation (2) on 
page 42 requires division by p1y2, and this may disguise 
the fact that the roots of the equation p1y2 = 0 are actu-
ally constant solutions to the differential equation.

 (a)  To explore this further, separate the equation

dy

dx
= 1x - 321y + 122>3

 to derive the solution,

y = -1 + 1x2>6 - x + C23 .

 (b)  Show that y K -1 satisfies the original equation 
dy>dx = 1x - 321y + 122>3.

 (c)  Show that there is no choice of the constant C that 
will make the solution in part (a) yield the solution 
y K -1. Thus, we lost the solution y K -1 when 
we divided by 1y + 122>3.

31. Interval of Definition. By looking at an initial value 
problem dy>dx = f1x, y2 with y1x02 = y0, it is not 
always possible to determine the domain of the solution 
y1x2 or the interval over which the function y1x2 satis-
fies the differential equation.

 (a)  Solve the equation dy>dx = xy3.
 (b)  Give explicitly the solutions to the initial value prob-

lem with y102 = 1; y102 = 1>2; y102 = 2.
 (c)  Determine the domains of the solutions in part (b).
 (d)  As found in part (c), the domains of the solutions 

depend on the initial conditions. For the initial value 
problem dy>dx = xy3 with y102 = a, a 7 0, show 
that as a approaches zero from the right the domain 
approaches the whole real line 1- ∞ , ∞ 2 and as 
a approaches + ∞  the domain shrinks to a single 
point.

 (e)  Sketch the solutions to the initial value problem 
dy>dx = xy3 with y102 =  a for a = {1>2, {1,  
and {2.

32. Analyze the solution y = f1x2 to the initial value problem

dy

dx
= y2 - 3y + 2 ,    y102 = 1.5

using approximation methods and then compare with its 
exact form as follows.

 (a)  Sketch the direction field of the differential equation 
and use it to guess the value of limxS ∞  f1x2.

 (b)  Use Euler’s method with a step size of 0.1 to find an 
approximation of f112.

 (c)  Find a formula for f1x2 and graph f1x2 on the 
direction field from part (a).

 (d)  What is the exact value of f112? Compare with 
your approximation in part (b).

 (e)  Using the exact solution obtained in part (c), determine 
limxS ∞  f1x2 and compare with your guess in part (a).

33. Mixing. Suppose a brine containing 0.3 kilogram (kg) 
of salt per liter (L) runs into a tank initially filled with 
400 L of water containing 2 kg of salt. If the brine enters 
at 10 L/min, the mixture is kept uniform by stirring, and 
the mixture flows out at the same rate. Find the mass of 
salt in the tank after 10 min (see Figure 2.4). [Hint: Let 
A denote the number of kilograms of salt in the tank at t 
min after the process begins and use the fact that

rate of increase in A = rate of input - rate of exit.

A further discussion of mixing problems is given in 
Section 3.2.]

A(t)  

400 L 

A( 0) = 2 kg

10 L/min 
0.3 kg/L 

10 L/min 

Figure 2.4 Schematic representation of a mixing problem

34. Newton’s Law of Cooling. According to Newton’s law 
of cooling, if an object at temperature T is immersed in a 
medium having the constant temperature M, then the rate 
of change of T is proportional to the difference of tem-
perature M - T. This gives the differential equation

dT>dt = k1M − T2 .
 (a)  Solve the differential equation for T.
 (b)  A thermometer reading 100°F is placed in a medium 

having a constant temperature of 70°F. After 6 min, 
the thermometer reads 80°F. What is the reading 
after 20 min?

(Further applications of Newton’s law of cooling appear 
in Section 3.3.)

35. Blood plasma is stored at 40°F. Before the plasma can be 
used, it must be at 90°F. When the plasma is placed in 
an oven at 120°F, it takes 45 min for the plasma to warm 
to 90°F. Assume Newton’s law of cooling (Problem 34) 
applies. How long will it take for the plasma to warm  
to 90°F if the oven temperature is set at (a) 100°F,  
(b) 140°F, and (c) 80°F?

36. A pot of boiling water at 100°C is removed from a stove 
and covered at time t = 0 and left to cool in the kitchen. 
After 5 min, the water temperature has decreased to 80°C, 
and another 5 min later it has dropped to 65°C. Assuming 
Newton’s law of cooling (Problem 34) applies, determine 
the (constant) temperature of the kitchen.
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37. Compound Interest. If P1t2 is the amount of dollars 
in a savings bank account that pays a yearly interest rate 
of r% compounded continuously, then

dP
dt

=
r

100
  P ,     t in years.

Assume the interest is 5% annually, P102 = $1000, and 
no monies are withdrawn.

 (a)  How much will be in the account after 2 yr?
 (b)  When will the account reach $4000?
 (c)  If $1000 is added to the account every 12 months, 

how much will be in the account after 31
2 yr?

38. Free Fall. In Section 2.1, we discussed a model for an 
object falling toward Earth. Assuming that only air resis-
tance and gravity are acting on the object, we found that 
the velocity v must satisfy the equation

m 
dY
dt

= mg − bY ,

where m is the mass, g is the acceleration due to gravity, 
and b 7 0 is a constant (see Figure 2.1). If m = 100 kg, 
g = 9.8 m>sec2, b = 5 kg>sec, and v102 = 10 m>sec, 
solve for v1t2. What is the limiting (i.e., terminal) velocity 
of the object?

39. Grand Prix Race. Driver A had been leading archrival 
B for a while by a steady 3 miles. Only 2 miles from the 
finish, driver A ran out of gas and decelerated thereafter at 
a rate proportional to the square of his remaining speed. 
One mile later, driver A’s speed was exactly halved. If 
driver B’s speed remained constant, who won the race?

40. The atmospheric pressure (force per unit area) on a sur-
face at an altitude z is due to the weight of the column of 
air situated above the surface. Therefore, the drop in air 
pressure p between the top and bottom of a cylindrical  

volume element of height ∆z and cross-section area  
A equals the weight of the air enclosed (density r times 
volume V = A∆z times gravity g), per unit area:

p1z + ∆z2 - p1z2 = -
r1z21A∆z2g

A
= -r1z2g∆z .

Let ∆z S 0 to derive the differential equation 
dp>dz = -rg. To analyze this further we must postulate 
a formula that relates pressure and density. The perfect 
gas law relates pressure, volume, mass m, and absolute 
temperature T according to pV = mRT>M, where R  
is the universal gas constant and M is the molar mass  
(i.e., the mass of one mole) of the air. Therefore, density 
and pressure are related by r :=  m>V = Mp>RT .

 (a)  Derive the equation 
dp

dz
= -

Mg

RT
 p and solve it 

for the “isothermal” case where T is constant to  
obtain the barometric pressure equation  
p1z2 = p1z02 exp[-Mg1z - z02 >RT].

 (b)  If the temperature also varies with altitude T = T1z2, 
derive the solution

p1z2 = p1z02expe -
Mg

R L
z

z0

dz

T 1z2 f  .

 (c)  Suppose an engineer measures the barometric pres-
sure at the top of a building to be 99,000 Pa (pascals), 
and 101,000 Pa at the base 1z = z02. If the absolute 
temperature varies as T1z2 = 288 - 0.00651z - z02, 
determine the height of the building. Take  
R = 8.31 N-m>mol-K, M = 0.029 kg>mol, and 
g = 9.8 m>sec2. (An amusing story concerning this 
problem can be found at http://www.snopes.com/
college/exam/barometer.asp)

A type of first-order differential equation that occurs frequently in applications is the linear 
equation. Recall from Section 1.1 that a linear first-order equation is an equation that can be 
expressed in the form

(1) a11x2  
dy

dx
+ a01x2y = b1x2 ,

where a11x2, a01x2, and b1x2 depend only on the independent variable x, not on y.
For example, the equation

x2sin x - 1cos x2y = 1sin x2  
dy

dx

2.3 Linear Equations
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is linear, because it can be rewritten in the form

1sin x2  
dy

dx
+ 1cos x2y = x2  sin x .

However, the equation

y 
dy

dx
+ 1sin x2y3 = ex + 1

is not linear; it cannot be put in the form of equation (1) due to the presence of the y3 and 
y dy>dx terms.

There are two situations for which the solution of a linear differential equation is quite 
immediate. The first arises if the coefficient a01x2 is identically zero, for then equation (1) 
reduces to

(2) a11x2  
dy

dx
= b1x2 ,

which is equivalent to

y1x2 = L
b1x2
a11x2  dx + C

3as long as a11x2 is not zero4.
The second is less trivial. Note that if a01x2 happens to equal the derivative of a11x2—that 

is, a01x2 = a=11x2—then the two terms on the left-hand side of equation (1) simply comprise 
the derivative of the product a11x2y:

a11x2y′ + a01x2y = a11x2y′ + a=11x2y =
d
dx

 3a11x2y4 .

Therefore equation (1) becomes

(3) 
d
dx

 3a11x2y4 = b1x2

and the solution is again elementary:

a11x2y = Lb1x2  dx + C ,

y1x2 =
1

a11x2  c Lb1x2  dx + C d  .

One can seldom rewrite a linear differential equation so that it reduces to a form as simple 
as (2). However, the form (3) can be achieved through multiplication of the original equation 
(1) by a well-chosen function m1x2. Such a function m1x2 is then called an “integrating fac-
tor” for equation (1). The easiest way to see this is first to divide the original equation (1) by 
a11x2 and put it into standard form

(4) 
dy

dx
+ P1x2y = Q1x2 ,

where P1x2 = a01x2 >a11x2 and Q1x2 = b1x2 >a11x2.
Next we wish to determine m1x2 so that the left-hand side of the multiplied equation

(5) m1x2  
dy

dx
+ m1x2P1x2y = m1x2Q1x2
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is just the derivative of the product m1x2y:

m1x2  
dy

dx
+ M1x2P1x2y =

d
dx

 3m1x2y4 = m1x2  
dy

dx
+ M′1x2y .

Clearly, this requires that μ satisfy

(6) m′ = mP .

To find such a function, we recognize that equation (6) is a separable differential equation, 
which we can write as 11>m2  dm = P1x2dx. Integrating both sides gives

(7) M1x2 = e1 P1x2 dx .

With this choice† for m1x2, equation (5) becomes

d
dx

 3m1x2y4 = m1x2Q1x2 ,

which has the solution

(8) y1x2 =
1
m1x2  c Lm1x2Q1x2  dx + C d  .

Here C is an arbitrary constant, so (8) gives a one-parameter family of solutions to (4). This 
form is known as the general solution to (4).

We can summarize the method for solving linear equations as follows.

†Any choice of the integration constant in 1P1x2  dx will produce a suitable m1x2.

Method for Solving Linear Equations

(a) Write the equation in the standard form

dy

dx
+ P1x2y = Q1x2 .

(b) Calculate the integrating factor m1x2 by the formula

m1x2 = exp c LP1x2dx d  .

(c) Multiply the equation in standard form by m1x2 and, recalling that the left-hand side 

is just 
d
dx
3m1x2y4, obtain

m1x2  
dy

dx
+ P1x2m1x2y = m1x2Q1x2 ,

8

  
d
dx

 3m1x2y4  = m1x2Q1x2 .

(d) Integrate the last equation and solve for y by dividing by m1x2 to obtain (8).
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Example 1 Find the general solution to

(9) 
1
x

 
dy

dx
-

2y

x2 = x cos x ,    x 7 0 .

Solution To put this linear equation in standard form, we multiply by x to obtain

(10) 
dy

dx
-

2
x

 y = x2cos x .

Here P1x2 = -2>x, so

LP1x2  dx = L
-2
x

 dx = -2 ln 0 x 0  .

Thus, an integrating factor is

m1x2 = e-2 ln 0x 0 = eln1x - 22 = x-2 .

Multiplying equation (10) by m1x2 yields

x-2 dy

dx
- 2x-3y = cos x ,

5

 
d
dx

 1x-2y2  = cos x .

We now integrate both sides and solve for y to find

 x-2y =  Lcos x dx = sin x + C

(11)  y =  x2 sin x + Cx2 .

It is easily checked that this solution is valid for all x 7 0. In Figure 2.5 we have sketched solu-
tions for various values of the constant C in (11). ◆

100 

0 

-100 

-200 

2 4 6 8 10 12 C  = - 1 / 2 

C  = 1 
C  = 1 / 2 

C  = 0 

C  = -1 

y

x

Figure 2.5 Graph of y = x2 sin x + Cx2 for five values of the constant C

In the next example, we encounter a linear equation that arises in the study of the radioactive 
decay of an isotope.
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Example 2 A rock contains two radioactive isotopes, RA1 and RA2, that belong to the same radioactive 
series; that is, RA1 decays into RA2, which then decays into stable atoms. Assume that the rate 
at which RA1 decays into RA2 is 50e-10t kg/sec. Because the rate of decay of RA2 is propor-
tional to the mass y1t2 of RA2 present, the rate of change in RA2 is

 
dy

dt
= rate of creation - rate of decay ,

(12)  
dy

dt
= 50e-10t - ky ,

where k 7 0 is the decay constant. If k = 2>sec and initially y102 = 40 kg, find the mass 
y1t2 of RA2 for t Ú 0.

Solution Equation (12) is linear, so we begin by writing it in standard form

(13) 
dy

dt
+ 2y = 50e-10t ,    y102 = 40 ,

where we have substituted k = 2 and displayed the initial condition. We now see that P1t2 = 2,  
so 1P1t2dt = 12 dt = 2t. Thus, an integrating factor is m1t2 = e2t. Multiplying equation 
(13) by m1t2 yields

 e2t 
dy

dt
+ 2e2ty = 50e-10t+ 2t = 50e-8t ,

3

 
d
dt

 1e2ty2  = 50e-8t .

Integrating both sides and solving for y, we find

 e2ty = -  
25
4

 e-8t + C ,

 y = -  
25
4

 e-10t + Ce-2t .

Substituting t = 0 and y102 = 40 gives

40 = -  
25
4

 e0 + Ce0 = -  
25
4

+ C ,

so C = 40 + 25>4 = 185>4. Thus, the mass y1t2 of RA2 at time t is given by

(14) y1t2 = a 185
4
be-2t - a 25

4
be-10t ,    t Ú 0 . ◆

Example 3 For the initial value problem

y′ + y = 21 + cos2x ,    y112 = 4 ,

find the value of y122.
Solution The integrating factor for the differential equation is, from equation (7),

m1x2 = e1 1 dx = ex .
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The general solution form (8) thus reads

y1x2 = e-xa 3ex21 + cos2x  dx + Cb  .

However, this indefinite integral cannot be expressed in finite terms with elementary functions 
(recall a similar situation in Problem 27 of Exercises 2.2). Because we can use numerical algo-
rithms such as Simpson’s rule (Appendix C) to perform definite integration, we revert to the 
form (5), which in this case reads

d
dx

 1exy2 = ex21 + cos2x ,

and take the definite integral from the initial value x = 1 to the desired value x = 2:

exy `
x = 2

x = 1
= e2y122 - e1y112 = L

x = 2

x = 1
ex21 + cos2x  dx .

Inserting the given value of y112 and solving, we express

y122 = e-2 + 1142 + e-2 L
2

1
ex21 + cos2x  dx .

Using Simpson’s rule, we find that the definite integral is approximately 4.841, so

y122 ≈  4e-1 + 4.841e-2 ≈  2.127 . ◆

In Example 3 we had no difficulty expressing the integral for the integrating factor 
m1x2 = e11 dx = ex. Clearly, situations will arise where this integral, too, cannot be expressed 
with elementary functions. In such cases we must again resort to a numerical procedure such as 
Euler’s method (Section 1.4) or to a “nested loop” implementation of Simpson’s rule. You are 
invited to explore such a possibility in Problem 27.

Because we have established explicit formulas for the solutions to linear first-order differ-
ential equations, we get as a dividend a direct proof of the following theorem.

The essentials of the proof of Theorem 1 are contained in the deliberations leading  
to equation (8); Problem 34 provides the details. This theorem differs from Theorem 1 on  
page 11 in that for the linear initial value problem (15), we have the existence and uniqueness 
of the solution on the whole interval 1a, b2, rather than on some smaller unspecified interval 
about x0.

Existence and Uniqueness of Solution

Theorem 1. If P1x2 and Q1x2 are continuous on an interval 1a, b2 that contains the 
point x0, then for any choice of initial value y0, there exists a unique solution y1x2 on 
1a, b2 to the initial value problem

(15) 
dy

dx
+ P1x2y = Q1x2 ,    y1x02 = y0 .

In fact, the solution is given by (8) for a suitable value of C.
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The theory of linear differential equations is an important branch of mathematics not only 
because these equations occur in applications but also because of the elegant structure associ-
ated with them. For example, first-order linear equations always have a general solution given by 
equation (8). Some further properties of first-order linear equations are described in Problems 28 
and 36. Higher-order linear equations are treated in Chapters 4, 6, and 8.

In Problems 1–6, determine whether the given equation is 
separable, linear, neither, or both.

1. x2 
dy

dx
+ sin x - y = 0

22. 1sin x2  
dy

dx
+ y cos x = x sin x ,  yap

2
b = 2

23. Radioactive Decay. In Example 2 assume that the rate 
at which RA1 decays into RA2 is 40e-20t kg>sec and the 
decay constant for RA2 is k = 5/sec. Find the mass y1t2 
of RA2 for t Ú 0 if initially y102 = 10 kg.

24. In Example 2 the decay constant for isotope RA1 was  
10/sec, which expresses itself in the exponent of the rate 
term 50e-10t kg>sec. When the decay constant for RA2 
is k = 2 /sec, we see that in formula (14) for y the term 
1185>42e-2t eventually dominates (has greater magni-
tude for t large).

 (a)  Redo Example 2 taking k = 20/sec. Now which 
term in the solution eventually dominates?

 (b)  Redo Example 2 taking k = 10/sec.

25. (a)  Using definite integration, show that the solution to 
the initial value problem
dy

dx
+ 2xy = 1 ,    y122 = 1 ,

 can be expressed as

y1x2 = e-x2ae4 + L
x

2
et2 dtb .

 (b)  Use numerical integration (such as Simpson’s rule, 
Appendix C) to approximate the solution at x = 3.

26. Use numerical integration (such as Simpson’s rule, 
Appendix C) to approximate the solution, at x = 1, to 
the initial value problem

dy

dx
+

sin 2x

211 + sin2x2  y = 1 ,    y102 = 0 .

Ensure your approximation is accurate to three decimal 
places.

27. Consider the initial value problem

dy

dx
+ 21 + sin2x y = x ,    y102 = 2 .

 (a)  Using definite integration, show that the integrating 
factor for the differential equation can be written as

m1x2 = expaL
x

0
21 + sin2t dtb

2.3 EXERCISES

2. 
dx
dt

+ xt = ex

3. 1t2 + 12  
dy

dt
= yt - y 4. 3t = et 

dy

dt
+ y ln t

5. x 
dx
dt

+ t2x = sin t 6. 3r =
dr
du

- u3

In Problems 7–16, obtain the general solution to the equation.

7. 
dy

dx
- y - e3x = 0 8. 

dy

dx
=

y

x
+ 2x + 1

9. 
dr
du

+ r tan u = sec u 10. x 
dy

dx
+ 2y = x-3

11. 1t + y + 12  dt - dy = 0 12. 
dy

dx
= x2e-4x - 4y

13. y 
dx
dy

+ 2x = 5y3

14. x 
dy

dx
+ 31y + x22 =

sin x
x

15. 1x2 + 12  
dy

dx
+ xy - x = 0

16. 11 - x22dy

dx
- x2y = 11 + x221 - x2

In Problems 17–22, solve the initial value problem.

17. 
dy

dx
-

y

x
= xex ,    y112 = e - 1

18. 
dy

dx
+ 4y - e-x = 0 ,    y102 =

4
3

19. t2 
dx
dt

+ 3tx = t4 ln t + 1 ,   x112 = 0

20. 
dy

dx
+

3y

x
+ 2 = 3x ,    y112 = 1

21. 1cos x2  
dy

dx
+ y sin x = 2x cos2x ,

yap
4
b =

-1522p2

32
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 and that the solution to the initial value problem is

y1x2 =
1
m1x2  L

x

0
 m1s2 s ds +

2
m1x2  .

 (b)  Obtain an approximation to the solution at x = 1 by 
using numerical integration (such as Simpson’s rule, 
Appendix C) in a nested loop to estimate values of 
m1x2 and, thereby, the value of

L
1

0
 m1s2s ds .

[Hint: First, use Simpson’s rule to approximate 
m1x2 at x = 0.1, 0.2, . . . , 1. Then use these val-
ues and apply Simpson’s rule again to approximate 

11
0 m1s2   s ds.]

 (c)  Use Euler’s method (Section 1.4) to approximate the 
solution at x = 1, with step sizes h = 0.1 and 0.05.

[A direct comparison of the merits of the two numerical 
schemes in parts (b) and (c) is very complicated, since it 
should take into account the number of functional evalua-
tions in each algorithm as well as the inherent accuracies.]

28. Constant Multiples of Solutions.
 (a)  Show that y = e-x is a solution of the linear equation

(16) 
dy

dx
+ y = 0 ,

 and y = x-1 is a solution of the nonlinear equation

(17) 
dy

dx
+ y2 = 0 .

 (b)  Show that for any constant C,  the function Ce-x is a 
solution of equation (16), while Cx-1 is a solution of 
equation (17) only when C = 0 or 1.

 (c)  Show that for any linear equation of the form

dy

dx
+ P1x2y = 0 ,

if yn1x2 is a solution, then for any constant C the 
function C yn1x2 is also a solution.

29. Use your ingenuity to solve the equation

dy

dx
=

1

e4y + 2x
 .

[Hint: The roles of the independent and dependent vari-
ables may be reversed.]

30. Bernoulli Equations. The equation

(18) 
dy

dx
+ 2y = xy-2

is an example of a Bernoulli equation. (Further discussion 
of Bernoulli equations is in Section 2.6.)

 (a)  Show that the substitution v = y3 reduces equation 
(18) to the equation

(19) 
dv

dx
+ 6v = 3x .

 (b)  Solve equation (19) for v. Then make the substitution 
v = y3 to obtain the solution to equation (18).

31. Discontinuous Coefficients. As we will see in Chapter 3,  
occasions arise when the coefficient P1x2 in a linear 
equation fails to be continuous because of jump discon-
tinuities. Fortunately, we may still obtain a “reasonable” 
solution. For example, consider the initial value problem

dy

dx
+ P1x2y = x ,    y102 = 1 ,

where

P1x2 J e1 , 0 … x … 2 ,
3 , x 7 2 .

 (a)  Find the general solution for 0 … x … 2.
 (b)  Choose the constant in the solution of part (a) so that 

the initial condition is satisfied.
 (c)  Find the general solution for x 7 2.
 (d)  Now choose the constant in the general solution from 

part (c) so that the solution from part (b) and the 
solution from part (c) agree at x = 2. By patching 
the two solutions together, we can obtain a continu-
ous function that satisfies the differential equation 
except at x = 2, where its derivative is undefined.

 (e)  Sketch the graph of the solution from x = 0 to x = 5.

32. Discontinuous Forcing Terms. There are occasions 
when the forcing term Q1x2 in a linear equation fails to be 
continuous because of jump discontinuities. Fortunately, 
we may still obtain a reasonable solution imitating the pro-
cedure discussed in Problem 31. Use this procedure to find 
the continuous solution to the initial value problem.

dy

dx
+ 2y = Q1x2 ,    y102 = 0 ,

where

Q1x2 J e    2 , 0 … x … 3 ,
-2 , x 7 3 .

Sketch the graph of the solution from x = 0 to x = 7.

33. Singular Points. Those values of x for which P1x2 in 
equation (4) is not defined are called singular points of 
the equation. For example, x = 0 is a singular point of 
the equation xy′ + 2y = 3x, since when the equation is 
written in the standard form, y′ + 12>x2y = 3, we see 
that P1x2 = 2>x is not defined at x = 0. On an interval 
containing a singular point, the questions of the existence 
and uniqueness of a solution are left unanswered, since 
Theorem 1 on page 53 does not apply. To show the pos-
sible behavior of solutions near a singular point, consider 
the following equations.

 (a)  Show that xy′ + 2y = 3x has only one solution 
defined at x = 0. Then show that the initial value 
problem for this equation with initial condition 
y102 = y0 has a unique solution when y0 = 0 and 
no solution when y0 ≠ 0.
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56 Chapter 2  First-Order Differential Equations

 (b)  Show that xy′ - 2y = 3x has an infinite number 
of solutions defined at x = 0. Then show that the 
initial value problem for this equation with ini-
tial condition y102 = 0 has an infinite number of 
solutions.

34. Existence and Uniqueness. Under the assumptions of 
Theorem 1, we will prove that equation (8) gives a solu-
tion to equation (4) on 1a, b2. We can then choose the 
constant C in equation (8) so that the initial value prob-
lem (15) is solved.

 (a)  Show that since P1x2 is continuous on 1a, b2, then 
m1x2 defined in (7) is a positive, continuous func-
tion satisfying dm>dx = P1x2m1x2 on 1a, b2.

 (b)  Since

d
dx

 Lm1x2Q1x2dx = m1x2Q1x2 ,

  verify that y given in equation (8) satisfies equation 
(4) by differentiating both sides of equation (8).

 (c)  Show that when we let 1m1x2Q1x2 dx be 
the antiderivative whose value at x0 is 0 (i.e., 

1 x
x0

 m1t2Q1t2 dt) and choose C to be y0 m1x02, the 
initial condition y1x02 = y0 is satisfied.

 (d)  Start with the assumption that y1x2 is a solution 
to the initial value problem (15) and argue that 
the discussion leading to equation (8) implies that 
y1x2 must obey equation (8). Then argue that the 
initial condition in (15) determines the constant C 
uniquely.

35. Mixing. Suppose a brine containing 0.2 kg of salt 
per liter runs into a tank initially filled with 500 L 
of water containing 5 kg of salt. The brine enters 
the tank at a rate of 5 L/min. The mixture, kept uni-
form by stirring, is f lowing out at the rate of 5 L/min  
(see Figure 2.6).

 (b)  After 10 min, a leak develops in the tank and an 
additional liter per minute of mixture flows out of 
the tank (see Figure 2.7). What will be the concen-
tration, in kilograms per liter, of salt in the tank  
20 min after the leak develops? [Hint: Use the 
method discussed in Problems 31 and 32.]

A(t)

500 L 

A (0) = 5 kg

5 L/min 
0.2 kg/L 

5 L/min 

Figure 2.6 Mixing problem with equal flow rates

 (a)  Find the concentration, in kilograms per liter, of 
salt in the tank after 10 min. [Hint: Let A denote the 
number of kilograms of salt in the tank at t minutes 
after the process begins and use the fact that

rate of increase in A = rate of input − rate of exit.

    A further discussion of mixing problems is given in 
Section 3.2.]

A(t)  

? L 

A (10) = ? kg

5 L/min 
0.2 kg/L

5 L/min 

1 L/min 

Figure 2.7 Mixing problem with unequal flow rates

36. Variation of Parameters. Here is another procedure 
for solving linear equations that is particularly useful for 
higher-order linear equations. This method is called vari-
ation of parameters. It is based on the idea that just by 
knowing the form of the solution, we can substitute into the 
given equation and solve for any unknowns. Here we illus-
trate the method for first-order equations (see Sections 4.6 
and 6.4 for the generalization to higher-order equations).

 (a)  Show that the general solution to

(20) 
dy

dx
+ P1x2y = Q1x2

 has the form

y1x2 = Cyh1x2 + yp1x2 ,
  where yh ( [ 0) is a solution to equation (20) when  

Q1x2 K 0, C is a constant, and yp1x2 = v1x2yh1x2 
for a suitable function v1x2. [Hint: Show that we 
can take yh = m-11x2 and then use equation (8).]

   We can in fact determine the unknown function 
yh by solving a separable equation. Then direct sub-
stitution of vyh in the original equation will give a 
simple equation that can be solved for v.

  Use this procedure to find the general solution to

(21) 
dy

dx
+

3
x

 y = x2 ,    x 7 0 ,

 by completing the following steps:
 (b)  Find a nontrivial solution yh to the separable equation

(22) 
dy

dx
+

3
x

 y = 0 ,    x 7 0 .

 (c)  Assuming (21) has a solution of the form 
yp1x2 = v1x2yh1x2, substitute this into equation 
(21), and simplify to obtain v′1x2 = x2>yh1x2.
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 (d)  Now integrate to get v1x2.
 (e)  Verify that y1x2 = Cyh1x2 + v1x2yh1x2 is a gen-

eral solution to (21).

37. Secretion of Hormones. The secretion of hormones 
into the blood is often a periodic activity. If a hormone 
is secreted on a 24-h cycle, then the rate of change of the 
level of the hormone in the blood may be represented by 
the initial value problem

dx
dt

= a - b cos
pt
12

- kx ,    x102 = x0 ,

where x1t2 is the amount of the hormone in the blood at 
time t, a is the average secretion rate, b is the amount of 
daily variation in the secretion, and k is a positive constant 
reflecting the rate at which the body removes the hormone 
from the blood. If a = b = 1, k = 2, and x0 = 10, 
solve for x1t2.

38. Use the separation of variables technique to derive the 
solution (7) to the differential equation (6).

39. The temperature T (in units of 100° F) of a university class-
room on a cold winter day varies with time t (in hours) as

dT
dt

= e1 - T ,    if heating unit is ON.
-T ,        if heating unit is OFF.

Suppose T = 0 at 9:00 a.m., the heating unit is ON  
from 9–10 a.m., OFF from 10–11 a.m., ON again from 
11 a.m.–noon, and so on for the rest of the day. How 
warm will the classroom be at noon? At 5:00 p.m.?

40. The Nobel Prize in Physiology or Medicine in 1963 was 
shared by A. L. Hodgkin and A. F. Huxley in recogni-
tion of their model for the firing of neuronal synapses. 
As will be discussed in Chapter 12, they proposed that 
the opening/closing of certain ion channels in the neuron 
cell was governed by a combination of probabilistic “gat-
ing variables,” each satisfying a differential equation that 
they expressed as

(23) 
du
dt

= a11 - u2 - bu

with positive parameters a, b .

 (a)  Use a direction field diagram (Section 1.3) to show 
that the solutions of equation (23) are “probabilistic” 
in the sense that if their initial values lie between 0 
and 1, all subsequent values also lie on [0,1].

 (b)  Solve (23) and show that all solutions approach the 
value a> 1a + b2 exponentially.

Suppose the mathematical function F1x, y2 represents some physical quantity, such as tem-
perature, in a region of the xy-plane. Then the level curves of F, where F1x, y2 = constant, 
could be interpreted as isotherms on a weather map, as depicted in Figure 2.8.

2.4 Exact Equations

50°

60°

70°

80°

90°

Figure 2.8 Level curves of F1x, y2

How does one calculate the slope of the tangent to a level curve? It is accomplished by 
implicit differentiation: One takes the derivative, with respect to x, of both sides of the equation 
F1x, y2 = C, taking into account that y depends on x along the curve:

d
dx

F1x,y2 =
d
dx

 1C2       or

(1) 
0F
0x

+
0F
0y

 dy

 dx
= 0  ,
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58 Chapter 2  First-Order Differential Equations

and solves for the slope:

(2) 
dy

dx
= ƒ1x, y2 = -  

0F>0x

0F>0y
 .

The expression obtained by formally multiplying the left-hand member of (1) by dx is known 
as the total differential of F, written dF:

dF J
0F
0x

 dx +
0F
0y

 dy ,

and our procedure for obtaining the equation for the slope ƒ1x, y2 of the level curve 
F1x, y2 = C can be expressed as setting the total differential dF = 0 and solving.

Because equation (2) has the form of a differential equation, we should be able to reverse 
this logic and come up with a very easy technique for solving some differential equations. After 
all, any first-order differential equation dy>dx = ƒ1x, y2 can be rewritten in the (differential) 
form

(3) M1x, y2  dx + N1x, y2  dy = 0

(in a variety of ways). Now, if the left-hand side of equation (3) can be identified as a total 
differential,

M1x, y2  dx + N1x, y2  dy =
0F
0x

 dx +
0F
0y

 dy = dF1x, y2 ,

then its solutions are given (implicitly) by the level curves

F1x, y2 = C

for an arbitrary constant C.

Example 1 Solve the differential equation

dy

dx
= -  

2xy2 + 1

2x2y
 .

Solution Some of the choices of differential forms corresponding to this equation are

 12xy2 + 12  dx + 2x2y dy = 0 ,

 
2xy2 + 1

2x2y
 dx + dy = 0 ,

 dx +
2x2y

2xy2 + 1
 dy = 0 ,  etc.

However, the first form is best for our purposes because it is a total differential of the function 
F1x, y2 = x2y2 + x:

 12xy2 + 12  dx + 2x2y dy = d3x2y2 + x4

 =
0
0x

 1x2y2 + x2  dx +
0
0y

 1x2y2 + x2  dy .

Thus, the solutions are given implicitly by the formula x2y2 + x = C. See Figure 2.9 on 
page 59. ◆
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Next we introduce some terminology.

y

x

1

10

C = 4

C = 2

C = 2

C = 0

C = -2

C = 4

Figure 2.9 Solutions of Example 1

Exact Differential Form

Definition 2. The differential form M1x, y2  dx + N1x, y2  dy is said to be exact in a 
rectangle R if there is a function F1x, y2 such that

(4) 
eF
ex

 1x, y2 = M1x, y2  and  
eF
ey

 1x, y2 = N1x, y2

for all 1x, y2 in R. That is, the total differential of F1x, y2 satisfies

dF1x, y2 = M1x, y2  dx + N1x, y2  dy .

If M1x, y2  dx + N1x, y2  dy is an exact differential form, then the equation

M1x, y2  dx + N1x, y2  dy = 0

is called an exact equation.

As you might suspect, in applications a differential equation is rarely given to us in exact 
differential form. However, the solution procedure is so quick and simple for such equations 
that we devote this section to it. From Example 1, we see that what is needed is (i) a test to 
determine if a differential form M1x, y2  dx + N1x, y2  dy is exact and, if so, (ii) a procedure for 
finding the function F1x, y2 itself.

The test for exactness arises from the following observation. If

M1x, y2  dx + N1x, y2  dy =
0F
0x

 dx +
0F
0y

 dy ,
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then the calculus theorem concerning the equality of continuous mixed partial derivatives

0
0y

 
0F
0x

=
0
0x

 
0F
0y

would dictate a “compatibility condition” on the functions M and N:

0
0y

 M1x, y2 =
0
0x

 N1x, y2 .

In fact, Theorem 2 states that the compatibility condition is also sufficient for the differential 
form to be exact.

Test for Exactness

Theorem 2. Suppose the first partial derivatives of M1x, y2 and N1x, y2 are continuous 
in a rectangle R. Then

M1x, y2  dx + N1x, y2  dy = 0

is an exact equation in R if and only if the compatibility condition

(5) 
eM
ey

 1x, y2 =
eN
ex

 1x, y2

holds for all 1x, y2 in R.†

Before we address the proof of Theorem 2, note that in Example 1 the differential form 
that led to the total differential was

12xy2 + 12  dx + 12x2y2  dy = 0 .

The compatibility conditions are easily confirmed:

 
0M
0y

=
0
0y

 12xy2 + 12 = 4xy ,

 
0N
0x

=
0
0x

 12x2y2 = 4xy .

Also clear is the fact that the other differential forms considered,

2xy2 + 1

2x2y
 dx + dy = 0 ,    dx +

2x2y

2xy2 + 1
 dy = 0 ,

do not meet the compatibility conditions.

Proof of Theorem 2. There are two parts to the theorem: Exactness implies compatibility, 
and compatibility implies exactness. First, we have seen that if the differential equation is 
exact, then the two members of equation (5) are simply the mixed second partials of a function 
F1x, y2. As such, their equality is ensured by the theorem of calculus that states that mixed 
second partials are equal if they are continuous. Because the hypothesis of Theorem 2 guaran-
tees the latter condition, equation (5) is validated.

†Historical Footnote: This theorem was proven by Leonhard Euler in 1734.
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Rather than proceed directly with the proof of the second part of the theorem, let’s derive 
a formula for a function F1x, y2 that satisfies 0F>0x = M and 0F>0y = N. Integrating the first 
equation with respect to x yields

(6) F1x, y2 = LM1x, y2  dx + g1y2 .

Notice that instead of using C to represent the constant of integration, we have written g1y2. 
This is because y is held fixed while integrating with respect to x, and so our “constant” may 
well depend on y. To determine g1y2, we differentiate both sides of (6) with respect to y to 
obtain

(7) 
0F
0y

 1x, y2 =
0
0y

 LM1x, y2  dx +
0
0y

 g1y2 .

As g is a function of y alone, we can write 0g>0y = g′1y2, and solving (7) for g′1y2 gives

g′1y2 =
0F
0y

 1x, y2 -
0
0y

 LM1x, y2  dx .

Since 0F>0y = N, this last equation becomes

(8) g′1y2 = N1x, y2 -
0
0y

 LM1x, y2  dx .

Notice that although the right-hand side of (8) indicates a possible dependence on x, the 
appearances of this variable must cancel because the left-hand side, g′1y2, depends only on y. By  
integrating (8), we can determine g1y2 up to a numerical constant, and therefore we can deter-
mine the function F1x, y2 up to a numerical constant from the functions M1x, y2 and N1x, y2.

To finish the proof of Theorem 2, we need to show that the condition (5) implies that 
M dx + N dy = 0 is an exact equation. This we do by actually exhibiting a function F1x, y2 
that satisfies 0F>0x = M and 0F>0y = N. Fortunately, we needn’t look too far for such a func-
tion. The discussion in the first part of the proof suggests (6) as a candidate, where g′1y2 is 
given by (8). Namely, we define F1x, y2 by

(9) F1x, y2 J L
x

x0

 M1t, y2  dt + g1y2 ,

where 1x0, y02 is a fixed point in the rectangle R and g1y2 is determined, up to a numerical 
constant, by the equation

(10) g′1y2 J N1x, y2 -
0
0y

 L
x

x0

 M1t, y2  dt .

Before proceeding we must address an extremely important question concerning the defi-
nition of F1x, y2. That is, how can we be sure (in this portion of the proof) that g′1y2, as given 
in equation (10), is really a function of just y alone? To show that the right-hand side of (10) 
is independent of x (that is, that the appearances of the variable x cancel), all we need to do is 
show that its partial derivative with respect to x is zero. This is where condition (5) is utilized. 
We leave to the reader this computation and the verification that F1x, y2 satisfies conditions (4) 
(see Problems 35 and 36). ◆

The construction in the proof of Theorem 2 actually provides an explicit procedure for 
solving exact equations. Let’s recap and look at some examples.
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Example 2 Solve

(12) 12xy - sec2x2  dx + 1x2 + 2y2  dy = 0 .

Solution Here M1x, y2 = 2xy - sec2x and N1x, y2 = x2 + 2y. Because

0M
0y

= 2x =
0N
0x

 ,

equation (12) is exact. To find F1x, y2, we begin by integrating M with respect to x:

(13)  F1x, y2 = L 12xy - sec2x2  dx + g1y2

 = x2y - tan x + g1y2 .
Next we take the partial derivative of (13) with respect to y and substitute x2 + 2y for N:

 
0F
0y

 1x, y2 = N1x, y2 ,

 x2 + g′1y2 = x2 + 2y .

Thus, g′1y2 = 2y, and since the choice of the constant of integration is not important, we can 
take g1y2 = y2. Hence, from (13), we have F1x, y2 = x2y - tan x + y2, and the solution to 
equation (12) is given implicitly by x2y - tan x + y2 = C. ◆

Remark. The procedure for solving exact equations requires several steps. As a check on our 
work, we observe that when we solve for g′1y2, we must obtain a function that is independent 
of x. If this is not the case, then we have erred either in our computation of F1x, y2 or in com-
puting 0M>0y or 0N>0x.

In the construction of F1x, y2, we can first integrate N1x, y2 with respect to y to get

(14) F1x, y2 = LN1x, y2  dy + h1x2

and then proceed to find h1x2. We illustrate this alternative method in the next example.

Method for Solving Exact Equations

(a) If M dx + N dy = 0 is exact, then 0F>0x = M. Integrate this last equation with 
respect to x to get

(11) F1x, y2 = LM1x, y2  dx + g1y2 .

(b) To determine g1y2, take the partial derivative with respect to y of both sides of equa-
tion (11) and substitute N for 0F>0y. We can now solve for g′1y2.

(c) Integrate g′1y2 to obtain g1y2 up to a numerical constant. Substituting g1y2 into 
equation (11) gives F1x, y2.

(d) The solution to M dx + N dy = 0 is given implicitly by

F1x, y2 = C .

(Alternatively, starting with 0F>0y = N, the implicit solution can be found by first 
integrating with respect to y; see Example 3.)
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Example 3 Solve

(15) 11 + exy + xexy2  dx + 1xex + 22  dy = 0 .

Solution Here M = 1 + exy + xexy and N = xex + 2. Because

0M
0y

= ex + xex =
0N
0x

 ,

equation (15) is exact. If we now integrate N1x, y2 with respect to y, we obtain

F1x, y2 = L 1xex + 22  dy + h1x2 = xexy + 2y + h1x2 .

When we take the partial derivative with respect to x and substitute for M, we get

 
0F
0x

 1x, y2 = M1x, y2

 exy + xexy + h′1x2 = 1 + exy + xexy .

Thus, h′1x2 = 1, so we take h1x2 = x. Hence, F1x, y2 = xexy + 2y + x, and the solution to 
equation (15) is given implicitly by xexy + 2y + x = C. In this case we can solve explicitly for y 
to obtain y = 1C - x2 >12 + xex2. ◆

Remark. Since we can use either procedure for finding F1x, y2, it may be worthwhile to 
consider each of the integrals 1M1x, y2  dx and 1N1x, y2  dy. If one is easier to evaluate than 
the other, this would be sufficient reason for us to use one method over the other. [The skeptical 
reader should try solving equation (15) by first integrating M1x, y2.]

Example 4 Show that

(16) 1x + 3x3sin y2  dx + 1x4cos y2  dy = 0

is not exact but that multiplying this equation by the factor x-1 yields an exact equation. Use 
this fact to solve (16).

Solution In equation (16), M = x + 3x3sin y and N = x4cos y. Because

0M
0y

= 3x3cos y [ 4x3cos y =
0N
0x

 ,

equation (16) is not exact. When we multiply (16) by the factor x - 1, we obtain

(17) 11 + 3x2sin y2  dx + 1x3cos y2  dy = 0 .

For this new equation, M = 1 + 3x2sin y and N = x3cos y. If we test for exactness, we now 
find that

0M
0y

= 3x2cos y =
0N
0x

 ,

and hence (17) is exact. Upon solving (17), we find that the solution is given implicitly by 
x + x3sin y = C. Since equations (16) and (17) differ only by a factor of x, then any solution 
to one will be a solution for the other whenever x ≠ 0. Hence the solution to equation (16) is 
given implicitly by x + x3sin y = C. ◆

In Section 2.5 we discuss methods for finding factors that, like x-1 in Example 4, change 
inexact equations into exact equations.
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In Problems 1–8, classify the equation as separable, linear, 
exact, or none of these. Notice that some equations may have 
more than one classification.

1. 1x2y + x4cos x2  dx - x3 dy = 0

2. 1x10>3 - 2y2  dx + x dy = 0

3. 2-2y - y2 dx + 13 + 2x - x22  dy = 0

4. 1yexy + 2x2  dx + 1xexy - 2y2  dy = 0

5. xy dx + dy = 0

6. y2 dx + 12xy + cos y2  dy = 0

7. 32x + y cos1xy24dx + 3x cos1xy2 - 2y4dy = 0

8. u dr + 13r - u - 12  du = 0

In Problems 9–20, determine whether the equation is exact.  
If it is, then solve it.

9. 12xy + 32  dx + 1x2 - 12  dy = 0

10. 12x + y2  dx + 1x - 2y2  dy = 0

11. 1exsin y - 3x22  dx + 1excos y + y-2>3>32  dy = 0

12. 1cos x cos y + 2x2  dx - 1sin x sin y + 2y2  dy = 0

13. et1y - t2  dt + 11 + et2  dy = 0

14. 1t>y2  dy + 11 + ln y2  dt = 0

15. cos u dr - 1r sin u - eu2  du = 0

16. 1yexy - 1>y2  dx + 1xexy + x>y22  dy = 0

17. 11>y2  dx - 13y - x>y22  dy = 0

18. 32x + y2 - cos1x + y24  dx
+  32xy - cos1x + y2 - ey4  dy = 0

19. a2x +
y

1 + x2y2 b  dx + a x

1 + x2y2 - 2yb  dy = 0

20. c 221 - x2
+ y cos1xy2 d  dx

+  3x cos1xy2 - y-1>34dy = 0

In Problems 21–26, solve the initial value problem.

21. 11>x + 2y2x2  dx + 12yx2 - cos y2  dy = 0 ,    

y112 = p

22. 1yexy - 1>y2  dx + 1xexy + x>y22  dy = 0 ,    

y112 = 1

23. 1ety + tety2  dt + 1tet + 22  dy = 0 ,    y102 = -1

24. 1etx + 12  dt + 1et - 12  dx = 0 ,    x112 = 1

25. 1y2 sin x2  dx + 11>x - y>x2  dy = 0 ,    y1p2 = 1

26. 1tan y - 22  dx + 1x sec2y + 1>y2  dy = 0 ,    

y102 = 1

27. For each of the following equations, find the most gen-
eral function M1x, y2 so that the equation is exact.

 (a)  M1x, y2  dx + 1sec2y - x>y2  dy = 0
 (b)  M1x, y2  dx + 1sin x cos y - xy - e-y2  dy = 0

28. For each of the following equations, find the most  
general function N1x, y2 so that the equation is exact.

 (a)  3y cos1xy2 + ex4  dx + N1x, y2  dy = 0
 (b)  1yexy - 4x3y + 22  dx + N1x, y2  dy = 0

29. Consider the equation

1y2 + 2xy2  dx - x2 dy = 0 .

 (a)  Show that this equation is not exact.
 (b)  Show that multiplying both sides of the equation by 

y - 2 yields a new equation that is exact.
 (c)  Use the solution of the resulting exact equation to 

solve the original equation.
 (d)  Were any solutions lost in the process?

30. Consider the equation

15x2y + 6x3y2 + 4xy22  dx

+  12x3 + 3x4y + 3x2y2  dy = 0 .

 (a)  Show that the equation is not exact.
 (b)  Multiply the equation by xnym and determine  

values for n and m that make the resulting  
equation exact.

 (c)  Use the solution of the resulting exact equation to 
solve the original equation.

31. Argue that in the proof of Theorem 2 the function g can 
be taken as

g1y2 = L
y

y0

 N1x, t2  dt - L
y

y0

 c
0
0t

 L
x

x0

 M1s, t2  ds d dt ,

which can be expressed as

g1y2 = L
y

y0

N1x, t2  dt - L
x

x0

 M1s, y2  ds

+ L
x

x0

 M1s, y02  ds .

This leads ultimately to the representation

(18) F1x, y2 = L
y

y0

N1x, t2  dt + L
x

x0

 M1s, y02  ds .

Evaluate this formula directly with x0 = 0, y0 = 0 to  
rework

 (a)  Example 1.
 (b)  Example 2.
 (c)  Example 3.

2.4 EXERCISES
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32. Orthogonal Trajectories. A geometric problem occur-
ring often in engineering is that of finding a family of 
curves (orthogonal trajectories) that intersects a given 
family of curves orthogonally at each point. For example, 
we may be given the lines of force of an electric field and 
want to find the equation for the equipotential curves. 
Consider the family of curves described by F1x, y2 = k,  
where k is a parameter. Recall from the discussion of 
equation (2) that for each curve in the family, the slope 
is given by

dy

dx
= −

eF
ex
neF
ey

 .

 (a)  Recall that the slope of a curve that is orthogonal 
(perpendicular) to a given curve is just the negative 
reciprocal of the slope of the given curve. Using this 
fact, show that the curves orthogonal to the family 
F1x, y2 = k satisfy the differential equation

 
eF
ey
1x, y2  dx −

eF
ex

 1x, y2  dy = 0 .

 (b)  Using the preceding differential equation, show that 
the orthogonal trajectories to the family of circles 
x2 + y2 = k are just straight lines through the origin 
(see Figure 2.10).

 (c)  Show that the orthogonal trajectories to the family of 
hyperbolas xy = k are the hyperbolas x2 - y2 = k 
(see Figure 2.11).

y

x

Figure 2.10 Orthogonal trajectories for  
concentric circles are lines through the center

y

x

Figure 2.11 Families of orthogonal hyperbolas

33. Use the method in Problem 32 to find the orthogonal tra-
jectories for each of the given families of curves, where 
k is a parameter.

 (a)  2x2 + y2 = k (b)  y = kx4

 (c)  y = ekx (d)  y2 = kx

[Hint: First express the family in the form F1x, y2 = k .]

34. Use the method described in Problem 32 to show that 
the orthogonal trajectories to the family of curves 
x2 + y2 = kx, k a parameter, satisfy

12yx-12  dx + 1y2x-2 - 12  dy = 0 .

Find the orthogonal trajectories by solving the above 
equation. Sketch the family of curves, along with their 
orthogonal trajectories. [Hint: Try multiplying the equa-
tion by xmyn as in Problem 30.]

35. Using condition (5), show that the right-hand side 
of (10) is independent of x by showing that its partial 
derivative with respect to x is zero. [Hint: Since the par-
tial derivatives of M are continuous, Leibniz’s theorem 
allows you to interchange the operations of integration 
and differentiation.]

36. Verify that F1x, y2 as defined by (9) and (10) satisfies 
conditions (4).
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If we take the standard form for the linear differential equation of Section 2.3,

dy

dx
+ P1x2y = Q1x2 ,

and rewrite it in differential form by multiplying through by dx, we obtain

3P1x2y - Q1x24  dx + dy = 0 .

This form is certainly not exact, but it becomes exact upon multiplication by the integrating 
factor m1x2 = e1 P1x2 dx. We have

3m1x2P1x2y - m1x2Q1x24  dx + m1x2  dy = 0

as the form, and the compatibility condition is precisely the identity m1x2P1x2 = m′1x2 (see 
Problem 20).

This leads us to generalize the notion of an integrating factor.

2.5 Special Integrating Factors

Integrating Factor

Definition 3. If the equation

(1) M1x, y2  dx + N1x, y2  dy = 0

is not exact, but the equation

(2) m1x, y2M1x, y2  dx + m1x, y2N1x, y2  dy = 0 ,

which results from multiplying equation (1) by the function m1x, y2, is exact, then 
m1x, y2 is called an integrating factor† of the equation (1).

Example 1 Show that m1x, y2 = xy2 is an integrating factor for

(3) 12y - 6x2  dx + 13x - 4x2y-12  dy = 0 .

Use this integrating factor to solve the equation.

Solution We leave it to you to show that (3) is not exact. Multiplying (3) by m1x, y2 = xy2, we obtain

(4) 12xy3 - 6x2y22  dx + 13x2y2 - 4x3y2  dy = 0 .

For this equation we have M = 2xy3 - 6x2y2 and N = 3x2y2 - 4x3y. Because

0M
0y

 1x, y2 = 6xy2 - 12x2y =
0N
0x

 1x, y2 ,

equation (4) is exact. Hence, m1x, y2 = xy2 is indeed an integrating factor of equation (3).

†Historical Footnote: A general theory of integrating factors was developed by Alexis Clairaut in 1739. Leonhard 
Euler also studied classes of equations that could be solved using a specific integrating factor.
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Let’s now solve equation (4) using the procedure of Section 2.4. To find F1x, y2, we begin 
by integrating M with respect to x:

F1x, y2 = L 12xy3 - 6x2y22  dx + g1y2 = x2y3 - 2x3y2 + g1y2 .

When we take the partial derivative with respect to y and substitute for N, we find

 
0F
0y

 1x, y2 = N 1x, y2

 3x2y2 - 4x3y + g′1y2 = 3x2y2 - 4x3y .

Thus, g′1y2 = 0, so we can take g1y2 K 0. Hence, F1x, y2 = x2y3 - 2x3y2, and the solution 
to equation (4) is given implicitly by

x2y3 - 2x3y2 = C .

Although equations (3) and (4) have essentially the same solutions, it is possible to lose or 
gain solutions when multiplying by m1x, y2. In this case y K 0 is a solution of equation (4) but 
not of equation (3). The extraneous solution arises because, when we multiply (3) by m = xy2 
to obtain (4), we are actually multiplying both sides of (3) by zero if y K 0. This gives us 
y K 0 as a solution to (4), but it is not a solution to (3). ◆

Generally speaking, when using integrating factors, you should check whether any solu-
tions to m1x, y2 = 0 are in fact solutions to the original differential equation.

How do we find an integrating factor? If m1x, y2 is an integrating factor of (1) with con-
tinuous first partial derivatives, then testing (2) for exactness, we must have

0
0y

 3m1x, y2M1x, y24 = 0
0x

 3m1x, y2N1x, y24 .

By use of the product rule, this reduces to the equation

(5) M 
eM
ey

− N 
eM
ex

= aeN
ex

−
eM
ey
bM .

But solving the partial differential equation (5) for μ is usually more difficult than solving the 
original equation (1). There are, however, two important exceptions.

Let’s assume that equation (1) has an integrating factor that depends only on x; that is, 
m = m1x2. In this case equation (5) reduces to the separable equation

(6) 
dm

dx
= a 0M>0y - 0N>0x

N
bm ,

where 10M>0y - 0N>0x2 >N is (presumably) just a function of x. In a similar fashion, if equa-
tion (1) has an integrating factor that depends only on y, then equation (5) reduces to the sepa-
rable equation

(7) 
dm

dy
= a 0N>0x - 0M>0y

M
bm ,

where 10N>0x - 0M>0y2 >M is just a function of y.
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We can reverse the above argument. In particular, if 10M>0y - 0N>0x2 >N is a function that 
depends only on x, then we can solve the separable equation (6) to obtain the integrating factor

m1x2 = exp c L a
0M>0y - 0N>0x

N
bdx d

for equation (1). We summarize these observations in the following theorem.

Special Integrating Factors

Theorem 3. If 10M>0y - 0N>0x2 >N is continuous and depends only on x, then

(8) m1x2 = exp c L a
0M>0y - 0N>0x

N
bdx d

is an integrating factor for equation (1).
If 10N>0x - 0M>0y2 >M is continuous and depends only on y, then

(9) m1y2 = exp c L a
0N>0x - 0M>0y

M
bdy d

is an integrating factor for equation (1).

Theorem 3 suggests the following procedure.

Example 2 Solve

(12) 12x2 + y2  dx + 1x2y - x2  dy = 0 .

Solution A quick inspection shows that equation (12) is neither separable nor linear. We also note that

0M
0y

= 1 [ 12xy - 12 =
0N
0x

 .

Method for Finding Special Integrating Factors

If M dx + N dy = 0 is neither separable nor linear, compute 0M>0y and 0N>0x. If 
0M>0y = 0N>0x, then the equation is exact. If it is not exact, consider

(10) 
0M>0y - 0N>0x

N
 .

If (10) is a function of just x, then an integrating factor is given by formula (8). If not, 
consider

(11) 
0N>0x - 0M>0y

M
 .

If (11) is a function of just y, then an integrating factor is given by formula (9).
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Because (12) is not exact, we compute

0M>0y - 0N>0x

N
=

1 - 12xy - 12
x2y - x

=
211 - xy2

-x11 - xy2 =
-2
x

 .

We obtain a function of only x, so an integrating factor for (12) is given by formula (8). That is,

m1x2 = expaL
-2
x

 dxb = x-2 .

When we multiply (12) by m = x-2, we get the exact equation

12 + yx-22  dx + 1y - x-12  dy = 0 .

Solving this equation, we ultimately derive the implicit solution

(13) 2x - yx-1 +
y2

2
= C .

Notice that the solution x K 0 was lost in multiplying by m = x-2. Hence, (13) and x K 0 are 
solutions to equation (12). ◆

There are many differential equations that are not covered by Theorem 3 but for which an 
integrating factor nevertheless exists. The major difficulty, however, is in finding an explicit 
formula for these integrating factors, which in general will depend on both x and y.

In Problems 1–6, identify the equation as separable, linear, 
exact, or having an integrating factor that is a function of 
either x alone or y alone.

1. 12x + yx-12  dx + 1xy - 12  dy = 0

2. 12y3 + 2y22  dx + 13y2x + 2xy2  dy = 0

3. 12x + y2  dx + 1x - 2y2  dy = 0

4. 1y2 + 2xy2  dx - x2 dy = 0

5. 1x2sin x + 4y2  dx + x dy = 0

6. 12y2x - y2  dx + x dy = 0

In Problems 7–12, solve the equation.

7. 12xy2  dx + 1y2 - 3x22  dy = 0

8. 13x2 + y2  dx + 1x2y - x2  dy = 0

9. 1x4 - x + y2  dx - x dy = 0

10. 12y2 + 2y + 4x22  dx + 12xy + x2  dy = 0

11. 1y2 + 2xy2  dx - x2 dy = 0

12. 12xy3 + 12  dx + 13x2y2 - y-12  dy = 0

In Problems 13 and 14, find an integrating factor of the form 
xnym and solve the equation.

13. 12y2 - 6xy2  dx + 13xy - 4x22  dy = 0

14. 112 + 5xy2  dx + 16xy-1 + 3x22  dy = 0

15. (a)  Show that if 10N>0x - 0M>0y2 >1xM - yN2 depends 
only on the product xy, that is,

0N>0x - 0M>0y

xM - yN
= H1xy2 ,

  then the equation M1x, y2  dx + N1x, y2  dy = 0 has 
an integrating factor of the form m1xy2. Give the 
general formula for m1xy2.

 (b)  Use your answer to part (a) to find an implicit  
solution to

13y + 2xy22  dx + 1x + 2x2y2  dy = 0 ,

 satisfying the initial condition y112 = 1.

16. (a)  Prove that Mdx + N dy = 0 has an integrating factor 
that depends only on the sum x + y if and only if the 
expression

0N>0x - 0M>0y

M - N

 depends only on x + y.
 (b)  Use part (a) to solve the equation  

13 + y + xy2dx + 13 + x + xy2dy = 0.

2.5 EXERCISES
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17. (a)  Find a condition on M and N that is necessary and 
sufficient for Mdx + Ndy = 0 to have an integrating 
factor that depends only on the product x2y.

 (b)  Use part (a) to solve the equation

12x + 2y + 2x3y + 4x2y22  dx

+ 12x + x4 + 2x3y2  dy = 0 .

18. If xM1x, y2 + yN1x, y2 K 0, find the solution to the 
equation M1x, y2  dx + N1x, y2  dy = 0.

19. Fluid Flow. The streamlines associated with a cer-
tain fluid flow are represented by the family of curves 
y = x - 1 + ke-x. The velocity potentials of the flow are 
just the orthogonal trajectories of this family.

 (a)  Use the method described in Problem 32 of Exer-
cises 2.4 to show that the velocity potentials satisfy 
dx + 1x - y2  dy = 0.

[Hint: First express the family y = x - 1 + ke-x in the 
form F1x, y2 = k.]

 (b)  Find the velocity potentials by solving the equation 
obtained in part (a).

20. Verify that when the linear differential equation 
3P1x2y - Q1x24  dx + dy = 0 is multiplied by m1x2 =  
e1P1x2 dx, the result is exact.

When the equation

M1x, y2  dx + N1x, y2  dy = 0

is not a separable, exact, or linear equation, it may still be possible to transform it into one that 
we know how to solve. This was in fact our approach in Section 2.5, where we used an inte-
grating factor to transform our original equation into an exact equation.

In this section we study four types of equations that can be transformed into either a sepa-
rable or linear equation by means of a suitable substitution or transformation.

2.6 Substitutions and Transformations

Homogeneous Equation

Definition 4. If the right-hand side of the equation

(1) 
dy

dx
= f1x, y2

can be expressed as a function of the ratio y>x alone, then we say the equation  
is homogeneous.

Homogeneous Equations

Substitution Procedure

(a) Identify the type of equation and determine the appropriate substitution or  
transformation.

(b) Rewrite the original equation in terms of new variables.
(c) Solve the transformed equation.
(d) Express the solution in terms of the original variables.
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For example, the equation

(2) 1x - y2  dx + x dy = 0

can be written in the form

dy

dx
=

y - x
x

=
y
x

- 1 .

Since we have expressed 1y - x2 >x as a function of the ratio y>x 3that is, 1y - x2 >x = G1y>x2, 
where G1v2 J v - 14, then equation (2) is homogeneous.

The equation

(3) 1x - 2y + 12  dx + 1x - y2  dy = 0

can be written in the form

dy

dx
=

x - 2y + 1
y - x

=
1 - 21y>x2 + 11>x2

1y>x2 - 1
 .

Here the right-hand side cannot be expressed as a function of y>x alone because of the term 
1>x in the numerator. Hence, equation (3) is not homogeneous.

One test for the homogeneity of equation (1) is to replace x by tx and y by ty. Then (1) is 
homogeneous if and only if

ƒ1tx, ty2 = ƒ1x, y2
for all t ≠ 0 [see Problem 43(a)].

To solve a homogeneous equation, we make a rather obvious substitution. Let

Y =
y
x

 .

Our homogeneous equation now has the form

(4) 
dy

dx
= G1v2 ,

and all we need is to express dy>dx in terms of x and v. Since v = y>x, then y = vx. Keeping in 
mind that both v and y are functions of x, we use the product rule for differentiation to deduce 
from y = vx that

dy

dx
= v + x 

dv

dx
 .

We then substitute the above expression for dy>dx into equation (4) to obtain

(5) v + x 
dv

dx
= G1v2 .

The new equation (5) is separable, and we can obtain its implicit solution from

L
1

G1v2 - v

 dv = L
1
x

 dx .

All that remains to do is to express the solution in terms of the original variables x and y.
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Example 1 Solve

(6) 1xy + y2 + x22  dx - x2 dy = 0 .

Solution A check will show that equation (6) is not separable, exact, or linear. If we express (6) in the 
derivative form

(7) 
dy

dx
=

xy + y2 + x2

x2 =
y
x

+ a y
x
b

2

+ 1 ,

then we see that the right-hand side of (7) is a function of just y>x. Thus, equation (6) is homo-
geneous.

Now let v = y>x and recall that dy>dx = v + x1dv>dx2. With these substitutions, 
equation (7) becomes

v + x 
dv

dx
= v + v

2 + 1 .

The above equation is separable, and, on separating the variables and integrating, we obtain

 L
1

v

2 + 1
 dv = L

1
x

 dx ,

 arctan v = ln 0 x 0 + C .

Hence,

v = tan1ln 0 x 0 + C2 .
Finally, we substitute y>x for v and solve for y to get

y = x tan1ln 0 x 0 + C2
as an explicit solution to equation (6). Also note that x K 0 is a solution. ◆

Equations of the Form 
dy
dx

= G 1ax + by 2
When the right-hand side of the equation dy>dx = ƒ1x, y2 can be expressed as a function of 
the combination ax + by, where a and b are constants, that is,

dy

dx
= G1ax + by2 ,

then the substitution

z = ax + by

transforms the equation into a separable one. The method is illustrated in the next example.

Example 2 Solve

(8) 
dy

dx
= y - x - 1 + 1x - y + 22-1 .

Solution The right-hand side can be expressed as a function of x - y, that is,

y - x - 1 + 1x - y + 22-1 = - 1x - y2 - 1 + 31x - y2 + 24-1 ,
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so let z = x - y. To solve for dy>dx, we differentiate z = x - y with respect to x to obtain 
dz>dx = 1 - dy>dx, and so dy>dx = 1 - dz>dx. Substituting into (8) yields

1 -
dz
dx

= -z - 1 + 1z + 22-1 ,

or

dz
dx

= 1z + 22 - 1z + 22-1 .

Solving this separable equation, we obtain

 L
z + 2

1z + 222 - 1
 dz = Ldx ,

 
1
2

  ln 0 1z + 222 - 1 0 = x + C1 ,

from which it follows that

1z + 222 = Ce2x + 1 .

Finally, replacing z by x - y yields

1x - y + 222 = Ce2x + 1

as an implicit solution to equation (8). ◆

Bernoulli Equations

Bernoulli Equation

Definition 5. A first-order equation that can be written in the form

(9) 
dy

dx
+ P1x2y = Q1x2yn ,

where P1x2 and Q1x2 are continuous on an interval 1a, b2 and n is a real number, is 
called a Bernoulli equation.†

Notice that when n = 0 or 1, equation (9) is also a linear equation and can be solved by the 
method discussed in Section 2.3. For other values of n, the substitution

Y = y1 − n

transforms the Bernoulli equation into a linear equation, as we now show.

†Historical Footnote: This equation was proposed for solution by James Bernoulli in 1695. It was solved by his 
brother John Bernoulli. (James and John were two of eight mathematicians in the Bernoulli family.) In 1696, Gottfried 
Leibniz showed that the Bernoulli equation can be reduced to a linear equation by making the substitution v = y1 - n.
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Dividing equation (9) by yn yields

(10) y-n 
dy

dx
+ P1x2y1 - n = Q1x2 .

Taking v = y1 - n, we find via the chain rule that

dv

dx
= 11 - n2y-n 

dy

dx
 ,

and so equation (10) becomes

1
1 - n

 
dv

dx
+ P1x2v = Q1x2 .

Because 1> 11 - n2 is just a constant, the last equation is indeed linear.

Example 3 Solve

(11) 
dy

dx
- 5y = -  

5
2

 xy3 .

Solution This is a Bernoulli equation with n = 3, P1x2 = -5, and Q1x2 = -5x>2. To transform (11) 
into a linear equation, we first divide by y3 to obtain

y-3 
dy

dx
- 5y-2 = -  

5
2

x .

Next we make the substitution v = y-2. Since dv>dx = -2y-3 dy>dx, the transformed equation is

 -  
1
2

 
dv

dx
- 5v = -  

5
2

x ,

(12)  
dv

dx
+ 10v = 5x .

Equation (12) is linear, so we can solve it for v using the method discussed in Section 2.3. 
When we do this, it turns out that

v =
x
2

-
1
20

+ Ce-10x .

Substituting v = y-2 gives the solution

y-2 =
x
2

-
1
20

+ Ce-10x .

Not included in the last equation is the solution y K 0 that was lost in the process of dividing 
(11) by y3. ◆

A general formula for the solution to the Bernoulli equation (9) is given in Problem 48.

Equations with Linear Coefficients
We have used various substitutions for y to transform the original equation into a new equation 
that we could solve. In some cases we must transform both x and y into new variables, say, u and 
v. This is the situation for equations with linear coefficients — that is, equations of the form

(13) 1a1x + b1  y + c12  dx + 1a2 x + b2    y + c22  dy = 0 ,
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where the ai’s, bi’s, and ci’s are constants. We leave it as an exercise to show that when 
a1b2 = a2b1, equation (13) can be put in the form dy>dx = G1ax + by2, which we solved via 
the substitution z = ax + by. Moreover, if b1 = a2, then (13) is exact and can be solved using 
the method of Section 2.4.

Before considering the general case when b1 ≠ a2 and a1b2 ≠ a2b1, let’s first look at the 
special situation when c1 = c2 = 0. Equation (13) then becomes

1a1x + b1y2  dx + 1a2x + b2y2  dy = 0 ,

which can be rewritten in the form

dy

dx
= -  

a1x + b1y

a2x + b2y
= -  

a1 + b11y>x2
a2 + b21y>x2  .

This equation is homogeneous, so we can solve it using the method discussed earlier in this 
section.

The above discussion suggests the following procedure for solving (13). If b1 ≠ a2 and 
a1b2 ≠ a2b1, then we seek a translation of axes of the form

x = u + h    and    y = Y + k ,

where h and k are constants, that will change a1x + b1y + c1 into a1u + b1v and change 
a2x + b2y + c2 into a2u + b2v. Some elementary algebra shows that such a transformation 
exists if the system of equations

(14) 
a1h + b1k + c1 = 0 ,
a2h + b2k + c2 = 0

has a solution. This is ensured by the assumption a1b2 ≠ a2b1, which is geometrically equiva-
lent to assuming that the two lines described by the system (14) intersect. Now if 1h, k2 
satisfies (14), then the substitutions x = u + h and y = v + k transform equation (13) into the 
homogeneous equation

(15) 
dv

du
= -  

a1u + b1v

a2u + b2v
= -  

a1 + b11v>u2
a2 + b21v>u2  ,

which we know how to solve.

Example 4 Solve

(16) 12x - 2y - 62dx + 1x - 3y - 52dy = 0 .

Solution Since b1 = -2 ≠ 1 = a2 and a1b2 = 1221-32 ≠ 1121-22 = a2b1, we will use the trans-
lation of axes x = u + h, y = v + k, where h and k satisfy the system

2h - 2k = 6
 h - 3k = 5 .

Solving this system gives h = 2, k = -1. Next we substitute x = u + 2, y = v - 1 into (16), 
observing that dx = du and dy = dv, and we get

12u - 2v2du + 1u - 3v2dv = 0

dv

du
=

21v>u2 - 2

1 - 31v>u2  .
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The last equation is homogeneous, so we let z = v>u. Then dv>du = z + u1dz>du2, and sub-
stituting for v>u yields

z + u 
dz
du

=
2z - 2
1 - 3z

 .

Separating variables gives

L
1 - 3z

3z2 + z - 2
 dz = L

1
u

 du ,

from which, after utilizing a partial fraction expansion of the first integrand, we find

-  
4
5

 ln � z + 1 � -
1
5

 ln � 3z - 2 � = ln � u � + C1 .

It follows after exponentiating that

� z + 1 �4 � 3z - 2 � = C � u � -5 ,

and when we substitute back in for z, u and v, we obtain

 �
v

u
+ 1 �4 � 3 

v

u
- 2 � = C � u � -5 ,

 � u + v �4 � 2u - 3v � = C ,

 1x + y - 12412x - 3y - 72 = C .

The last equation gives an implicit solution to (16), with C any real constant. ◆

In Problems 1–8, identify (do not solve) the equation as 
homogeneous, Bernoulli, linear coefficients, or of the form 
y′ = G1ax + by2.
1. 2tx dx + 1t2 - x22  dt = 0

2. 1y - 4x - 122 dx - dy = 0

3. dy>dx + y>x = x3y2

4. 1t + x + 22  dx + 13t - x - 62  dt = 0

5. u dy - y du = 2uy du

6. 1ye-2x + y32  dx - e-2x dy = 0

7. cos1x + y2  dy = sin1x + y2  dx

8. 1y3 - uy22  du + 2u2y dy = 0

Use the method discussed under “Homogeneous Equations” 
to solve Problems 9–16.

9. 1xy + y22  dx - x2 dy = 0

10. 13x2 - y22  dx + 1xy - x3y-12  dy = 0

11. 1y2 - xy2  dx + x2 dy = 0

12. 1x2 + y22  dx + 2xy dy = 0

13. 
dx
dt

=
x2 + t2t2 + x2

tx

15. 
dy

dx
=

x2 - y2

3xy

2.6 EXERCISES

14. 
dy

du
=
u sec1y>u2 + y

u

16. 
dy

dx
=

y1ln y - ln x + 12
x

Use the method discussed under “Equations of the Form 
dy>dx = G1ax + by2” to solve Problems 17–20.

17. dy>dx = 2x + y - 1 18. dy>dx = 1x + y + 222

19. dy>dx = 1x - y + 522 20. dy>dx = sin1x - y2

Use the method discussed under “Bernoulli Equations” to 
solve Problems 21–28.

21. 
dy

dx
+

y

x
= x2y2

22. 
dy

dx
- y = e2xy3

23. 
dy

dx
=

2y

x
- x2y2

24. 
dy

dx
+

y

x - 2
= 51x - 22y1>2

25. 
dx
dt

+ tx3 +
x
t
= 0 26. 

dy

dx
+ y = exy-2
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27. 
dr
du

=
r2 + 2ru

u2

individual solutions x1t2, y1t2. For this purpose, divide 
the first equation by the second to obtain

(17) 
dy

dx
=

ax + by

ax + by
 .

This new equation is homogeneous, so we can solve it 
via the substitution v = y>x. We refer to the solutions 
of (17) as integral curves. Determine the integral curves 
for the system

 
dy

dt
= -4x - y ,

 
dx
dt

= 2x - y .

46. Magnetic Field Lines. As described in Problem 20 of 
Exercises 1.3, the magnetic field lines of a dipole satisfy

dy

dx
=

3xy

2x2 - y2 .

Solve this equation and sketch several of these lines.

47. Riccati Equation. An equation of the form

(18) 
dy

dx
= P1x2y2 + Q1x2y + R1x2

is called a generalized Riccati equation.†

 (a)  If one solution—say, u1x2—of (18) is known, show 
that the substitution y = u + 1>v reduces (18) to a 
linear equation in v.

 (b)  Given that u1x2 = x is a solution to

dy

dx
= x31y - x22 +

y

x
 ,

use the result of part (a) to find all the other solutions to 
this equation. (The particular solution u1x2 = x can be 
found by inspection or by using a Taylor series method; 
see Section 8.1.)

48. Derive the following general formula for the solution to 
the Bernoulli equation (9):

y = d c 11 - n21e11 - n21P1x2dx Q1x2dx + C1

e11 - n21P1x2dx
d

1>11 - n2
for n ≠ 1

C2 e13Q1x2- P1x24dx for n = 1 .

28. 
dy

dx
+ y3x + y = 0

Use the method discussed under “Equations with Linear 
Coefficients” to solve Problems 29–32.

29. 1x + y - 12  dx + 1y - x - 52  dy = 0

30. 1-4x - y - 12  dx + 1x + y + 32  dy = 0

31. 12x - y2  dx + 14x + y - 32  dy = 0

32. 12x - y + 42  dx + 1x - 2y - 22  dy = 0

In Problems 33 – 40, solve the equation given in:

33. Problem 1. 34. Problem 2.
35. Problem 3. 36. Problem 4.

37. Problem 5. 38. Problem 6.

39. Problem 7. 40. Problem 8.

41. Use the substitution v = x - y + 2 to solve equation (8).

42. Use the substitution y = vx2 to solve

dy

dx
=

2y

x
+ cos1y>x22 .

43. (a)  Show that the equation dy>dx = ƒ1x, y2 is homoge-
neous if and only if ƒ1tx, ty2 = ƒ1x, y2. [Hint: Let 
t = 1>x.]

 (b)  A function H1x, y2 is called homogeneous of order 
n if H1tx, ty2 = tnH1x, y2. Show that the equation

M1x, y2  dx + N1x, y2  dy = 0

    is homogeneous if M1x, y2 and N1x, y2 are both 
homogeneous of the same order.

44. Show that equation (13) reduces to an equation of the 
form

dy

dx
= G1ax + by2 ,

when a1b2 = a2b1. [Hint: If a1b2 = a2b1, then 
a2>a1 = b2>b1 = k, so that a2 = ka1 and b2 = kb1.]

45. Coupled Equations. In analyzing coupled equations of 
the form

 
dy

dt
= ax + by ,

 
dx
dt

= ax + by ,

where a, b, a, and b are constants, we may wish to de-
termine the relationship between x and y rather than the 

†Historical Footnote: Count Jacopo Riccati studied a particular case of this equation in 1724 during his investigation 
of curves whose radii of curvature depend only on the variable y and not the variable x.
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Each time the model is used to predict the outcome of a process and hence solve a prob-
lem, it provides a test of the model that may lead to further refinements or simplifications. In 
many cases a model is simplified to give a quicker or less expensive answer—provided, of 
course, that sufficient accuracy is maintained.

One should always keep in mind that a model is not reality but only a representation of 
reality. The more refined models may provide an understanding of the underlying processes of 
nature. For this reason applied mathematicians strive for better, more refined models. Still, the 
real test of a model is its ability to find an acceptable answer for the posed problem.

In this chapter we discuss various models that involve differential equations. Section 3.2, 
Compartmental Analysis, studies mixing problems and population models. Sections 3.3 
through 3.5 are physics-based and examine heating and cooling, Newtonian mechanics, and 
electrical circuits. Finally Sections 3.6 and 3.7 introduce some numerical methods for solving 
first-order initial value problems. This will enable us to consider more realistic models that 
cannot be solved using the methods of Chapter 2.

Many complicated processes can be broken down into distinct stages and the entire system 
modeled by describing the interactions between the various stages. Such systems are called 
compartmental and are graphically depicted by block diagrams. In this section we study the 
basic unit of these systems, a single compartment, and analyze some simple processes that can 
be handled by such a model.

The basic one-compartment system consists of a function x1t2 that represents the amount 
of a substance in the compartment at time t, an input rate at which the substance enters the com-
partment, and an output rate at which the substance leaves the compartment (see Figure 3.1).

Because the derivative of x with respect to t can be interpreted as the rate of change in the 
amount of the substance in the compartment with respect to time, the one-compartment system 
suggests

(1) 
dx
dt

= input rate − output rate

as a mathematical model for the process.

Mixing Problems
A problem for which the one-compartment system provides a useful representation is the mixing  
of fluids in a tank. Let x1t2 represent the amount of a substance in a tank (compartment) at 
time t. To use the compartmental analysis model, we must be able to determine the rates at 
which this substance enters and leaves the tank. In mixing problems one is often given the rate 
at which a fluid containing the substance flows into the tank, along with the concentration of 
the substance in that fluid. Hence, multiplying the flow rate (volume/time) by the concentration 
(amount/volume) yields the input rate (amount/time).

3.2 Compartmental Analysis

Output 
rate 

Input 
rate x(t)

Figure 3.1 Schematic representation of a one-compartment system
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The output rate of the substance is usually more difficult to determine. If we are given the 
exit rate of the mixture of fluids in the tank, then how do we determine the concentration of the 
substance in the mixture? One simplifying assumption that we might make is that the concen-
tration is kept uniform in the mixture. Then we can compute the concentration of the substance 
in the mixture by dividing the amount x1t2 by the volume of the mixture in the tank at time t. 
Multiplying this concentration by the exit rate of the mixture then gives the desired output rate 
of the substance. This model is used in Examples 1 and 2.

Example 1 Consider a large tank holding 1000 L of pure water into which a brine solution of salt begins 
to flow at a constant rate of 6 L/min. The solution inside the tank is kept well stirred and is 
flowing out of the tank at a rate of 6 L/min. If the concentration of salt in the brine entering the 
tank is 0.1 kg/L, determine when the concentration of salt in the tank will reach 0.05 kg/L (see 
Figure 3.2).

x(t)

1000 L 

x (0) 5 0 kg

6 L/min 
0.1 kg/L 

6 L/min 

Figure 3.2 Mixing problem with equal flow rates

Solution We can view the tank as a compartment containing salt. If we let x1t2 denote the mass of salt 
in the tank at time t, we can determine the concentration of salt in the tank by dividing x1t2 
by the volume of fluid in the tank at time t. We use the mathematical model described by 
equation (1) to solve for x1t2.

First we must determine the rate at which salt enters the tank. We are given that brine 
flows into the tank at a rate of 6 L/min. Since the concentration is 0.1 kg/L, we conclude that 
the input rate of salt into the tank is

(2) 16 L/min210.1 kg/L2 = 0.6 kg/min .

We must now determine the output rate of salt from the tank. The brine solution in the tank 
is kept well stirred, so let’s assume that the concentration of salt in the tank is uniform. That is, 
the concentration of salt in any part of the tank at time t is just x1t2 divided by the volume of 
fluid in the tank. Because the tank initially contains 1000 L and the rate of flow into the tank 
is the same as the rate of flow out, the volume is a constant 1000 L. Hence, the output rate of 
salt is

(3) 16 L/min2 c x1t2
1000

 kg/L d = 3x1t2
500

 kg/min .

The tank initially contained pure water, so we set x102 = 0. Substituting the rates in (2) 
and (3) into equation (1) then gives the initial value problem

(4) 
dx
dt

= 0.6 -
3x

500
 ,    x102 = 0 ,

as a mathematical model for the mixing problem.
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The equation in (4) is separable (and linear) and easy to solve. Using the initial condition 
x102 = 0 to evaluate the arbitrary constant, we obtain

(5) x1t2 = 10011 - e-3t>5002 .

Thus, the concentration of salt in the tank at time t is

x1t2
1000

= 0.111 - e-3t>5002  kg/L .

To determine when the concentration of salt is 0.05 kg/L, we set the right-hand side equal to 
0.05 and solve for t. This gives

0.111 - e-3t>5002 = 0.05 or e-3t>500 = 0.5 ,

and hence

t =
500 ln 2

3
 ≈  115.52 min .

Consequently the concentration of salt in the tank will be 0.05 kg/L after 115.52 min. ◆

From equation (5), we observe that the mass of salt in the tank steadily increases and has 
the limiting value

lim
tS ∞

 x1t2 = lim
tS ∞

10011 - e-3t>5002 = 100 kg .

Thus, the limiting concentration of salt in the tank is 0.1 kg/L, which is the same as the con-
centration of salt in the brine flowing into the tank. This certainly agrees with our expectations!

It might be interesting to see what would happen to the concentration if the flow rate into 
the tank is greater than the flow rate out.

Example 2 For the mixing problem described in Example 1, assume now that the brine leaves the tank at a 
rate of 5 L/min instead of 6 L/min, with all else being the same (see Figure 3.3). Determine the 
concentration of salt in the tank as a function of time.

x(t)

? L 

x (0) 5 0 kg

6 L/min 
0.1 kg/L 

5 L/min 

Figure 3.3 Mixing problem with unequal flow rates

Solution The difference between the rate of flow into the tank and the rate of flow out is 6 - 5 =   
1 L/min, so the volume of fluid in the tank after t minutes is 11000 + t2 L. Hence, the rate at 
which salt leaves the tank is

15 L/min2 c x1t2
1000 + t

 kg/L d = 5x1t2
1000 + t

 kg/min .
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Using this in place of (3) for the output rate gives the initial value problem

(6) 
dx
dt

= 0.6 -
5x

1000 + t
 ,    x102 = 0 ,

as a mathematical model for the mixing problem.
The differential equation in (6) is linear, so we can use the procedure outlined on page 50 

to solve for x1t2. The integrating factor is m1t2 = 11000 + t25. Thus,

 
d
dt

 3 11000 + t25x4 = 0.611000 + t25

 11000 + t25x = 0.111000 + t26 + c

 x1t2 = 0.111000 + t2 + c11000 + t2-5 .

Using the initial condition x102 = 0, we find c = -0.11100026, and thus the solution to (6) is

x1t2 = 0.13 11000 + t2 - 110002611000 + t2-54  .
Hence, the concentration of salt in the tank at time t is

(7) 
x1t2

1000 + t
= 0.131 - 110002611000 + t2-64  kg/L . ◆

As in Example 1, the concentration given by (7) approaches 0.1 kg/L as t S ∞ . However, 
in Example 2 the volume of fluid in the tank becomes unbounded, and when the tank begins to 
overflow, the model in (6) is no longer appropriate.

Population Models
How does one predict the growth of a population? If we are interested in a single population, 
we can think of the species as being contained in a compartment (a petri dish, an island, a 
country, etc.) and study the growth process as a one-compartment system.

Let p1t2 be the population at time t. While the population is always an integer, it is usu-
ally large enough so that very little error is introduced in assuming that p1t2 is a continuous 
function. We now need to determine the growth (input) rate and the death (output) rate for the 
population.

Let’s consider a population of bacteria that reproduce by simple cell division. In our 
model, we assume that the growth rate is proportional to the population present. This assump-
tion is consistent with observations of bacterial growth. As long as there are sufficient space and 
ample food supply for the bacteria, we can also assume that the death rate is zero. (Remember 
that in cell division, the parent cell does not die, but becomes two new cells.) Hence, a math-
ematical model for a population of bacteria is

(8) 
dp

dt
= k1p ,    p102 = p0 ,

where k1 7 0 is the proportionality constant for the growth rate and p0 is the population at time 
t = 0. For human populations the assumption that the death rate is zero is certainly wrong! 
However, if we assume that people die only of natural causes, we might expect the death rate 
also to be proportional to the size of the population. That is, we revise (8) to read

(9) 
dp

dt
= k1p - k2p = 1k1 - k22p = kp ,
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where k J k1 - k2 and k2 is the proportionality constant for the death rate. Let’s assume that  
k1 7 k2 so that k 7 0. This gives the mathematical model

(10) 
dp

dt
= kp ,    p102 = p0 ,

which is called the Malthusian,† or exponential, law of population growth. This equation is 
separable, and solving the initial value problem for p1t2 gives

(11) p1t2 = p0e
kt .

To test the Malthusian model, let’s apply it to the demographic history of the United States.

Example 3 In 1790 the population of the United States was 3.93 million, and in 1890 it was 62.98 million. 
Using the Malthusian model, estimate the U.S. population as a function of time.

Solution If we set t = 0 to be the year 1790, then by formula (11) we have

(12) p1t2 = 13.932ekt ,

where p1t2 is the population in millions. One way to obtain a value for k would be to make the 
model fit the data for some specific year, such as 1890 (t = 100 years).†† We have

p11002 = 62.98 = 13.932e100k .

Solving for k yields

k =
ln162.982 - ln13.932

100
 ≈  0.027742 .

Substituting this value in equation (12), we find

(13) p1t2 = 13.932e10.0277422t . ◆

In Table 3.1 on page 97 we list the U.S. population as given by the U.S. Bureau of the  
Census and the population predicted by the Malthusian model using equation (13). From Table 3.1 
we see that the predictions based on the Malthusian model are in reasonable agreement with 
the census data until about 1900. After 1900 the predicted population is too large, and the Mal-
thusian model is unacceptable.

We remark that a Malthusian model can be generated using the census data for any two 
different years. We selected 1790 and 1890 for purposes of comparison with the logistic model 
that we now describe.

The Malthusian model considered only death by natural causes. What about prema-
ture deaths due to malnutrition, inadequate medical supplies, communicable diseases,  
violent crimes, etc.? These factors involve a competition within the population, so we might 

†Historical Footnote: Thomas R. Malthus (1766 –1834) was a British economist who studied population models.
††The choice of the year 1890 is purely arbitrary, of course; a more democratic (and better) way of extracting parameters 
from data is described after Example 4.
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assume that another component of the death rate is proportional to the number of two-party 
interactions. There are p1p - 12 >2 such possible interactions for a population of size p. 
Thus, if we combine the birth rate (8) with the death rate and rearrange constants, we get 
the logistic model

dp

dt
= k1p - k3 

p1p - 12
2

or

(14) 
dp

dt
= −Ap1p − p12 ,    p102 = p0 ,

where A = k3>2 and p1 = 12k1>k32 + 1.

Equation (14) has two equilibrium (constant) solutions: p1t2 K p1 and p1t2 K 0. The 
nonequilibrium solutions can be found by separating variables and using the integral table at 
the back of the book:

L
dp

p1p - p12 = -ALdt  or  
1
p1

 ln ` p - p1

p
` = -At + c1  or  ` 1 -

p1

p
` = c2e

-Ap1t .

TABLE 3.1  A Comparison of the Malthusian and Logistic Models with U.S. Census  
Data (Population is given in Millions)

Year U.S. Census
Malthusian 
(Example 3)

Logistic 
(Example 4)

1
p

 
dp

dt
Logistic  

(Least Squares)

1790     3.93       3.93     3.93     4.11
1800     5.31       5.19     5.30 0.0312     5.42
1810     7.24       6.84     7.13 0.0299     7.14
1820     9.64       9.03     9.58 0.0292     9.39
1830   12.87     11.92   12.82 0.0289   12.33
1840   17.07     15.73   17.07 0.0302   16.14
1850   23.19     20.76   22.60 0.0310   21.05
1860   31.44     27.40   29.70 0.0265   27.33
1870   39.82     36.16   38.66 0.0235   35.28
1880   50.19     47.72   49.71 0.0231   45.21
1890   62.98     62.98   62.98 0.0207   57.41
1900   76.21     83.12   78.42 0.0192   72.11
1910   92.23   109.69   95.73 0.0162   89.37
1920 106.02   144.76 114.34 0.0146 109.10
1930 123.20   191.05 133.48 0.0106 130.92
1940 132.16   252.13 152.26 0.0106 154.20
1950 151.33   333.74 169.90 0.0156 178.12
1960 179.32   439.12 185.76 0.0145 201.75
1970 203.30   579.52 199.50 0.0116 224.21
1980 226.54   764.80 211.00 0.0100 244.79
1990 248.71 1009.33 220.38 0.0110 263.01
2000 281.42 1332.03 227.84 0.0107 278.68
2010 308.75 1757.91 233.68 291.80
2020 ? 2319.95 238.17 302.56
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If p1t2 = p0 at t = 0, and c3 = 1 - p1>p0, then solving for p1t2, we find

(15) p1t2 =
p1

1 − c3e
−Ap1 t =

p0  p1

p0 + 1p1 − p02e−Ap1 t .

The function p1t2 given in (15) is called the logistic function, and graphs of logistic curves 
are displayed in Figure 3.4.† Note that for A 7 0 and p0 7 0, the limit population as t S ∞ , 
is p1.

Let’s test the logistic model on the population growth of the United States.

p 0  > p1

p 0 

0 < p 0  < p1

p 0 

(a) (b)

p1 p1

pp

tt

Figure 3.4 The logistic curves

Example 4 Taking the 1790 population of 3.93 million as the initial population and given the 1840 and 
1890 populations of 17.07 and 62.98 million, respectively, use the logistic model to estimate 
the population at time t.

Solution With t = 0 corresponding to the year 1790, we know that p0 = 3.93. We must now deter-
mine the parameters A, p1 in equation (15). For this purpose, we use the given facts that 
p1502 = 17.07  and p11002 = 62.98; that is,

(16) 17.07 =
3.93 p1

3.93 + 1p1 - 3.932e-50Ap1
 ,

(17) 62.98 =
3.93 p1

3.93 + 1p1 - 3.932e-100Ap1
 .

Equations (16) and (17) are two nonlinear equations in the two unknowns A, p1. To solve such 
a system, we would usually resort to a numerical approximation scheme such as Newton’s 
method. However, for the case at hand, it is possible to find the solutions directly because 
the data are given at times ta and tb with tb = 2ta (see Problem 12). Carrying out the algebra 
described in Problem 12, we ultimately find that

(18) p1 ≈ 251.7812 and A ≈ 0.0001210 .

Thus, the logistic model for the given data is

(19) p1t2 =
989.50

3.93 + 1247.852e-10.0304632 t
 . ◆

†Historical Footnote: The logistic model for population growth was first developed by P. F. Verhulst around 1840.
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The population data predicted by (19) are displayed in column 4 of Table 3.1 on page 97.  
As you can see, these predictions are in better agreement with the census data than the 
 Malthusian model is. And, of course, the agreement is perfect in the years 1790, 1840, and 
1890. However, the choice of these particular years for estimating the parameters p0, A, and p1 
is quite arbitrary, and we would expect that a more robust model would use all of the data, in 
some way, for the estimation. One way to implement this idea is the following.

Observe from equation (14) that the logistic model predicts a linear relationship between 
1dp>dt2 >p and p:

1
p

 
dp

dt
= Ap1 - Ap ,

with Ap1 as the intercept and -A as the slope. In column five of Table 3.1, we list values of 
1dp>dt2 >p, which are estimated from centered differences according to

(20) 
1

p1t2  
dp

dt
 1t2 ≈

1
p1t2  

p1t + 102 - p1t - 102
20

(see Problem 16). In Figure 3.5 these estimated values of 1dp>dt2 >p are plotted against p in 
what is called a scatter diagram. The linear relationship predicted by the logistic model sug-
gests that we approximate the plot by a straight line. A standard technique for doing this is the 
so-called least-squares linear fit, which is discussed in Appendix E. This yields the straight line

1
p

 
dp

dt
≈ 0.0280960 - 0.00008231 p ,

which is also depicted in Figure 3.5. Now with A = 0.00008231 and p1 = 10.0280960>A2  
≈  341.4, we can solve equation (15) for p0:

(21) p0 =
p1t2p1e

-Ap1t

p1 - p1t2 31 - e-Ap1t4  .

p (millions)

p
1

0.03

0.02

0.01

250200 300150100500

dt
dp

Figure 3.5 Scatter data and straight line fit
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By averaging the right-hand side of (21) over all the data, we obtain the estimate p0 ≈ 4.107. 
Finally, the insertion of these estimates for the parameters in equation (15) leads to the predic-
tions listed in column six of Table 3.1.

Note that this model yields p1 ≈ 341.4 million as the limit on the future population of the 
United States.

1. A brine solution of salt flows at a constant rate of  
8 L/min into a large tank that initially held 100 L of brine 
solution in which was dissolved 0.5 kg of salt. The solu-
tion inside the tank is kept well stirred and flows out of 
the tank at the same rate. If the concentration of salt in 
the brine entering the tank is 0.05 kg/L, determine the 
mass of salt in the tank after t min. When will the con-
centration of salt in the tank reach 0.02 kg/L?

2. A brine solution of salt flows at a constant rate of 6 L/min 
into a large tank that initially held 50 L of brine solution 
in which was dissolved 0.5 kg of salt. The solution inside 
the tank is kept well stirred and flows out of the tank at 
the same rate. If the concentration of salt in the brine 
entering the tank is 0.05 kg/L, determine the mass of salt 
in the tank after t min. When will the concentration of 
salt in the tank reach 0.03 kg/L?

3. A nitric acid solution flows at a constant rate of 6 L/min 
into a large tank that initially held 200 L of a 0.5% nitric 
acid solution. The solution inside the tank is kept well 
stirred and flows out of the tank at a rate of 8 L/min. If 
the solution entering the tank is 20% nitric acid, determine 
the volume of nitric acid in the tank after t min. When will 
the percentage of nitric acid in the tank reach 10%?

4. A brine solution of salt flows at a constant rate of 4 L/min 
into a large tank that initially held 100 L of pure water. 
The solution inside the tank is kept well stirred and flows 
out of the tank at a rate of 3 L/min. If the concentration 
of salt in the brine entering the tank is 0.2 kg/L, deter-
mine the mass of salt in the tank after t min. When will 
the concentration of salt in the tank reach 0.1 kg/L?

5. A swimming pool whose volume is 10,000 gal contains 
water that is 0.01% chlorine. Starting at t = 0, city water 
containing 0.001% chlorine is pumped into the pool at a 
rate of 5 gal/min. The pool water flows out at the same 
rate. What is the percentage of chlorine in the pool after 
1 h? When will the pool water be 0.002% chlorine?

6. The air in a small room 12 ft by 8 ft by 8 ft is 3% car-
bon monoxide. Starting at t = 0, fresh air containing  
no carbon monoxide is blown into the room at a rate of 
100 ft3/min. If air in the room flows out through a vent 

at the same rate, when will the air in the room be 0.01% 
carbon monoxide?

7. Beginning at time t = 0, fresh water is pumped at the 
rate of 3 gal/min into a 60-gal tank initially filled with 
brine. The resulting less-and-less salty mixture overflows 
at the same rate into a second 60-gal tank that initially 
contained only pure water, and from there it eventually 
spills onto the ground. Assuming perfect mixing in both 
tanks, when will the water in the second tank taste saltiest? 
And exactly how salty will it then be, compared with the 
original brine?

8. A tank initially contains s0 lb of salt dissolved in 200 gal 
of water, where s0 is some positive number. Starting 
at time t = 0, water containing 0.5 lb of salt per gallon 
enters the tank at a rate of 4 gal/min, and the well-stirred 
solution leaves the tank at the same rate. Letting c (t)  
be the concentration of salt in the tank at time t, show 
that the limiting concentration—that is, limtS ∞  c(t)—is 
0.5 lb/gal.

9. In 1990 the Department of Natural Resources released 
1000 splake (a crossbreed of fish) into a lake. In 1997 the 
population of splake in the lake was estimated to be 3000. 
Using the Malthusian law for population growth, estimate 
the population of splake in the lake in the year 2020.

10. Use a sketch of the phase line (see Project B, Chapter 1, 
page 33) to argue that any solution to the mixing problem 
model

dx
dt

= a - bx ;  a, b 7 0 ,

approaches the equilibrium solution x1t2 K a>b as t  
approaches + ∞ ; that is, a>b is a sink.

11. Use a sketch of the phase line (see Project B, Chapter 1) 
to argue that any solution to the logistic model

dp

dt
= 1a - bp2p ;  p1t02 = p0 ,

where a, b, and p0 are positive constants, approaches 
the equilibrium solution p1t2 K a>b as t approaches 
+ ∞ .

3.2 EXERCISES
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12. For the logistic curve (15), assume pa J p1ta2 and 
pb J p1tb2 are given with tb = 2ta 1ta 7 02. Show that

 p1 = c pa  pb − 2p0  pb + p0  pa

p2
a − p0  pb

d  pa ,

 A =
1

p1ta
 ln c pb1pa − p02

p01pb − pa2
d  .

[Hint: Equate the expressions (21) for p0 at times ta and 
tb. Set x = exp 1-Ap1ta2 and x2 = exp 1-Ap1tb2 and 
solve for x. Insert into one of the earlier expressions and 
solve for p1.]

13. In Problem 9, suppose we have the additional information 
that the population of splake in 2004 was estimated to be 
5000. Use a logistic model to estimate the population of 
splake in the year 2020. What is the predicted limiting 
population? [Hint: Use the formulas in Problem 12.]

14. In 1980 the population of alligators on the Kennedy 
Space Center grounds was estimated to be 1500. In 2006 
the population had grown to an estimated 6000. Using the 
Malthusian law for population growth, estimate the alli-
gator population on the Kennedy Space Center grounds 
in the year 2020.

15. In Problem 14, suppose we have the additional informa-
tion that the population of alligators on the grounds of 
the Kennedy Space Center in 1993 was estimated to be 
4100. Use a logistic model to estimate the population of 
alligators in the year 2020. What is the predicted limiting 
population? [Hint: Use the formulas in Problem 12.]

16. Show that for a differentiable function p1t2, we have

lim
hS0

 
p1t + h2 - p1t - h2

2h
= p′1t2 ,

which is the basis of the centered difference approxima-
tion used in (20).

17. (a)  For the U.S. census data, use the forward difference 
approximation to the derivative, that is,

1
p1t2  

dp

dt
 1t2 ≈

1
p1t2  

p1t + 102 - p1t2
10

 ,

    to recompute column 5 of Table 3.1 on page 97.
 (b)  Using the data from part (a), determine the constants 

A, p1 in the least-squares fit

1
p

 
dp

dt
≈ Ap1 - Ap

   (see Appendix E).
 (c)  With the values for A and p1 found in part (b), deter-

mine p0 by averaging formula (21) over the data.
 (d)  Substitute A, p1, and p0 as determined above into the 

logistic formula (15) and calculate the populations 
predicted for each of the years listed in Table 3.1.

 (e)  Compare this model with that of the centered differ-
ence-based model in column 6 of Table 3.1.

18. Using the U.S. census data in Table 3.1 for 1900, 1920, 
and 1940 to determine parameters in the logistic equa-
tion model, what populations does the model predict for 
2000 and 2010? Compare your answers with the census 
data for those years.

19. The initial mass of a certain species of fish is 7 million 
tons. The mass of fish, if left alone, would increase at a 
rate proportional to the mass, with a proportionality con-
stant of 2/yr. However, commercial fishing removes fish 
mass at a constant rate of 15 million tons per year. When 
will all the fish be gone? If the fishing rate is changed so 
that the mass of fish remains constant, what should that 
rate be?

20. From theoretical considerations, it is known that light 
from a certain star should reach Earth with intensity I0. 
However, the path taken by the light from the star to 
Earth passes through a dust cloud, with absorption coef-
ficient 0.1/light-year. The light reaching Earth has inten-
sity 1>2 I0. How thick is the dust cloud? (The rate of 
change of light intensity with respect to thickness is pro-
portional to the intensity. One light-year is the distance 
traveled by light during 1 yr.)

21. A snowball melts in such a way that the rate of change 
in its volume is proportional to its surface area. If  
the snowball was initially 4 in. in diameter and after  
30 min its diameter is 3 in., when will its diameter be  
2 in.? Mathematically speaking, when will the snowball 
disappear?

22. Suppose the snowball in Problem 21 melts so that the 
rate of change in its diameter is proportional to its sur-
face area. Using the same given data, determine when its 
diameter will be 2 in. Mathematically speaking, when 
will the snowball disappear?

In Problems 23–27, assume that the rate of decay of a 
radioactive substance is proportional to the amount of 
the substance present. The half-life of a radioactive sub-
stance is the time it takes for one-half of the substance to 
disintegrate.

23. If initially there are 50 g of a radioactive substance and 
after 3 days there are only 10 g remaining, what percent-
age of the original amount remains after 4 days?

24. If initially there are 300 g of a radioactive substance and 
after 5 yr there are 200 g remaining, how much time 
must elapse before only 10 g remain?

25. Carbon dating is often used to determine the age of a fos-
sil. For example, a humanoid skull was found in a cave 
in South Africa along with the remains of a campfire. 
Archaeologists believe the age of the skull to be the same 
age as the campfire. It is determined that only 2% of the 
original amount of carbon-14 remains in the burnt wood 
of the campfire. Estimate the age of the skull if the half-
life of carbon-14 is about 5600 years.
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change of current produces a high dI>dt and, in accordance with the formula EL = L dI>dt, 
the inductor generates a voltage surge sufficient to cause a spark across the terminals—thus 
igniting the gasoline.

If an inductor and a capacitor both appear in a circuit, the governing differential equation 
will be second order. We’ll return to RLC circuits in Section 5.7.

1. An RL circuit with a 5-Ω resistor and a 0.05-H inductor 
carries a current of 1 A at t = 0, at which time a volt-
age source E1t2 = 5 cos 120t V is added. Determine the 
subsequent inductor current and voltage.

2. An RC circuit with a 1-Ω resistor and a 0.000001-F 
capacitor is driven by a voltage E1t2 = sin 100 t V . If 
the initial capacitor voltage is zero, determine the sub-
sequent resistor and capacitor voltages and the current.

3. The pathway for a binary electrical signal between gates 
in an integrated circuit can be modeled as an RC circuit, 
as in Figure 3.13(b); the voltage source models the trans-
mitting gate, and the capacitor models the receiving gate. 
Typically, the resistance is 100 Ω, and the capacitance is 
very small, say, 10-12 F (1 picofarad, pF). If the capacitor 
is initially uncharged and the transmitting gate changes 
instantaneously from 0 to 5 V, how long will it take for 
the voltage at the receiving gate to reach (say) 3 V? (This 
is the time it takes to transmit a logical “1.”)

4. If the resistance in the RL circuit of Figure 3.13(a) is zero, 
show that the current I1t2 is directly proportional to the 
integral of the applied voltage E1t2. Similarly, show that 
if the resistance in the RC circuit of Figure 3.13(b) is 
zero, the current is directly proportional to the derivative 
of the applied voltage.

5. The power generated or dissipated by a circuit element 
equals the voltage across the element times the current 
through the element. Show that the power dissipated by a 
resistor equals I2R, the power associated with an inductor 
equals the derivative of 11>22L I2, and the power associ-
ated with a capacitor equals the derivative of 11>22CE2

C.

6. Derive a power balance equation for the RL and RC cir-
cuits. (See Problem 5.) Discuss the significance of the 
signs of the three power terms.

7. An industrial electromagnet can be modeled as an RL 
circuit, while it is being energized with a voltage source. 
If the inductance is 10 H and the wire windings contain  
3 Ω of resistance, how long does it take a constant 
applied voltage to energize the electromagnet to within 
90% of its final value (that is, the current equals 90% of 
its asymptotic value)?

8. A 10-8-F capacitor (10 nanofarads) is charged to 50 V 
and then disconnected. One can model the charge leak-
age of the capacitor with a RC circuit with no voltage 
source and the resistance of the air between the capacitor 
plates. On a cold dry day, the resistance of the air gap is 
5 * 1013 Ω; on a humid day, the resistance is 7 * 106 Ω. 
How long will it take the capacitor voltage to dissipate to 
half its original value on each day?

3.5 EXERCISES

Although the analytical techniques presented in Chapter 2 were useful for the variety of math-
ematical models presented earlier in this chapter, the majority of the differential equations 
encountered in applications cannot be solved either implicitly or explicitly. This is especially 
true of higher-order equations and systems of equations, which we study in later chapters. In this 
section and the next, we discuss methods for obtaining a numerical approximation of the solution 
to an initial value problem for a first-order differential equation. Our goal is to develop algo-
rithms that you can use with a calculator or computer.† These algorithms also extend naturally 

3.6 Numerical Methods: A Closer Look At Euler’s Algorithm

†Appendix G describes various websites and commercial software that sketch direction fields and automate most  
of the differential equation algorithms discussed in this book.
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to higher-order equations (see Section 5.3). We describe the rationale behind each method but 
leave the more detailed discussion to texts on numerical analysis.†

Consider the initial value problem

(1) y′ = f1x, y2 ,  y1x02 = y0 .

To guarantee that (1) has a unique solution, we assume that f and 0f>0y are continuous in a 
rectangle R J 51x, y2: a 6 x 6 b, c 6 y 6 d6 containing 1x0, y02. It follows from Theorem 
1 in Chapter 1 (page 11) that the initial value problem (1) has a unique solution f1x2 in some 
interval x0 - d 6 x 6 x0 + d, where d is a positive number. Because d is not known a priori, 
there is no assurance that the solution will exist at a particular point x 1≠x02, even if x is in the 
interval 1a, b2. However, if 0f>0y is continuous and bounded†† on the vertical strip

S J 51x, y2: a 6 x 6 b, - ∞ 6 y 6 ∞6 ,

then it turns out that (1) has a unique solution on the whole interval 1a, b2. In describing 
numerical methods, we assume that this last condition is satisfied and that f possesses as many 
continuous partial derivatives as needed.

In Section 1.4 we used the concept of direction fields to motivate a scheme for approxi-
mating the solution to the initial value problem (1). This scheme, called Euler’s method, is 
one of the most basic, so it is worthwhile to discuss its advantages, disadvantages, and possible 
improvements. We begin with a derivation of Euler’s method that is somewhat different from 
that presented in Section 1.4.

Let h 7 0 be fixed (h is called the step size) and consider the equally spaced points

(2) xn J x0 + nh ,  n = 0, 1, 2, . . . .

Our goal is to obtain an approximation to the solution f1x2 of the initial value problem (1) at 
those points xn that lie in the interval 1a, b2. Namely, we will describe a method that generates 
values y0, y1, y2, . . . that approximate f1x2 at the respective points x0, x1, x2, . . . ; that is,

yn ≈ f1xn2 ,  n = 0, 1, 2, . . . .

Of course, the first “approximant” y0 is exact, since y0 = f1x02 is given. Thus, we must 
describe how to compute y1, y2, . . . .

For Euler’s method we begin by integrating both sides of equation (1) from xn to xn + 1 to 
obtain

f1xn + 12 - f1xn2 = L
xn + 1

xn

 f′1t2  dt = L
xn + 1

xn

 f1t, f1t22dt ,

where we have substituted f1x2 for y. Solving for f1xn + 12, we have

(3) f1xn + 12 = f1xn2 + L
xn + 1

xn

 f1t, f1t22dt .

Without knowing f1t2, we cannot integrate f1t, f1t22. Hence, we must approximate the 
integral in (3). Assuming we have already found yn ≈ f1xn2, the simplest approach is to 

†See, for example, A First Course in the Numerical Analysis of Differential Equations, 2nd ed., by A. Iserles  
(Cambridge University Press, 2008), or Numerical Analysis, 9th ed., by R. L. Burden and J. D. Faires (Cengage Learning, 
Independence, KY, 2011).
††A function g1x, y2 is bounded on S if there exists a number M such that 0 g1x, y2 0 … M for all 1x, y2 in S.
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approximate the area under the function f1t, f1t22 by the rectangle with base 3xn, xn + 14  and 
height f1xn, f1xn22 (see Figure 3.14). This gives

f1xn + 12 ≈ f1xn2 + 1xn + 1 - xn2f1xn, f1xn22 .
Substituting h for xn + 1 - xn and the approximation yn for f1xn2, we arrive at the numerical 
scheme

(4) yn + 1 = yn + hf1xn, yn2 ,  n = 0, 1, 2, . . . ,

which is Euler’s method.
Starting with the given value y0, we use (4) to compute y1 = y0 + hf1x0, y02 and then use 

y1 to compute y2 = y1 + hf1x1, y12, and so on. Several examples of Euler’s method can be 
found in Section 1.4. (Compare page 24.)

As discussed in Section 1.4, if we wish to use Euler’s method to approximate the solution 
to the initial value problem (1) at a particular value of x, say, x = c, then we must first deter-
mine a suitable step size h so that x0 + Nh = c for some integer N. For example, we can take  
N = 1 and h = c - x0 in order to arrive at the approximation after just one step:

f1c2 = f1x0 + h2 ≈ y1 .

If, instead, we wish to take 10 steps in Euler’s method, we choose h = 1c - x02 >10 and ulti-
mately obtain

f1c2 = f1x0 + 10h2 = f1x102 ≈ y10 .

In general, depending on the size of h, we will get different approximations to f1c2. It is 
reasonable to expect that as h gets smaller (or, equivalently, as N gets larger), the Euler approx-
imations approach the exact value f1c2. On the other hand, as h gets smaller, the number 
(and cost) of computations increases and hence so do machine errors that arise from round-off. 
Thus, it is important to analyze how the error in the approximation scheme varies with h.

If Euler’s method is used to approximate the solution f1x2 = ex to the problem

(5) y′ = y ,  y102 = 1 ,

at x = 1, then we obtain approximations to the constant e = f112. It turns out that these 
approximations take a particularly simple form that enables us to compare the error in the 
approximation with the step size h. Indeed, setting f1x, y2 = y in (4) yields

yn + 1 = yn + hyn = 11 + h2yn ,  n = 0, 1, 2, . . . .

f 

f(t,

t

(t))

x n 1 1x n 

Figure 3.14 Approximation by a rectangle
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Since y0 = 1, we get

 y1 = 11 + h2y0 = 1 + h ,

 y2 = 11 + h2y1 = 11 + h211 + h2 = 11 + h22 ,

 y3 = 11 + h2y2 = 11 + h211 + h22 = 11 + h23 ,

and, in general,

(6) yn = 11 + h2n ,  n = 0, 1, 2, . . . .

For the problem in (5) we have x0 = 0, so to obtain approximations at x = 1, we must set 
nh = 1. That is, h must be the reciprocal of an integer 1h = 1>n2. Replacing n by 1>h in (6), 
we see that Euler’s method gives the (familiar) approximation 11 + h21>h to the constant e.  
In Table 3.4, we list this approximation for h = 1, 10-1, 10-2, 10-3, and 10-4, along with the 
corresponding errors

e - 11 + h21>h .

From the second and third columns in Table 3.4, we see that the approximation gains roughly 
one decimal place in accuracy as h decreases by a factor of 10; that is, the error is roughly propor-
tional to h. This observation is further confirmed by the entries in the last column of Table 3.4. In 
fact, using methods of calculus (see Exercises 1.4, Problem 13), it can be shown that

(7) lim
hS0

 
error

h
= lim

hS0
 
e - 11 + h21>h

h
=

e
2

≈ 1.35914 .

The general situation is similar: When Euler’s method is used to approximate the solution 
to the initial value problem (1), the error in the approximation is at worst a constant times the 
step size h. Moreover, in view of (7), this is the best one can say.

Numerical analysts have a convenient notation for describing the convergence behavior of 
a numerical scheme. For fixed x we denote by y1x; h2 the approximation to the solution f1x2 
of (1) obtained via the scheme when using a step size of h. We say that the numerical scheme 
converges at x if

lim
hS0

  y1x; h2 = f1x2 .
In other words, as the step size h decreases to zero, the approximations for a convergent scheme 
approach the exact value f1x2. The rate at which y1x; h2 tends to f1x2 is often expressed in 
terms of a suitable power of h. If the error f1x2 - y1x; h2 tends to zero like a constant times 
h  

p, we write

F1x2 − y1x; h2 = O1h  

p2
and say that the method is of order p. Of course, the higher the power p, the faster is the rate 
of convergence as h S 0.

TABLE 3.4  Euler’s Approximations to e = 2.71828. . . 

h
Euler’s Approximation  

11 + h21>h
Error  

e − 11 + h21>h Error , h
1 2.00000 0.71828 0.71828

10-1 2.59374 0.12454 1.24539
10-2 2.70481 0.01347 1.34680
10-3 2.71692 0.00136 1.35790
10-4 2.71815 0.00014 1.35902
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As seen from our earlier discussion, the rate of convergence of Euler’s method is O(h); 
that is, Euler’s method is of order p = 1. In fact, the limit in (7) shows that for equation (5), 
the error is roughly 1.36h for small h. This means that to have an error less than 0.01 requires 
h 6 0.01>1.36, or n = 1>h 7 136 computation steps. Thus Euler’s method converges too 
slowly to be of practical use.

How can we improve Euler’s method? To answer this, let’s return to the derivation 
expressed in formulas (3) and (4) and analyze the “errors” that were introduced to get the 
approximation. The crucial step in the process was to approximate the integral

L
xn + 1

xn

 f 1 t, f1t2 2  dt

by using a rectangle (recall Figure 3.14 on page 123). This step gives rise to what is called 
the local truncation error in the method. From calculus we know that a better (more accurate) 
approach to approximating the integral is to use a trapezoid—that is, to apply the trapezoidal 
rule (see Figure 3.15). This gives

L
xn + 1

xn

 f1 t, f1t2 2  dt ≈
h
2

 3 f1xn, f1xn2 2 + f1xn + 1, f1xn + 12 2 4  ,
which leads to the numerical scheme

(8) yn + 1 = yn +
h
2

 3 f1xn, yn2 + f1xn + 1, yn + 12 4  ,  n = 0, 1, 2, . . . .

We call equation (8) the trapezoid scheme. It is an example of an implicit method; that is, 
unlike Euler’s method, equation (8) gives only an implicit formula for yn + 1, since yn + 1 appears 
as an argument of f. Assuming we have already computed yn, some root-finding technique such 
as Newton’s method (see Appendix B) might be needed to compute yn + 1. Despite the incon-
venience of working with an implicit method, the trapezoid scheme has two advantages over 
Euler’s method. First, it is a method of order p = 2; that is, it converges at a rate that is pro-
portional to h2 and hence is faster than Euler’s method. Second, as described in Project F,  
page 148, the trapezoid scheme has the desirable feature of being stable.

Can we somehow modify the trapezoid scheme in order to obtain an explicit method? 
One idea is first to get an estimate, say, y*n + 1, of the value yn + 1 using Euler’s method and 
then use formula (8) with yn + 1 replaced by y*n + 1 on the right-hand side. This two-step pro-
cess is an example of a predictor–corrector method. That is, we predict yn + 1 using Euler’s 

x n 1 1x n 

f 

f(t, (t))

t

Figure 3.15 Approximation by a trapezoid
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method and then use that value in (8) to obtain a “more correct” approximation. Setting  
yn + 1 =  yn + h f1xn, yn2 in the right-hand side of (8), we obtain

(9) yn + 1 = yn +
h
2
3 f1xn, yn2 + f1xn + h,  yn + hf1xn, yn2 2 4  ,  n = 0, 1, . . . ,

where xn + 1 = xn + h. This explicit scheme is known as the improved Euler’s method.

Example 1 Compute the improved Euler’s method approximation to the solution f1x2 = ex of

y′ = y ,  y102 = 1

at x = 1 using step sizes of h = 1, 10-1, 10-2, 10-3, and 10-4.

Solution The starting values are x0 = 0 and y0 = 1. Since f1x, y2 = y, formula (9) becomes

yn + 1 = yn +
h
2

 3yn + 1yn + hyn2 4 = yn + hyn +
h2

2
 yn ;

that is,

(10) yn + 1 = a1 + h +
h2

2
byn .

Since y0 = 1, we see inductively that

yn = a1 + h +
h2

2
b

n

 ,  n = 0, 1, 2, . . . .

To obtain approximations at x = 1, we must have 1 = x0 + nh = nh, and so n = 1>h. Hence, 
the improved Euler’s approximations to e = f112 are just

a1 + h +
h2

2
b

1>h
 .

In Table 3.5 on page 127 we have computed this approximation for the specified values of h, 
along with the corresponding errors

e - a1 + h +
h2

2
b

1>h
 .

Comparing the entries of this table with those of Table 3.4 on page 124, we observe that the 
improved Euler’s method converges much more rapidly than the original Euler’s method. In 
fact, from the first few entries in the second and third columns of Table 3.5, it appears that 
the approximation gains two decimal places in accuracy each time h is decreased by a factor of 
10. In other words, the error is roughly proportional to h2 (see the last column of the table and also 
Problem 4). The entries in the last row of the table must be regarded with caution. Indeed, when  
h = 10-3, the true error is so small that our calculator rounded it to zero, to five decimal places. 
The entry in color in the last column may be inaccurate due to the loss of significant figures in 
the calculator arithmetic. ◆

As Example 1 suggests, the improved Euler’s method converges at the rate O1h22, and 
indeed it can be proved that in general this method is of order p = 2.
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A step-by-step outline for a subroutine that implements the improved Euler’s method over 
a given interval 3x0, c4  is described below. For programming purposes it is usually more con-
venient to input the number of steps N in the interval rather than the step size h itself. For an 
interval starting at x = x0 and ending at x = c, the relation between h and N is

(11) Nh = c − x0 .

(Note that the subroutine includes an option for printing x and y.) Of course, the implementa-
tion of this algorithm with N steps on the interval 3x0, c4 only produces approximations to the 
actual solution at N + 1 equally spaced points. If we wish to use these points to help graph an 
approximate solution over the whole interval 3x0, c4, then we must somehow “fill in” the gaps 
between these points. A crude method is to simply join the points by straight-line segments 
producing a polygonal line approximation to f1x2. More sophisticated techniques for pre-
scribing the intermediate points are used in professional codes.

TABLE 3.5  Improved Euler’s Approximation to e = 2.71828. . .

h

Approximation 

a1 + h +
h2

2
b

1,h

Error Error , h2

1 2.50000 0.21828 0.21828
10-1 2.71408 0.00420 0.42010
10-2 2.71824 0.00004 0.44966
10-3 2.71828 0.00000 0.45271

Improved Euler’s Method Subroutine

Purpose To approximate the solution f1x2 to the initial value problem

y′ = f1x, y2 ,  y1x02 = y0 ,

 for x0 … x … c.
input x0, y0, c, N (number of steps), PRNTR (=  1 to print a table)
Step 1 Set step size h = 1c - x02 >N, x = x0, y = y0

Step 2 For i = 1 to N, do Steps 3–5
Step 3   Set

F = f1x, y2
G = f1x + h, y + hF2

Step 4   Set

x = x + h

y = y + h1F + G2 >2
Step 5 If PRNTR = 1, print x, y
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Now we want to devise a program that will compute f1c2 to a desired accuracy. As we 
have seen, the accuracy of the approximation depends on the step size h. Our strategy, then, 
will be to estimate f1c2 for a given step size and then halve the step size and recompute the 
estimate, halve again, and so on. When two consecutive estimates of f1c2 differ by less than 
some prescribed tolerance e, we take the final estimate as our approximation to f1c2. Admit-
tedly, this does not guarantee that f1c2 is known to within P, but it provides a reasonable stop-
ping procedure in practice.† The following procedure also contains a safeguard to stop if the 
desired tolerance is not reached after M halvings of h.

†Professional codes monitor accuracy much more carefully and vary step size in an adaptive fashion for this purpose.
††To save time, one can start with m = K 6 M rather than with m = 0.

Improved Euler’s Method With Tolerance

Purpose To approximate the solution to the initial value problem

y′ = f1x, y2 ,  y1x02 = y0 ,

 at x = c, with tolerance e
input x0, y0, c, e ,
 M (maximum number of halvings of step size)
Step 1 Set z = y0, PRNTR = 0
Step 2 For m = 0 to M, do Steps 3–7††

Step 3   Set N = 2m

Step 4   Call IMPROVED EULER’S METHOD SUBROUTINE
Step 5   Print h, y
Step 6   If 0 y - z 0 6 e, go to Step 10
Step 7   Set z = y
Step 8 Print “f1c2 is approximately”; y; “but may not be within the tolerance”; e
Step 9  Go to Step 11
Step 10 Print “f1c2 is approximately”; y; “with tolerance”; e
Step 11 STOP
output  Approximations of the solution to the initial value problem at x = c using 2m 

steps

If one desires a stopping procedure that simulates the relative error

` approximation - true value

true value
`  ,

then replace Step 6 by

Step 6′.  If ` z - y
y
` 6 e , go to Step 10 .

Example 2 Use the improved Euler’s method with tolerance to approximate the solution to the initial value 
problem

(12) y′ = x + 2y ,  y102 = 0.25 ,

at x = 2. For a tolerance of P = 0.001, use a stopping procedure based on the absolute error.
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Solution The starting values are x0 = 0, y0 = 0.25. Because we are computing the approximations for 
c = 2, the initial value for h is

h = 12 - 022-0 = 2 .

For equation (12), we have f1x, y2 = x + 2y, so the numbers F and G in the subroutine are

 F = x + 2y ,

 G = 1x + h2 + 21y + hF2 = x + 2y + h11 + 2x + 4y2 ,
and we find

 x = x + h ,

 y = y +
h
2

 1F + G2 = y +
h
2

 12x + 4y2 +
h2

2
 11 + 2x + 4y2 .

Thus, with x0 = 0, y0 = 0.25, and h = 2, we get for the first approximation

y = 0.25 + 10 + 12 + 211 + 12 = 5.25 .

To describe the further outputs of the algorithm, we use the notation y12; h2 for the approx-
imation obtained with step size h. Thus, y12; 22 = 5.25, and we find from the algorithm

 y12; 12 = 11.25000   y12; 2-52 = 25.98132

 y12; 2-12 = 18.28125   y12; 2-62 = 26.03172

 y12; 2-22 = 23.06067   y12; 2-72 = 26.04468

 y12; 2-32 = 25.12012   y12; 2-82 = 26.04797

 y12; 2-42 = 25.79127   y12; 2-92 = 26.04880 .

Since 0 y12; 2-92 - y12; 2-82 0 = 0.00083, which is less than e = 0.001, we stop.

The exact solution of (12) is f1x2 = 1
21e2x - x - 1

22 , so we have determined that

f122 =
1
2
ae4 -

5
2
b ≈ 26.04880 . ◆

In the next section, we discuss methods with higher rates of convergence than either Euler’s 
or the improved Euler’s methods.

In many of the following problems, it will be essential to have 
a calculator or computer available. You may use a software 
package† or write a program for solving initial value problems 
using the improved Euler’s method algorithms on pages 127 
and 128. (Remember, all trigonometric calculations are done 
in radians.)

1. Show that when Euler’s method is used to approximate 
the solution of the initial value problem

y′ = 5y ,  y102 = 1 ,

at x = 1, then the approximation with step size h is 
11 + 5h21>h.

2. Show that when Euler’s method is used to approximate 
the solution of the initial value problem

y′ = -  
1
2

 y ,  y102 = 3 ,

at x = 2, then the approximation with step size h is

3a1 -
h
2
b

2>h
 .

3.6 EXERCISES

†Appendix G describes various websites and commercial software that sketch direction fields and automate most of the differential equation  
algorithms discussed in this book.
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3. Show that when the trapezoid scheme given in formula (8) 
is used to approximate the solution f1x2 = ex of

y′ = y ,  y102 = 1 ,

at x = 1, then we get

yn + 1 = a1 + h>2
1 - h>2 byn ,  n = 0, 1, 2, . . . ,

which leads to the approximation

a1 + h>2
1 - h>2 b

1>h

for the constant e. Compute this approximation for 
h = 1, 10-1, 10-2, 10-3, and 10-4 and compare your 
results with those in Tables 3.4 and 3.5.

4. In Example 1, page 126, the improved Euler’s method 
approximation to e with step size h was shown to be

a1 + h +
h2

2
b

1>h
 .

First prove that the error J e - 11 + h + h2>221>h 
approaches zero as h S 0. Then use L’Hôpital’s rule to 
show that

lim
hS0

 
error

h2 =
e
6

≈ 0.45305 .

Compare this constant with the entries in the last column 
of Table 3.5.

5. Show that when the improved Euler’s method is used to 
approximate the solution of the initial value problem

y′ = 4y ,  y102 =
1
3

 ,

at x = 1>2, then the approximation with step size h is

1
3

 11 + 4h + 8h221>12h2 .

6. Since the integral y1x2 J 1 x
0  f1t2  dt with variable 

upper limit satisfies (for continuous f ) the initial value 
problem

y′ = f1x2 ,  y102 = 0 ,

any numerical scheme that is used to approximate the 
solution at x = 1 will give an approximation to the  
definite integral

L
1

0
 f1t2  dt .

Derive a formula for this approximation of the integral using

(a) Euler’s method.

(b) the trapezoid scheme.

(c) the improved Euler’s method.

7. Use the improved Euler’s method subroutine with step 
size h = 0.1 to approximate the solution to the initial 
value problem

y′ = x - y2 ,  y112 = 0 ,

at the points x = 1.1, 1.2, 1.3, 1.4, and 1.5. (Thus,  
input N = 5.) Compare these approximations with 
those obtained using Euler’s method (see Exercises 1.4, 
Problem 5, page 28).

8. Use the improved Euler’s method subroutine with step 
size h = 0.2 to approximate the solution to the initial 
value problem

y′ =
1
x

 1y2 + y2 ,  y112 = 1 ,

at the points x = 1.2, 1.4, 1.6, and 1.8. (Thus,  
input N = 4.) Compare these approximations with 
those obtained using Euler’s method (see Exercises 1.4, 
Problem 6, page 28).

9. Use the improved Euler’s method subroutine with step 
size h = 0.2 to approximate the solution to

y′ = x + 3 cos1xy2 ,  y102 = 0 ,

at the points x = 0, 0.2, 0.4, . . . , 2.0. Use your answers 
to make a rough sketch of the solution on [0, 2].

10. Use the improved Euler’s method subroutine with step 
size h = 0.1 to approximate the solution to

y′ = 4 cos1x + y2 ,  y102 = 1 ,

at the points x = 0, 0.1, 0.2, . . . , 1.0. Use your answers 
to make a rough sketch of the solution on [0, 1].

11. Use the improved Euler’s method with tolerance to 
approximate the solution to

dx
dt

= 1 + t sin1tx2 ,  x102 = 0 ,

at t = 1. For a tolerance of e = 0.01, use a stopping 
procedure based on the absolute error.

12. Use the improved Euler’s method with tolerance to 
approximate the solution to

y′ = 1 - sin y ,  y102 = 0 ,

at x = p. For a tolerance of e = 0.01, use a stopping 
procedure based on the absolute error.

13. Use the improved Euler’s method with tolerance to 
approximate the solution to

y′ = 1 - y + y3 ,  y102 = 0 ,

at x = 1. For a tolerance of e = 0.003, use a stopping 
procedure based on the absolute error.
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14. By experimenting with the improved Euler’s method 
subroutine, find the maximum value over the interval 
30, 24  of the solution to the initial value problem

y′ = sin1x + y2 ,  y102 = 2 .

Where does this maximum value occur? Give answers to 
two decimal places.

15. The solution to the initial value problem

dy

dx
= 1x + y + 222 ,  y102 = -2

crosses the x-axis at a point in the interval 30, 1.44 . By 
experimenting with the improved Euler’s method sub-
routine, determine this point to two decimal places.

16. The solution to the initial value problem

dy

dx
+

y

x
= x3y2 ,  y112 = 3

has a vertical asymptote (“blows up”) at some point in 
the interval 31, 24 . By experimenting with the improved 
Euler’s method subroutine, determine this point to two 
decimal places.

17. Use Euler’s method (4) with h = 0.1 to approximate the 
solution to the initial value problem

y′ = -20y ,  y102 = 1 ,

on the interval 0 … x … 1 (that is, at x = 0, 0.1, . . . , 1.0).  
Compare your answers with the actual solution 
y = e- 20x. What went wrong? Next, try the step size  
h = 0.025 and also h = 0.2. What conclusions can you 
draw concerning the choice of step size?

18. Local versus Global Error. In deriving formula 
(4) for Euler’s method, a rectangle was used to 
approximate the area under a curve (see Figure 3.14). 
With g1t2 J f1t, f1t22, this approximation can be 
written as

L
xn + 1

xn

 g1t2  dt ≈ hg1xn2 , where h = xn + 1 - xn .

(a)  Show that if g has a continuous derivative that is 
bounded in absolute value by B, then the rectangle 
approximation has error O1h22; that is, for some 
constant M,

` L
xn + 1

xn

 g1t2  dt -  hg1xn2 `  …  Mh2 .

  This is called the local truncation error of the scheme. 
[Hint: Write

L
xn + 1

xn

 g1t2dt -  hg1xn2 = L
xn + 1

xn

 3g1t2 - g1xn2 4  dt .

  Next, using the mean value theorem, show that 
0 g1t2 - g1xn2 0  …  B 0 t - xn 0 . Then integrate to 
obtain the error bound 1B>22h2.]

(b)  In applying Euler’s method, local truncation errors 
occur in each step of the process and are propagated 
throughout the further computations. Show that the 
sum of the local truncation errors in part (a) that 
arise after n steps is O1h2. This is the global error, 
which is the same as the convergence rate of Euler’s 
method.

19. Building Temperature. In Section 3.3 we modeled 
the temperature inside a building by the initial value 
problem

(13)  
dT
dt

= K3M1t2 - T1t2 4 + H1t2 + U1t2 
 T1t02 = T0 ,

where M is the temperature outside the building, T is 
the temperature inside the building, H is the addi-
tional heating rate, U is the furnace heating or air 
conditioner cooling rate, K is a positive constant, 
and T0 is the initial temperature at time t0. In a typi-
cal model, t0 = 0 (midnight), T0 = 65°F, H1t2 = 0.1, 
U1t2 = 1.5370 - T1t2 4 , and

M1t2 = 75 - 20 cos1pt>122 .
The constant K is usually between 1>4 and 1>2, depend-
ing on such things as insulation. To study the effect of 
insulating this building, consider the typical building 
described above and use the improved Euler’s method 
subroutine with h = 2>3 to approximate the solution to 
(13) on the interval 0 … t … 24 (1 day) for K = 0.2, 0.4, 
and 0.6.

20. Falling Body. In Example 1 of Section 3.4, page 110, 
we modeled the velocity of a falling body by the initial 
value problem

m 
dv

dt
= mg - bv ,  v102 = v0 ,

under the assumption that the force due to air resistance 
is -bv. However, in certain cases the force due to air 
resistance behaves more like -bv

r, where r1712 is 
some constant. This leads to the model

(14) m 
dv

dt
= mg - bv

r ,  v102 = v0 .

To study the effect of changing the parameter r in (14), 
take m = 1, g = 9.81, b = 2, and v0 = 0. Then use 
the improved Euler’s method subroutine with h = 0.2 
to approximate the solution to (14) on the interval 
0 … t … 5 for r = 1.0, 1.5, and 2.0. What is the relation-
ship between these solutions and the constant solution 
v1t2 K 19.81>221>r ?
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In Sections 1.4 and 3.6, we discussed a simple numerical procedure, Euler’s method, for 
obtaining a numerical approximation of the solution f(x) to the initial value problem

(1) y′ = f1x, y2 ,  y1x02 = y0 .

Euler’s method is easy to implement because it involves only linear approximations to the solu-
tion f1x2. But it suffers from slow convergence, being a method of order 1; that is, the error 
is O1h2. Even the improved Euler’s method discussed in Section 3.6 has order of only 2. In 
this section we present numerical methods that have faster rates of convergence. These include 
Taylor methods, which are natural extensions of the Euler procedure, and Runge–Kutta 
methods, which are the more popular schemes for solving initial value problems because they 
have fast rates of convergence and are easy to program.

As in the previous section, we assume that f and 0f>0y are continuous and bounded on the 
vertical strip {1x, y2: a 6 x 6 b, - ∞ 6 y 6 ∞} and that f possesses as many continuous par-
tial derivatives as needed.

To derive the Taylor methods, let fn1x2 be the exact solution of the related initial value 
problem

(2) f=n = f1x, fn2 ,  fn1xn2 = yn .

The Taylor series for fn1x2 about the point xn is

fn1x2 = fn1xn2 + hf=n1xn2 +
h2

2!
 f>n1xn2 + g ,

where h = x - xn. Since fn satisfies (2), we can write this series in the form

(3) fn1x2 = yn + hf1xn, yn2 +
h2

2!
 f>n1xn2 + g .

Observe that the recursive formula for yn + 1 in Euler’s method is obtained by truncating the 
Taylor series after the linear term. For a better approximation, we will use more terms in the 
Taylor series. This requires that we express the higher-order derivatives of the solution in terms 
of the function f1x, y2.

If y satisfies y′ = f1x, y2, we can compute y″ by using the chain rule:

(4)  y″ =
0f

0x
 1x, y2 +

0f

0y
 1x, y2 y′

 =
0f

0x
 1x, y2 +

0f

0y
 1x, y2 f1x, y2

   = : f21x, y2 .
In a similar fashion, define f3, f4, . . . , that correspond to the expressions y‴1x2, y1421x2, etc. If 
we truncate the expansion in (3) after the h  

p term, then, with the above notation, the recursive 
formulas for the Taylor method of order p are

(5) xn + 1 = xn + h ,

(6) yn + 1 = yn + hf1xn, yn2 +
h2

2!
  f21xn, yn2 + P +

h  

p

p!
  fp1xn, yn2 .

3.7  Higher-Order Numerical Methods:  
Taylor and Runge–Kutta
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As before, yn ≈ f1xn2, where f1x2 is the solution to the initial value problem (1). It can 
be shown† that the Taylor method of order p has the rate of convergence O1h  

p2.

Example 1 Determine the recursive formulas for the Taylor method of order 2 for the initial value problem

(7) y′ = sin1xy2 ,  y102 = p .

Solution We must compute f21x, y2 as defined in (4). Since f1x, y2 = sin1xy2,
0f

0x
 1x, y2 = y cos1xy2 ,  0f

0y
 1x, y2 = x cos1xy2 .

Substituting into (4), we have

 f21x, y2 =
0f

0x
 1x, y2 +

0f

0y
 1x, y2 f1x, y2

 = y cos1xy2 + x cos1xy2 sin1xy2
 = y cos1xy2 +

x
2

  sin12xy2 ,

and the recursive formulas (5) and (6) become

 xn + 1 = xn + h ,

 yn + 1 = yn + h sin1xnyn2 +
h2

2
 c yn cos1xnyn2 +

xn

2
  sin12xnyn2 d  ,

where x0 = 0, y0 = p are the starting values. ◆

The convergence rate, O1h  

p2, of the pth-order Taylor method raises an interesting ques-
tion: If we could somehow let p go to infinity, would we obtain exact solutions for the interval 
3x0, x0 + h4? This possibility is explored in depth in Chapter 8. Of course, a practical difficulty 
in employing high-order Taylor methods is the tedious computation of the partial derivatives 
needed to determine fp (typically these computations grow exponentially with p). One way to 
circumvent this difficulty is to use one of the Runge–Kutta methods.††

Observe that the general Taylor method has the form

(8) yn + 1 = yn + hF1xn, yn; h2 ,
where the choice of F depends on p. In particular [compare (6)], for

 p = 1 ,   F = T11x, y; h2 J f1x, y2 ,

(9)  p = 2 ,   F = T21x, y; h2 J f1x, y2 +
h
2

 c 0f

0x
 1x, y2 +

0f

0y
 1x, y2 f1x, y2 d  .

The idea behind the Runge–Kutta method of order 2 is to choose F in (8) of the form

(10) F = K21x, y; h2 J f1x + ah, y + bhf1x, y2 2  ,
where the constants a, b are to be selected so that (8) has the rate of convergence O1h22. The 
advantage here is that K2 is computed by two evaluations of the original function f1x, y2 and 
does not involve the derivatives of f1x, y2.

†See Introduction to Numerical Analysis by J. Stoer and R. Bulirsch (Springer-Verlag, New York, 2002).
††Historical Footnote: These methods were developed by C. Runge in 1895 and W. Kutta in 1901.
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To ensure O1h22 convergence, we compare this new scheme with the Taylor method of 
order 2 and require

T21x, y; h2 - K21x, y; h2 = O1h22 , as h S 0 .

That is, we choose a, b so that the Taylor expansions for T2 and K2 agree through terms of 
order h. For 1x, y2 fixed, when we expand K2 = K21h2 as given in (10) about h = 0, we find

(11)  K21h2 = K2102 +
dK2

dh
 102h + O1h22

 = f1x, y2 + ca 
0f

0x
 1x, y2 + b 

0f

0y
 1x, y2 f1x, y2 dh + O1h22 ,

where the expression in brackets for dK2>dh, evaluated at h = 0, follows from the chain rule. 
Comparing (11) with (9), we see that for T2 and K2 to agree through terms of order h, we must 
have a = b = 1>2. Thus,

K21x, y; h2 = f ax +
h
2

,  y +
h
2

  f1x, y2 b  .

The Runge–Kutta method we have derived is called the midpoint method and it has the recur-
sive formulas

(12) xn + 1 = xn + h ,

(13) yn + 1 = yn + hf axn +
h
2

,  yn +
h
2

   f1xn, yn2 b  .

By construction, the midpoint method has the same rate of convergence as the Taylor method 
of order 2; that is, O1h22. This is the same rate as the improved Euler’s method.

In a similar fashion, one can work with the Taylor method of order 4 and, after some 
elaborate calculations, obtain the classical fourth-order Runge–Kutta method. The recursive 
formulas for this method are

(14)

 xn + 1 = xn + h ,

yn + 1 = yn +
1
6

 1k1 + 2k2 + 2k3 + k42 ,
where

 k1 = hf1xn, yn2 ,

 k2 = hf  axn +
h
2

,  yn +
k1

2
b  ,

 k3 = hf  axn +
h
2

,  yn +
k2

2
b  ,

 k4 = hf1xn + h,  yn + k32 .
The classical fourth-order Runge–Kutta method is one of the more popular methods because 
its rate of convergence is O1h42 and it is easy to program. Typically, it produces very accurate 
approximations even when the number of iterations is reasonably small. However, as the num-
ber of iterations becomes large, other types of errors may creep in.

Program outlines for the fourth-order Runge–Kutta method are given below. Just as with 
the algorithms for the improved Euler’s method, the first program (the Runge–Kutta subrou-
tine) is useful for approximating the solution over an interval 3x0, c4 and takes the number of 
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steps in the interval as input. As in Section 3.6, the number of steps N is related to the step 
size h and the interval 3x0, c4 by

Nh = c - x0 .

The subroutine has the option to print out a table of values of x and y. The second algorithm 
(Runge–Kutta with tolerance) on page 136 is used to approximate, for a given tolerance, the 
solution at an inputted value x = c. This algorithm† automatically halves the step sizes succes-
sively until the two approximations y1c; h2 and y1c; h>22 differ by less than the prescribed 
tolerance e. For a stopping procedure based on the relative error, Step 6 of the algorithm should 
be replaced by

Step 6′  If ` y - z
y
` 6 e, go to Step 10 .

†Note that the form of the algorithm on page 136 is the same as that for the improved Euler’s method on page 128 
except for Step 4, where the Runge–Kutta subroutine is called. More sophisticated stopping procedures are used in 
production-grade codes.

Classical Fourth-Order Runge–Kutta Subroutine

Purpose To approximate the solution to the initial value problem

y′ = f1x, y2 ,  y1x02 = y0

 for x0 … x … c
input x0, y0, c, N (number of steps), PRNTR (=  1 to print a table)
Step 1 Set step size h = 1c - x02 >N, x = x0, y = y0

Step 2 For i = 1 to N, do Steps 3–5
Step 3   Set

 k1 = hf1x, y2

 k2 = hf ax +
h
2

, y +
k1

2
b

 k3 = hf ax +
h
2

, y +
k2

2
b

 k4 = hf1x + h, y + k32
Step 4   Set

 x = x + h

 y = y +
1
6

 1k1 + 2k2 + 2k3 + k42

Step 5   If PRNTR = 1, print x, y
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Classical Fourth-Order Runge–Kutta Algorithm with Tolerance

Purpose To approximate the solution to the initial value problem

y′ = f1x, y2 ,  y1x02 = y0

 at x = c, with tolerance e
input x0, y0, c, e, M (maximum number of iterations)
Step 1 Set z = y0, PRNTR = 0
Step 2  For m = 0 to M, do Steps 3–7 (or, to save time, start with m 7 0)
Step 3    Set N = 2m

Step 4    Call FOURTH-ORDER RUNGE–KUTTA SUBROUTINE
Step 5    Print h, y
Step 6    If 0 z - y 0 6 e, go to Step 10
Step 7    Set z = y
Step 8   Print “f1c2 is approximately”; y; “but may not be within the tolerance”; e
Step 9 Go to Step 11
Step 10 Print “f1c2 is approximately”; y; “with tolerance”; e
Step 11 STOP
output  Approximations of the solution to the initial value problem at x = c, using 

2m steps.

Example 2 Use the classical fourth-order Runge–Kutta algorithm to approximate the solution f1x2 of the 
initial value problem

y′ = y ,  y102 = 1 ,

at x = 1 with a tolerance of 0.001.

Solution The inputs are x0 = 0, y0 = 1, c = 1, e = 0.001, and M = 25 (say). Since f1x, y2 = y, the 
formulas in Step 3 of the subroutine become

k = hy ,  k2 = hay +
k1

2
b  ,  k3 = hay +

k2

2
b  ,  k4 = h1y + k32 .

The initial value for N in this algorithm is N = 1, so

h = 11 - 02 >1 = 1 .

Thus, in Step 3 of the subroutine, we compute

k1 = 112112 = 1 ,   k2 = 11211 + 0.52 = 1.5 ,

k3 = 11211 + 0.752 = 1.75 ,  k4 = 11211 + 1.752 = 2.75 ,

and, in Step 4 of the subroutine, we get for the first approximation

 y = y0 +
1
6

 1k1 + 2k2 + 2k3 + k42

 = 1 +
1
6

 31 + 211.52 + 211.752 + 2.754
 = 2.70833 ,
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where we have rounded to five decimal places. Because

0 z - y 0 = 0 y0 - y 0 = 0 1 - 2.70833 0 = 1.70833 7 e ,

we start over and reset N = 2, h = 0.5.
Doing Steps 3 and 4 for i = 1 and 2, we ultimately obtain (for i = 2) the approximation

y = 2.71735 .

Since 0 z - y 0 = 0 2.70833 - 2.71735 0 = 0.00902 7 e , we again start over and reset 
N = 4, h = 0.25. This leads to the approximation

y = 2.71821 ,

so that

0 z - y 0 = 0 2.71735 - 2.71821 0 = 0.00086 ,

which is less than e = 0.001. Hence f112 = e ≈ 2.71821. ◆

In Example 2 we were able to obtain a better approximation for f112 = e with h = 0.25 
than we obtained in Section 3.6 using Euler’s method with h = 0.001 (see Table 3.4, page 124) 
and roughly the same accuracy as we obtained in Section 3.6 using the improved Euler’s 
method with h = 0.01 (see Table 3.5, page 127).

Example 3 Use the fourth-order Runge–Kutta subroutine to approximate the solution f1x2 of the initial 
value problem

(15) y′ = y2 ,  y102 = 1 ,

on the interval 0 … x … 2 using N = 8 steps (i.e., h = 0.25).

Solution Here the starting values are x0 = 0 and y0 = 1. Since f1x, y2 = y2, the formulas in Step 3 of 
the subroutine are

 k1 = hy2 ,   k2 = hay +
k1

2
b

2

 ,

 k3 = hay +
k2

2
b

2

 ,   k4 = h1y + k322 .

From the output, we find
 x = 0.25   y = 1.33322 ,

 x = 0.50   y = 1.99884 ,

 x = 0.75   y = 3.97238 ,

 x = 1.00   y = 32.82820 ,

 x = 1.25   y = 4.09664 * 1011 ,

 x = 1.50   y = overflow .

What happened? Fortunately, the equation in (15) is separable, and, solving for f1x2, we 
obtain f1x2 = 11 - x2-1. It is now obvious where the problem lies: The true solution f1x2 
is not defined at x = 1. If we had been more cautious, we would have realized that 0f>0y = 2y 
is not bounded for all y. Hence, the existence of a unique solution is not guaranteed for all x 
between 0 and 2, and in this case, the method does not give meaningful approximations for x 
near (or greater than) 1. ◆
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Example 4 Use the fourth-order Runge–Kutta algorithm to approximate the solution f1x2 of the initial 
value problem

y′ = x - y2 ,  y102 = 1 ,

at x = 2 with a tolerance of 0.0001.

Solution This time we check to see whether 0f>0y is bounded. Here 0f>0y = -2y, which is certainly 
unbounded in any vertical strip. However, let’s consider the qualitative behavior of the solution 
f1x2. The solution curve starts at (0, 1), where f′102 = 0 - 1 6 0, so f1x2 begins decreas-
ing and continues to decrease until it crosses the curve y = 1x. After crossing this curve, 
f1x2 begins to increase, since f′1x2 = x - f21x2 7 0. As f1x2 increases, it remains below 
the curve y = 1x. This is because if the solution were to get “close” to the curve y = 1x, then 
the derivative of f1x2 would approach zero, so that overtaking the function 1x is impossible.

Therefore, although the existence-uniqueness theorem does not guarantee a solution, we 
are inclined to try the algorithm anyway. The above argument shows that f1x2 probably exists 
for x 7 0, so we feel reasonably sure the fourth-order Runge–Kutta method will give a good 
approximation of the true solution f1x2. Proceeding with the algorithm, we use the starting 
values x0 = 0 and y0 = 1. Since f1x, y2 = x - y2, the formulas in Step 3 of the subroutine 
become

 k1 = h1x - y22 ,   k2 = h c ax +
h
2
b - ay +

k1

2
b

2

d  ,

 k3 = h c ax +
h
2
b - ay +

k2

2
b

2

d  ,   k4 = h3 1x + h2 - 1y + k3224  .

In Table 3.6, we give the approximations y12; 2- m + 12 for f122 for m = 0, 1, 2, 3, and 4. The 
algorithm stops at m = 4, since

0 y12; 0.1252 - y12; 0.252 0 = 0.00000 .

Hence, f122 ≈ 1.25132 with a tolerance of 0.0001. ◆

TABLE 3.6  Classical Fourth-Order Runge–Kutta Approximation for F(2)

m h
Approximation  

for F122 0 y12; h2 − y12; 2h2 0
0 2.0 -8.33333  
1 1.0 1.27504 9.60837
2 0.5 1.25170 0.02334
3 0.25 1.25132 0.00038
4 0.125 1.25132 0.00000
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As in Exercises 3.6, for some problems you will find it 
essential to have a calculator or computer available.† For 
Problems 1–17, note whether or not 0f>0y is bounded.

1. Determine the recursive formulas for the Taylor method 
of order 2 for the initial value problem

y′ = cos1x + y2 ,  y102 = p .

2. Determine the recursive formulas for the Taylor method 
of order 2 for the initial value problem

y′ = xy - y2 ,  y102 = -1 .

3. Determine the recursive formulas for the Taylor method 
of order 4 for the initial value problem

y′ = x - y ,  y102 = 0 .

4. Determine the recursive formulas for the Taylor method 
of order 4 for the initial value problem

y′ = x2 + y ,  y102 = 0 .

5. Use the Taylor methods of orders 2 and 4 with h = 0.25 
to approximate the solution to the initial value problem

y′ = x + 1 - y ,  y102 = 1 ,

at x = 1. Compare these approximations to the actual 
solution y = x + e-x evaluated at x = 1.

6. Use the Taylor methods of orders 2 and 4 with h = 0.25 
to approximate the solution to the initial value problem

y′ = 1 - y ,  y102 = 0 ,

at x = 1. Compare these approximations to the actual 
solution y = 1 - e-x evaluated at x = 1.

7. Use the fourth-order Runge–Kutta subroutine with 
h = 0.25 to approximate the solution to the initial value 
problem

y′ = 2y - 6 ,  y102 = 1 ,

at x = 1. (Thus, input N = 4.) Compare this approxi-
mation to the actual solution y = 3 - 2e2x evaluated at  
x = 1.

8. Use the fourth-order Runge–Kutta subroutine with  
h = 0.25 to approximate the solution to the initial value 
problem

y′ = 1 - y ,  y102 = 0 ,

at x = 1. Compare this approximation with the one 
obtained in Problem 6 using the Taylor method of order 4.

9. Use the fourth-order Runge–Kutta subroutine with  
h = 0.25 to approximate the solution to the initial value 
problem

y′ = x + 1 - y ,  y102 = 1 ,

at x = 1. Compare this approximation with the one 
obtained in Problem 5 using the Taylor method of 
order 4.

10. Use the fourth-order Runge–Kutta algorithm to approxi-
mate the solution to the initial value problem

y′ = 1 - xy ,  y112 = 1 ,

at x = 2. For a tolerance of e = 0.001, use a stopping 
procedure based on the absolute error.

11. The solution to the initial value problem

y′ =
2

x4 - y2 ,  y112 = -0.414

crosses the x-axis at a point in the interval 31, 24 . By 
experimenting with the fourth-order Runge–Kutta sub-
routine, determine this point to two decimal places.

12. By experimenting with the fourth-order Runge–Kutta 
subroutine, find the maximum value over the interval 
31, 24  of the solution to the initial value problem

y′ =
1.8

x4 - y2 ,  y112 = -1 .

Where does this maximum occur? Give your answers to 
two decimal places.

13. The solution to the initial value problem

dy

dx
= y2 - 2exy + e2x + ex ,  y102 = 3

has a vertical asymptote (“blows up”) at some point in 
the interval 30, 24 . By experimenting with the fourth-
order Runge–Kutta subroutine, determine this point to 
two decimal places.

14. Use the fourth-order Runge–Kutta algorithm to approxi-
mate the solution to the initial value problem

y′ = y cos x ,  y102 = 1 ,

at x = p. For a tolerance of e = 0.01, use a stopping 
procedure based on the absolute error.

3.7 Exercises

†Appendix G describes various websites and commercial software that sketch direction fields and automate most of the differential equation  
algorithms discussed in this book.
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15. Use the fourth-order Runge–Kutta subroutine with h = 0.1 
to approximate the solution to

y′ = cos15y2 - x ,  y102 = 0 ,

at the points x = 0, 0.1, 0.2, . . . , 3.0. Use your answers 
to make a rough sketch of the solution on 30, 34 .

16. Use the fourth-order Runge–Kutta subroutine with 
h = 0.1 to approximate the solution to

y′ = 3 cos1y - 5x2 ,  y102 = 0 ,

at the points x = 0, 0.1, 0.2, . . . , 4.0. Use your answers 
to make a rough sketch of the solution on [0, 4].

17. The Taylor method of order 2 can be used to approximate 
the solution to the initial value problem

y′ = y ,  y102 = 1 ,

at x = 1. Show that the approximation yn obtained by 
using the Taylor method of order 2 with the step size 1>n 
is given by the formula

yn = a1 +
1
n

+
1

2n2 b
n

 ,  n = 1, 2, c.

The solution to the initial value problem is y = ex, so yn 
is an approximation to the constant e.

18. If the Taylor method of order p is used in Problem 17, 
show that

 yn = a1 +
1
n

+
1

2n2 +
1

6n3 + # # # +
1

p!n  

p b
n 

,

 n = 1, 2, … .

19. Fluid Flow. In the study of the nonisothermal flow of 
a Newtonian fluid between parallel plates, the equation

d2y

dx2 + x2ey = 0 ,  x 7 0 ,

was encountered. By a series of substitutions, this equa-
tion can be transformed into the first-order equation

dv

du
= uau

2
+ 1bv

3 + au +
5
2
bv

2 .

Use the fourth-order Runge–Kutta algorithm to approxi-
mate v132 if v1u2 satisfies v122 = 0.1. For a tolerance 
of e = 0.0001, use a stopping procedure based on the 
relative error.

20. Chemical Reactions. The reaction between nitrous 
oxide and oxygen to form nitrogen dioxide is given by 
the balanced chemical equation 2NO + O2 = 2NO2. 
At high temperatures the dependence of the rate of this 
reaction on the concentrations of NO, O2, and NO2 is 
complicated. However, at 25°C the rate at which NO2 is 
formed obeys the law of mass action and is given by the 
rate equation

dx
dt

= k1a - x22ab -
x
2
b  ,

where x1t2 denotes the concentration of NO2 at time 
t, k is the rate constant, a is the initial concentration of 
NO, and b is the initial concentration of O2. At 25°C,  
the constant k is 7.13 * 103 (liter)2>(mole)2(second). 
Let a = 0.0010 mole>L, b = 0.0041 mole>L, and 
x102 = 0 mole>L. Use the fourth-order Runge–Kutta 
algorithm to approximate x1102. For a tolerance of 
e = 0.000001, use a stopping procedure based on the 
relative error.

21. Transmission Lines. In the study of the electric field 
that is induced by two nearby transmission lines, an 
equation of the form

dz
dx

+ g1x2z2 = f1x2

arises. Let f1x2 = 5x + 2 and g1x2 = x2. If z102 = 1,  
use the fourth-order Runge–Kutta algorithm to approxi-
mate z112. For a tolerance of e = 0.0001, use a stopping 
procedure based on the absolute error.
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Linear Second-Order Equations
CHAPTER 

4 
4.1 Introduction: The Mass–Spring Oscillator

Newton’s second law—force equals mass times acceleration 1F = ma2—is without a doubt 
the most commonly encountered differential equation in practice. It is an ordinary differential 
equation of the second order since acceleration is the second derivative of position 1y2 with 
respect to time 1a = d2y>dt22 .

When the second law is applied to a mass–spring oscillator, the resulting motions are com-
mon experiences of everyday life, and we can exploit our familiarity with these vibrations to 
obtain a qualitative description of the solutions of more general second-order equations.

We begin by referring to Figure 4.1, which depicts the mass–spring oscillator. When the 
spring is unstretched and the inertial mass m is still, the system is at equilibrium; we measure 
the coordinate y of the mass by its displacement from the equilibrium position. When the mass 
m is displaced from equilibrium, the spring is stretched or compressed and it exerts a force that 
resists the displacement. For most springs this force is directly proportional to the displace-
ment y and is thus given by

(1) Fspring = -ky ,

where the positive constant k is known as the stiffness and the negative sign reflects the oppos-
ing nature of the force. Hooke’s law, as equation (1) is commonly known, is only valid for 
sufficiently small displacements; if the spring is compressed so strongly that the coils press 
against each other, the opposing force obviously becomes much stronger.

A damped mass–spring oscillator consists of a mass m attached to a spring fixed 
at one end, as shown in Figure 4.1. Devise a differential equation that governs 
the motion of this oscillator, taking into account the forces acting on it due to the 
spring elasticity, damping friction, and possible external influences.

k m

b

yEquilibrium
point

Figure 4.1 Damped mass–spring oscillator
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Practically all mechanical systems also experience friction, and for vibrational motion this 
force is usually modeled accurately by a term proportional to velocity:

(2) Ffriction = -b 
dy

dt
= -by′ ,

where b 1Ú02 is the damping coefficient and the negative sign has the same significance as in 
equation (1).

The other forces on the oscillator are usually regarded as external to the system. Although 
they may be gravitational, electrical, or magnetic, commonly the most important external 
forces are transmitted to the mass by shaking the supports holding the system. For the moment 
we lump all the external forces into a single, known function Fext1t2. Newton’s law then pro-
vides the differential equation for the mass–spring oscillator:

 my″ = -ky - by′ + Fext1t2
or

(3) my″ + by′ + ky = Fext1t2 .
What do mass–spring motions look like? From our everyday experience with weak 

auto suspensions, musical gongs, and bowls of jelly, we expect that when there is no friction 
1b = 02 or external force, the (idealized) motions would be perpetual vibrations like the ones 
depicted in Figure 4.2. These vibrations resemble sinusoidal functions, with their amplitude 
depending on the initial displacement and velocity. The frequency of the oscillations increases 
for stiffer springs but decreases for heavier masses.

In Section 4.3 we will show how to find these solutions. Example 1 demonstrates a quick 
calculation that confirms our intuitive predictions.

y

t

y

t

y

t

(a) (b) (c) 

Figure 4.2 (a) Sinusoidal oscillation, (b) stiffer spring, and (c) heavier mass

Example 1 Verify that if b = 0 and Fext1t2 = 0, equation (3) has a solution of the form y1t2 = cos vt 
and that the angular frequency v increases with k and decreases with m.

Solution Under the conditions stated, equation (3) simplifies to

(4) my″ + ky = 0 .

The second derivative of y1t2 is -v2 cos vt, and if we insert it into (4), we find

my″ + ky = -mv2 cos vt + k cos vt ,

which is indeed zero if v = 2k>m. This v increases with k and decreases with m, as 
predicted. ◆
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When damping is present, the oscillations die out, and the motions resemble Figure 4.3. 
In Figure 4.3(a) the graph displays a damped oscillation; damping has slowed the frequency, 
and the amplitude appears to diminish exponentially with time. In Figure 4.3(b) the damping is 
so dominant that it has prevented the system from oscillating at all. Devices that are supposed 
to vibrate, like tuning forks or crystal oscillators, behave like Figure 4.3(a), and the damp-
ing effect is usually regarded as an undesirable loss mechanism. Good automotive suspension 
systems, on the other hand, behave like Figure 4.3(b); they exploit damping to suppress the 
oscillations.

The procedures for solving (unforced) mass–spring systems with damping are also 
described in Section 4.3, but as Examples 2 and 3 below show, the calculations are more com-
plex. Example 2 has a relatively low damping coefficient 1b = 62 and illustrates the solu-
tions for the “underdamped” case in Figure 4.3(a). In Example 3 the damping is more severe 
1b = 102, and the solution is “overdamped” as in Figure 4.3(b).

y

t

y

t

(a) (b)

Figure 4.3 (a) Low damping and (b) high damping

Example 2 Verify that the exponentially damped sinusoid given by y1t2 = e-3t cos 4t is a solution to 
equation (3) if Fext = 0, m = 1, k = 25, and b = 6.

Solution The derivatives of y are

 y′1t2 = -3e-3t cos 4t - 4e-3t sin 4t ,

y″1t2 = 9e-3t cos 4t + 12e-3t sin 4t + 12e-3t sin 4t - 16e-3t cos 4t

 = -7e-3t cos 4t + 24e-3t sin 4t ,

and insertion into (3) gives

my″ + by′ + ky = 112y″ + 6y′ + 25y

 = -7e-3t cos 4t + 24e-3t sin 4t + 61-3e-3t cos 4t - 4e-3t sin t2
 + 25e-3t cos 4t

 = 0 . ◆

Example 3 Verify that the simple exponential function y1t2 = e-5t is a solution to equation (3) if 
Fext = 0, m = 1, k = 25, and b = 10.

Solution The derivatives of y are y′1t2 = -5e-5t, y″1t2 = 25e-5t and insertion into (3) produces

my″ + by′ + ky = 112y″ + 10y′ + 25y = 25e-5t + 101-5e-5t2 + 25e-5t = 0 . ◆

Now if a mass–spring system is driven by an external force that is sinusoidal at the angular 
frequency v, our experiences indicate that although the initial response of the system may be 
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somewhat erratic, eventually it will respond in “sync” with the driver and oscillate at the same 
frequency, as illustrated in Figure 4.4.

Common examples of systems vibrating in synchronization with their drivers are sound sys-
tem speakers, cyclists bicycling over railroad tracks, electronic amplifier circuits, and ocean tides 
(driven by the periodic pull of the moon). However, there is more to the story than is revealed 
above. Systems can be enormously sensitive to the particular frequency v at which they are driven. 
Thus, accurately tuned musical notes can shatter fine crystal, wind-induced vibrations at the right 
(wrong?) frequency can bring down a bridge, and a dripping faucet can cause inordinate headaches. 
These “resonance” responses (for which the responses have maximum amplitudes) may be quite 
destructive, and structural engineers have to be very careful to ensure that their products will not 
resonate with any of the vibrations likely to occur in the operating environment. Radio engineers, on 
the other hand, do want their receivers to resonate selectively to the desired broadcasting channel.

The calculation of these forced solutions is the subject of Sections 4.4 and 4.5. The next 
example illustrates some of the features of synchronous response and resonance.

Fext

t

y

t

(a) (b)

Figure 4.4 (a) Driving force and (b) response

Example 4 Find the synchronous response of the mass–spring oscillator with m = 1, b = 1, k = 25 to 
the force sin Ωt.

Solution We seek solutions of the differential equation

(5) y″ + y′ + 25y =  sin Ωt

that are sinusoids in sync with sin Ωt; so let’s try the form y1t2 = A cos Ωt + B sin Ωt. Since

 y′ = - ΩA sin Ωt + ΩB cos Ωt ,

 y″ = - Ω2A cos Ωt - Ω2B sin Ωt ,

we can simply insert these forms into equation (5), collect terms, and match coefficients to 
obtain a solution:

 sin Ωt = y″ + y′ + 25y

 = - Ω2A cos Ωt - Ω2B sin Ωt + 3- ΩA sin Ωt + ΩB cos Ωt4
  +253A cos Ωt + B sin Ωt4

 = 3- Ω2B - ΩA + 25B4 sin Ωt + 3- Ω2A + ΩB + 25A4 cos Ωt ,

so

 - ΩA + 1- Ω2 + 252B = 1

 1- Ω2 + 252A + ΩB = 0 .
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We find

A =
- Ω

Ω2 + 1Ω2 - 2522 ,  B =
- Ω2 + 25

Ω2 + 1Ω2 - 2522 .

Figure 4.5 displays A and B as functions of the driving frequency Ω. A resonance clearly 
occurs around Ω ≈ 5. ◆

In most of this chapter, we are going to restrict our attention to differential equations of the form

(6) ay″ + by′ + cy = f1t2 ,
where y1t2 [or y1x2, or x1t2, etc.] is the unknown function that we seek; a, b, and c are con-
stants; and f1t2 [or f1x2] is a known function. The proper nomenclature for (6) is the linear, 
second-order ordinary differential equation with constant coefficients. In Sections 4.7 and 4.8, 
we will generalize our focus to equations with nonconstant coefficients, as well as to nonlinear 
equations. However, (6) is an excellent starting point because we are able to obtain explicit 
solutions and observe, in concrete form, the theoretical properties that are predicted for more 
general equations. For motivation of the mathematical procedures and theory for solving (6), 
we will consistently compare it with the mass–spring paradigm:

3inertia4 * y″ + 3damping4 * y′ + 3stiffness4 * y = Fext .

–0.2

–0.15
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–0.05

0
5 10 15 20 V
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0.1
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Figure 4.5 Vibration amplitudes around resonance

1. Verify that for b = 0 and Fext1t2 = 0, equation (3) has a 
solution of the form

y1t2 =  cos vt, where v = 2k>m .

2. If Fext1t2 = 0, equation (3) becomes

my″ + by′ + ky = 0 .

For this equation, verify the following:

 (a)  If y1t2 is a solution, so is cy1t2, for any constant c.
 (b)  If y11t2 and y21t2 are solutions, so is their sum 

y11t2 + y21t2.

3. Show that if Fext1t2 = 0, m = 1, k = 9, and b = 6, 
then equation (3) has the “critically damped” solutions 
y11t2 = e-3t and y21t2 = te-3t. What is the limit of 
these solutions as t S ∞?

4.1 EXERCISES
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4. Verify that y = sin 3t + 2 cos 3t is a solution to the initial 
value problem

2y″ + 18y = 0 ;  y102 = 2 ,  y′102 = 3 .

Find the maximum of ƒy1t2 ƒ for - ∞ 6 t 6 ∞ .

5. Verify that the exponentially damped sinusoid 
y1t2 = e-3t sin 123 t2 is a solution to equation (3) if 
Fext1t2 = 0, m = 1, b = 6, and k = 12. What is the 
limit of this solution as t S ∞?

6. An external force F1t2 = 2 cos 2t is applied to a mass–
spring system with m = 1, b = 0, and k = 4, which is 
initially at rest; i.e., y102 = 0, y′102 = 0. Verify that 
y1t2 = 1

2 t sin 2t gives the motion of this spring. What 
will eventually (as t increases) happen to the spring?

In Problems 7–9, find a synchronous solution of the form  
A cos Ωt + B sin Ωt to the given forced oscillator equation 
using the method of Example 4 to solve for A and B.

7. y″ + 2y′ + 4y = 5 sin 3t,  Ω = 3

8. y″ + 2y′ + 5y = -50 sin 5t,  Ω = 5

9. y″ + 2y′ + 4y = 6 cos 2t + 8 sin 2t,  Ω = 2

10. Undamped oscillators that are driven at resonance have 
unusual (and nonphysical) solutions.

 (a)  To investigate this, find the synchronous solution 
A cos Ωt + B sin Ωt to the generic forced oscillator 
equation

(7) my″ + by′ + ky =  cos Ωt .

 (b)  Sketch graphs of the coefficients A and B, as func-
tions of Ω, for m = 1, b = 0.1, and k = 25.

 (c)  Now set b = 0 in your formulas for A and B and 
resketch the graphs in part (b), with m = 1, and  
k = 25. What happens at Ω = 5? Notice that the 
amplitudes of the synchronous solutions grow with-
out bound as Ω approaches 5.

 (d)  Show directly, by substituting the form A cos Ωt +  
B sin Ωt into equation (7), that when b = 0 there 
are no synchronous solutions if Ω = 2k>m.

 (e)  Verify that 12mΩ2-1t sin Ωt solves equation (7) 
when b = 0 and Ω = 2k>m. Notice that this 
nonsynchronous solution grows in time, without 
bound.

Clearly one cannot neglect damping in analyzing an 
oscillator forced at resonance, because otherwise the 
solutions, as shown in part (e), are nonphysical. This 
behavior will be studied later in this chapter.

We begin our study of the linear second-order constant-coefficient differential equation

(1) ay″ + by′ + cy = f1t2  1a ≠ 02
with the special case where the function f1t2 is zero:

(2) ay″ + by′ + cy = 0 .

This case arises when we consider mass–spring oscillators vibrating freely—that is, without 
external forces applied. Equation (2) is called the homogeneous form of equation (1); f1t2 is 
the “nonhomogeneity” in (1). (This nomenclature is not related to the way we used the term for 
first-order equations in Section 2.6.)

A look at equation (2) tells us that a solution of (2) must have the property that its second 
derivative is expressible as a linear combination of its first and zeroth derivatives.† This sug-
gests that we try to find a solution of the form y = ert, since derivatives of ert are just constants 
times ert. If we substitute y = ert into (2), we obtain

 ar2 ert + brert + cert = 0 ,

 ert1ar2 + br + c2 = 0 .

4.2 Homogeneous Linear Equations: The General Solution

†The zeroth derivative of a function is the function itself.
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Because ert is never zero, we can divide by it to obtain

(3) ar2 + br + c = 0 .

Consequently, y = ert is a solution to (2) if and only if r satisfies equation (3). Equation (3) is 
called the auxiliary equation (also known as the characteristic equation) associated with the 
homogeneous equation (2).

Now the auxiliary equation is just a quadratic, and its roots are

r1 =
-b + 2b2 - 4ac

2a
  and  r2 =

-b - 2b2 - 4ac
2a

 .

When the discriminant, b2 - 4ac, is positive, the roots r1 and r2 are real and distinct. If 
b2 - 4ac = 0, the roots are real and equal. And when b2 - 4ac 6 0, the roots are complex 
conjugate numbers. We consider the first two cases in this section; the complex case is deferred 
to Section 4.3.

Example 1 Find a pair of solutions to

(4) y″ + 5y′ - 6y = 0 .

Solution The auxiliary equation associated with (4) is

r2 + 5r - 6 = 1r - 121r + 62 = 0 ,

which has the roots r1 = 1, r2 = -6. Thus, et and e-6t are solutions. ◆

Notice that the identically zero function, y1t2 K 0, is always a solution to (2). Further-
more, when we have a pair of solutions y11t2 and y21t2 to this equation, as in Example 1, we 
can construct an infinite number of other solutions by forming linear combinations:

(5) y1t2 = c1 y11t2 + c2 y21t2
for any choice of the constants c1 and c2. The fact that (5) is a solution to (2) can be seen by 
direct substitution and rearrangement:

ay″ + by′ + cy = a1c1y1 + c2y22 ″ + b1c1y1 + c2y22 ′ + c1c1y1 + c2y22
 = a1c1y

>
1 + c2y

>
22 + b1c1y

=
1 + c2y

=
22 + c1c1y1 + c2y22

 = c11ay>1 + by=1 + cy12 + c21ay>2 + by=2 + cy22
 = 0 + 0 .

The two “degrees of freedom” c1 and c2 in the combination (5) suggest that solutions to 
the differential equation (2) can be found meeting additional conditions, such as the initial 
conditions for the first-order equations in Chapter 1. But the presence of c1 and c2 leads one 
to anticipate that two such conditions, rather than just one, can be imposed. This is consistent 
with the mass–spring interpretation of equation (2), since predicting the motion of a mechani-
cal system requires knowledge not only of the forces but also of the initial position y102 and 
velocity y′102 of the mass. A typical initial value problem for these second-order equations is 
given in the following example.

Example 2 Solve the initial value problem

(6) y″ + 2y′ - y = 0 ;  y102 = 0 ,  y′102 = -1 .
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Solution We will first find a pair of solutions as in the previous example. Then we will adjust the con-
stants c1 and c2 in (5) to obtain a solution that matches the initial conditions on y102 and y′102.  
The auxiliary equation is

r2 + 2r - 1 = 0 .

Using the quadratic formula, we find that the roots of this equation are

r1 = -1 + 22  and  r2 = -1 - 22 .

Consequently, the given differential equation has solutions of the form

(7) y1t2 = c1e
1-1 +222t + c2e

1-1 -222t .

To find the specific solution that satisfies the initial conditions given in (6), we first differentiate 
y as given in (7), then plug y and y′ into the initial conditions of (6). This gives

 y102 = c1e
0 + c2e

0 ,

 y′102 = 1-1 + 222c1e
0 + 1-1 - 222c2e

0 ,

or

 0 = c1 + c2 ,

 -1 = 1-1 + 222c1 + 1-1 - 222c2 .

Solving this system yields c1 = -22>4 and c2 = 22>4. Thus,

y1t2 = -  
22
4

 e1-1 +222t +
22
4

 e1-1 -222t

is the desired solution. ◆

To gain more insight into the significance of the two-parameter solution form (5), we need 
to look at some of the properties of the second-order equation (2). First of all, there is an 
existence-and-uniqueness theorem for solutions to (2); it is somewhat like the corresponding 
Theorem 1 in Section 1.2 for first-order equations but updated to reflect the fact that two ini-
tial conditions are appropriate for second-order equations. As motivation for the theorem, sup-
pose the differential equation (2) were really easy, with b = 0 and c = 0. Then y″ = 0 would 
merely say that the graph of y1t2 is simply a straight line, so it is uniquely determined by 
specifying a point on the line,

(8) y1t02 = Y0 ,

and the slope of the line,

(9) y′1t02 = Y1 .

Theorem 1 states that conditions (8) and (9) suffice to determine the solution uniquely for the 
more general equation (2).

Existence and Uniqueness: Homogeneous Case

Theorem 1. For any real numbers a 1≠02, b, c, t0, Y0, and Y1, there exists a unique 
solution to the initial value problem

(10) ay″ + by′ + cy = 0 ;  y1t02 = Y0 ,  y′1t02 = Y1 .

The solution is valid for all t in 1- ∞ , + ∞ 2.
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Note in particular that if a solution y1t2 and its derivative vanish simultaneously at a 
point t0 1i.e., Y0 = Y1 = 02, then y1t2 must be the identically zero solution.

In this section and the next, we will construct explicit solutions to (10), so the question of 
existence of a solution is not really an issue. It is extremely valuable to know, however, that the 
solution is unique. The proof of uniqueness is rather different from anything else in this chap-
ter, so we defer it to Chapter 13.†

Now we want to use this theorem to show that, given two solutions y11t2 and y21t2 to 
equation (2), we can always find values of c1 and c2 so that c1y11t2 + c2y21t2 meets specified 
initial conditions in (10) and therefore is the (unique) solution to the initial value problem. But 
we need to be a little more precise; if, for example, y21t2 is simply the identically zero solu-
tion, then c1y11t2 + c2y21t2 = c1y11t2 actually has only one constant and cannot be expected 
to satisfy two conditions. Furthermore, if y21t2 is simply a constant multiple of y11t2—say, 
y21t2 = ky11t2—then again c1y11t2 + c2y21t2 = 1c1 + kc22y11t2 = Cy11t2 actually has 
only one constant. The condition we need is linear independence.

Linear Independence of Two Functions

Definition 1. A pair of functions y11t2 and y21t2 is said to be linearly independent on 
the interval I if and only if neither of them is a constant multiple of the other on all  
of I.†† We say that y1 and y2 are linearly dependent on I if one of them is a constant 
multiple of the other on all of I.

Representation of Solutions to Initial Value Problem

Theorem 2. If y11t2 and y21t2 are any two solutions to the differential equation (2) 
that are linearly independent on 1- ∞ , ∞ 2, then unique constants c1 and c2 can always 
be found so that c1y11t2 + c2y21t2 satisfies the initial value problem (10) on 1- ∞ , ∞ 2.

The proof of Theorem 2 will be easy once we establish the following technical lemma.

†All references to Chapters 11–13 refer to the expanded text, Fundamentals of Differential Equations and Boundary 
Value Problems, 7th ed.
††This definition will be generalized to three or more functions in Problem 35 and Chapter 6.

A Condition for Linear Dependence of Solutions

Lemma 1. For any real numbers a 1≠02, b, and c, if y11t2 and y21t2 are any two 
solutions to the differential equation (2) on 1- ∞ , ∞ 2 and if the equality

(11) y11t2y=21t2 - y=11t2y21t2 = 0

holds at any point t, then y1 and y2 are linearly dependent on 1- ∞ , ∞ 2. (The expres-
sion on the left-hand side of (11) is called the Wronskian of y1 and y2 at the point t; see 
Problem 34 on page 164.)
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Proof of Lemma 1. Case 1. If y11t2 ≠ 0, then let k equal y21t2 >y11t2 and consider 
the solution to (2) given by y1t2 = ky11t2. It satisfies the same “initial conditions” at t = t as 
does y21t2:

y1t2 =
y21t2
y11t2  y11t2 = y21t2 ;  y′1t2 =

y21t2
y11t2  y

=
11t2 = y=21t2 ,

where the last equality follows from (11). By uniqueness, y21t2 must be the same function as 
ky11t2 on I.

Case 2. If y11t2 = 0 but y=11t2 ≠ 0, then (11) implies y21t2 = 0. Let k = y=21t2 >y=11t2.  
Then the solution to (2) given by y1t2 = ky11t2 (again) satisfies the same “initial conditions” 
at t = t as does y21t2:

y1t2 =
y=21t2
y=11t2  y11t2 = 0 = y21t2 ;    y′1t2 =

y=21t2
y=11t2  y

=
11t2 = y=21t2 .

By uniqueness, then, y21t2 = ky11t2 on I.
Case 3. If y11t2 = y=11t2 = 0, then y11t2 is a solution to the differential equation (2) 

satisfying the initial conditions y11t2 = y=11t2 = 0; but y1t2 K 0 is the unique solution to 
this initial value problem. Thus, y11t2 K 0 3and is a constant multiple of y21t24. ◆

Proof of Theorem 2. We already know that y1t2 = c1y11t2 + c2y21t2 is a solution to 
(2); we must show that c1 and c2 can be chosen so that

y1t02 = c1y11t02 + c2y21t02 = Y0

and

y′1t02 = c1y
=
11t02 + c2y

=
21t02 = Y1 .

But simple algebra shows these equations have the solution†

c1 =
Y0y

=
21t02 - Y1y21t02

y11t02y=21t02 - y=11t02y21t02 and c2 =
Y1y11t02 - Y0y

=
11t02

y11t02y=21t02 - y=11t02y21t02
as long as the denominator is nonzero, and the technical lemma assures us that this condition 
is met. ◆

Now we can honestly say that if y1 and y2 are linearly independent solutions to (2) on 
1- ∞ , + ∞ 2, then (5) is a general solution, since any solution yg1t2 of (2) can be expressed in 
this form; simply pick c1 and c2 so that c1y1 + c2y2 matches the value and the derivative of yg at any 
point. By uniqueness, c1y1 + c2y2 and yg have to be the same function. See Figure 4.6 on page 162.

How do we find a general solution for the differential equation (2)? We already know the 
answer if the roots of the auxiliary equation (3) are real and distinct because clearly y11t2 = er1t 
is not a constant multiple of y21t2 = er2t if r1 ≠ r2.

†To solve for c1, for example, multiply the first equation by y=21t02 and the second by y21t02 and subtract.

Distinct Real Roots

If the auxiliary equation (3) has distinct real roots r1 and r2, then both y11t2 = er1t and 
y21t2 = er2t are solutions to (2) and y1t2 = c1e

r1t + c2e
r2t is a general solution.
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When the roots of the auxiliary equation are equal, we only get one nontrivial solution, 
y1 = ert. To satisfy two initial conditions, y1t02 and y′1t02, then we will need a second, lin-
early independent solution. The following rule is the key to finding a second solution.

y

t
t0

y(t0)

Slope y9(t0)

(Can’t both be
solutions)

Figure 4.6 y1t02, y′1t02 determine a unique solution.

Repeated Root

If the auxiliary equation (3) has a repeated root r, then both y11t2 = ert and y21t2 = tert 
are solutions to (2), and y1t2 = c1e

rt + c2te
rt is a general solution.

We illustrate this result before giving its proof.

Example 3 Find a solution to the initial value problem

(12) y″ + 4y′ + 4y = 0 ;  y102 = 1 ,   y′102 = 3 .

Solution The auxiliary equation for (12) is

r2 + 4r + 4 = 1r + 222 = 0 .

Because r = -2 is a double root, the rule says that (12) has solutions y1 = e-2t and y2 = te-2t.  
Let’s confirm that y21t2 is a solution:

 y21t2 = te-2t ,

 y′21t2 = e-2t - 2te-2t ,

 y″21t2 = -2e-2t - 2e-2t + 4te-2t = -4e-2t + 4te-2t ,

y″2 + 4y′2 + 4y2 = -4e-2t + 4te-2t + 41e-2t - 2te-2t2 + 4te-2t = 0 .

Further observe that e-2t and te-2t are linearly independent since neither is a constant multiple 
of the other on 1- ∞ , ∞ 2. Finally, we insert the general solution y1t2 = c1e

-2t + c2te
-2t into 

the initial conditions,

 y102 = c1e
0 + c2102e0 = 1 ,

 y′102 = -2c1e
0 + c2e

0 - 2c2102e0 = 3 ,

and solve to find c1 = 1, c2 = 5. Thus y = e-2t + 5te-2t is the desired solution. ◆
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Why is it that y21t2 = tert is a solution to the differential equation (2) when r is a double 
root (and not otherwise)? In later chapters we will see a theoretical justification of this rule in 
very general circumstances; for present purposes, though, simply note what happens if we sub-
stitute y2 into the differential equation (2):

y21t2 = tert ,

y=21t2 = ert + rtert ,

y″21t2 = rert + rert + r2tert = 2rert + r2tert ,

ay>2 + by=2 + cy2 = 32ar + b4ert + 3ar2 + br + c4tert .

Now if r is a root of the auxiliary equation (3), the expression in the second brackets is zero. 
However, if r is a double root, the expression in the first brackets is zero also:

(13) r =
-b { 2b2 - 4ac

2a
=

-b { 102
2a

 ;

hence, 2ar + b = 0 for a double root. In such a case, then, y2 is a solution.
The method we have described for solving homogeneous linear second-order equations 

with constant coefficients applies to any order (even first-order) homogeneous linear equa-
tions with constant coefficients. We give a detailed treatment of such higher-order equations 
in Chapter 6. For now, we will be content to illustrate the method by means of an example. 
We remark briefly that a homogeneous linear nth-order equation has a general solution of the 
form

y1t2 = c1y11t2 + c2y21t2 + g + cnyn1t2 ,
where the individual solutions yi1t2 are “linearly independent.” By this we mean that no yi is 
expressible as a linear combination of the others; see Problem 35 on page 164.

Example 4 Find a general solution to

(14) y‴ + 3y″ - y′ - 3y = 0 .

Solution If we try to find solutions of the form y = ert, then, as with second-order equations, we are led 
to finding roots of the auxiliary equation

(15) r3 + 3r2 - r - 3 = 0 .

We observe that r = 1 is a root of the above equation, and dividing the polynomial on the left-
hand side of (15) by r - 1 leads to the factorization

1r - 121r2 + 4r + 32 = 1r - 121r + 121r + 32 = 0 .

Hence, the roots of the auxiliary equation are 1, -1, and -3, and so three solutions of (14) 
are et, e-t, and e-3t. The linear independence of these three exponential functions is proved in 
Problem 36. A general solution to (14) is then

(16) y1t2 = c1e
t + c2e

-t + c3e
-3t . ◆

So far we have seen only exponential solutions to the linear second-order constant coef-
ficient equation. You may wonder where the vibratory solutions that govern mass–spring oscil-
lators are. In the next section, it will be seen that they arise when the solutions to the auxiliary 
equation are complex.
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In Problems 1–12, find a general solution to the given differ-
ential equation.

 1. 2y″ + 7y′ - 4y = 0 2. y″ + 6y′ + 9y = 0

 3. y″ + 5y′ + 6y = 0 4. y″ - y′ - 2y = 0

 5. y″ + 8y′ + 16y = 0 6. y″ - 5y′ + 6y = 0

 7. 6y″ + y′ - 2y = 0 8. z″ + z′ - z = 0

 9. 4y″ - 4y′ + y = 0 10. y″ - y′ - 11y = 0

11. 4w″ + 20w′ + 25w = 0

12. 3y″ + 11y′ - 7y = 0

In Problems 13–20, solve the given initial value problem.

13. y″ + 2y′ - 8y = 0 ; y102 = 3 , y′102 = -12

14. y″ + y′ = 0 ; y102 = 2 , y′102 = 1

15. y″ - 4y′ + 3y = 0 ; y102 = 1 , y′102 = 1>3
16. y″ - 4y′ - 5y = 0 ; y1-12 = 3 , y′1-12 = 9

17. y″ - 6y′ + 9y = 0 ; y102 = 2 , y′102 = 25>3
18. z″ - 2z′ - 2z = 0 ; z102 = 0 , z′102 = 3

19. y″ + 2y′ + y = 0 ; y102 = 1 , y′102 = -3

20. y″ - 4y′ + 4y = 0 ; y112 = 1 , y′112 = 1

21. First-Order Constant-Coefficient Equations.

 (a)  Substituting y = ert, find the auxiliary equation for 
the first-order linear equation

ay′ + by = 0 ,

 where a and b are constants with a ≠ 0.
 (b)  Use the result of part (a) to find the general solution.

In Problems 22–25, use the method described in Problem 21 
to find a general solution to the given equation.

22. 3y′ - 7y = 0 23. 5y′ + 4y = 0

24. 3z′ + 11z = 0 25. 6w′ - 13w = 0

26. Boundary Value Problems. When the values of a solu-
tion to a differential equation are specified at two differ-
ent points, these conditions are called boundary condi-
tions. (In contrast, initial conditions specify the values of 
a function and its derivative at the same point.) The pur-
pose of this exercise is to show that for boundary value 
problems there is no existence–uniqueness theorem that 
is analogous to Theorem 1. Given that every solution to

(17) y″ + y = 0

is of the form

y1t2 = c1 cos t + c2 sin t ,

where c1 and c2 are arbitrary constants, show that

 (a)  There is a unique solution to (17) that satisfies the 
boundary conditions y102 = 2 and y1p>22 = 0.

 (b)  There is no solution to (17) that satisfies y102 = 2 
and y1p2 = 0.

 (c)  There are infinitely many solutions to (17) that  
satisfy y102 = 2 and y1p2 = -2.

In Problems 27–32, use Definition 1 to determine whether the 
functions y1 and y2 are linearly dependent on the interval 10, 12.
27. y11t2 = cos t sin t , y21t2 = sin 2t

28. y11t2 = e3t , y21t2 = e-4t

29. y11t2 = te2t , y21t2 = e2t

30. y11t2 = t2 cos 1ln t2 , y21t2 = t2 sin 1ln t2
31. y11t2 =  tan2 t - sec2 t , y21t2 K 3

32. y11t2 K 0 , y21t2 = et

33. Explain why two functions are linearly dependent on an 
interval I if and only if there exist constants c1 and c2, not 
both zero, such that

c1y11t2 + c2y21t2 = 0   for all t in I .

34. Wronskian. For any two differentiable functions y1 
and y2, the function

(18) W3y1, y241t2 = y11t2y′21t2 - y′11t2y21t2
is called the Wronskian† of y1 and y2. This function plays 
a crucial role in the proof of Theorem 2.

 (a)  Show that W3y1, y24 can be conveniently expressed 
as the 2 * 2 determinant

W3y1, y241t2 = ` y11t2 y21t2
y=11t2 y=21t2 `  .

 (b)  Let y11t2, y21t2 be a pair of solutions to the ho-
mogeneous equation ay″ + by′ + cy = 0 (with 
a ≠ 0) on an open interval I. Prove that y11t2 and 
y21t2 are linearly independent on I if and only if 
their Wronskian is never zero on I. [Hint: This is just 
a reformulation of Lemma 1.]

 (c)  Show that if y11t2 and y21t2 are any two differen-
tiable functions that are linearly dependent on I, then 
their Wronskian is identically zero on I.

35. Linear Dependence of Three Functions. Three func-
tions y11t2, y21t2, and y31t2 are said to be linearly depen-
dent on an interval I if, on I, at least one of these func-
tions is a linear combination of the remaining two [e.g., 
if y11t2 = c1y21t2 + c2y31t2]. Equivalently (compare 
Problem 33), y1, y2, and y3 are linearly dependent on I if 
there exist constants C1, C2, and C3, not all zero, such that

C1y11t2 + C2y21t2 + C3y31t2 = 0  for all t in I.

Otherwise, we say that these functions are linearly inde-
pendent on I.

4.2 EXERCISES

†Historical Footnote: The Wronskian was named after the Polish mathematician H. Wronski (1778–1863).
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For each of the following, determine whether the 
given three functions are linearly dependent or linearly 
independent on 1- ∞ , ∞ 2:

 (a)  y11t2 = 1 , y21t2 = t , y31t2 = t2 .

 (b)  y11t2 = -3 , y21t2 = 5 sin2 t , y31t2 = cos2 t .

 (c)  y11t2 = et , y21t2 = tet , y31t2 = t2et .

 (d)  y11t2 = et , y21t2 = e-t , y31t2 = cosh t .

36. Using the definition in Problem 35, prove that if r1, r2,  
and r3 are distinct real numbers, then the functions  
er1t, er2t, and er3t are linearly independent on 1- ∞ , ∞ 2.  
[Hint: Assume to the contrary that, say, er1t = c1e

r2t + c2e
r3t 

for all t. Divide by er2t to get e1r1 - r22t = c1 + c2e
1r3 - r22t 

and then differentiate to deduce that e1r1 - r22t and e1r3 - r22t 
are linearly dependent, which is a contradiction. (Why?)]

In Problems 37–41, find three linearly independent solutions 
(see Problem 35) of the given third-order differential equation 
and write a general solution as an arbitrary linear combina-
tion of these.

37. y‴ + y″ - 6y′ + 4y = 0

38. y‴ - 6y″ - y′ + 6y = 0

39. z‴ + 2z″ - 4z′ - 8z = 0

40. y‴ - 7y″ + 7y′ + 15y = 0

41. y‴ + 3y″ - 4y′ - 12y = 0

42. (True or False): If f1, f2, f3 are three functions defined 
on 1- ∞ , ∞ 2 that are pairwise linearly independent on 
1- ∞ , ∞ 2, then f1, f2, f3 form a linearly independent set 
on 1- ∞ , ∞ 2. Justify your answer.

43. Solve the initial value problem:

y‴ - y′ = 0 ;    y102 = 2 ,

y′102 = 3 ,    y″102 = -1 .

44. Solve the initial value problem:

y‴ - 2y″ - y′ + 2y = 0 ;

y102 = 2 , y′102 = 3 , y″102 = 5 .

45. By using Newton’s method or some other numerical pro-
cedure to approximate the roots of the auxiliary equation, 
find general solutions to the following equations:

 (a) 3y‴ + 18y″ + 13y′ - 19y = 0 .
 (b) yiv - 5y″ + 5y = 0 .
 (c) yv - 3yiv - 5y‴ + 15y″ +  4y′ - 12y = 0 .

46. One way to define hyperbolic functions is by means of 
differential equations. Consider the equation y″ - y = 0. 
The hyperbolic cosine, cosh t, is defined as the solution 
of this equation subject to the initial values: y 102 = 1 
and y′102 = 0. The hyperbolic sine, sinh t, is defined as 
the solution of this equation subject to the initial values: 
y102 = 0 and y′102 = 1.

 (a)  Solve these initial value problems to derive explicit 
formulas for cosh t and sinh t. Also show that  
d
dt

 cosh t = sinh t and 
d
dt

 sinh t = cosh t.

 (b)  Prove that a general solution of the equation 
y″ - y = 0 is given by y = c1 cosh t + c2 sinh t.

 (c)  Suppose a, b, and c are given constants for which 
ar 2 + br + c = 0 has two distinct real roots. If 
the two roots are expressed in the form a - b and 
a + b, show that a general solution of the equa-
tion ay″ + by′ + cy = 0 is y = c1e

at cosh1bt2 +
c2e
at sinh1bt2.

 (d)  Use the result of part (c) to solve the initial  
value problem: y″ + y′ - 6y = 0, y102 = 2, y′102 =
-17>2.

The simple harmonic equation y″ + y = 0, so called because of its relation to the fundamental 
vibration of a musical tone, has as solutions y11t2 =  cos t and y21t2 =  sin t. Notice, how-
ever, that the auxiliary equation associated with the harmonic equation is r2 + 1 = 0, which 
has imaginary roots r = { i, where i denotes 2-1.† In the previous section, we expressed the 
solutions to a linear second-order equation with constant coefficients in terms of exponential 
functions. It would appear, then, that one might be able to attribute a meaning to the forms eit 
and e-it and that these “functions” should be related to cos t and sin t. This matchup is accom-
plished by Euler’s formula, which is discussed in this section.

When b2 - 4ac 6 0, the roots of the auxiliary equation

(1) ar2 + br + c = 0

4.3 Auxiliary Equations with Complex Roots

†Electrical engineers frequently use the symbol j to denote 2-1.
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associated with the homogeneous equation

(2) ay″ + by′ + cy = 0

are the complex conjugate numbers

r1 = a + ib and r2 = a - ib 1i = 2-12 ,
where a, b are the real numbers

(3) a = -  
b
2a
 and b =

24ac - b2

2a
 .

As in the previous section, we would like to assert that the functions er1t and er2t are solutions to 
the equation (2). This is in fact the case, but before we can proceed, we need to address some 
fundamental questions. For example, if r1 = a + ib is a complex number, what do we mean by 
the expression e1a+ib2t? If we assume that the law of exponents applies to complex numbers, then

(4) e1a+ib2t = eat+ibt = eateibt .

We now need only clarify the meaning of eibt.
For this purpose, let’s assume that the Maclaurin series for ez is the same for complex 

numbers z as it is for real numbers. Observing that i2 = -1, then for u real we have

 eiu = 1 + 1iu2 +
1iu22

2!
+ g +

1iu2n

n!
+ g

 = 1 + iu -
u2

2!
-

iu3

3!
+
u4

4!
+

iu5

5!
+ g

 = a1 -
u2

2!
+
u4

4!
+ gb + iau -

u3

3!
+
u5

5!
+ gb  .

Now recall the Maclaurin series for cos u and sin u:

 cos u = 1 -
u2

2!
+
u4

4!
+ g ,

 sin u = u -
u3

3!
+
u5

5!
+ g .

Recognizing these expansions in the proposed series for eiu, we make the identification

(5) eiU = cos U + i sin U ,

which is known as Euler’s formula.†

When Euler’s formula (with u = bt) is used in equation (4), we find

(6) e1a+ib2t = eat1cos bt + i sin bt2 ,
which expresses the complex function e1a+ib2t in terms of familiar real functions. Having made 
sense out of e1a+ib2t, we can now show (see Problem 30 on page 172) that

(7) 
d
dt

 e1a+ib2t = 1a + ib2e1a+ ib2t ,

†Historical Footnote: This formula first appeared in Leonhard Euler’s monumental two-volume Introductio in  
Analysin Infinitorum (1748).
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and, with the choices of a and b as given in (3), the complex function e1a+ib2t is indeed a solu-
tion to equation (2), as is e1a- ib2t, and a general solution is given by

(8) y1t2 = c1e
1a+ ib2t + c2e

1a- ib2t

 = c1e
at1cos bt + i sin bt2 + c2e

at1cos bt - i sin bt2 .
Example 1 shows that in general the constants c1 and c2 that go into (8), for a specific 

initial value problem, are complex.

Example 1 Use the general solution (8) to solve the initial value problem

y″ + 2y′ + 2y = 0 ;   y102 = 0,  y′102 = 2 .

Solution The auxiliary equation is r2 + 2r + 2 = 0, which has roots

r =
-224 - 8

2
= -1 { i .

Hence, with a = -1, b = 1, a general solution is given by

y1t2 = c1e
-t1  cos t + i sin t2 + c2e

-t1  cos t - i sin t2 .
For initial conditions we have

 y102 = c1e
01  cos 0 + i sin 02 + c2e

01  cos 0 - i sin 02 = c1 + c2 = 0 ,

 y′102 = -c1e
01  cos 0 + i sin 02 + c1e

01-  sin 0 + i cos 02
 -c2e

01  cos 0 - i sin 02 + c2e
01-  sin 0 - i cos 02

 = 1-1 + i2c1 + 1-1 - i2c2

 = 2 .

As a result, c1 = - i, c2 = i, and y1t2 = - ie-t1  cos t + i sin t2 + ie-t1  cos t - i sin t2, or  
simply 2e-t sin t. ◆

The final form of the answer to Example 1 suggests that we should seek an alternative pair 
of solutions to the differential equation (2) that don’t require complex arithmetic, and we now 
turn to that task.

In general, if z1t2 is a complex-valued function of the real variable t, we can write  
z1t2 =  u1t2 + iv1t2, where u1t2 and v1t2 are real-valued functions. The derivatives of z1t2 
are then given by

dz
dt

=
du
dt

+ i 
dv

dt
,   

d2z

dt2 =
d2u

dt2 + i 
d2

v

dt2  .

With the following lemma, we show that the complex-valued solution e1a+ib2t gives rise to two 
linearly independent real-valued solutions.

Real Solutions Derived from Complex Solutions

Lemma 2. Let z1t2 = u1t2 + iv1t2 be a solution to equation (2), where a, b, and 
c are real numbers. Then, the real part u1t2 and the imaginary part v1t2 are real-valued 
solutions of (2).†

†It will be clear from the proof that this property holds for any linear homogeneous differential equation having real-
valued coefficients.
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Proof. By assumption, az″ + bz′ + cz = 0, and hence

 a1u″ + iv″2 + b1u′ + iv′2 + c1u + iv2 = 0 ,

 1au″ + bu′ + cu2 + i1av″ + bv′ + cv2 = 0 .

But a complex number is zero if and only if its real and imaginary parts are both zero. Thus, 
we must have

au″ + bu′ + cu = 0  and  av″ + bv′ + cv = 0 ,

which means that both u1t2and v1t2 are real-valued solutions of (2). ◆

When we apply Lemma 2 to the solution

e1a+ib2t = eat cos bt + ieat sin bt ,

we obtain the following.

Complex Conjugate Roots

If the auxiliary equation has complex conjugate roots a { ib, then two linearly  
independent solutions to (2) are

eat cos bt and eat sin bt ,

and a general solution is

(9) y1t2 = c1e
At cos Bt + c2e

At sin Bt ,

where c1 and c2 are arbitrary constants.

In the preceding discussion, we glossed over some important details concerning complex 
numbers and complex-valued functions. In particular, further analysis is required to justify the 
use of the law of exponents, Euler’s formula, and even the fact that the derivative of ert is rert 
when r is a complex constant.† If you feel uneasy about our conclusions, we encourage you to 
substitute the expression in (9) into equation (2) to verify that it is, indeed, a solution.

You may also be wondering what would have happened if we had worked with the func-
tion e1a-ib2t instead of e1a+ib2t. We leave it as an exercise to verify that e1a-ib2t gives rise to the 
same general solution (9). Indeed, the sum of these two complex solutions, divided by two, 
gives the first real-valued solution, while their difference, divided by 2i, gives the second.

†For a detailed treatment of these topics see, for example, Fundamentals of Complex Analysis, 3rd ed., by E. B. Saff 
and A. D. Snider (Prentice Hall, Upper Saddle River, New Jersey, 2003).

Example 2 Find a general solution to

(10) y″ + 2y′ + 4y = 0 .

Solution The auxiliary equation is

r2 + 2r + 4 = 0 ,

which has roots

r =
-2 { 24 - 16

2
=

-2 { 2-12
2

= -1 { i23 .
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Hence, with a = -1, b = 23, a general solution for (10) is

y1t2 = c1e
-t cos123 t2 + c2e

-t sin123 t2 . ◆

When the auxiliary equation has complex conjugate roots, the (real) solutions oscillate 
between positive and negative values. This type of behavior is observed in vibrating springs.

Example 3 In Section 4.1 we discussed the mechanics of the mass–spring oscillator (Figure 4.1,  
page 152), and we saw how Newton’s second law implies that the position y1t2 of the mass m 
is governed by the second-order differential equation

(11) my″1t2 + by′1t2 + ky1t2 = 0 ,

where the terms are physically identified as

3inertia4y″ + 3damping4y′ + 3stiffness4y = 0 .

Determine the equation of motion for a spring system when m = 36 kg, b = 12 kg/sec (which 
is equivalent to 12 N-sec/m), k = 37 kg/sec2, y102 = 0.7 m, and y′102 = 0.1 m/sec. After 
how many seconds will the mass first cross the equilibrium point?

Solution The equation of motion is given by y1t2, the solution of the initial value problem for the speci-
fied values of m, b, k, y102, and y′102. That is, we seek the solution to

(12) 36y″ + 12y′ + 37y = 0 ;  y102 = 0.7 , y′102 = 0.1 .

The auxiliary equation for (12) is

36r2 + 12r + 37 = 0 ,

which has roots

r =
-12 { 2144 - 413621372

72
=

-12 { 1221 - 37
72

= -  
1
6
{ i .

Hence, with a = -1>6, b = 1, the displacement y1t2 can be expressed in the form

(13) y1t2 = c1e
-t>6 cos t + c2e

-t>6 sin t .

We can find c1 and c2 by substituting y1t2 and y′1t2 into the initial conditions given in (12). 
Differentiating (13), we get a formula for y′1t2:

y′1t2 = a -  
c1

6
+ c2be-t>6cos t + a -c1 -

c2

6
be-t>6sin t .

Substituting into the initial conditions now results in the system

 c1 = 0.7 ,

-  
c1

6
+ c2 = 0.1 .

Upon solving, we find c1 = 0.7 and c2 = 1.3>6. With these values, the equation of motion 
becomes

y1t2 = 0.7e-t>6 cos t +
1.3
6

 e-t>6 sin t .
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To determine the times when the mass will cross the equilibrium point, we set y1t2 = 0 
and solve for t:

0 = y1t2 = 0.7e-t>6 cos t + 1.3
6 e-t>6 sin t = 1cos t210.7e-t>6 + 1.3

6 e-t>6 tan t2 .

But y1t2 is not zero for cos t = 0, so only the zeros of the second factor are pertinent; that is,

tan t = -4.2
1.3 .

A quick glance at the graph of tan t reveals that the first positive t for which this is true lies 
between p>2 and p. Since the arctangent function takes only values between -p>2 and p>2, 
the appropriate adjustment is

t = arctan1 -4.2
1.3 2 + p ≈ 1.87 seconds . ◆

From Example 3 we see that any second-order constant-coefficient differential equation 
ay″ + by′ + cy = 0 can be interpreted as describing a mass–spring system with mass a, damp-
ing coefficient b, spring stiffness c, and displacement y, if these constants make sense physi-
cally; that is, if a is positive and b and c are nonnegative. From the discussion in Section 4.1, 
then, we expect on physical grounds to see damped oscillatory solutions in such a case. This is 
consistent with the display in equation (9). With a = m and c = k, the exponential decay rate 
a equals -b> 12m2, and the angular frequency b equals 24mk - b2> 12m2, by equation (3).

It is a little surprising, then, that the solutions to the equation y″ + 4y′ + 4y = 0 do 
not oscillate; the general solution was shown in Example 3 of Section 4.2 (page 162) to be 
c1e

-2t + c2te
-2t. The physical significance of this is simply that when the damping coefficient 

b is too high, the resulting friction prevents the mass from oscillating. Rather than overshoot 
the spring’s equilibrium point, it merely settles in lazily. This could happen if a light mass on a 
weak spring were submerged in a viscous fluid.

From the above formula for the oscillation frequency b, we can see that the oscillations 
will not occur for b 7 24mk. This overdamping phenomenon is discussed in more detail in 
Section 4.9.

It is extremely enlightening to contemplate the predictions of the mass–spring analogy 
when the coefficients b and c in the equation ay″ + by′ + cy = 0 are negative.

Example 4 Interpret the equation

(14) 36y″ - 12y′ + 37y = 0

in terms of the mass–spring system.

Solution Equation (14) is a minor alteration of equation (12) in Example 3; the auxiliary equation 
36r2 - 12r + 37 has roots r = 1+ 21

6 { i. Thus, its general solution becomes

(15) y1t2 = c1e
+t>6 cos t + c2e

+t>6 sin t .

Comparing equation (14) with the mass–spring model

(16) 3inertia4y″ + 3damping4y′ + 3stiffness4y = 0 ,

we have to envision a negative damping coefficient b = -12, giving rise to a friction force 
Ffriction = -by′ that imparts energy to the system instead of draining it. The increase in energy 
over time must then reveal itself in oscillations of ever-greater amplitude–precisely in accor-
dance with formula (15), for which a typical graph is drawn in Figure 4.7. ◆
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Figure 4.7 Solution graph for Example 4

Example 5 Interpret the equation

(17) y″ + 5y′ - 6y = 0

in terms of the mass–spring system.

Solution Comparing the given equation with (16), we have to envision a spring with a negative stiff-
ness k = -6. What does this mean? As the mass is moved away from the spring’s equilib-
rium point, the spring repels the mass farther with a force Fspring = -ky that intensifies as the 
 displacement increases. Clearly the spring must “exile” the mass to (plus or minus) infinity, 
and we expect all solutions y1t2 to approach {∞  as t increases (except for the equilibrium 
solution y1t2 K 0).

In fact, in Example 1 of Section 4.2, we showed the general solution to equation (17) to be

(18) c1e
t + c2e

-6t .

Indeed, if we examine the solutions y1t2 that start with a unit displacement y102 = 1 and 
velocity y′102 = v0, we find

(19) y1t2 =
6 + v0

7
 et +

1 - v0

7
 e-6t ,

and the plots in Figure 4.8 on page 172 confirm our prediction that all (nonequilibrium) solu-
tions diverge—except for the one with v0 = -6.

What is the physical significance of this isolated bounded solution? Evidently, if the mass 
is given an initial inwardly directed velocity of -6, it has barely enough energy to overcome 
the effect of the spring banishing it to + ∞  but not enough energy to cross the equilibrium point 
(and get pushed to - ∞ ). So it asymptotically approaches the (extremely delicate) equilibrium 
position y = 0. ◆

In Section 4.8, we will see that taking further liberties with the mass–spring interpretation 
enables us to predict qualitative features of more complicated equations.

Throughout this section we have assumed that the coefficients a, b, and c in the differen-
tial equation were real numbers. If we now allow them to be complex constants, then the roots  
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r1, r2 of the auxiliary equation (1) are, in general, also complex but not necessarily conjugates 
of each other. When r1 ≠ r2, a general solution to equation (2) still has the form

y1t2 = c1e
r1t + c2e

r2t ,

but c1 and c2 are now arbitrary complex-valued constants, and we have to resort to the clumsy 
calculations of Example 1.

We also remark that a complex differential equation can be regarded as a system of two 
real differential equations since we can always work separately with its real and imaginary 
parts. Systems are discussed in Chapters 5 and 9.

y

y0 5 6 y0 5 0

y0 5 26

y0 5 212

1

y0 5 218

t

Figure 4.8 Solution graphs for Example 5

In Problems 1–8, the auxiliary equation for the given differ-
ential equation has complex roots. Find a general solution.

 1. y″ + 9y = 0  2. y″ + y = 0 

 3. z″ - 6z′ + 10z = 0  4. y″ - 10y′ + 26y = 0 

 5. w″ + 4w′ + 6w = 0  6. y″ - 4y′ + 7y = 0 

 7. 4y″ + 4y′ + 6y = 0  8. 4y″ - 4y′ + 26y = 0 

In Problems 9–20, find a general solution.

 9. y″ - 8y′ + 7y = 0  10. y″ + 4y′ + 8y = 0 

11. z″ + 10z′ + 25z = 0  12. u″ + 7u = 0 

13. y″ - 2y′ + 26y = 0  14. y″ + 2y′ + 5y = 0 

15. y″ - 3y′ - 11y = 0  16. y″ + 10y′ + 41y = 0 

17. y″ - y′ + 7y = 0  18. 2y″ + 13y′ - 7y = 0 

19. y‴ + y″ + 3y′ - 5y = 0  20. y‴ - y″ + 2y = 0 

In Problems 21–27, solve the given initial value problem.

21. y″ + 2y′ + 2y = 0 ; y102 = 2 , y′102 = 1 

22. y″ + 2y′ + 17y = 0 ; y102 = 1 , y′102 = -1

23. w″ - 4w′ + 2w = 0 ; w102 = 0 , w′102 = 1

24. y″ + 9y = 0 ; y102 = 1 , y′102 = 1

25. y″ - 2y′ + 2y = 0 ; y1p2 = ep , y′1p2 = 0

26. y″ - 2y′ + y = 0 ; y102 = 1 , y′102 = -2

27. y‴ - 4y″ + 7y′ - 6y = 0 ;   y102 = 1 , y′102 = 0, 
y″102 = 0 

28. To see the effect of changing the parameter b in the initial 
value problem

y″ + by′ + 4y = 0 ; y102 = 1 , y′102 = 0 ,

solve the problem for b = 5, 4, and 2 and sketch the 
solutions.

29. Find a general solution to the following higher-order 
equations.

 (a) y‴ - y″ + y′ + 3y = 0
 (b) y‴ + 2y″ + 5y′ - 26y = 0
 (c) yiv + 13y″ + 36y = 0

30. Using the representation for e1a+ib2t in (6), verify the dif-
ferentiation formula (7).

4.3 EXERCISES
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31. Using the mass–spring analogy, predict the behavior as 
t S + ∞  of the solution to the given initial value prob-
lem. Then confirm your prediction by actually solving 
the problem.

 (a)  y″ + 16y = 0 ; y102 = 2 , y′102 = 0
 (b)  y″ + 100y′ + y = 0 ; y102 = 1 , y′102 = 0
 (c)  y″ - 6y′ + 8y = 0 ; y102 = 1 , y′102 = 0
 (d)  y″ + 2y′ - 3y = 0 ; y102 = -2 , y′102 = 0
 (e)  y″ - y′ - 6y = 0 ; y102 = 1 , y′102 = 1

32. Vibrating Spring without Damping. A vibrating 
spring without damping can be modeled by the initial 
value problem (11) in Example 3 by taking b = 0.

 (a)  If m = 10 kg, k = 250 kg/sec2, y102 = 0.3 m, and 
y′102 = -0.1 m/sec, find the equation of motion 
for this undamped vibrating spring.

 (b)  After how many seconds will the mass in part (a) 
first cross the equilibrium point?

 (c)  When the equation of motion is of the form displayed 
in (9), the motion is said to be oscillatory with fre-
quency b>2p. Find the frequency of oscillation for 
the spring system of part (a).

33. Vibrating Spring with Damping. Using the model for 
a vibrating spring with damping discussed in Example 3:

 (a)  Find the equation of motion for the vibrating  
spring with damping if m = 10 kg, b = 60 kg/sec, 
k = 250 kg/sec2, y102 = 0.3 m, and y′102 =
-0.1 m/sec.

 (b)  After how many seconds will the mass in part (a) 
first cross the equilibrium point?

 (c)  Find the frequency of oscillation for the spring 
system of part (a). [Hint: See the definition of   
frequency given in Problem 32(c).]

 (d)  Compare the results of Problems 32 and 33 and 
determine what effect the damping has on the 
 frequency of oscillation. What other effects does it 
have on the solution?

34. RLC Series Circuit. In the study of an electrical cir-
cuit consisting of a resistor, capacitor, inductor, and an 
electromotive force (see Figure 4.9), we are led to an 
 initial value problem of the form

(20) L
dI
dt

+ RI +
q

C
= E1t2 ;

q102 = q0 ,

I102 = I0 ,

where L is the inductance in henrys, R is the resistance 
in ohms, C is the capacitance in farads, E1t2 is the 
electromotive force in volts, q1t2 is the charge in cou-
lombs on the capacitor at time t, and I = dq>dt is the 
current in amperes. Find the current at time t if the 
charge on the capacitor is initially zero, the initial cur-
rent is zero, L = 10 H, R = 20 Ω, C = 162602-1 F, 
and E1t2 = 100 V. [Hint: Differentiate both sides of the  

differential equation in (20) to obtain a homogeneous 
linear second-order equation for I1t2. Then use (20) to 
determine dI>dt at t = 0.]

) q ( t C E ( t ) 

R 

L 

I ( t ) 

Figure 4.9 RLC series circuit

35. Swinging Door. The motion of a swinging door with 
an adjustment screw that controls the amount of friction 
on the hinges is governed by the initial value problem

Iu″ + bu′ + ku = 0 ; u102 = u0 , u′102 = v0 ,

where u is the angle that the door is open, I is the 
moment of inertia of the door about its hinges, b 7 0 is a 
damping constant that varies with the amount of friction 
on the door, k 7 0 is the spring constant associated with 
the swinging door, u0 is the initial angle that the door is 
opened, and y0 is the initial angular velocity imparted to 
the door (see Figure 4.10). If I and k are fixed, determine 
for which values of b the door will not continually swing 
back and forth when closing.

Figure 4.10 Top view of swinging door

36. Although the real general solution form (9) is conve-
nient, it is also possible to use the form

(21) d1e
1a+ib2t + d2e

1a-ib2t

to solve initial value problems, as illustrated in Example 1.  
The coefficients d1 and d2 are complex constants.

 (a)  Use the form (21) to solve Problem 21. Verify that 
your form is equivalent to the one derived using (9).

 (b)  Show that, in general, d1 and d2 in (21) must be com-
plex conjugates in order that the solution be real.

37. The auxiliary equations for the following differen-
tial equations have repeated complex roots. Adapt the 
“repeated root” procedure of Section 4.2 to find their 
general solutions:

 (a)  yiv + 2y″ + y = 0 .
 (b)  yiv + 4y‴ + 12y″ + 16y′ + 16y = 0 . [Hint: The 

auxiliary equation is 1r2 + 2r + 422 = 0.]
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38. Prove the sum of angles formula for the sine function by 
following these steps. Fix x.

 (a)  Let f1t2 J sin1x + t2. Show that f ″1t2 + f1t2 = 0,  
f102 = sin x, and f′102 = cos x.

 (b)  Use the auxiliary equation technique to solve the 
initial value problem y″ + y = 0, y102 = sin x, and 
y′102 = cos x.

 (c)  By uniqueness, the solution in part (b) is the same as 
f1t2 from part (a). Write this equality; this should be 
the standard sum of angles formula for sin 1x + t2.

In this section we employ “judicious guessing” to derive a simple procedure for finding a solu-
tion to a nonhomogeneous linear equation with constant coefficients

(1) ay″ + by′ + cy = f1t2, 
when the nonhomogeneity f1t2 is a single term of a special type. Our experience in Section 4.3 
indicates that (1) will have an infinite number of solutions. For the moment we are content to find 
one particular solution. To motivate the procedure, let’s first look at a few instructive examples.

4.4  Nonhomogeneous Equations:  
the Method of Undetermined Coefficients

Example 1 Find a particular solution to

(2) y″ + 3y′ + 2y = 3t .

Solution We need to find a function y1t2 such that the combination y″ + 3y′ + 2y is a linear function of 
t—namely, 3t. Now what kind of function y “ends up” as a linear function after having its zeroth, 
first, and second derivatives combined? One immediate answer is: another linear function. So we 
might try y11t2 = At and attempt to match up y>1 + 3y=1 + 2y1 with 3t.

Perhaps you can see that this won’t work: y1 = At, y=1 = A and y>1 = 0 gives us

y>1 + 3y=1 + 2y1 = 3A + 2At , 

and for this to equal 3t, we require both that A = 0 and A = 3>2. We’ll have better luck if we 
append a constant term to the trial function: y21t2 = At + B. Then y=2 = A, y>2 = 0, and

y>2 + 3y=2 + 2y2 = 3A + 21At + B2 = 2At + 13A + 2B2 , 
which successfully matches up with 3t if 2A = 3 and 3A + 2B = 0. Solving this system gives 
A = 3>2 and B = -9>4. Thus, the function

y21t2 =
3
2

 t -
9
4

is a solution to (2). ◆

Example 1 suggests the following method for finding a particular solution to the equation

ay″ + by′ + cy = Ctm, m = 0, 1, 2,c;

namely, we guess a solution of the form

yp1t2 = Amtm + g + A1t + A0 ,

with undetermined coefficients Aj, and match the corresponding powers of t in ay″ + by′ + cy 
with Ctm.† This procedure involves solving m + 1 linear equations in the m + 1 unknowns 

†In this case the coefficient of tk in ay″ + by′ + cy will be zero for k ≠ m and C for k = m.
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A0, A1,c, Am, and hopefully they have a solution. The technique is called the method of 
undetermined coefficients. Note that, as Example 1 demonstrates, we must retain all the pow-
ers tm, tm - 1,c, t1, t0 in the trial solution even though they are not present in the nonhomoge-
neity f1t2.

Example 2 Find a particular solution to

(3) y″ + 3y′ + 2y = 10e3t .

Solution We guess yp1t2 = Ae3t because then y=p and y>p will retain the same exponential form:

y>p + 3y=p + 2yp = 9Ae3t + 313Ae3t2 + 21Ae3t2 = 20Ae3t .

Setting 20Ae3t = 10e3t and solving for A gives A = 1>2; hence,

yp1t2 =
e3t

2

is a solution to (3). ◆

Example 3 Find a particular solution to

(4) y″ + 3y′ + 2y = sin t .

Solution Our initial action might be to guess y11t2 = A sin t, but this will fail because the derivatives 
introduce cosine terms:

y>1 + 3y=1 + 2y1 = -A sin t + 3A cos t + 2A sin t = A sin t + 3A cos t ,

and matching this with sin t would require that A equal both 1 and 0. So we include the cosine 
term in the trial solution:

yp1t2 = A sin t + B cos t ,

y=p1t2 = A cos t - B sin t ,

y>p1t2 = -A sin t - B cos t ,

and (4) becomes

 y>p1t2 + 3y=p1t2 + 2yp1t2 = -A sin t - B cos t + 3A cos t - 3B sin t

 + 2A sin t + 2B cos t

 = 1A - 3B2  sin t + 1B + 3A2  cos t

 =  sin t .

The equations A - 3B = 1, B + 3A = 0 have the solution A = 0.1, B = -0.3. Thus, the 
function

yp1t2 = 0.1 sin t - 0.3 cos t

is a particular solution to (4). ◆

More generally, for an equation of the form

(5) ay″ + by′ + cy = C sin bt  1or  C cos bt2 ,
the method of undetermined coefficients suggests that we guess

(6) yp1t2 = A cos bt + B sin bt

and solve (5) for the unknowns A and B.
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If we compare equation (5) with the mass–spring system equation

(7) 3inertia4 * y″ + 3damping4 * y′ + 3stiffness4 * y = Fext ,

we can interpret (5) as describing a damped oscillator, shaken with a sinusoidal force. Accord-
ing to our discussion in Section 4.1, then, we would expect the mass ultimately to respond by 
moving in synchronization with the forcing sinusoid. In other words, the form (6) is suggested 
by physical, as well as mathematical, experience. A complete description of forced oscillators 
will be given in Section 4.10.

Example 4 Find a particular solution to

(8) y″ + 4y = 5t2et .

Solution Our experience with Example 1 suggests that we take a trial solution of the form yp1t2 =
1At2 + Bt + C2et, to match the nonhomogeneity in (8). We find

 yp = 1At2 + Bt + C2et ,

 y=p = 12At + B2et + 1At2 + Bt + C2et ,

 y>p = 2Aet + 212At + B2et + 1At2 + Bt + C2et ,

 y>p + 4yp = et12A + 2B + C + 4C2 + tet14A + B + 4B2 + t2et1A + 4A2
 = 5t2et .

Matching like terms yields A = 1, B = -4>5, and C = -2>25. A solution is given by

yp1t2 = a t2 -
4t
5

-
2
25
bet . ◆

As our examples illustrate, when the nonhomogeneous term f1t2 is an exponential, a sine, 
a cosine function, or a nonnegative integer power of t times any of these, the function f1t2 
itself suggests the form of a particular solution. However, certain situations thwart the straight-
forward application of the method of undetermined coefficients. Consider, for example, the 
equation

(9) y″ + y′ = 5 .

Example 1 suggests that we guess y11t2 = A, a zero-degree polynomial. But substitution into 
(9) proves futile:

1A2 ″ + 1A2 ′ = 0 ≠ 5 .

The problem arises because any constant function, such as y11t2 = A, is a solution to the cor-
responding homogeneous equation y″ + y′ = 0, and the undetermined coefficient A gets lost 
upon substitution into the equation. We would encounter the same situation if we tried to find 
a solution to

(10) y″ - 6y′ + 9y = e3t

of the form y1 = Ae3t, because e3t solves the associated homogeneous equation and

3Ae3t4 ″ - 63Ae3t4 ′ + 93Ae3t4 = 0 ≠ e3t .

The “trick” for refining the method of undetermined coefficients in these situations smacks 
of the same logic as in Section 4.2, when a method was prescribed for finding second solutions 
to homogeneous equations with double roots. Basically, we append an extra factor of t to the trial 
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solution suggested by the basic procedure. In other words, to solve (9) we try yp1t2 = At instead 
of A:

(9′) yp = At, y=p = A, y>p = 0,

  y>p + y=p = 0 + A = 5 ,

 A = 5,  yp1t2 = 5t .

Similarly, to solve (10) we try yp = Ate3t instead of Ae3t. The trick won’t work this time, 
because the characteristic equation of (10) has a double root and, consequently, Ate3t also 
solves the homogeneous equation:

3Ate3t4 ″ - 63Ate3t4 ′ + 93Ate3t4 = 0 ≠ e3t.

But if we append another factor of t, yp = At2e3t, we succeed in finding a particular solution:†

 yp = At2e3t,   y=p = 2Ate3t + 3At2e3t,   y>p = 2Ae3t + 12Ate3t + 9At2e3t ,

 y>p - 6y=p + 9yp = 12Ae3t + 12Ate3t + 9At2e3t2 - 612Ate3t + 3At2e3t2 + 91At2e3t2
 = 2Ae3t = e3t ,

so A = 1>2 and yp1t2 = t2e3t>2.
To see why this strategy resolves the problem and to generalize it, recall the form of the 

original differential equation (1), ay″ + by′ + cy = f1t2. Its associated auxiliary equation is

(11) ar2 + br + c = 0 ,

and if r is a double root, then

(12) 2ar + b = 0

holds also [equation (13), Section 4.2, page 163].
Now suppose the nonhomogeneity f1t2 has the form Ctmert, and we seek to match this

f1t2 by substituting yp1t2 = 1Ant
n + An - 1t

n - 1 + g + A1t + A02ert into (1), with the power 
n to be determined. For simplicity we merely list the leading terms in yp, y

=
p, and y>p:

 yp = Ant
nert + An - 1t

n - 1ert + An - 2t
n - 2ert +  (lower-order terms)

 y′p = Anrtnert + Anntn - 1ert + An - 1rtn - 1ert + An - 11n - 12tn - 2ert

+ An - 2rtn - 2ert + 1l.o.t.2 ,
 y″p = Anr

2tnert + 2Annrtn - 1ert + Ann1n - 12tn - 2ert

+ An - 1r
2tn - 1ert + 2An - 1r1n - 12tn - 2ert + An - 2r

2tn - 2ert + 1l.o.t2 .
Then the left-hand member of (1) becomes

(13) ay>p + by=p + cyp

= An1ar2 + br + c2tnert + 3Ann12ar + b2 + An - 11ar2 + br + c24tn - 1ert

+ 3Ann1n - 12a + An - 11n - 1212ar + b2 + An - 21ar2 + br + c24tn - 2ert

+ 1l.o.t.2 ,

†Indeed, the solution t2 to the equation y″ = 2, computed by simple integration, can also be derived by appending two 
factors of t to the solution y K 1 of the associated homogeneous equation.
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and we observe the following:
Case 1. If r is not a root of the auxiliary equation, the leading term in (13) is  

An1ar2 + br + c2tnert, and to match f1t2 = Ctmert we must take n = m:

yp1t2 = 1Amtm + g + A1t + A02ert .

Case 2. If r is a simple root of the auxiliary equation, (11) holds and the leading term in 
(13) is Ann12ar + b2tn - 1ert, and to match f1t2 = Ctmert we must take n = m + 1:

yp1t2 = 1Am + 1t
m + 1 + Amtm + g + A1t + A02ert .

However, now the final term A0e
rt can be dropped, since it solves the associated homogeneous 

equation, so we can factor out t and for simplicity renumber the coefficients to write

yp1t2 = t1Amtm + g + A1t + A02ert .

Case 3. If r is a double root of the auxiliary equation, (11) and (12) hold and the leading 
term in (13) is Ann1n - 12atn - 2ert, and to match f1t2 = Ctmert we must take n = m + 2:

yp1t2 = 1Am + 2t
m + 2 + Am + 1t

m + 1 + g + A2t
2 + A1t + A02ert,

but again we drop the solutions to the associated homogeneous equation and renumber to write

yp1t2 = t21Amtm + g + A1t + A02ert .

We summarize with the following rule.

Method of Undetermined Coefficients

To find a particular solution to the differential equation

ay″ + by′ + cy = Ctmert,

where m is a nonnegative integer, use the form

(14) yp1t2 = ts1Amtm + g + A1t + A02ert,

with

(i) s = 0 if r is not a root of the associated auxiliary equation;
(ii) s = 1 if r is a simple root of the associated auxiliary equation; and
(iii) s = 2 if r is a double root of the associated auxiliary equation.

To find a particular solution to the differential equation

ay″ + by′ + cy = c Ctmeatcos bt
or

Ctmeatsin bt

for b ≠ 0, use the form

(15) yp1t2 = ts1Amtm + g + A1t + A02eat cos bt

+ ts1Bmtm + g + B1t + B02eat sin bt ,
with

(iv) s = 0 if a + ib is not a root of the associated auxiliary equation; and
(v) s = 1 if a + ib is a root of the associated auxiliary equation.
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[The (cos, sin) formulation (15) is easily derived from the exponential formulation (14) by 
putting r = a + ib and employing Euler’s formula, as in Section 4.3.]

Remark 1. The nonhomogeneity Ctm corresponds to the case when r = 0.

Remark 2. The rigorous justification of the method of undetermined coefficients [including the 
analysis of the terms we dropped in (13)] will be presented in a more general context in Chapter 6.

Example 5 Find the form for a particular solution to

(16) y″ + 2y′ - 3y = f1t2 ,
where f1t2 equals

(a) 7 cos 3t (b) 2tet sin t (c) t2 cos pt (d) 5e-3t (e) 3tet (f) t2et

Solution The auxiliary equation for the homogeneous equation corresponding to (16), r2 + 2r - 3 = 0, 
has roots r1 = 1 and r2 = -3. Notice that the functions in (a), (b), and (c) are associated with 
complex roots (because of the trigonometric factors). These are clearly different from r1 and r2, 
so the solution forms correspond to (15) with s = 0:

(a) yp1t2 = A cos 3t + B sin 3t

(b) yp1t2 = 1A1t + A02et  cos t + 1B1t + B02et sin t

(c) yp1t2 = 1A2t
2 + A1t + A02  cos pt + 1B2t

2 + B1t + B02  sin pt

For the nonhomogeneity in (d) we appeal to (ii) and take yp1t2 = Ate-3t since -3 is a 
simple root of the auxiliary equation. Similarly, for (e) we take yp1t2 = t1A1t + A02et and for 
(f) we take yp1t2 = t1A2t

2 + A1t + A02e  

t. ◆

Example 6 Find the form of a particular solution to

y″ - 2y′ + y = f1t2,
for the same set of nonhomogeneities f1t2 as in Example 5.

Solution Now the auxiliary equation for the corresponding homogeneous equation is r2 - 2r + 1 =
1r - 122 = 0, with the double root r = 1. This root is not linked with any of the nonhomo-
geneities (a) through (d), so the same trial forms should be used for (a), (b), and (c) as in the 
previous example, and y1t2 = Ae-3t will work for (d).

Since r = 1 is a double root, we have s = 2 in (14) and the trial forms for (e) and (f) have 
to be changed to

(e) yp1t2 = t21A1t + A02et

(f) yp1t2 = t21A2t
2 + A1t + A02et

respectively, in accordance with (iii). ◆

Example 7 Find the form of a particular solution to

y″ - 2y′ + 2y = 5tet cos t .

Solution Now the auxiliary equation for the corresponding homogeneous equation is r2 - 2r + 2 = 0, 
and it has complex roots r1 = 1 + i, r2 = 1 - i. Since the nonhomogeneity involves eat cos bt 
with a = b = 1; that is, a + ib = 1 + i = r1, the solution takes the form

yp1t2 = t1A1t + A02et cos t + t1B1t + B02et sin t . ◆
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The nonhomogeneity tan t in an equation like y″ + y′ + y =  tan t is not one of the forms 
for which the method of undetermined coefficients can be used; the derivatives of the “trial 
solution” y1t2 = A tan t, for example, get complicated, and it is not clear what additional terms 
need to be added to obtain a true solution. In Section 4.6 we discuss a different procedure that 
can handle such nonhomogeneous terms. Keep in mind that the method of undetermined 
coefficients applies only to nonhomogeneities that are polynomials, exponentials, sines or 
cosines, or products of these functions. The superposition principle in Section 4.5 shows how 
the method can be extended to the sums of such nonhomogeneities. Also, it provides the key 
to assembling a general solution to (1) that can accommodate initial value problems, which we 
have avoided so far in our examples.

In Problems 1– 8, decide whether or not the method of unde-
termined coefficients can be applied to find a particular solu-
tion of the given equation.

1. y″ + 2y′ - y = t-1et

2. 5y″ - 3y′ + 2y = t3 cos 4t

3. 2y″1x2 - 6y′1x2 + y1x2 = 1  sin x2 >e4x

4. x″ + 5x′ - 3x = 3t

5. y″1u2 + 3y′1u2 - y1u2 = sec u

6. 2v″1x2 - 3v1x2 = 4x sin2 x + 4x cos2 x

7. 8z′1x2 - 2z1x2 = 3x100e4x cos 25x

8. ty″ - y′ + 2y =  sin 3t

In Problems 9–26, find a particular solution to the differential 
equation.

 9. y″ + 3y = -9 10. y″ + 2y′ - y = 10

 11. y″1x2 + y1x2 = 2x 12. 2x′ + x = 3t2

13. y″ - y′ + 9y = 3 sin 3t 14. 2z″ + z = 9e2t

15. 
d2y

dx2 - 5
dy

dx
+ 6y = xex 16. u″1t2 - u1t2 = t sin t

17. y″ + 4y = 8 sin 2t 18. y″ - 2y′ + y = 8et

19. 4y″ + 11y′ - 3y = -2te-3t

20. y″ + 4y = 16t sin 2t

21. x″1t2 - 4x′1t2 + 4x1t2 = te2t

22. x″1t2 - 2x′1t2 + x1t2 = 24t2et

23. y″1u2 - 7y′1u2 = u2

24. y″1x2 + y1x2 = 4x cos x

25. y″ + 2y′ + 4y = 111e2t cos 3t

26. y″ + 2y′ + 2y = 4te-t cos t

In Problems 27–32, determine the form of a particular solution 
for the differential equation. (Do not evaluate coefficients.)

27. y″ + 9y = 4t3 sin 3t

28. y″ - 6y′ + 9y = 5t6e3t 

29. y″ + 3y′ - 7y = t4et

30. y″ - 2y′ + y = 7et cos t

31. y″ + 2y′ + 2y = 8t3e-t sin t

32. y″ - y′ - 12y = 2t6e-3t

In Problems 33–36, use the method of undetermined coeffi-
cients to find a particular solution to the given higher-order 
equation.

33. y‴ - y″ + y =  sin t

34. 2y‴ + 3y″ + y′ - 4y = e-t

35. y‴ + y″ - 2y = tet

36. y142 - 3y″ - 8y =  sin t

4.4 EXERCISES

The next theorem describes the superposition principle, a very simple observation which none-
theless endows the solution set for our equations with a powerful structure. It extends the appli-
cability of the method of undetermined coefficients and enables us to solve initial value problems 
for nonhomogeneous differential equations.

4.5  The Superposition Principle and  
Undetermined Coefficients Revisited
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Proof. This is straightforward; by substituting and rearranging we find

a1k1y1 + k2y22 ″ + b1k1y1 + k2y22′ + c1k1y1 + k2y22
= k11ay>1 + by=1 + cy12 + k21ay>2 + by=2 + cy22
= k1 f11t2 + k2 f21t2 . ◆

Superposition Principle

Theorem 3. If y1 is a solution to the differential equation

ay″ + by′ + cy = f11t2 ,
and y2 is a solution to

ay″ + by′ + cy = f21t2 ,
then for any constants k1 and k2, the function k1y1 + k2y2 is a solution to the differential 
equation

ay″ + by′ + cy = k1  f11t2 + k2  f21t2 .

Example 1 Find a particular solution to

(1) y″ + 3y′ + 2y = 3t + 10e3t and

(2) y″ + 3y′ + 2y = -9t + 20e3t .

Solution In Example 1, Section 4.4, we found that y11t2 = 3t>2 - 9>4 was a solution to y″ + 3y′+  
2y = 3t, and in Example 2 we found that y21t2 = e3t>2 solved y″ + 3y′ + 2y = 10e3t. By 
superposition, then, y1 + y2 = 3t>2 - 9/4 + e3t>2 solves equation (1).

The right-hand member of (2) equals minus three times 13t2 plus two times 110e3t2. 
Therefore, this same combination of y1 and y2 will solve (2):

y1t2 = -3y1 + 2y2 = -313t>2 - 9>42 + 21e3t>22 = -9t>2 + 27>4 + e3t . ◆

If we take a particular solution yp to a nonhomogeneous equation like

(3) ay″ + by′ + cy = f1t2
and add it to a general solution c1y1 + c2y2 of the homogeneous equation associated with (3),

(4) ay″ + by′ + cy = 0 ,

the sum

(5) y1t2 = yp1t2 + c1y11t2 + c2y21t2
is again, according to the superposition principle, a solution to (3):

a1yp + c1y1 + c2y22 ″ + b1yp + c1y1 + c2y22 ′ + c1yp + c1y1 + c2y22
= f1t2 + 0 + 0 = f1t2 .
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Since (5) contains two parameters, one would suspect that c1 and c2 can be chosen to make it 
satisfy arbitrary initial conditions. It is easy to verify that this is indeed the case.

Existence and Uniqueness: Nonhomogeneous Case

Theorem 4. For any real numbers a1≠02, b, c, t0, Y0, and Y1, suppose yp1t2 is a par-
ticular solution to (3) in an interval I containing t0 and that y11t2 and y21t2 are linearly 
independent solutions to the associated homogeneous equation (4) in I. Then there exists 
a unique solution in I to the initial value problem

(6) ay″ + by′ + cy = f1t2,    y1t02 = Y0, y′1t02 = Y1 ,

and it is given by (5), for the appropriate choice of the constants c1, c2.

Proof. We have already seen that the superposition principle implies that (5) solves the dif-
ferential equation. To satisfy the initial conditions in (6) we need to choose the constants so that

(7) b yp1t02 + c1y11t02 + c2y21t02 = Y0 , 
y=p1t02 + c1y

=
11t02 + c2y

=
21t02 = Y1 .

But as in the proof of Theorem 2 in Section 4.2, simple algebra shows that the choice

c1 =
3Y0 - yp1t02 4y=21t02 - 3Y1 - y=p1t02 4y21t02

y11t02y=21t02 - y=11t02y21t02  

and

c2 =
3Y1 - y=p1t02 4y11t02 - 3Y0 - yp1t02 4y=11t02

y11t02y=21t02 - y=11t02y21t02
solves (7) unless the denominator is zero; Lemma 1, Section 4.2, assures us that it is not.

Why is the solution unique? If yI1t2 were another solution to (6), then the difference 
yII1t2 :=  yp1t2 + c1y11t2 + c2y21t2 - yI1t2 would satisfy

(8) bay>II + by=II + cyII = f1t2 - f1t2 = 0 ,
yII1t02 = Y0 - Y0 = 0 ,   y=II1t02 = Y1 - Y1 = 0 .

But the initial value problem (8) admits the identically zero solution, and Theorem 1 in Section 
4.2 applies since the differential equation in (8) is homogeneous. Consequently, (8) has only the 
identically zero solution. Thus, yII K 0 and yI = yp + c1y1 + c2y2. ◆

These deliberations entitle us to say that y = yp + c1y1 + c2y2 is a general solution to the 
nonhomogeneous equation (3), since any solution yg1t2 can be expressed in this form. (Proof: 
As in Section 4.2, we simply pick c1 and c2 so that yp + c1y1 + c2y2 matches the value and the 
derivative of yg at any single point; by uniqueness, yp + c1y1 + c2y2 and yg have to be the same 
function.)

Example 2 Given that yp1t2 = t2 is a particular solution to

y″ - y = 2 - t2 , 

find a general solution and a solution satisfying y102 = 1, y′102 = 0.
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Solution The corresponding homogeneous equation,

y″ - y = 0 , 

has the associated auxiliary equation r2 - 1 = 0. Because r = {1 are the roots of this equa-
tion, a general solution to the homogeneous equation is c1e

t + c2e
-t. Combining this with the par-

ticular solution yp1t2 = t2 of the nonhomogeneous equation, we find that a general solution is

y1t2 = t2 + c1e
t + c2e

-t .

To meet the initial conditions, set

 y102 = 02 + c1e
0 + c2e

-0 = 1 , 

 y′102 = 2 * 0 + c1e
0 - c2e

-0 = 0 , 

which yields c1 = c2 = 1
2. The answer is

y1t2 = t2 +
1
2
1et + e-t2 = t2 +  cosh t . ◆

Example 3 A mass–spring system is driven by a sinusoidal external force 15 sin t + 5 cos t2. The mass 
equals 1, the spring constant equals 2, and the damping coefficient equals 2 (in appropriate units), 
so the deliberations of Section 4.1 imply that the motion is governed by the differential equation

(9) y″ + 2y′ + 2y = 5 sin t + 5 cos t .

If the mass is initially located at y102 = 1, with a velocity y′102 = 2, find its equation of motion.

Solution The associated homogeneous equation y″ + 2y′ + 2y = 0 was studied in Example 1, Section 
4.3; the roots of the auxiliary equation were found to be -1 { i, leading to a general solution 
c1e

-t cos t + c2e
-t sin t.

The method of undetermined coefficients dictates that we try to find a particular solution 
of the form A sin t + B cos t for the first nonhomogeneity 5 sin t:

(10) yp = A sin t + B cos t ,   y=p = A cos t - B sin t ,   y>p = -A sin t - B cos t ;

 y>p + 2y=p + 2yp = 1-A - 2B + 2A2  sin t + 1-B + 2A + 2B2  cos t = 5 sin t .

Matching coefficients requires A = 1, B = -2 and so yp =  sin t - 2 cos t.
The second nonhomogeneity 5 cos t calls for the identical form for yp and leads  

to 1-A - 2B + 2A2  sin t + 1-B + 2A + 2B2  cos t = 5 cos t, or A = 2, B = 1. Hence  
yp =  2 sin t +  cos t.

By the superposition principle, a general solution to (9) is given by the sum

 y = c1e
-t cos t + c2e

-t sin t +  sin t - 2 cos t + 2 sin t +  cos t

 = c1e
-t cos t + c2e

-t sin t + 3 sin t -  cos t .

The initial conditions are

 y102 = 1 = c1e
-0 cos 0 + c2e

-0 sin 0 + 3 sin 0 -  cos 0 = c1 - 1 ,

 y′102 = 2 = c13 -e-t cos t - e-t sin t4 t= 0 + c23 -e-t sin t + e-t cos t4 t= 0

 + 3 cos 0 +  sin 0

 = -c1 + c2 + 3 ,

requiring c1 = 2, c2 = 1, and thus

(11) y1t2 = 2e-t cos t + e-t sin t + 3 sin t -  cos t . ◆
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The solution (11) exemplifies the features of forced, damped oscillations that we antici-
pated in Section 4.1. There is a sinusoidal component 13 sin t -  cos t2 that is synchronous 
with the driving force 15 sin t + 5 cos t2, and a component 12e-t cos t + e-t sin t2 that dies out. 
When the system is “pumped” sinusoidally, the response is a synchronous sinusoidal oscilla-
tion, after an initial transient that depends on the initial conditions; the synchronous response 
is the particular solution supplied by the method of undetermined coefficients, and the transient 
is the solution to the associated homogeneous equation. This interpretation will be discussed in 
detail in Sections 4.9 and 4.10.

You may have observed that, since the two undetermined-coefficient forms in the last 
example were identical and were destined to be added together, we could have used the form 
(10) to match both nonhomogeneities at the same time, deriving the condition

y>p + 2y=p + 2yp = 1-A - 2B + 2A2  sin t + 1-B + 2A + 2B2  cos t = 5 sin t + 5 cos t ,

with solution yp = 3 sin t -  cos t. The next example illustrates this “streamlined” procedure.

Example 4 Find a particular solution to

(12) y″ - y = 8tet + 2et .

Solution A general solution to the associated homogeneous equation is easily seen to be c1e
t + c2e

-t. 
Thus, a particular solution for matching the nonhomogeneity 8tet has the form t1A1t + A02et, 
whereas matching 2et requires the form A0te

t. Therefore, we can match both with the first form:

 yp = t1A1t + A02et = 1A1t
2 + A0t2et , 

 y=p = 1A1t
2 + A0t2et + 12A1t + A02et = 3A1t

2 + 12A1 + A02 t + A04et , 

 y>p = 32A1t + 12A1 + A02 4et + 3A1t
2 + 12A1 + A02 t + A04et

 = 3A1t
2 + 14A1 + A02 t + 12A1 + 2A02 4et .

Thus

 y″p - yp = 34A1t + 12A1 + 2A02 4et

 = 8tet + 2et , 

which yields A1 = 2, A0 = -1, and so yp = 12t2 - t2et. ◆

We generalize this procedure by modifying the method of undetermined coefficients as 
follows.

Method of Undetermined Coefficients (Revisited)

To find a particular solution to the differential equation

ay″ + by′ + cy = Pm1t2ert, 

where Pm1t2 is a polynomial of degree m, use the form

(13) yp1t2 = ts1Amtm + g + A1t + A02ert ;

if r is not a root of the associated auxiliary equation, take s = 0; if r is a simple root of 
the associated auxiliary equation, take s = 1; and if r is a double root of the associated 
auxiliary equation, take s = 2.
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To find a particular solution to the differential equation

ay″ + by′ + cy = Pm1t2eat cos bt + Qn1t2eat sin bt ,  b ≠ 0 ,

where Pm1t2 is a polynomial of degree m and Qn1t2 is a polynomial of degree n, use the 
form

(14)  yp1t2 = ts1Akt
k + g + A1t + A02eat cos bt

 + ts1Bkt
k + g + B1t + B02eat sin bt , 

where k is the larger of m and n. If a + ib is not a root of the associated auxiliary equa-
tion, take s = 0; if a + ib is a root of the associated auxiliary equation, take s = 1.

Example 5 Write down the form of a particular solution to the equation

y″ + 2y′ + 2y = 5e-t sin t + 5t3e-t cos t .

Solution The roots of the associated homogeneous equation y″ + 2y′ + 2y = 0 were identified in 
Example 3 as -1 { i. Application of (14) dictates the form

yp1t2 = t1A3t
3 + A2t

2 + A1t + A02e-t cos t + t1B3t
3 + B2t

2 + B1t + B02e-t sin t . ◆

The method of undetermined coefficients applies to higher-order linear differential equa-
tions with constant coefficients. Details will be provided in Chapter 6, but the following example 
should be clear.

Example 6 Write down the form of a particular solution to the equation

y‴ + 2y″ + y′ = 5e-t sin t + 3 + 7te-t .

Solution The auxiliary equation for the associated homogeneous is r3 + 2r2 + r = r1r + 122 = 0, with 
a double root r = -1 and a single root r = 0. Term by term, the nonhomogeneities call for 
the forms

A0 e
-t cos t + B0 e

-t sin t   1for 5e-t sin t2 , 
t A0   1for 32 , 
t21A1t + A02e-t   1for 7te-t2 .

(If -1 were a triple root, we would need t31A1t + A02e-t for 7te-t.) Of course, we have to 
rename the coefficients, so the general form is

yp1t2 = Ae-t cos t + Be-t sin t + tC + t21Dt + E2e-t . ◆

1. Given that y11t2 =  cos t is a solution to

y″ - y′ + y =  sin t

and y21t2 = e2t>3 is a solution to

y″ - y′ + y = e2t, 

use the superposition principle to find solutions to the 
following differential equations:

 (a)  y″ - y′ + y = 5 sin t .

 (b)  y″ - y′ + y =  sin t - 3e2t .

 (c)  y″ - y′ + y = 4 sin t + 18e2t .

4.5 EXERCISES
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2. Given that y11t2 = 11>42  sin 2t is a solution to 
y″ + 2y′ + 4y =  cos 2t and that y21t2 = t>4 - 1>8 is 
a solution to y″ + 2y′ + 4y = t, use the superposition 
principle to find solutions to the following:

 (a)  y″ + 2y′ + 4y = t +  cos 2t .

 (b)  y″ + 2y′ + 4y = 2t - 3 cos 2t .

 (c)  y″ + 2y′ + 4y = 11t - 12 cos 2t .

In Problems 3–8, a nonhomogeneous equation and a par-
ticular solution are given. Find a general solution for the  
equation.

3. y″ - y = t ,   yp1t2 = - t

4. y″ + y′ = 1 ,   yp1t2 = t

5. u″ - u′ - 2u = 1 - 2t ,   up1t2 = t - 1

6. y″ + 5y′ + 6y = 6x2 + 10x + 2 + 12ex,  
yp1x2 = ex + x2

7. y″ = 2y + 2 tan3 x ,   yp1x2 =  tan x

8. y″ = 2y′ - y + 2ex ,  yp1x2 = x2ex

In Problems 9–16 decide whether the method of undetermined 
coefficients together with superposition can be applied to find 
a particular solution of the given equation. Do not solve the 
equation.

9. 3y″ + 2y′ + 8y = t2 + 4t - t2et sin t

10. y″ - y′ + y = 1et + t22

11. y″ - 6y′ - 4y = 4 sin 3t - e3tt2 + 1>t
12. y″ + y′ + ty = et + 7

13. y″ - 2y′ + 3y = cosh t + sin3 t

14. 2y″ + 3y′ - 4y = 2t +  sin2 t + 3

15. y″ + ety′ + y = 7 + 3t

16. 2y″ - y′ + 6y = t2e-t sin t - 8t cos 3t + 10t

In Problems 17–22, find a general solution to the differential 
equation.

17. y″ - 2y′ - 3y = 3t2 - 5

18. y″ - y = -11t + 1

19. y″1x2 - 3y′1x2 + 2y1x2 = ex sin x

20. y″1u2 + 4y1u2 =  sin u -  cos u

21. y″1u2 + 2y′1u2 + 2y1u2 = e-u cos u

22. y″1x2 + 6y′1x2 + 10y1x2 
= 10x4 + 24x3 + 2x2 - 12x + 18

In Problems 23–30, find the solution to the initial value 
problem.

23. y′ - y = 1 ,  y102 = 0

24. y″ = 6t ; y102 = 3 ,  y′102 = -1

25. z″1x2 + z1x2 = 2e-x ; z102 = 0 ,   z′102 = 0

26. y″ + 9y = 27 ; y102 = 4 ,   y′102 = 6 

27. y″1x2 - y′1x2 - 2y1x2 =  cos x -  sin 2x ; 
y102 = -7>20 ,  y′102 = 1>5

28. y″ + y′ - 12y = et + e2t - 1 ; y102 = 1 ,  y′102 = 3

29. y″1u2 - y1u2 =  sin u - e2u ; 
y102 = 1 ,  y′102 = -1

30. y″ + 2y′ + y = t2 + 1 - et ; y102 = 0 ,  y′102 = 2

In Problems 31–36, determine the form of a particular solu-
tion for the differential equation. Do not solve.

31. y″ + y =  sin t + t cos t + 10t

32. y″ - y = e2t + te2t + t2e2t

33. x″ - x′ - 2x = et cos t - t2 + cos3 t

34. y″ + 5y′ + 6y =  sin t -  cos 2t

35. y″ - 4y′ + 5y = e5t + t sin 3t -  cos 3t

36. y″ - 4y′ + 4y = t2e2t - e2t

In Problems 37– 40, find a particular solution to the given 
higher-order equation.

37. y‴ - 2y″ - y′ + 2y = 2t2 + 4t - 9

38. y142 - 5y″ + 4y = 10  cos t - 20 sin t

39. y‴ + y″ - 2y = tet + 1

40. y142 - 3y‴ + 3y″ - y′ = 6t - 20

41. Discontinuous Forcing Term. In certain physical 
models, the nonhomogeneous term, or forcing term, 
g1t2 in the equation

ay″ + by′ + cy = g1t2
may not be continuous but may have a jump discontinu-
ity. If this occurs, we can still obtain a reasonable solu-
tion using the following procedure. Consider the initial 
value problem

y″ + 2y′ + 5y = g1t2 ;  y102 = 0 ,  y′102 = 0, 

where

g1t2 = b10 if 0 … t … 3p>2
0  if t 7 3p>2   .

 (a)  Find a solution to the initial value problem for 
0 … t … 3p>2.

 (b)  Find a general solution for t 7 3p>2.
 (c)  Now choose the constants in the general solution 

from part (b) so that the solution from part (a) and 
the solution from part (b) agree, together with their 
first derivatives, at t = 3p>2. This gives us a con-
tinuously differentiable function that satisfies the 
differential equation except at t = 3p>2.

42. Forced Vibrations. As discussed in Section 4.1, a vibrat-
ing spring with damping that is under external force can 
be modeled by

(15) my″ + by′ + ky = g1t2 ,
where m 7 0 is the mass of the spring system, b 7 0 is 
the damping constant, k 7 0 is the spring constant, g1t2 
is the force on the system at time t, and y1t2 is the dis-
placement from the equilibrium of the spring system at 
time t. Assume b2 6 4mk.
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 (a)  Determine the form of the equation of motion for 
the spring system when g1t2 =  sin bt by finding a 
general solution to equation (15).

 (b)  Discuss the long-term behavior of this system. 
[Hint: Consider what happens to the general solution 
obtained in part (a) as t S + ∞ .]

43. A mass–spring system is driven by a sinusoidal external 
force g1t2 = 5 sin t. The mass equals 1, the spring con-
stant equals 3, and the damping coefficient equals 4. If 
the mass is initially located at y102 = 1>2 and at rest, 
i.e., y′102 = 0, find its equation of motion.

44. A mass–spring system is driven by the external force 
g1t2 = 2 sin 3t + 10 cos 3t. The mass equals 1, the spring 
constant equals 5, and the damping coefficient equals 2. 
If the mass is initially located at y102 = -1, with initial 
velocity y′102 = 5, find its equation of motion.

k

y(t)
m

Speed

x 5 L/2x 5 2L/2

V

cos(px/L)

Figure 4.11 Speed bump

45. Speed Bumps. Often bumps like the one depicted in 
Figure 4.11 are built into roads to discourage speeding. 
The figure suggests that a crude model of the vertical 
motion y1t2 of a car encountering the speed bump with 
the speed V is given by

y1t2 = 0    for t … -L> 12V2 ,

my″ + ky = b  F0 cos 1pVt>L2 for 0 t 0 6 L> 12V2
     0                 for t Ú L> 12V2. r

(The absence of a damping term indicates that the car’s 
shock absorbers are not functioning.)

 (a)  Taking m = k = 1,  L = p, and F0 = 1 in appro-
priate units, solve this initial value problem. Thereby 
show that the formula for the oscillatory motion 
after the car has traversed the speed bump is 
y1t2 = A sin t, where the constant A depends on the 
speed V.

 (b)  Plot the amplitude 0A 0  of the solution y1t2 found 
in part (a) versus the car’s speed V. From the graph, 
estimate the speed that produces the most violent 
shaking of the vehicle.

46. Show that the boundary value problem

y″ + l2y =  sin t ;  y102 = 0 ,   y1p2 = 1 ,

has a solution if and only if l ≠ { 1, {2, {3,c.

47. Find the solution(s) to

y″ + 9y = 27 cos 6t

(if it exists) satisfying the boundary conditions

 (a)  y102 = -1 , y1p>62 = 3 .

 (b)  y102 = -1 , y1p>32 = 5 .

 (c)  y102 = -1 , y1p>32 = -1 .

48. All that is known concerning a mysterious second-order con-
stant-coefficient differential equation y″ + py′ + qy = g1t2 
is that t2 + 1 + et cos t, t2 + 1 + et sin t, and  
t2 + 1 +  et cos t +  et sin t are solutions.

 (a)  Determine two linearly independent solutions to the 
corresponding homogeneous equation.

 (b)  Find a suitable choice of p, q, and g1t2 that enables 
these solutions.

We have seen that the method of undetermined coefficients is a simple procedure for determin-
ing a particular solution when the equation has constant coefficients and the nonhomogeneous term 
is of a special type. Here we present a more general method, called variation of parameters,† for 
finding a particular solution.

Consider the nonhomogeneous linear second-order equation

(1) ay″ + by′ + cy = ƒ1t2
and let {y11t2, y21t2} be two linearly independent solutions for the corresponding homoge-
neous equation

ay″ + by′ + cy = 0 .

4.6 Variation of Parameters

†Historical Footnote: The method of variation of parameters was invented by Joseph Lagrange in 1774.
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188     Chapter 4  Linear Second-Order Equations

Then we know that a general solution to this homogeneous equation is given by

(2) yh1t2 = c1y11t2 + c2y21t2 ,
where c1 and c2 are constants. To find a particular solution to the nonhomogeneous equation, 
the strategy of variation of parameters is to replace the constants in (2) by functions of t. That 
is, we seek a solution of (1) of the form†

(3) yp1t2 = V11t2y11t2 + V21t2y21t2 .
Because we have introduced two unknown functions, v11t2 and v21t2, it is reasonable 

to expect that we can impose two equations (requirements) on these functions. Naturally, one 
of these equations should come from (1). Let’s therefore plug yp1t2 given by (3) into (1). To 
accomplish this, we must first compute y=p1t2 and y>p1t2. From (3) we obtain

y=p = 1v=1y1 + v

=
2y22 + 1v1y

=
1 + v2y

=
22 .

To simplify the computation and to avoid second-order derivatives for the unknowns v1, v2 in 
the expression for y>p, we impose the requirement

(4) v

=
1y1 + v

=
2y2 = 0 .

Thus, the formula for y=p becomes

(5) y=p = v1y
=
1 + v2y

=
2 , 

and so

(6) y>p = v

=
1y
=
1 + v1y″1 + v

=
2y
=
2 + v2y

>
2 .

Now, substituting yp, y
=
p, and y>p, as given in (3), (5), and (6), into (1), we find

(7)  f = ay>p + by=p + cyp

  = a1v=1y=1 + v1y
>
1 + v

=
2y
=
2 + v2y

>
22 + b1v1y

=
1 + v2y

=
22 + c1v1y1 + v2y22

  = a1v=1y=1 + v

=
2y
=
22 + v11ay>1 + by=1 + cy12 + v21ay>2 + by=2 + cy22

  = a1v=1y=1 + v

=
2y
=
22 + 0 + 0

since y1 and y2 are solutions to the homogeneous equation. Thus, (7) reduces to

(8) y=1y
=
1 + y=2y=2 =

f
a

 .

To summarize, if we can find v1 and v2 that satisfy both (4) and (8), that is,

(9)
 y1V′1 + y2V′2 = 0 ,

 y′1V′1 + y′2V′2 =
f
a

 , 

then yp given by (3) will be a particular solution to (1). To determine v1 and v2, we first solve 
the linear system (9) for v=1 and v=2. Algebraic manipulation or Cramer’s rule (see Appendix D) 
immediately gives

v

=
11t2 =

- f 1t2y21t2
a3y11t2y=21t2 - y=11t2y21t2 4  and  v=21t2 =

f 1t2y11t2
a3y11t2y=21t2 - y=11t2y21t2 4  , 

†In Exercises 2.3, Problem 36, we developed this approach for first-order linear equations. Because of the similarity  
of equations (2) and (3), this technique is sometimes known as “variation of constants.”
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where the bracketed expression in the denominator (the Wronskian) is never zero because of 
Lemma 1, Section 4.2. Upon integrating these equations, we finally obtain

(10)   v11t2 =L
- f 1t2y21t2

a3y11t2y=21t2 - y=11t2y21t2 4  dt  and  v21t2 = L
f 1t2y11t2

a3y11t2y=21t2 - y=11t2y21t2 4  dt .

Let’s review this procedure.

Example 1 Find a general solution on 1-p>2, p>22 to

(11) 
d2y

dt2 + y = tan t .

Of course, in step (b) one could use the formulas in (10), but v11t2 and v21t2 are so easy 
to derive that you are advised not to memorize them.

Solution Observe that two independent solutions to the homogeneous equation y″ + y = 0 are cos t and 
sin t. We now set

(12) yp1t2 = v11t2  cos t + v21t2  sin t

and, referring to (9), solve the system

 1  cos t2v=11t2 + 1  sin t2v=21t2 = 0  ,

 1-  sin t2v=11t2 + 1  cos t2v=21t2 =  tan t ,

for v=11t2 and v=21t2. This gives

v

=
11t2 = -  tan t  sin t ,

v

=
21t2 =  tan t  cos t =  sin t .

Integrating, we obtain

(13)  v11t2 = - L  tan t sin t dt = - L
 sin2 t
 cos t

 dt

  = - L
1 -  cos2 t

 cos t
 dt = L 1  cos t - sec t2  dt

  =  sin t - ln 0 sec t +  tan t 0 + C1 ,

(14) v21t2 = L  sin t dt = -  cos t + C2 .

Method of Variation of Parameters

To determine a particular solution to ay″ + by′ + cy = f :
(a) Find two linearly independent solutions {y11t2, y21t2} to the corresponding  

homogeneous equation and take

yp1t2 = v11t2y11t2 + v21t2y21t2 .
(b) Determine v11t2 and v21t2 by solving the system in (9) for v=11t2 and v=21t2 and 

integrating.
(c) Substitute v11t2 and v21t2 into the expression for yp1t2 to obtain a particular solution.
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We need only one particular solution, so we take both C1 and C2 to be zero for simplicity. 
Then, substituting v11t2 and v21t2 in (12), we obtain

yp1t2 = 1sin t - ln 0 sec t +  tan t 0 2  cos t -  cos t  sin t ,

which simplifies to

yp1t2 = - 1cos t2 ln 0 sec t +  tan t 0  .
We may drop the absolute value symbols because sec t +  tan t = 11 +  sin t2 >  cos t 7 0 for 
-p>2 6 t 6 p>2.

Recall that a general solution to a nonhomogeneous equation is given by the sum of a gen-
eral solution to the homogeneous equation and a particular solution. Consequently, a general 
solution to equation (11) on the interval 1-p>2, p>22 is
(15) y1t2 = c1 cos t + c2 sin t - 1  cos t2 ln1sec t +  tan t2 . ◆

Note that in the above example the constants C1 and C2 appearing in (13) and (14) were 
chosen to be zero. If we had retained these arbitrary constants, the ultimate effect would be just 
to add C1 cos t + C2 sin t to (15), which is clearly redundant.

Example 2 Find a particular solution on 1-p>2, p>22 to

(16) 
d2y

dt2 + y =  tan t + 3t - 1 .

Solution With f 1t2 = tan t + 3t - 1, the variation of parameters procedure will lead to a solution. But it 
is simpler in this case to consider separately the equations

(17) 
d2y

dt2 + y =  tan t ,

(18) 
d2y

dt2 + y = 3t - 1

and then use the superposition principle (Theorem 3, page 181).
In Example 1 we found that

yq1t2 = - 1cos t2 ln1sec t +  tan t2
is a particular solution for equation (17). For equation (18) the method of undetermined coef-
ficients can be applied. On seeking a solution to (18) of the form yr1t2 = At + B, we quickly 
obtain

yr1t2 = 3t - 1 .

Finally, we apply the superposition principle to get

 yp1t2 = yq1t2 + yr1t2
 = - 1cos t2 ln1sec t +  tan t2 + 3t - 1

as a particular solution for equation (16). ◆

Note that we could not have solved Example 1 by the method of undetermined coeffi-
cients; the nonhomogeneity tan t is unsuitable. Another important advantage of the method of 
variation of parameters is its applicability to linear equations whose coefficients a, b, c are 
functions of t. Indeed, on reviewing the derivation of the system (9) and the formulas (10), one 
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can check that we did not make any use of the constant coefficient property; i.e., the method 
works provided we know a pair of linearly independent solutions to the corresponding homo-
geneous equation. We illustrate the method in the next example.

Example 3 Find a particular solution of the variable coefficient linear equation

(19) t2y″ - 4ty′ + 6y = 4t3 , t 7 0 ,

given that y11t2 = t2 and y21t2 = t3 are solutions to the corresponding homogeneous equation.

Solution The functions t2 and t3 are linearly independent solutions to the corresponding homogeneous 
equation on 10, ∞ 2 (verify this !) and so (19) has a particular solution of the form

y
p
1t2 = v11t2t2 + v21t2t3 .

To determine the unknown functions v1 and v2, we solve the system (9) with f 1t2 = 4t3 and 
a = a1t2 = t2 :

 t2
v

=
11t2 + t3

v

=
21t2 = 0

 2tv=11t2 + 3t2
v

=
21t2 = f>a = 4t .

The solutions are readily found to be v=11t2 = -4 and v=21t2 = 4>t, which gives v11t2 = -4t 
and v21t2 = 4 ln t. Consequently,

yp1t2 = 1-4t2t2 + 14 ln t2t3 = 4t31-1 + ln t2
is a solution to (19). ◆

Variable coefficient linear equations will be discussed in more detail in the next section.

In Problems 1–8, find a general solution to the differential 
equation using the method of variation of parameters.

1. y″ + 4y =  tan 2t

2. y″ + y = sec t

3. y″ - 2y′ + y = t-1et

4. y″ + 2y′ + y = e-t

5. y″1u2 + 16y1u2 = sec 4u

6. y″ + 9y = sec213t2
7. y″ + 4y′ + 4y = e-2t ln t

8. y″ + 4y = csc212t2
In Problems 9 and 10, find a particular solution first by unde-
termined coefficients, and then by variation of parameters. 
Which method was quicker?

9. y″ - y = 2t + 4

10. 2x″1t2 - 2x′1t2 - 4x1t2 = 2e2t

In Problems 11–18, find a general solution to the differential 
equation.

11. y″ + y =  tan t + e3t - 1

12. y″ + y =  tan2 t

13. v″ + 4v = sec412t2

14. y″1u2 + y1u2 = sec3 u

15. y″ + y = 3 sec t - t2 + 1

16. y″ + 5y′ + 6y = 18t2

17. 
1
2

 y″ + 2y =  tan 2t -
1
2

 et

18. y″ - 6y′ + 9y = t-3e3t

19. Express the solution to the initial value problem

y″ - y =
1
t
 , y112 = 0 , y′112 = -2 , 

using definite integrals. Using numerical integration 
(Appendix C) to approximate the integrals, find an 
approximation for y122 to two decimal places.

20. Use the method of variation of parameters to show that

y1t2 = c1 cos t + c2 sin t + L
t

0
f1s2 sin 1t - s2 ds

is a general solution to the differential equation

y″ + y = f1t2 ,
where f1t2 is a continuous function on 1- ∞ , ∞ 2.  
[Hint: Use the trigonometric identity  sin 1t - s2 =  
sin t  cos s -  sin s  cos t .]

4.6 EXERCISES
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192     Chapter 4  Linear Second-Order Equations

21. Suppose y satisfies the equation y″ + 10y′ + 25y = et3 
subject to y102 = 1 and y′102 = -5. Estimate y10.22 
to within {0.0001 by numerically approximating the 
integrals in the variation of parameters formula.

In Problems 22 through 25, use variation of parameters to 
find a general solution to the differential equation given that 
the functions y1 and y2 are linearly independent solutions to 
the corresponding homogeneous equation for t 7 0.

22. t 2y″ - 4ty′ + 6y = t 3 + 1 ;

y1 = t 2 , y2 = t 3

23. ty″ - 1t + 12y′ + y = t 2 ;

y1 = et , y2 = t + 1

24. ty″ + 11 - 2t2y′ + 1t - 12y = tet ;

y1 = et , y2 = et ln t

25. ty″ + 15t - 12y′ - 5y = t 2e-5t ;

y1 = 5t - 1 , y2 = e-5t

The techniques of Sections 4.2 and 4.3 have explicitly demonstrated that solutions to a linear 
homogeneous constant-coefficient differential equation,

(1) ay″ + by′ + cy = 0 ,

are defined and satisfy the equation over the whole interval 1- ∞ , + ∞ 2. After all, such solu-
tions are combinations of exponentials, sinusoids, and polynomials.

The variation of parameters formula of Section 4.6 extended this to nonhomogeneous 
constant-coefficient problems,

(2) ay″ + by′ + cy = f 1t2 ,
yielding solutions valid over all intervals where f1t2 is continuous (ensuring that the integrals 
in (10) of Section 4.6 containing f1t2 exist and are differentiable). We could hardly hope for 
more; indeed, it is debatable what meaning the differential equation (2) would have at a point 
where f1t2 is undefined, or discontinuous.

Therefore, when we move to the realm of equations with variable coefficients of the form

(3) a21t2y″ + a11t2y′ + a01t2y = f1t2 ,
the most we can expect is that there are solutions that are valid over intervals where all four 
“governing” functions—a21t2, a11t2, a01t2, and f1t2—are continuous. Fortunately, this 
expectation is fulfilled except for an important technical requirement—namely, that the coef-
ficient function a21t2 must be nonzero over the interval.†

Typically, one divides by the nonzero coefficient a21t2 and expresses the theorem for the 
equation in standard form [see (4), below] as follows.

4.7 Variable-Coefficient Equations

Existence and Uniqueness of Solutions

Theorem 5. If p1t2, q1t2, and g(t) are continuous on an interval 1a, b2 that contains 
the point t0, then for any choice of the initial values Y0 and Y1, there exists a unique solu-
tion y1t2 on the same interval (a, b) to the initial value problem

(4) y″1t2 + p1t2y′1t2 + q1t2y1t2 = g1t2 ; y1t02 = Y0 , y′1t02 = Y1 .

†Indeed, the whole nature of the equation—reduction from second-order to first-order—changes at points where a21t2 
is zero.
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Example 1 Determine the largest interval for which Theorem 5 ensures the existence and uniqueness of a 
solution to the initial value problem

(5) 1t - 32 d
2y

dt2 +
dy

dt
+ 2t y = ln t ; y112 = 3 , y′112 = -5 .

Solution The data p1t2, q1t2, and g1t2 in the standard form of the equation,

y″ + py′ + qy =
d 2y

dt 2
+

1
1t - 32  

dy

dt
+
2t
1t - 32  y =

ln t
1t - 32 = g ,

are simultaneously continuous in the intervals 0 6 t 6 3 and 3 6 t 6 ∞ . The former contains 
the point t0 = 1, where the initial conditions are specified, so Theorem 5 guarantees (5) has a 
unique solution in 0 6 t 6 3. ◆

Theorem 5, embracing existence and uniqueness for the variable-coefficient case, is dif-
ficult to prove because we can’t construct explicit solutions in the general case. So the proof is 
deferred to Chapter 13.† However, it is instructive to examine a special case that we can solve 
explicitly.

Cauchy–Euler, or Equidimensional, Equations

Definition 2. A linear second-order equation that can be expressed in the form

(6) at2y″1t2 + bty′1t2 + cy = f1t2 ,
where a, b, and c are constants, is called a Cauchy–Euler, or equidimensional, equation.

†All references to Chapters 11–13 refer to the expanded text, Fundamentals of Differential Equations and Boundary 
Value Problems, 7th ed.

For example, the differential equation

3t2y″ + 11ty′ - 3y = sin t

is a Cauchy–Euler equation, whereas

2y″ - 3ty′ + 11y = 3t - 1

is not because the coefficient of y″ is 2, which is not a constant times t2.
The nomenclature equidimensional comes about because if y has the dimensions of, say, meters 

and t has dimensions of time, then each term t2y″, ty′, and y has the same dimensions (meters). The 
coefficient of y″1t2 in (6) is at2, and it is zero at t = 0; equivalently, the standard form

y″ +
b
at

 y′ +
c

at2 y =
f1t2
at2

has discontinuous coefficients at t = 0. Therefore, we can expect the solutions to be valid only 
for t 7 0 or t 6 0. Discontinuities in ƒ, of course, will impose further restrictions.
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To solve a homogeneous Cauchy–Euler equation, for t 7 0, we exploit the equidimen-
sional feature by looking for solutions of the form y = tr, because then t2y″, ty′, and y each 
have the form (constant) * tr:

y = tr , ty′ = trtr - 1 = rtr , t2y″ = t2r1r - 12tr - 2 = r1r - 12tr ,

and substitution into the homogeneous form of (6) (that is, with g = 0) yields a simple qua-
dratic equation for r:

ar1r - 12tr + brtr + ctr = [ar2 + 1b - a2r + c]tr = 0 , or

(7) ar2 + 1b - a2r + c = 0 ,

which we call the associated characteristic equation.

Example 2 Find two linearly independent solutions to the equation

3t2y″ + 11ty′ - 3y = 0 , t 7 0 .

Solution Inserting y = tr yields, according to (7),

3r2 + 111 - 32r - 3 = 3r2 + 8r - 3 = 0 ,

whose roots r = 1>3 and r = -3 produce the independent solutions

y11t2 = t1>3 , y21t2 = t - 3 1for  t 7 02 . ◆

Clearly, the substitution y = tr into a homogeneous equidimensional equation has the 
same simplifying effect as the insertion of y = ert into the homogeneous constant-coefficient 
equation in Section 4.2. That means we will have to deal with the same encumbrances:

1. What to do when the roots of (7) are complex
2. What to do when the roots of (7) are equal

If r is complex, r = a + ib, we can interpret ta+ ib by using the identity t = eln t and 
invoking Euler’s formula [equation (5), Section 4.3]:

ta+ ib = tatib = taeib ln t = ta3cos1b ln t2 + i sin1b ln t24 .
Then we simplify as in Section 4.3 by taking the real and imaginary parts to form independent 
solutions:

(8) y1 = ta cos1b ln t2 , y2 = ta sin1b ln t2 .
If r is a double root of the characteristic equation (7), then independent solutions of the 
Cauchy–Euler equation on 10, ∞ 2 are given by

(9) y1 = tr , y2 = tr ln t .

This can be verified by direct substitution into the differential equation. Alternatively, the sec-
ond, linearly independent, solution can be obtained by reduction of order, a procedure to be 
discussed shortly in Theorem 8. Furthermore, Problem 23 demonstrates that the substitution 
t = ex changes the homogeneous Cauchy–Euler equation into a homogeneous constant-coefficient 
equation, and the formats (8) and (9) then follow from our earlier deliberations.

We remark that if a homogeneous Cauchy–Euler equation is to be solved for t 6 0, then 
one simply introduces the change of variable t = -t, where t 7 0. The reader should verify 
via the chain rule that the identical characteristic equation (7) arises when tr = 1- t2r is sub-
stituted in the equation. Thus the solutions take the same form as (8), (9), but with t replaced 
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by - t; for example, if r is a double root of (7), we get 1- t2r and 1- t2r ln 1- t2 as two linearly 
independent solutions on 1- ∞ , 02.

Example 3 Find a pair of linearly independent solutions to the following Cauchy–Euler equations for t 7 0.

(a) t2y″ + 5ty′ + 5y = 0    (b) t2y″ + ty′ = 0

Solution For part (a), the characteristic equation becomes r2 + 4r + 5 = 0 , with the roots r = -2 { i ,  
and (8) produces the real solutions t-2 cos1ln t2 and t-2 sin1ln t2.

For part (b), the characteristic equation becomes simply r2 = 0 with the double root 
r = 0, and (9) yields the solutions t0 = 1 and ln t. ◆

In Chapter 8 we will see how one can obtain power series expansions for solutions to vari-
able-coefficient equations when the coefficients are analytic functions. But, as we said, there 
is no procedure for explicitly solving the general case. Nonetheless, thanks to the existence/ 
uniqueness result of Theorem 5, most of the other theorems and concepts of the preceding sec-
tions are easily extended to the variable-coefficient case, with the proviso that they apply only 
over intervals in which the governing functions p1t2, q1t2, g1t2 are continuous. Thus we have 
the following analog of Lemma 1, page 160.

†The determinant representation of the Wronskian was introduced in Problem 34, Section 4.2.

A Condition for Linear Dependence of Solutions

Lemma 3. If y11t2 and y21t2 are any two solutions to the homogeneous differential 
equation

(10) y″1t2 + p1t2y′1t2 + q1t2y1t2 = 0

on an interval I where the functions p1t2 and q1t2 are continuous and if the Wronskian†

W3y1, y241t2 J y11t2y=21t2 - y=11t2y21t2 = ` y11t2
y=1

 1t2 
y21t2
y=21t2 `

is zero at any point t of I, then y1 and y2 are linearly dependent on I.

As in the constant-coefficient case, the Wronskian of two solutions is either identically 
zero or never zero on I, with the latter implying linear independence on I.

Precisely as in the proof for the constant-coefficient case, it can be verified that any linear 
combination c1y1 + c2y2 of solutions y1 and y2 to (10) is also a solution. In fact, these are the 
only solutions to (10) as stated in the following result.

Representation of Solutions to Initial Value Problems

Theorem 6. If y11t2 and y21t2 are any two solutions to the homogeneous differential 
equation (10) that are linearly independent on an interval I, then every solution to (10) 
on I is expressible as a linear combination of y1 and y2. Moreover, the initial value prob-
lem consisting of equation (10) and the initial conditions y1t02 = Y0, y′1t02 = Y1 has a 
unique solution on I for any point t0 in I and any constants Y0, Y1.
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As in the constant-coefficient case, the linear combination yh = c1y1 + c2y2 is called a 
general solution to (10) on I if y1, y2 are linearly independent solutions on I.

For the nonhomogeneous equation

(11) y″1t2 + p1t2y′1t2 + q1t2y1t2 = g1t2 ,

a general solution on I is given by y = yp + yh, where yh = c1y1 + c2y2 is a general solu-
tion to the corresponding homogeneous equation (10) on I and yp is a particular solution 
to (11) on I. In other words, the solution to the initial value problem stated in Theorem 5 must 
be of this form for a suitable choice of the constants c1, c2. This follows, just as before, from 
a straightforward extension of the superposition principle for variable-coefficient equations 
described in Problem 30.

As illustrated at the end of the Section 4.6, if linearly independent solutions to the homo-
geneous equation (10) are known, then yp can be determined for (11) by the variation of 
parameters method.

Variation of Parameters

Theorem 7. If y1 and y2 are two linearly independent solutions to the homogeneous 
equation (10) on an interval I where p1t2, q1t2, and g1t2 are continuous, then a particu-
lar solution to (11) is given by yp = v1y1 + v2y2, where v1 and v2 are determined up to a 
constant by the pair of equations

y1V′1 + y2V′2 = 0 ,

y1′V1′ + y2′V2′ = g ,

which have the solution

(12) v11t2 = L
-g1t2 y21t2
W3y1, y241t2  dt , v21t2 = L

g1t2y11t2
W3y1, y241t2  dt .

Note the formulation (12) presumes that the differential equation has been put into 
standard form [that is, divided by a21t2].

The proofs of the constant-coefficient versions of these theorems in Sections 4.2 and 4.5 
did not make use of the constant-coefficient property, so one can prove them in the general case 
by literally copying those proofs but interpreting the coefficients as variables. Unfortunately, 
however, there is no construction analogous to the method of undetermined coefficients for the 
variable-coefficient case.

What does all this mean? The only stumbling block for our completely solving nonhomo-
geneous initial value problems for equations with variable coefficients,

y″ + p1t2y′ + q1t2y = g1t2 ; y1t02 = Y0 , y′1t02 = Y1 ,

is the lack of an explicit procedure for constructing independent solutions to the associated 
homogeneous equation (10). If we had y1 and y2 as described in the variation of parame-
ters formula, we could implement (12) to find yp, formulate the general solution of (11) as 
yp + c1y1 + c2y2, and (with the assurance that the Wronskian is nonzero) fit the constants to 
the initial conditions. But with the exception of the Cauchy–Euler equation and the ponderous 
power series machinery of Chapter 8, we are stymied at the outset; there is no general proce-
dure for finding y1 and y2.
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Ironically, we only need one nontrivial solution to the associated homogeneous equation, 
thanks to a procedure known as reduction of order that constructs a second, linearly indepen-
dent solution y2 from a known one y1. So one might well feel that the following theorem rubs 
salt into the wound.

Reduction of Order

Theorem 8. If y11t2 is a solution, not identically zero, to the homogeneous differen-
tial equation (10) in an interval I (see page 195), then

(13) y21t2 = y11t2 L
e-1p1t2dt

y11t22   dt

is a second, linearly independent solution.

This remarkable formula can be confirmed directly, but the following derivation shows 
how the procedure got its name.

Proof of Theorem 8. Our strategy is similar to that used in the derivation of the varia-
tion of parameters formula, Section 4.6. Bearing in mind that cy1 is a solution of (10) for any 
constant c, we replace c by a function v1t2 and propose the trial solution y21t2 = v1t2y11t2, 
spawning the formulas

y=2 = vy=1 + v

=y1 , y>2 = vy>1 + 2v

=y=1 + v

>y1 .

Substituting these expressions into the differential equation (10) yields

1vy>1 + 2v′y=1 + v″y12 + p1vy=1 + v′y12 + qvy1 = 0 ,

or, on regrouping,

(14) 1  y>1 + py=1 + qy12v + y1v″ + 12y=1 + py12v′ = 0 .

The group in front of the undifferentiated v1t2 is simply a copy of the left-hand member of the 
original differential equation (10), so it is zero.† Thus (14) reduces to

(15) y1v″ + 12y1
= + py12v′ = 0 ,

which is actually a first-order equation in the variable w K v′:

(16) y1w′ + 12y1
= + py12w = 0 .

Indeed, (16) is separable and can be solved immediately using the procedure of Section 2.2. 
Problem 48 on page 201 requests the reader to carry out the details of this procedure to com-
plete the derivation of (13). ◆

†This is hardly a surprise; if v were constant, vy would be a solution with v′ = v″ = 0 in (14).

Example 4 Given that y11t2 = t is a solution to

(17) y″ -
1
t
 y′ +

1

t2 y = 0 ,

use the reduction of order procedure to determine a second linearly independent solution for  
t 7 0.
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Solution Rather than implementing the formula (13), let’s apply the strategy used to derive it. We set 
y21t2 = v1t2y11t2 = v1t2t and substitute y=2 = v′t + v, y>2 = v″t + 2v′ into (17) to find

(18)  v″t + 2v′ -
1
t
1v′t + v2 +

1

t2 vt = v″t + 12v′ - v′2 = v″t + v′ = 0 .

As promised, (18) is a separable first-order equation in v′, simplifying to 1v′2 ′> 1v′2 = -1>t 
with a solution v′ = 1>t, or v = ln t (taking integration constants to be zero). Therefore, a 
second solution to (17) is y2 = vt = t ln t.

Of course (17) is a Cauchy–Euler equation for which (7) has equal roots:

ar2 + 1b - a2r + c = r2 - 2r + 1 = 1r - 122 = 0 ,

and y2 is precisely the form for the independent solution predicted by (9). ◆

Example 5 The following equation arises in the mathematical modeling of reverse osmosis.†

(19) 1sin t2y″ - 21cos t2y′ - 1sin t2y = 0 , 0 6 t 6 p .

Find a general solution.

Solution As we indicated above, the tricky part is to find a single nontrivial solution. Inspection of (19) 
suggests that y = sin t or y = cos t, combined with a little luck with trigonometric identities, 
might be solutions. In fact, trial and error shows that the cosine function works:

y1 = cos t , y1
= = -sin t , y1

> = -cos t ,

1sin t2y>1 - 21cos t2y=1 - 1sin t2y1 = 1sin t21-cos t2 - 21cos t21-sin t2 - 1sin t21cos t2 = 0 .

Unfortunately, the sine function fails (try it).
So we use reduction of order to construct a second, independent solution.  

Setting y21t2 = v1t2y11t2 = v1t2cos t and computing y=2 = v′cos t - v sin t, y>2 =   
v″cos t - 2v′sin t -  v cos t, we substitute into (19) to derive

1sin t23v″cos t - 2v′sin t - v cos t4 - 21cos t23v′cos t - v sin t4 - 1sin t23v cos t4
= v″1sin t21cos t2 - 2v′1sin2 t + cos2 t2 = 0,

which is equivalent to the separated first-order equation

1v′2 ′
1v′2 =

2
1sin t21cos t2 = 2

sec2 t
tan t

 .

Taking integration constants to be zero yields ln  v′ = 2 ln   1  tan t2 or v′ =  tan2 t, and 
v =  tan t - t. Therefore, a second solution to (19) is y2 = 1  tan t - t2  cos t =  sin t - t cos t.  
We conclude that a general solution is c1 cos t + c2 1sin t - t cos t2. ◆

In this section we have seen that the theory for variable-coefficient equations differs only 
slightly from the constant-coefficient case (in that solution domains are restricted to intervals), 
but explicit solutions can be hard to come by. In the next section, we will supplement our 
exposition by describing some nonrigorous procedures that sometimes can be used to predict 
qualitative features of the solutions.

†Reverse osmosis is a process used to fortify the alcoholic content of wine, among other applications.
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In Problems 1 through 4, use Theorem 5 to discuss the exis-
tence and uniqueness of a solution to the differential equation 
that satisfies the initial conditions y112 = Y0 , y′112 = Y1, 
where Y0 and Y1 are real constants.

1. 11 + t22y″ + ty′ - y = tan t

2. t1t - 32y″ + 2ty′ - y = t2

3. t 2y″ + y = cos t

4. ety″ -
y′

t - 3
+ y = ln t

In Problems 5 through 8, determine whether Theorem 5 
applies. If it does, then discuss what conclusions can be 
drawn. If it does not, explain why.

5. t 2z″ + tz′ + z = cos t ; z102 = 1 ,  z′102 = 0

6. y″ + yy′ = t2 - 1 ; y102 = 1 ,  y′102 = -1

7. y″ + ty′ - t 2y = 0 ; y102 = 0 ,  y112 = 0

8. 11 - t2y″ + ty′ - 2y = sin t ;  y102 = 1 ,  y′102 = 1

In Problems 9 through 14, find a general solution to the given 
Cauchy–Euler equation for t 7 0.

9. t2y″1t2 + 7ty′1t2 - 7y1t2 = 0

10. t 2 
d 2y

dt 2
+ 2t 

dy

dt
- 6y = 0

11. t 2 
d 2z

dt 2
+ 5t 

dz
dt

+ 4z = 0

12. 
d 2w

dt 2
+

6
t
 
dw
dt

+
4

t 2
 w = 0

13. 9t 2y″1t2 + 15ty′1t2 + y1t2 = 0

14. t 2y″1t2 - 3ty′1t2 + 4y1t2 = 0

In Problems 15 through 18, find a general solution for t 6 0.

15. y″1t2 -
1
t 
 y′1t2 +

5

t 2
 y 1t2 = 0

16. t 2y″1t2 - 3ty′1t2 + 6y1t2 = 0

17. t 2y″1t2 + 9ty′1t2 + 17y1t2 = 0

18. t 2y″1t2 + 3ty′1t2 + 5y1t2 = 0

In Problems 19 and 20, solve the given initial value problem 
for the Cauchy–Euler equation.

19. t 2y″1t2 - 4ty′1t2 + 4y1t2 = 0 ;

y112 = -2 ,  y′112 = -11

20. t 2y″1t2 + 7ty′1t2 + 5y1t2 = 0 ;

y112 = -1 ,  y′112 = 13

In Problems 21 and 22, devise a modification of the method 
for Cauchy–Euler equations to find a general solution to the 
given equation.

21. 1t - 222y″1t2 - 71t - 22y′1t2 + 7y1t2 = 0 , t 7 2

22. 1t + 122y″1t2 + 101t + 12y′1t2 + 14y1t2 = 0 ,

t 7 -1

23. To justify the solution formulas (8) and (9), perform the 
following analysis.

 (a)  Show that if the substitution t = ex is made in the 
function y1t2 and x is regarded as the new inde-
pendent variable in Y1x2 J y1ex2, the chain rule 
implies the following relationships:

t 
dy

dt
=

dY
dx

 , t 2 
d 2y

dt 2
=

d 2Y

dx 2
-

dY
dx

 .

 (b)  Using part (a), show that if the substitution t = e x 
is made in the Cauchy–Euler differential equation 
(6), the result is a constant-coefficient equation for 
Y1x2 = y1e x2, namely,

(20) a 
d 2Y

dx 2
+ 1b - a2 dY

dx
+ cY = ƒ1e x2 .

 (c)  Observe that the auxiliary equation (recall Section 
4.2) for the homogeneous form of (20) is the same 
as (7) in this section. If the roots of the former are 
complex, linearly independent solutions of (20) have 
the form eax cos bx and eax sin bx; if they are equal, 
linearly independent solutions of (20) have the form 
erx and xerx. Express x in terms of t to derive the cor-
responding solution forms (8) and (9).

24. Solve the following Cauchy–Euler equations by using 
the substitution described in Problem 23 to change them 
to constant coefficient equations, finding their general 
solutions by the methods of the preceding sections, and 
restoring the original independent variable t.

 (a)  t 2y″ + ty′ - 9y = 0
 (b)  t 2y″ + 3ty′ + 10y = 0
 (c)  t 2y″ + 3ty′ + y = t + t-1

 (d)  t 2y″ + ty′ + 9y = - tan13 ln t2
25. Let y1 and y2 be two functions defined on 1- ∞ , ∞ 2.
 (a)  True or False: If y1 and y2 are linearly dependent on 

the interval 3a, b4, then y1 and y2 are linearly depen-
dent on the smaller interval 3c, d4 ⊂ 3a, b4.

 (b)  True or False: If y1 and y2 are linearly dependent on 
the interval 3a, b4, then y1 and y2 are linearly depen-
dent on the larger interval 3C, D4 ⊃ 3a, b4.

26. Let y11t2 = t 3 and y21t2 = 0 t 3 0 . Are y1 and y2 linearly 
independent on the following intervals?

 (a)  30, ∞ 2    (b)  1- ∞ , 04    (c)  1- ∞ , ∞ 2
 (d)  Compute the Wronskian W3y1, y241t2 on the interval 

1- ∞ , ∞ 2.
27. Consider the linear equation

(21) 
t 2y″ - 3ty′ + 3y = 0 ,
for - ∞ 6 t 6 ∞  .

4.7 EXERCISES
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 (a)  Verify that y11t2 J t and y21t2 J t3 are two solu-
tions to (21) on 1- ∞ , ∞ 2. Furthermore, show that 
y11t02y=21t02 - y=11t02y21t02 ≠ 0 for t0 = 1.

 (b)  Prove that y11t2 and y21t2 are linearly independent 
on 1- ∞ , ∞ 2.

 (c)  Verify that the function y31t2 J 0 t 0 3 is also a solu-
tion to (21) on 1- ∞ , ∞ 2.

 (d)  Prove that there is no choice of constants c1, c2 such 
that y31t2 = c1y11t2 + c2y21t2 for all t in 1- ∞ , ∞ 2.  
[Hint: Argue that the contrary assumption leads to a 
contradiction.]

 (e)  From parts (c) and (d), we see that there is at 
least one solution to (21) on 1- ∞ , ∞ 2 that is not 
expressible as a linear combination of the solutions 
y11t2, y21t2. Does this provide a counterexample to 
the theory in this section? Explain.

28. Let y11t2 = t 2 and y21t2 = 2t 0 t 0 . Are y1 and y2 linearly 
independent on the interval:

 (a)  30, ∞ 2?    (b)  1- ∞ , 04?    (c)  1- ∞ , ∞ 2?
 (d)  Compute the Wronskian W3y1, y241t2 on the inter-

val 1- ∞ , ∞ 2.
29. Prove that if y1 and y2 are linearly independent solutions 

of y″ + py′ + qy = 0 on 1a, b2, then they cannot both 
be zero at the same point t0 in 1a, b2.

30. Superposition Principle. Let y1 be a solution to

y″1t2 + p1t2y′1t2 + q1t2y1t2 = g11t2
on the interval I and let y2 be a solution to

y″1t2 + p1t2y′1t2 + q1t2y1t2 = g21t2
on the same interval. Show that for any constants k1 and 
k2, the function k1y1 + k2y2 is a solution on I to

y″1t2 + p1t2y′1t2 + q1t2y1t2 = k1g11t2 + k2g21t2 .
31. Determine whether the following functions can be Wron-

skians on -1 6 t 6 1 for a pair of solutions to some 
equation y″ + py′ + qy = 0 (with p and q continuous).

 (a)  w1t2 = 6e4t (b)  w1t2 = t 3

 (c)  w1t2 = 1t + 12-1 (d)  w1t2 K 0

32. By completing the following steps, prove that the 
Wronskian of any two solutions y1, y2 to the equation 
y″ + py′ + qy = 0 on 1a, b2 is given by Abel’s formula†

W3y1, y241t2 = C exp5−L
t

t 0

 p1T2 dT6  ,

t0 and t in 1a, b2 ,
where the constant C depends on y1 and y2.

 (a)  Show that the Wronskian W satisfies the equation 
W′ + pW = 0.

 (b)  Solve the separable equation in part (a).
 (c)  How does Abel’s formula clarify the fact that the 

Wronskian is either identically zero or never zero on 
1a, b2?

33. Use Abel’s formula (Problem 32) to determine (up to 
a constant multiple) the Wronskian of two solutions on 
10, ∞ 2 to

ty″ + 1t - 12y′ + 3y = 0 .

34. All that is known concerning a mysterious differential 
equation y″ + p1t2y′ + q1t2y = g1t2 is that the func-
tions t, t 2, and t 3 are solutions.

 (a)  Determine two linearly independent solutions to the 
corresponding homogeneous differential equation.

 (b)  Find the solution to the original equation satisfying 
the initial conditions y122 = 2, y′122 = 5.

 (c)  What is p1t2? [Hint: Use Abel’s formula for the 
Wronskian, Problem 32.]

35. Given that 1 + t, 1 + 2t, and 1 + 3t2 are solutions to the 
differential equation y″ + p1t2y′ + q1t2y = g1t2, find 
the solution to this equation that satisfies y112 = 2, 
y′112 = 0.

36. Verify that the given functions y1 and y2 are linearly inde-
pendent solutions of the following differential equation and 
find the solution that satisfies the given initial conditions.

ty″ - 1t + 22y′ + 2y = 0 ;
y11t2 = et ,  y21t2 = t2 + 2t + 2 ;
y112 = 0 ,  y′112 = 1

In Problems 37 through 39, find general solutions to the non-
homogeneous Cauchy–Euler equations using variation of 
parameters.

37. t 2z″ + tz′ + 9z = - tan13 ln t2
38. t 2y″ + 3ty′ + y = t-1

39. t 2z″ - tz′ + z = t ¢1 +
3

ln t
≤

40. The Bessel equation of order one-half

t 2y″ + ty′ + a t 2 −
1
4
by = 0 , t + 0

has two linearly independent solutions,

y11t2 = t-1>2 cos t, y21t2 = t-1>2 sin t .

Find a general solution to the nonhomogeneous equation

t 2y″ + ty′ + ¢ t 2 -
1
4
≤  y = t 5>2 , t 7 0 .

In Problems 41 through 44, a differential equation and a non-
trivial solution f are given. Find a second linearly indepen-
dent solution using reduction of order.

41. t2y″ - 2ty′ - 4y = 0 ,  t 7 0 ; f1t2 = t-1

42. t2y″ + 6ty′ + 6y = 0 ,  t 7 0 ; f1t2 = t-2

43. tx″ - 1t + 12x′ + x = 0 ,  t 7 0 ; f 1t2 = et

44. ty″ + 11 - 2t2y′ + 1t - 12y = 0 ,  t 7 0 ; f1t2 = et

†Historical Footnote: Niels Abel derived this identity in 1827.
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45. Find a particular solution to the nonhomogeneous equation

ty″ - 1t + 12y′ + y = t2e2t ,

given that f1t2 = et is a solution to the corresponding 
homogeneous equation.

46. Find a particular solution to the nonhomogeneous equation

11 - t2y″ + ty′ - y = 11 - t22 ,

given that f1t2 = t is a solution to the corresponding 
homogeneous equation.

47. In quantum mechanics, the study of the Schrödinger 
equation for the case of a harmonic oscillator leads to a 
consideration of Hermite’s equation,

y″ − 2ty′ + Ly = 0 ,

where l is a parameter. Use the reduction of order for-
mula to obtain an integral representation of a second lin-
early independent solution to Hermite’s equation for the 
given value of l and corresponding solution f 1t2.

 (a)  l = 4 ,  f 1t2 = 1 - 2t 2

 (b)  l = 6 ,  f 1t2 = 3t - 2t 3

48. Complete the proof of Theorem 8 by solving equation (16).

49. The reduction of order procedure can be used more gen-
erally to reduce a homogeneous linear nth-order equation 
to a homogeneous linear 1n - 12th-order equation. For 
the equation

ty″′ - ty″ + y′ - y = 0, 

which has f  1t2 = et as a solution, use the substitution 
y 1t2 = v 1t2 f 1t2 to reduce this third-order equation to 
a homogeneous linear second-order equation in the vari-
able w = v′.

50. The equation

ty″′ + 11 - t2y″ + ty′ - y = 0

has f 1t2 = t as a solution. Use the substitution y 1t2 =
v 1t2 f 1t2 to reduce this third-order equation to a homo-
geneous linear second-order equation in the variable 
w = v′.

51. Isolated Zeros. Let f1t2 be a solution to y″ +
py′ + qy = 0 on (a, b), where p, q are continuous on (a, b).  
By completing the following steps, prove that if f is not 
identically zero, then its zeros in (a, b) are isolated, i.e., if 
f1t 02 = 0, then there exists a d 7 0 such that f1t2 ≠ 0 
for 0 6 0 t - t0 0 6 d.

 (a)  Suppose f1t 02 = 0 and assume to the contrary that 
for each n = 1, 2, c, the function f has a zero at 
tn, where 0 6 0 t0 - tn 0 6 1>n. Show that this implies 
f′1t02 = 0. [Hint: Consider the difference quotient 
for f at t0.]

 (b)  With the assumptions of part (a), we have 
f1t02 = f′1t02 = 0. Conclude from this that f 
must be identically zero, which is a contradiction. 
Hence, there is some integer n0 such that f1t2 is not 
zero for 0 6 0 t - t0 0 6 1>n0.

52. The reduction of order formula (13) can also be derived 
from Abels’ identity (Problem 32). Let f 1t2 be a non-
trivial solution to (10) and y1t2 a second linearly inde-
pendent solution. Show that¢ y

f
≤′ =

W3f, y4
f 2

and then use Abel’s identity for the Wronskian W3  f, y4 
to obtain the reduction of order formula.

There are no techniques for obtaining explicit, closed-form solutions to second-order linear 
differential equations with variable coefficients (with certain exceptions) or for nonlinear equa-
tions. In general, we will have to settle for numerical solutions or power series expansions. So 
it would be helpful to be able to derive, with simple calculations, some nonrigorous, qualita-
tive conclusions about the behavior of the solutions before we launch the heavy computational 
machinery. In this section we first display a few examples that illustrate the profound differ-
ences that can occur when the equations have variable coefficients or are nonlinear. Then we 
show how the mass–spring analogy, discussed in Section 4.1, can be exploited to predict some 
of the attributes of solutions of these more complicated equations.

To begin our discussion we display a linear constant-coefficient, a linear variable-coefficient, 
and two nonlinear equations.

4.8  Qualitative Considerations for Variable-Coefficient 
and Nonlinear Equations
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or

c1 =
y0 - 2x0

2
 , c2 =

y0 + 2x0

2
 .

Thus, the mass of salt in tanks A and B at time t are, respectively,

(5)

 x1t2 = - a y0 - 2x0

4
be-t>2 + a y0 + 2x0

4
be-t>6 ,    

 y1t2 = a y0 - 2x0

2
be-t>2 + a y0 + 2x0

2
be-t>6 .

The ad hoc elimination procedure that we used to solve this example will be generalized and 
formalized in the next section, to find solutions of all linear systems with constant coefficients. Fur-
thermore, in later sections we will show how to extend our numerical algorithms for first-order equa-
tions to general systems and will consider applications to coupled oscillators and electrical systems.

It is interesting to note from (5) that all solutions of the interconnected-tanks problem 
tend to the constant solution x1t2 K 0, y1t2 K 0 as t S + ∞ . (This is of course consistent  
with our physical expectations.) This constant solution will be identified as a stable equilibrium 
solution in Section 5.4, in which we introduce phase plane analysis. It turns out that, for a general 
class of systems, equilibria can be identified and classified so as to give qualitative information 
about the other solutions even when we cannot solve the system explicitly.

The notation y′(t) =
dy

dt
=

d
dt

 y was devised to suggest that the derivative of a function y is the 

result of operating on the function y with the differentiation operator 
d
dt

. Indeed, second deriva-

tives are formed by iterating the operation: y″(t) =
d2y

dt2 =
d
dt

 
d
dt

 y. Commonly, the symbol D 

is used instead of 
d
dt

, and the second-order differential equation

y″ + 4y′ + 3y = 0

is represented† by

D2y + 4Dy + 3y = 1D2 + 4D + 323y4 = 0 .

So, we have implicitly adopted the convention that the operator “product,” D times D, is inter-
preted as the composition of D with itself when it operates on functions: D2y means D1D3y42; 
i.e., the second derivative. Similarly, the product 1D + 321D + 12 operates on a function via

 1D + 321D + 123y4 = 1D + 3231D + 123y44 = 1D + 323y′ + y4
 = D3y′ + y4 + 33y′ + y4
 = 1y″ +  y′2 + 13y′ + 3y2 = y″ + 4y′ + 3y = 1D2 + 4D + 323y4 .

5.2  Differential Operators and  
the Elimination Method* for Systems

*An alternative procedure to the methodology of this section will be described in Chapter 9. Although it involves the 
machinery of matrix analysis, it is preferable for large systems.
†Some authors utilize the identity operator I, defined by I3y4 = y, and write more formally D2 + 4D + 3I instead of 
D2 + 4D + 3.
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Thus, 1D + 321D + 12 is the same operator as D2 + 4D + 3; when they are applied to 
twice-differentiable functions, the results are identical.

Example 1 Show that the operator 1D + 121D + 32 is also the same as D2 + 4D + 3.

Solution For any twice-differentiable function y1t2, we have

 1D + 121D + 323y4 = 1D + 1231D + 323y44 = 1D + 123y′ + 3y4
 = D3y′ + 3y4 + 13y′ + 3y4 = 1y″ + 3y′2 + 1y′ + 3y2
 = y″ + 4y′ + 3y = 1D2 + 4D + 323y4 .

Hence, 1D + 121D + 32 = D2 + 4D + 3. ◆

Since 1D + 121D + 32 = 1D + 321D + 12 = D2 + 4D + 3, it is tempting to generalize 
and propose that one can treat expressions like aD2 + bD + c as if they were ordinary polyno-
mials in D. This is true, as long as we restrict the coefficients a, b, c to be constants. The fol-
lowing example, which has variable coefficients, is instructive.

Example 2 Show that 1D + 3t2D is not the same as D1D + 3t2.
Solution With y1t2 as before,

 1D + 3t2D3y4 = 1D + 3t23y′4 = y″ + 3ty′ ;
 D1D + 3t23y4 = D3y′ + 3ty4 = y″ + 3y + 3ty′ .

They are not the same! ◆

Because the coefficient 3t is not a constant, it “interrupts” the interaction of the differ-
entiation operator D with the function y1t2. As long as we only deal with expressions like  
aD2 + bD + c with constant coefficients a, b, and c, the “algebra” of differential operators 
follows the same rules as the algebra of polynomials. (See Problem 39 for elaboration on this 
point.)

This means that the familiar elimination method, used for solving algebraic systems like

 3x - 2y + z = 4 ,

 x + y - z = 0 ,

 2x - y + 3z = 6 ,

can be adapted to solve any system of linear differential equations with constant coefficients.  
In fact, we used this approach in solving the system that arose in the interconnected tanks prob-
lem of Section 5.1. Our goal in this section is to formalize this elimination method so that we 
can tackle more general linear constant coefficient systems.

We first demonstrate how the method applies to a linear system of two first-order differen-
tial equations of the form

 a1x′1t2 + a2x1t2 + a3y′1t2 + a4y1t2 = f11t2 ,
 a5x′1t2 + a6x1t2 + a7y′1t2 + a8y1t2 = f21t2 ,

where a1, a2, . . . , a8 are constants and x1t2, y1t2 is the function pair to be determined. In 
operator notation this becomes

 1a1D + a223x4 + 1a3D + a423y4 = f1 ,

 1a5D + a623x4 + 1a7D + a823y4 = f2 .
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Example 3 Solve the system

(1)
  x′1t2 = 3x1t2 - 4y1t2 + 1 ,

  y′1t2 = 4x1t2 - 7y1t2 + 10t .

Solution The alert reader may observe that since y′ is absent from the first equation, we could use the 
latter to express y in terms of x and x′ and substitute into the second equation to derive an 
“uncoupled” equation containing only x and its derivatives. However, this simple trick will not 
work on more general systems (Problem 18 is an example).

To utilize the elimination method, we first write the system using the operator notation:

(2)
  1D - 323x4 + 4y = 1 ,

  -4x + 1D + 723y4 = 10t .

Imitating the elimination procedure for algebraic systems, we can eliminate x from this system 
by adding 4 times the first equation to 1D - 32 applied to the second equation. This gives

116 + 1D - 321D + 72 2 3y4 = 4 # 1 + 1D - 32310t4 = 4 + 10 - 30t ,

which simplifies to

(3) 1D2 + 4D - 523y4 = 14 - 30t .

Now equation (3) is just a second-order linear equation in y with constant coefficients that has 
the general solution

(4) y1t2 = C1e
-5t + C2e

t + 6t + 2 ,

which can be found using undetermined coefficients.
To find x1t2, we have two options.

Method 1. We return to system (2) and eliminate y. This is accomplished by “multiply-
ing” the first equation in (2) by 1D + 72 and the second equation by -4 and then adding to 
obtain

1D2 + 4D - 523x4 = 7 - 40t .

This equation can likewise be solved using undetermined coefficients to yield

(5) x1t2 = K1e
-5t + K2e

t + 8t + 5 ,

where we have taken K1 and K2 to be the arbitrary constants, which are not necessarily the 
same as C1 and C2 used in formula (4).

It is reasonable to expect that system (1) will involve only two arbitrary constants, since it 
consists of two first-order equations. Thus, the four constants C1, C2, K1, and K2 are not inde-
pendent. To determine the relationships, we substitute the expressions for x1t2 and y1t2 given 
in (4) and (5) into one of the equations in (1)—say, the first one. This yields

-5K1e
-5t + K2e

t + 8 =
3K1e

-5t + 3K2e
t + 24t + 15 - 4C1e

-5t - 4C2e
t - 24t - 8 + 1 ,

which simplifies to

14C1 - 8K12e-5t + 14C2 - 2K22et = 0 .
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Because et and e-5t are linearly independent functions on any interval, this last equation holds 
for all t only if

4C1 - 8K1 = 0  and  4C2 - 2K2 = 0 .

Therefore, K1 = C1>2 and K2 = 2C2.
A solution to system (1) is then given by the pair

(6) x1t2 =
1
2

 C1e
-5t + 2C2e

t + 8t + 5 , y1t2 = C1e
-5t + C2e

t + 6t + 2 .

As you might expect, this pair is a general solution to (1) in the sense that any solution to (1) 
can be expressed in this fashion.

Method 2. A simpler method for determining x1t2 once y1t2 is known is to use the system 
to obtain an equation for x1t2 in terms of y1t2 and y′1t2. In this example we can directly solve 
the second equation in (1) for x1t2:

x1t2 =
1
4

 y′1t2 +
7
4

 y1t2 -
5
2

 t .

Substituting y1t2 as given in (4) yields

 x1t2 =
1
4

 3-5C1e
-5t + C2e

t + 64 +
7
4

 3C1e
-5t + C2e

t + 6t + 24 -
5
2

 t

 =
1
2

 C1e
-5t + 2C2e

t + 8t + 5 ,

which agrees with (6). ◆

The above procedure works, more generally, for any linear system of two equations and 
two unknowns with constant coefficients regardless of the order of the equations. For example, 
if we let L1, L2, L3, and L4 denote linear differential operators with constant coefficients (i.e., 
polynomials in D), then the method can be applied to the linear system

 L13x4 + L23y4 = f1 ,

 L33x4 + L43y4 = f2 .

Because the system has constant coefficients, the operators commute (e.g., L2L4 = L4L2) 
and we can eliminate variables in the usual algebraic fashion. Eliminating the variable y gives

(7) 1L1L4 - L2L323x4 = g1 ,

where g1 J L4[f1] - L2[f2]. Similarly, eliminating the variable x yields

(8) 1L1L4 - L2L323y4 = g2 ,

where g2 J L1[  f2] - L3[  f1]. Now if L1L4 - L2L3 is a differential operator of order n, then 
a general solution for (7) contains n arbitrary constants, and a general solution for (8) also 
contains n arbitrary constants. Thus, a total of 2n constants arise. However, as we saw in 
Example 3, there are only n of these that are independent for the system; the remaining con-
stants can be expressed in terms of these.† The pair of general solutions to (7) and (8) written 
in terms of the n independent constants is called a general solution for the system.

†For a proof of this fact, see Ordinary Differential Equations, by M. Tenenbaum and H. Pollard (Dover, New York, 
1985), Chapter 7.
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If it turns out that L1L4 - L2L3 is the zero operator, the system is said to be degenerate. As 
with the anomalous problem of solving for the points of intersection of two parallel or coinci-
dent lines, a degenerate system may have no solutions, or if it does possess solutions, they may 
involve any number of arbitrary constants (see Problems 23 and 24).

Elimination Procedure for 2 : 2 Systems

To find a general solution for the system

L13x4 + L23y4 = f1 ,

L33x4 + L43y4 = f2 ,

where L1, L2, L3, and L4 are polynomials in D = d>dt:

(a) Make sure that the system is written in operator form.
(b) Eliminate one of the variables, say, y, and solve the resulting equation for x1t2. If 

the system is degenerate, stop! A separate analysis is required to determine whether 
or not there are solutions.

(c) (Shortcut) If possible, use the system to derive an equation that involves y1t2 but not 
its derivatives. [Otherwise, go to step (d).] Substitute the found expression for x1t2 
into this equation to get a formula for y1t2. The expressions for x1t2, y1t2 give the 
desired general solution. ◆

(d) Eliminate x from the system and solve for y1t2. [Solving for y1t2 gives more  
constants—in fact, twice as many as needed.]

(e) Remove the extra constants by substituting the expressions for x1t2 and y1t2 into 
one or both of the equations in the system. Write the expressions for x1t2 and y1t2 
in terms of the remaining constants. ◆

Example 4 Find a general solution for

(9)
  x″1t2 + y′1t2 - x1t2 + y1t2 = -1 ,

  x′1t2 + y′1t2 - x1t2 = t2 .

Solution We begin by expressing the system in operator notation:

(10)
  1D2 - 123x4 + 1D + 123y4 = -1 ,

  1D - 123x4 + D3y4 = t2 .

Here L1 J D2 - 1, L2 J D + 1, L3 J D - 1, and L4 J D.
Eliminating y gives [see (7)]:

1 1D2 - 12D - 1D + 121D - 12 2 3x4 = D[-1] - 1D + 123t24 ,
which reduces to

  1D2 - 121D - 123x4 = -2t - t2 , or

(11)  1D - 1221D + 123x4 = -2t - t2 .

Since 1D - 1221D + 12 is third order, we should expect three arbitrary constants in a general 
solution to system (9).

Although the methods of Chapter 4 focused on solving second-order equations,  
we have seen several examples of how they extend in a natural way to higher-order  
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equations.† Applying this strategy to the third-order equation (11), we observe that the cor-
responding homogeneous equation has the auxiliary equation 1r - 1221r + 12 = 0 with roots 
r = 1, 1, -1. Hence, a general solution for the homogeneous equation is

xh1t2 = C1e
t + C2te

t + C3e
-t .

To find a particular solution to (11), we use the method of undetermined coefficients with 
xp1t2 = At2 + Bt + C. Substituting into (11) and solving for A, B, and C yields (after a little 
algebra)

xp1t2 = - t2 - 4t - 6 .

Thus, a general solution to equation (11) is

(12) x1t2 = xh1t2 + xp1t2 = C1e
t + C2te

t + C3e
-t - t2 - 4t - 6 .

To find y1t2, we take the shortcut described in step (c) of the elimination procedure box. 
Subtracting the second equation in (10) from the first, we find

1D2 - D23x4 + y = -1 - t2 ,

so that

y = 1D - D223x4 - 1 - t2 .

Inserting the expression for x1t2, given in (12), we obtain

 y1t2 = C1e
t + C21tet + et2 - C3e

-t - 2t - 4

- 3C1e
t + C21tet + 2et2 + C3e

-t - 24 - 1 - t2 , or

(13)  y1t2 = -C2e
t - 2C3e

-t - t2 - 2t - 3 .

The formulas for x1t2 in (12) and y1t2 in (13) give the desired general solution to (9). ◆

The elimination method also applies to linear systems with three or more equations and 
unknowns; however, the process becomes more cumbersome as the number of equations and 
unknowns increases. The matrix methods presented in Chapter 9 are better suited for handling 
larger systems. Here we illustrate the elimination technique for a 3 * 3 system.

†More detailed treatment of higher-order equations is given in Chapter 6.

Example 5 Find a general solution to

(14)

  x′1t2 = x1t2 + 2y1t2 - z1t2 ,
  y′1t2 = x1t2 + z1t2 ,
  z′1t2 = 4x1t2 - 4y1t2 + 5z1t2 .

Solution We begin by expressing the system in operator notation:

(15)

  1D - 123x4 - 2y + z = 0 ,

  -x + D3y4 - z = 0 ,

  -4x + 4y + 1D - 523z4 = 0 .

Eliminating z from the first two equations (by adding them) and then from the last two 
 equations yields (after some algebra, which we omit) 

(16)
  1D - 223x4 + 1D - 223y4 = 0 ,

  - 1D - 123x4 + 1D - 121D - 423y4 = 0 .
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On eliminating x from this 2 * 2 system, we eventually obtain

1D - 121D - 221D - 323y4 = 0 ,

which has the general solution

(17) y1t2 = C1e
t + C2e

2t + C3e
3t .

Taking the shortcut approach, we add the two equations in (16) to get an expression for x 
in terms of y and its derivatives, which simplifies to

x = 1D2 - 4D + 223y4 = y″ - 4y′ + 2y .

When we substitute the expression (17) for y1t2 into this equation, we find

(18) x1t2 = -C1e
t - 2C2e

2t - C3e
3t .

Finally, using the second equation in (14) to solve for z1t2, we get

z1t2 = y′1t2 - x1t2 ,
and substituting in for y1t2 and x1t2 yields

(19) z1t2 = 2C1e
t + 4C2e

2t + 4C3e
3t .

The expressions for x1t2 in (18), y1t2 in (17), and z1t2 in (19) give a general solution 
with C1, C2, and C3 as arbitrary constants. ◆

1. Let A = D - 1,   B = D + 2,   C = D2 + D - 2,   where 
D = d>dt. For y = t3 - 8, compute

  (a) A3y4 (b) B3A3y44 (c) B3y4
  (d) A3B3y44 (e) C3y4
2. Show that the operator 1D - 121D + 22 is the same as 

the operator D2 + D - 2.

In Problems 3–18, use the elimination method to find a general 
solution for the given linear system, where differentiation is 
with respect to t.

13. 
dx
dt

= x - 4y ,

 
dy

dt
= x + y

14. 
dx
dt

+ y = t2 ,

 -x +
dy

dt
= 1

5.2 EXERCISES

3. x′ + 2y = 0 ,

 x′ - y′ = 0

4. x′ = x - y ,

 y′ = y - 4x

5. x′ + y′ - x = 5 ,

 x′ + y′ + y = 1

6. x′ = 3x - 2y + sin t ,

 y′ = 4x - y - cos t

7. 1D + 123u4 - 1D + 123y4 = et ,

 1D - 123u4 + 12D + 123y4 = 5

8. 1D - 323x4 + 1D - 123y4 = t ,

 1D + 123x4 + 1D + 423y4 = 1

9. x′ + y′ + 2x = 0 ,

 x′ + y′ - x - y = sin t
10. 2x′ + y′ - x - y = e-t ,

 x′ + y′ + 2x + y = et

11. 1D2 - 123u4 + 5y = et ,

 2u + 1D2 + 223y4 = 0

12. D23u4 + D3y4 = 2 ,

 4u + D3y4 = 6

15. 
dw
dt

= 5w + 2z + 5t ,

 
dz
dt

= 3w + 4z + 17t

16. 
dx
dt

+ x +
dy

dt
= e4t ,

 2x +
d2y

dt2 = 0

17. x″ + 5x - 4y = 0 ,

 -x + y″ + 2y = 0

18. x″ + y″ - x′ = 2t ,

 x″ + y′ - x + y = -1

In Problems 19–21, solve the given initial value problem.

19. 
dx
dt

= 4x + y ; x102 = 1 ,

 
dy

dt
= -2x + y ; y102 = 0

20. 
dx
dt

= 2x + y - e2t ; x102 = 1 ,

 
dy

dt
= x + 2y ; y102 = -1
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21. 
d2x

dt2 = y ; x102 = 3 ,  x′102 = 1 ,

 
d2y

dt2 = x ; y102 = 1 ,  y′102 = -1

22. Verify that the solution to the initial value problem

 x′ = 5x - 3y - 2 ; x102 = 2 ,

 y′ = 4x - 3y - 1 ; y102 = 0

satisfies 0 x1t2 0  + 0 y1t2 0 S + ∞  as t S + ∞ .

In Problems 23 and 24, show that the given linear system 
is degenerate. In attempting to solve the system, determine 
whether it has no solutions or infinitely many solutions.

23. 1D - 123x4 + 1D - 123y4 = -3e-2t ,

 1D + 223x4 + 1D + 223y4 = 3et

24. D3x4 + 1D + 123y4 = et ,

 D23x4 + 1D2 + D23y4 = 0

In Problems 25–28, use the elimination method to find a gen-
eral solution for the given system of three equations in the 
three unknown functions x1t2, y1t2, z1t2.

tank A into tank B at a rate of 3 L/min and from B 
into A at a rate of 1 L/min (see Figure 5.2). The liquid 
inside each tank is kept well stirred. A brine solution 
with a concentration of 0.2 kg/L of salt flows into tank 
A at a rate of 6 L/min. The (diluted) solution flows out 
of the system from tank A at 4 L/min and from tank B 
at 2 L/min. If, initially, tank A contains pure water and 
tank B contains 20 kg of salt, determine the mass of 
salt in each tank at time t Ú 0.

32. In Problem 31, 3 L/min of liquid flowed from tank A 
into tank B and 1 L/min from B into A. Determine the 
mass of salt in each tank at time t Ú 0 if, instead, 5 L/min 
flows from A into B and 3 L/min flows from B into A, 
with all other data the same.

33. In Problem 31, assume that no solution flows out of the 
system from tank B, only 1 L/min flows from A into B, 
and only 4 L/min of brine flows into the system at tank 
A, other data being the same. Determine the mass of salt 
in each tank at time t Ú 0.

34. Feedback System with Pooling Delay.  Many physical 
and biological systems involve time delays. A pure time 
delay has its output the same as its input but shifted in 
time. A more common type of delay is pooling delay. An 
example of such a feedback system is shown in Figure 5.3 
on page 251. Here the level of fluid in tank B determines 
the rate at which fluid enters tank A. Suppose this rate 
is given by R11t2 = a3V - V21t24, where a and V are 
positive constants and V21t2 is the volume of fluid in 
tank B at time t.

  (a)  If the outflow rate R3 from tank B is constant and the 
flow rate R2 from tank A into B is R21t2 = KV11t2,  
where K is a positive constant and V11t2 is the vol-
ume of fluid in tank A at time t, then show that this 
feedback system is governed by the system

 
dV1

dt
= a1V - V21t2 2 - KV11t2 ,

 
dV2

dt
= KV11t2 - R3 .

25.  x′ = x + 2y - z ,

  y′ = x + z ,

  z′ = 4x - 4y + 5z

26.  x′ = 3x + y - z ,

  y′ = x + 2y - z ,

  z′ = 3x + 3y - z

27.  x′ = 4x - 4z ,

  y′ = 4y - 2z ,

  z′ = -2x - 4y + 4z

28.  x′ = x + 2y + z ,

  y′ = 6x - y ,

  z′ = -x - 2y - z

In Problems 29 and 30, determine the range of values (if any) 
of the parameter l that will ensure all solutions x1t2, y1t2 of 
the given system remain bounded as t S + ∞ .

29.  
dx
dt

= lx - y ,

  
dy

dt
= 3x + y

30.  
dx
dt

= -x + ly ,

  
dy

dt
= x - y

31. Two large tanks, each holding 100 L of liquid, are 
interconnected by pipes, with the liquid flowing from 

6 L/min 

0.2 kg/L 

4 L/min 

x(t)

100 L 

x (0) 5 0 kg

A 
3 L/min 

y(t)

100 L 

y (0) 5 20 kg

B 

2 L/min 

1 L/min 

Figure 5.2 Mixing problem for interconnected tanks
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  (b)  Find a general solution for the system in part (a) 
when a = 5 (min)-1, V = 20 L, K = 2 (min)-1, 
and R3 = 10 L/min.

  (c)  Using the general solution obtained in part (b), what 
can be said about the volume of fluid in each of the 
tanks as t S + ∞?

35. A house, for cooling purposes, consists of two zones: 
the attic area zone A and the living area zone B (see 
Figure 5.4). The living area is cooled by a 2-ton air 
conditioning unit that removes 24,000 Btu/hr. The heat 
capacity of zone B is 1>2°F per thousand Btu. The time 
constant for heat transfer between zone A and the out-
side is 2 hr, between zone B and the outside is 4 hr, and 
between the two zones is 4 hr. If the outside tempera-
ture stays at 100°F, how warm does it eventually get in 
the attic zone A? (Heating and cooling of buildings was 
treated in Section 3.3 on page 102.)

36. A building consists of two zones A and B (see Figure 5.5). 
Only zone A is heated by a furnace, which generates 
80,000 Btu/hr. The heat capacity of zone A is 1>4°F per 
thousand Btu. The time constant for heat transfer between 

zone A and the outside is 4 hr, between the unheated zone 
B and the outside is 5 hr, and between the two zones is  
2 hr. If the outside temperature stays at 0°F, how cold 
does it eventually get in the unheated zone B?

37. In Problem 36, if a small furnace that generates 1000 Btu/hr 
is placed in zone B, determine the coldest it would even-
tually get in zone B if zone B has a heat capacity of 2°F 
per thousand Btu.

38. Arms Race. A simplified mathematical model for an 
arms race between two countries whose expenditures for 
defense are expressed by the variables x1t2 and y1t2 is 
given by the linear system

 
dx
dt

= 2y - x + a ;   x102 = 1 ,

 
dy

dt
= 4x - 3y + b ;   y102 = 4 ,

where a and b are constants that measure the trust (or dis-
trust) each country has for the other. Determine whether 
there is going to be disarmament (x and y approach 0 as 
t increases), a stabilized arms race (x and y approach a 
constant as t S + ∞ ), or a runaway arms race (x and y 
approach + ∞  as t S + ∞ ).

39. Let A, B, and C represent three linear differential opera-
tors with constant coefficients; for example,

A J a2D
2 + a1D + a0 ,   B J b2D

2 + b1D + b0    ,

C J c2D
2 + c1D + c0 ,

where the a’s, b’s, and c’s are constants. Verify the fol-
lowing properties:†

  (a) Commutative laws:

A + B = B + A ,

AB = BA .

  (b) Associative laws:

1A + B2 + C = A + 1B + C2 ,
1AB2C = A1BC2 .

  (c) Distributive law: A1B + C2 = AB + AC .

R 1 

Pump 
Tank A 

Tank B 

R 3 

R 2 

V 1 ( t ) 

V 2 ( t ) 

Power 

Figure 5.3 Feedback system with pooling delay

A 

B 

4 hr 
4 hr 

24,000 Btu/hr

2 hr 

Figure 5.4 Air-conditioned house with attic

†We say that two operators A and B are equal if A3y4 = B3y4 for all functions y with the necessary derivatives.

4 hr 

A

x(t) 2 hr y(t) 5 hr

B

Figure 5.5 Two-zone building with one zone heated
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Although we studied a half-dozen analytic methods for obtaining solutions to first-order 
ordinary differential equations in Chapter 2, the techniques for higher-order equations,  
or systems of equations, are much more limited. Chapter 4 focused on solving the linear 
constant-coefficient second-order equation. The elimination method of the previous section 
is also restricted to constant-coefficient systems. And, indeed, higher-order linear constant-
coefficient equations and systems can be solved analytically by extensions of these methods, 
as we will see in Chapters 6, 7, and 9.

However, if the equations—even a single second-order linear equation—have variable 
coefficients, the solution process is much less satisfactory. As will be seen in Chapter 8, the 
solutions are expressed as infinite series, and their computation can be very laborious (with the 
notable exception of the Cauchy–Euler, or equidimensional, equation). And we know virtually 
nothing about how to obtain exact solutions to nonlinear second-order equations.

Fortunately, all the cases that arise (constant or variable coefficients, nonlinear, higher-
order equations or systems) can be addressed by a single formulation that lends itself to a mul-
titude of numerical approaches. In this section we’ll see how to express differential equations 
as a system in normal form and then show how the basic Euler method for computer solution 
can be easily “vectorized” to apply to such systems. Although subsequent chapters will return 
to analytic solution methods, the vectorized version of the Euler technique or the more efficient 
Runge–Kutta technique will hereafter be available as fallback methods for numerical explora-
tion of intractable problems.

Normal Form
A system of m differential equations in the m unknown functions x11t2, x21t2, . . . , xm1t2 
expressed as

  x=11t2 = f11t, x1, x2, . . . , xm2  ,

(1)  x=21t2 = f21t, x1, x2, . . . , xm2  ,
O

  x=m1t2 = fm1t, x1, x2, . . . , xm2
is said to be in normal form. Notice that (1) consists of m first-order equations that collec-
tively look like a vectorized version of the single generic first-order equation

(2) x′ = f1t, x2 ,
and that the system expressed in equation (1) of Section 5.1 takes this form, as do equations (1) 
and (14) in Section 5.2. An initial value problem for (1) entails finding a solution to this system 
that satisfies the initial conditions

x11t02 = a1, x21t02 = a2, . . . , xm1t02 = am

for prescribed values t0, a1, a2, . . . , am.
The importance of the normal form is underscored by the fact that most professional codes 

for initial value problems presume that the system is written in this form. Furthermore, for a 
linear system in normal form, the powerful machinery of linear algebra can be readily applied. 
[Indeed, in Chapter 9 we will show how the solutions x1t2 = ceat of the simple equation 
x′ = ax can be generalized to constant-coefficient systems in normal form.]

5.3  Solving Systems and Higher-Order  
Equations Numerically
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For these reasons it is gratifying to note that a (single) higher-order equation can always be 
converted to an equivalent system of first-order equations.

To convert an mth-order differential equation

(3) y1m21t2 = f1 t, y, y′,c, y1m-12 2
into a first-order system, we introduce, as additional unknowns, the sequence of derivatives of y:

x11t2 J y1t2, x21t2 J y′1t2, . . . , xm1t2 J y1m-121t2 .
With this scheme, we obtain m - 1 first-order equations quite trivially:

(4)

  x′11t2 = y′1t2 = x21t2 ,
  x′21t2 = y″1t2 = x31t2 ,

O
  x′m − 11t2 = y1m − 121t2 = xm1t2 .
The mth and final equation then constitutes a restatement of the original equation (3) in terms 
of the new unknowns:

(5) x′m1t2 = y1m21t2 = f1t, x1, x2, . . . , xm2 .
If equation (3) has initial conditions y1t02 = a1, y′1t02 = a2, . . . , y

1m-121t02 = am, then the 
system (4)–(5) has initial conditions x11t02 = a1, x21t02 = a2, . . . , xm1t02 = am.

Example 1 Convert the initial value problem

(6) y″1t2 + 3ty′1t2 + y1t22 = sin t ; y102 = 1 , y′102 = 5

into an initial value problem for a system in normal form.

Solution We first express the differential equation in (6) as

y″1t2 = - 3ty′1t2 - y1t22 + sin t .

Setting x11t2 J y1t2 and x21t2 J y′1t2, we obtain

x=11t2 = x21t2 ,
x=21t2 = -3tx21t2 - x11t22 + sin t .

The initial conditions transform to x1102 = 1, x2102 = 5 . ◆

Euler’s Method for Systems in Normal Form
Recall from Section 1.4 that Euler’s method for solving a single first-order equation (2) is 
based on estimating the solution x at time 1t0 + h2 using the approximation

(7) x1t0 + h2 ≈ x1t02 + hx′1t02 = x1t02 + h f1 t0, x1t02 2  ,
and that as a consequence the algorithm can be summarized by the recursive formulas

(8) tn + 1 = tn + h ,

(9) xn + 1 = xn + h f1tn, xn2,  n = 0, 1, 2, . . .

[compare equations (2) and (3), Section 1.4]. Now we can apply the approximation (7) to each 
of the equations in the system (1):

(10) xk1t0 + h2 ≈ xk1t02 + hx=k1t02 = xk1t02 + h fk1 t0, x11t02, x21t02, . . . , xm1t02 2  ,
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and for k = 1, 2, . . . m, we are led to the recursive formulas

(11) tn + 1 = tn + h ,

(12)

  x1;n + 1 = x1;n + h f11tn, x1;n, x2;n, . . . , xm;n2 ,
  x2;n + 1 = x2;n + h f21tn, x1;n, x2;n, . . . , xm;n2 ,

O
  xm;n + 1 = xm;n + h fm1tn, x1;n, x2;n, . . . , xm;n2  1n = 0, 1, 2,c2 .
Here we are burdened with the ungainly notation xp;n for the approximation to the value of the 
pth-function xp at time t = t0 + nh; i.e., xp;n ≈ xp1t0 + nh2. However, if we treat the unknowns 
and right-hand members of (1) as components of vectors

x1t2 J 3x11t2, x21t2, . . . , xm1t24 ,
f1t, x2 J 3f11t, x1, x2, . . . , xm2,  f21t, x1, x2,  . . . , xm2, . . . ,  fm1t, x1, x2, . . . , xm24 ,

then (12) can be expressed in the much neater form

(13) xn + 1 = xn + h f1tn, xn2 .

Example 2 Use the vectorized Euler method with step size h = 0.1 to find an approximation for the solu-
tion to the initial value problem

(14) y″1t2 + 4y′1t2 + 3y1t2 = 0; y102 = 1.5 , y′102 = -2.5 ,

on the interval 30, 14.
Solution For the given step size, the method will yield approximations for y10.12, y10.22, . . . , y11.02. 

To apply the vectorized Euler method to (14), we first convert it to normal form. Setting x1 = y 
and x2 = y′, we obtain the system

(15)
 x=1 = x2;        x1102 = 1.5 ,

 x=2 = -4x2 - 3x1;   x2102 = -2.5 .

Comparing (15) with (1) we see that f11t, x1, x22 = x2 and f21t, x1, x22 = -4x2 - 3x1. 
With the starting values of t0 = 0, x1;0 = 1.5, and x2;0 = -2.5, we computec x110.12 ≈ x1;1 = x1;0 + hx2;0 = 1.5 + 0.11-2.52 = 1.25 ,

x210.1) ≈ x2;1 = x2;0 + h1-4x2;0 - 3x1;02 = -2.5 + 0.13-41-2.52 - 3 # 1.54 = -1.95 ;c x110.22 ≈ x1;2 = x1;1 + hx2;1 = 1.25 + 0.11-1.952 = 1.055 ,

x210.2) ≈ x2;2 = x2;1 + h1-4x2;1 - 3x1;12 = -1.95 + 0.13-41-1.952 - 3 # 1.254 = -1.545 .

Continuing the algorithm we compute the remaining values. These are listed in Table 5.1 on 
page 255, along with the exact values calculated via the methods of Chapter 4. Note that the x2;n 
column gives approximations to y′1t2, since x21t2 K y′1t2. ◆
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Euler’s method is modestly accurate for this problem with a step size of h = 0.1. The next 
example demonstrates the effects of using a sequence of smaller values of h to improve the 
accuracy.

TABLE 5.1 Approximations of the Solution to (14) in Example 2

t = n10.12 x1;n y Exact x2;n y′ Exact

0 1.5 1.5 -2.5 -2.5
0.1 1.25 1.275246528 -1.95 -2.016064749
0.2 1.055 1.093136571 -1.545 -1.641948207
0.3 0.9005 0.944103051 -1.2435 -1.35067271
0.4 0.77615 0.820917152 -1.01625 -1.122111364
0.5 0.674525 0.71809574 -0.842595 -0.9412259
0.6 0.5902655 0.63146108 -0.7079145 -0.796759968
0.7 0.51947405 0.557813518 -0.60182835 -0.680269946
0.8 0.459291215 0.494687941 -0.516939225 -0.585405894
0.9 0.407597293 0.440172416 -0.4479509 -0.507377929
1 0.362802203 0.392772975 -0.391049727 -0.442560044

Example 3 For the initial value problem of Example 2, use Euler’s method to estimate y112 for succes-
sively halved step sizes h = 0.1, 0.05, 0.025, 0.0125, 0.00625.

Solution Using the same scheme as in Example 2, we find the following approximations, denoted by 
y11;h2 (obtained with step size h):

h 0.1 0.05 0.025 0.0125 0.00625

y 11;h 2 0.36280 0.37787 0.38535 0.38907 0.39092

[Recall that the exact value, rounded to 5 decimal places, is y112 = 0.39277.] ◆

The Runge–Kutta scheme described in Section 3.7 is easy to vectorize also; details are 
given on the following page. As would be expected, its performance is considerably more 
accurate, yielding five-decimal agreement with the exact solution for a step size of 0.05:

h 0.1 0.05 0.025 0.0125 0.00625

y 11;h 2 0.39278 0.39277 0.39277 0.39277 0.39277

As in Section 3.7, both algorithms can be coded so as to repeat the calculation of y112 
with a sequence of smaller step sizes until two consecutive estimates agree to within some pre-
specified tolerance e. Here one should interpret “two estimates agree to within e” to mean that 
each component of the successive vector approximants [i.e., approximants to y112 and y′112] 
should agree to within e.

An Application to Population Dynamics
A mathematical model for the population dynamics of competing species, one a predator with 
population x21t2 and the other its prey with population x11t2, was developed independently in 
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the early 1900s by A. J. Lotka and V. Volterra. It assumes that there is plenty of food available 
for the prey to eat, so the birthrate of the prey should follow the Malthusian or exponential law 
(see Section 3.2); that is, the birthrate of the prey is Ax1, where A is a positive constant. The death 
rate of the prey depends on the number of interactions between the predators and the prey. This 
is modeled by the expression Bx1x2, where B is a positive constant. Therefore, the rate of change 
in the population of the prey per unit time is dx1>dt = Ax1 - Bx1x2. Assuming that the predators 
depend entirely on the prey for their food, it is argued that the birthrate of the predators depends 
on the number of interactions with the prey; that is, the birthrate of predators is Dx1x2, where D is 
a positive constant. The death rate of the predators is assumed to be Cx2 because without food the 
population would die off at a rate proportional to the population present. Hence, the rate of change 
in the population of predators per unit time is dx2>dt = -Cx2 + Dx1x2. Combining these two equa-
tions, we obtain the Volterra–Lotka system for the population dynamics of two competing species:

(16)
  x′1 = Ax1 − Bx1x2 ,

  x′2 = −Cx2 + Dx1x2 .

Such systems are in general not explicitly solvable. In the following example, we obtain 
an approximate solution for such a system by utilizing the vectorized form of the Runge–Kutta 
algorithm.

For the system of two equations

x=1 = f11t, x1, x22 ,
x=2 = f21t, x1, x22 ,

with initial conditions x11t02 = x1;0, x21t02 = x2;0, the vectorized form of the Runge–Kutta 
recursive equations (cf. (14), page 254) becomes

(17) e  tn + 1 J tn + h  1n = 0, 1, 2, . . .2 ,

x1;n + 1 J x1;n + 1
61k1,1 + 2k1,2 + 2k1,3 + k1,42 ,

x2;n + 1 J x2;n + 1
61k2,1 + 2k2,2 + 2k2,3 + k2,42 ,

where h is the step size and, for i = 1 and 2,

(18) f ki,1 J h fi1tn, x1;n, x2;n2 ,
ki,2 J h fi1 tn + h

2, x1;n + 1
2k1,1, x2;n + 1

2k2,12  ,
ki,3 J h fi1 tn + h

2, x1;n + 1
2k1,2, x2;n + 1

2k2,22  ,
ki,4 J h fi1tn + h, x1;n + k1,3, x2;n + k2,32 .

It is important to note that both k1,1 and k2,1 must be computed before either k1,2 or k2,2. 
Similarly, both k1,2 and k2,2 are needed to compute k1,3 and k2,3, etc. In Appendix F, program 
outlines are given for applying the method to graph approximate solutions over a specified 
interval 3t0, t14 or to obtain approximations of the solutions at a specified point to within a 
desired tolerance.
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Example 4 Use the classical fourth-order Runge–Kutta algorithm for systems to approximate the solution 
of the initial value problem

(19)
  x=1 = 2x1 - 2x1x2 ;  x1102 = 1 ,

  x=2 = x1x2 - x2 ;   x2102 = 3

at t = 1. Starting with h = 1, continue halving the step size until two successive approximations 
of x1112 and of x2112 differ by at most 0.0001.

Solution Here f11t, x1, x22 = 2x1 - 2x1x2 and f21t, x1, x22 = x1x2 - x2. With the inputs t0 = 0, x1;0 = 1,  
x2;0 = 3, we proceed with the algorithm to compute x111; 12 and x211; 12, the approxima-
tions to x1112, x2112 using h = 1. We find from the formulas in (18) that

 k1,1 = h12x1;0 - 2x1;0 x2;02 = 2112 - 2112132 = -4 ,

 k2,1 = h1x1;0 x2;0 - x2;02 = 112132 - 3 = 0 ,

k1,2 = h321x1;0 + 1
2k1,12 - 21x1;0 + 1

2k1,12 1x2;0 + 1
2k2,12 4

 = 231 + 1
21-42 4 - 231 + 1

21-42 4 33 + 1
2102 4

 = -2 + 2132 = 4 ,

k2,2 = h3 1x1;0 + 1
2k1,12 1x2;0 + 1

2k2,12 - 1x2;0 + 1
2k2,12 4

 = 31 + 1
21-42 4 33 + 1

2102 4 - 33 + 1
2102 4

 = 1-12132 - 3 = -6 ,

and similarly we compute

k1,3 = h321x1;0 + 1
2k1,22 - 21x1;0 + 1

2k1,22 1x2;0 + 1
2k2,22 4 = 6 ,

k2,3 = h3 1x1;0 + 1
2k1,22 1x2;0 + 1

2k2,22 - 1x2;0 + 1
2k2,22 4 = 0 ,

k1,4 = h321x1;0 + k1,32 - 21x1;0 + k1,321x2;0 + k2,324 = -28 ,

k2,4 = h31x1;0 + k1,321x2;0 + k2,32 - 1x2;0 + k2,324 = -18 .

Inserting these values into formula (17), we get

x1;1 = x1;0 +
1
6
1k1,1 + 2k1,2 + 2k1,3 + k1,42

 = 1 +
1
6
1-4 + 8 + 12 - 282 = -1 ,

x2;1 = x2;0 +
1
6
1k2,1 + 2k2,2 + 2k2,3 + k2,42 ,

 = 3 +
1
6
10 - 12 + 0 + 182 = 4 ,

as the respective approximations to x1112 and x2112.
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To get a better feel for the solution to system (19), we have graphed in Figure 5.6 an approxi-
mation of the solution for 0 … t … 12, using linear interpolation to connect the vectorized Runge–
Kutta approximants for the points t = 0, 0.125, 0.25, . . . , 12.0 (i.e., with h = 0.125). From 
the graph it appears that the components x1 and x2 are periodic in the variable t. Phase plane 
analysis is used in Section 5.5 to show that, indeed, Volterra–Lotka equations have periodic 
solutions.

Repeating the algorithm with h = 1>2 1N = 22 we obtain the approximations x111; 2-12 
and x211; 2-12 for x1112 and x2112. In Table 5.2, we list the approximations x111; 2-m2 and 
x211; 2-m2 for x1112 and x2112 using step size h = 2-m for m = 0, 1, 2, 3, and 4. We stopped 
at m = 4, since both

0 x111; 2-32 - x111; 2-42 0 = 0.00006 6 0.0001

and

0 x211; 2-32 - x211; 2-42 0 = 0.00001 6 0.0001 .

Hence, x1112 ≈ 0.07735 and x2112 ≈ 1.46445, with tolerance 0.0001. ◆

10

1

2

3

4

2 3 4 5 6 7

x1

x2

8 9 10 11 12
t

Figure 5.6 Graphs of the components of an approximate solution to the Volterra–Lotka system (17)

TABLE 5.2 Approximations of the Solution to System (19) in 
Example 4

m h x111; h2 x211; h2
0 1.0 -1.0 4.0
1 0.5 0.14662 1.47356
2 0.25 0.07885 1.46469
3 0.125 0.07741 1.46446
4 0.0625 0.07735 1.46445
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In Problems 1–7, convert the given initial value problem into 
an initial value problem for a system in normal form.

1. y″1t2 + ty′1t2 - 3y1t2 = t2 ;

 y102 = 3 ,  y′102 = -6

2. y″1t2 = cos1t - y2 + y21t2 ;
 y102 = 1 ,  y′102 = 0

3. y1421t2 - y1321t2 + 7y1t2 = cos t ;

 y102 = y′102 = 1 ,  y″102 = 0 ,  y132102 = 2

4. y1621t2 = 3y′1t243 - sin1y1t2 2 + e2t ;

 y102 = y′102 = g = y152102 = 0

5. x″ + y - x′ = 2t ;   x132 = 5 ,   x′132 = 2 ,

 y″ - x + y  = -1 ;    y132 = 1 ,    y′132 = -1

 [Hint: Set x1 = x ,  x2 = x′ ,  x3 = y ,  x4 = y′.]

6. 3x″ + 5x - 2y  = 0 ;   x102 = -1 ,   x′102 = 0 ,

 4y″ + 2y - 6x  = 0 ;  y102 = 1 ,  y′102 = 2

7. x‴ - y = t ;  x102 = x′102 = x″102 = 4 ,

 2x″ + 5y″ - 2y = 1 ;  y102 = y′102 = 1

8. Sturm–Liouville Form.  A second-order equation is 
said to be in Sturm–Liouville form if it is expressed as

3p1t2y′1t24′ + q1t2y1t2 = 0 .

Show that the substitutions x1 = y, x2 = py′ result in 
the normal form

 x=1 = x2>p ,

 x=2 = -qx1 .

If y102 = a and y′102 = b are the initial values for the 
Sturm–Liouville problem, what are x1102 and x2102?

9. In Section 3.6, we discussed the improved Euler’s method 
for approximating the solution to a first-order equation. 
Extend this method to normal systems and give the recur-
sive formulas for solving the initial value problem.

In Problems 10–13, use the vectorized Euler method with  
h = 0.25 to find an approximation for the solution to the 
given initial value problem on the specified interval.

10. y″ + ty′ + y = 0 ;

 y102 = 1 ,  y′102 = 0 on 30, 14
11. 11 + t22y″ + y′ - y = 0 ;

 y102 = 1 ,  y′102 = -1 on 30, 14

12. t2y″ + y = t + 2 ;

 y112 = 1 ,  y′112 = -1 on 31, 24
13. y″ = t2 - y2 ;

 y102 = 0 ,  y′102 = 1 on 30, 14  
(Can you guess the solution?)

In Problems 14–24, you will need a computer and a pro-
grammed version of the vectorized classical fourth-order 
Runge–Kutta algorithm. (At the instructor’s discretion, other 
algorithms may be used.)†

14. Using the vectorized Runge–Kutta algorithm with  
h = 0.5, approximate the solution to the initial value 
problem

3t2y″ - 5ty′ + 5y = 0 ;

y112 = 0 ,  y′112 =
2
3

at t = 8. Compare this approximation to the actual 
solution y1t2 = t5>3 - t.

15. Using the vectorized Runge–Kutta algorithm, ap-
proximate the solution to the initial value problem

y″ = t2 + y2 ;  y102 = 1 ,  y′102 = 0

at t = 1. Starting with h = 1, continue halving the step 
size until two successive approximations 3of both y112 
and y′1124 differ by at most 0.01.

16. Using the vectorized Runge–Kutta algorithm for systems 
with h = 0.125, approximate the solution to the initial 
value problem

x′ = 2x - y ;   x102 = 0 ,

y′ = 3x + 6y ;  y102 = -2

at t = 1. Compare this approximation to the actual  
solution

x1t2 = e5t - e3t ,  y1t2 = e3t - 3e5t .

17. Using the vectorized Runge–Kutta algorithm, approxi-
mate the solution to the initial value problem

du
dx

= 3u - 4y ;  u102 = 1 ,

dy
dx

= 2u - 3y ;  y102 = 1

at x = 1. Starting with h = 1, continue halving the step 
size until two successive approximations of u112 and 
y112 differ by at most 0.001.

5.3 EXERCISES

†Appendix G describes various websites and commercial software that sketch direction fields and automate most of the 
differential equation algorithms discussed in this book.
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18. Combat Model.  A simplified mathematical model for 
conventional versus guerrilla combat is given by the system

x=1 = - 10.12x1x2 ;  x1102 = 10 ,

x=2 = -x1 ;   x2102 = 15 ,

where x1 and x2 are the strengths of guerrilla and conven-
tional troops, respectively, and 0.1 and 1 are the combat 
effectiveness coefficients. Who will win the conflict: the 
conventional troops or the guerrillas? [Hint: Use the vec-
torized Runge–Kutta algorithm for systems with h = 0.1 
to approximate the solutions.]

19. Predator–Prey Model. The Volterra–Lotka predator–
prey model predicts some rather interesting behavior that is 
evident in certain biological systems. For example, suppose 
you fix the initial population of prey but increase the initial 
population of predators. Then the population cycle for the 
prey becomes more severe in the sense that there is a long 
period of time with a reduced population of prey followed 
by a short period when the population of prey is very large. 
To demonstrate this behavior, use the vectorized Runge–
Kutta algorithm for systems with h = 0.5 to approximate 
the populations of prey x and of predators y over the period 
30, 54 that satisfy the Volterra–Lotka system

x′ = x13 - y2 ,
y′ = y1x - 32

under each of the following initial conditions:

  (a) x102 = 2 ,  y102 = 4 .
  (b) x102 = 2 ,  y102 = 5 .
  (c) x102 = 2 ,  y102 = 7 .

20. In Project C of Chapter 4, it was shown that the simple 
pendulum equation

u″1t2 + sin u1t2 = 0

has periodic solutions when the initial displacement and 
velocity are small. Show that the period of the solution 
may depend on the initial conditions by using the vector-
ized Runge–Kutta algorithm with h = 0.02 to approxi-
mate the solutions to the simple pendulum problem on 
30, 44 for the initial conditions:

  (a) u102 = 0.1 ,  u′102 = 0 .
  (b) u102 = 0.5 ,  u′102 = 0 .
  (c) u102 = 1.0 ,  u′102 = 0 .

[Hint: Approximate the length of time it takes to reach 
-u102.]

21. Fluid Ejection. In the design of a sewage treatment 
plant, the following equation arises:†

60 - H = 177.72H″ + 119.4221H′22 ;

H102 = H′102 = 0 ,

where H is the level of the fluid in an ejection chamber and 
t is the time in seconds. Use the vectorized Runge–Kutta 
algorithm with h = 0.5 to approximate H1t2 over the 
interval 30, 54.

22. Oscillations and Nonlinear Equations. For the initial 
value problem

x″ + 10.1211 - x22x′ + x = 0 ;

x102 = x0 ,  x′102 = 0 ,

use the vectorized Runge–Kutta algorithm with h = 0.02 
to illustrate that as t increases from 0 to 20, the solution 
x exhibits damped oscillations when x0 = 1, whereas x 
exhibits expanding oscillations when x0 = 2.1.

23. Nonlinear Spring. The Duffing equation

y″ + y + ry3 = 0 ,

where r is a constant, is a model for the vibrations of a 
mass attached to a nonlinear spring. For this model, does 
the period of vibration vary as the parameter r is varied? 
Does the period vary as the initial conditions are varied? 
[Hint: Use the vectorized Runge–Kutta algorithm with  
h = 0.1 to approximate the solutions for r = 1 and 2, 
with initial conditions y102 = a, y′102 = 0 for a = 1,  
2, and 3.]

24. Pendulum with Varying Length. A pendulum is 
formed by a mass m attached to the end of a wire that is 
attached to the ceiling. Assume that the length l1t2 of the 
wire varies with time in some predetermined fashion. If 
u1t2 is the angle in radians between the pendulum and 
the vertical, then the motion of the pendulum is governed 
for small angles by the initial value problem

l21t2u″1t2 + 2l1t2l′1t2u′1t2 + gl1t2sin1u1t22 = 0 ;

u102 = u0 ,  u′102 = u1 ,

where g is the acceleration due to gravity. Assume that

l1t2 = l0 + l1 cos1vt - f2 ,
where l1 is much smaller than l0. (This might be a model 
for a person on a swing, where the pumping action 
changes the distance from the center of mass of the 
swing to the point where the swing is attached.) To sim-
plify the computations, take g = 1. Using the Runge–
Kutta algorithm with h = 0.1, study the motion of the 
pendulum when u0 = 0.05, u1 = 0, l0 = 1, l1 = 0.1, 
v = 1, and f = 0.02. In particular, does the pendulum 
ever attain an angle greater in absolute value than the 
initial angle u0?

†See Numerical Solution of Differential Equations, by William Milne (Dover, New York, 1970), p. 82.
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In Problems 25–30, use a software package or the SUB-
ROUTINE in Appendix F.

25. Using the Runge–Kutta algorithm for systems with 
h = 0.05, approximate the solution to the initial value 
problem

y‴ + y″ + y2 = t ;

y102 = 1 ,  y′102 = 0 ,  y″102 = 1

at t = 1.

26. Use the Runge–Kutta algorithm for systems with h = 0.1 
to approximate the solution to the initial value problem

x′ = yz ;   x102 = 0 ,

y′ = -xz ;   y102 = 1 ,

z′ = -xy>2 ;  z102 = 1 ,

at t = 1.

27. Generalized Blasius Equation. H. Blasius, in his study of 
laminar flow of a fluid, encountered an equation of the form

y‴ + yy″ = 1y′22 - 1 .

Use the Runge–Kutta algorithm for systems with h = 0.1  
to approximate the solution that satisfies the initial con-
ditions y102 = 0, y′102 = 0, and y″102 = 1.32824. 
Sketch this solution on the interval 30, 24.

28. Lunar Orbit. The motion of a moon moving in a planar 
orbit about a planet is governed by the equations

d2x

dt2 = -G 
mx

r3  ,  
d2y

dt2 = -G 
my

r3  ,

where r J 1x2 + y221>2, G is the gravitational constant, 
and m is the mass of the planet. Assume Gm = 1. When 
x102 = 1, x′102 = y102 = 0, and y′102 = 1, the 
motion is a circular orbit of radius 1 and period 2p.

  (a)  Setting x1 = x, x2 = x′, x3 = y, x4 = y′, express 
the governing equations as a first-order system in 
normal form.

  (b)  Using h = 2p>100 ≈ 0.0628318, compute one 
orbit of this moon (i.e., do N = 100 steps.). Do your 
approximations agree with the fact that the orbit is a 
circle of radius 1?

29. Competing Species. Let pi1t2 denote, respectively, the 
populations of three competing species Si, i = 1, 2, 3. 

Suppose these species have the same growth rates, and 
the maximum population that the habitat can support is 
the same for each species. (We assume it to be one unit.) 
Also suppose the competitive advantage that S1 has over 
S2 is the same as that of S2 over S3 and S3 over S1. This 
situation is modeled by the system

p=1 = p111 - p1 - ap2 - bp32 ,
p=2 = p211 - bp1 - p2 - ap32 ,
p=3 = p311 - ap1 - bp2 - p32 ,

where a and b are positive constants. To demonstrate the 
population dynamics of this system when a = b = 0.5, 
use the Runge–Kutta algorithm for systems with h = 0.1 
to approximate the populations pi over the time interval 
30, 104 under each of the following initial conditions:

  (a)  p1102 = 1.0 , p2102 = 0.1 , p3102 = 0.1 .
  (b)  p1102 = 0.1 , p2102 = 1.0 , p3102 = 0.1 .
  (c)  p1102 = 0.1 , p2102 = 0.1 , p3102 = 1.0 .

On the basis of the results of parts (a)–(c), decide what 
you think will happen to these populations as t S + ∞ .

30. Spring Pendulum. Let a mass be attached to one end of 
a spring with spring constant k and the other end attached 
to the ceiling. Let l0 be the natural length of the spring 
and let l1t2 be its length at time t. If u1t2 is the angle 
between the pendulum and the vertical, then the motion 
of the spring pendulum is governed by the system

l″1t2 - l1t2u′1t2 - g cos u1t2 +
k
m

 1l - l02 = 0 ,

l21t2u″1t2 + 2l1t2l′1t2u′1t2 + gl1t2 sin u1t2 = 0 .

Assume g = 1, k = m = 1, and l0 = 4. When the sys-
tem is at rest, l = l0 + mg>k = 5.

  (a)  Describe the motion of the pendulum when 
l102 = 5.5, l′102 = 0, u102 = 0, and u′102 = 0.

  (b)  When the pendulum is both stretched and given an 
angular displacement, the motion of the pendulum is 
more complicated. Using the Runge–Kutta algorithm 
for systems with h = 0.1 to approximate the solu-
tion, sketch the graphs of the length l and the angular 
displacement u on the interval 30, 104 if l102 = 5.5, 
l′102 = 0, u102 = 0.5, and u′102 = 0.
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CHAPTER 

6
Theory of Higher-Order Linear 
Differential Equations

In this chapter we discuss the basic theory of linear higher-order differential equations. The 
material is a generalization of the results we obtained in Chapter 4 for second-order constant-
coefficient equations. In the statements and proofs of these results, we use concepts usually 
covered in an elementary linear algebra course—namely, linear dependence, determinants, 
and methods for solving systems of linear equations. These concepts also arise in the matrix 
approach for solving systems of differential equations and are discussed in Chapter 9, which 
includes a brief review of linear algebraic equations and determinants.

Since this chapter is more mathematically oriented—that is, not tied to any particular 
physical application—we revert to the customary practice of calling the independent variable 
“x” and the dependent variable “y.”

A linear differential equation of order n is an equation that can be written in the form

(1) an1x2y1n21x2 + an-11x2y1n-121x2 + g + a01x2y1x2 = b1x2 ,
where a01x2, a11x2, . . . , an1x2 and b1x2 depend only on x, not y. When a0, a1, . . . , an are 
all constants, we say equation (1) has constant coefficients; otherwise it has variable coef-
ficients. If b1x2 K 0, equation (1) is called homogeneous; otherwise it is nonhomogeneous.

In developing a basic theory, we assume that a01x2, a11x2, . . . , an1x2 and b1x2 are all 
continuous on an interval I and an1x2 ≠ 0 on I. Then, on dividing by an1x2, we can rewrite (1) 
in the standard form

(2) y1n21x2 + p11x2y1n-121x2 + g + pn1x2y1x2 = g1x2 ,
where the functions p11x2, . . . , pn1x2, and g1x2 are continuous on I.

For a linear higher-order differential equation, the initial value problem always has a 
unique solution.

6.1 Basic Theory of Linear Differential Equations

Existence and Uniqueness

Theorem 1. Suppose p11x2, . . . , pn1x2 and g1x2 are each continuous on an 
interval 1a, b2 that contains the point x0. Then, for any choice of the initial values 
g0, g1, . . . , gn-1, there exists a unique solution y1x2 on the whole interval 1a, b2 to the 
initial value problem

(3) y1n21x2 + p11x2y1n − 121x2 + P + pn1x2y1x2 = g1x2 ,
(4) y1x02 = G0, y′1x02 = G1, . . . , y

1n − 121x02 = Gn − 1 .

319
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320     Chapter 6  Theory of Higher-Order Linear Differential Equations

The proof of Theorem 1 can be found in Chapter 13.†

Example 1 For the initial value problem

(5) x1x - 12y‴ - 3xy″ + 6x2y′ - 1cos x2y = 2x + 5 ;

(6) y1x02 = 1 ,  y′1x02 = 0 ,  y″1x02 = 7 ,

determine the values of x0 and the intervals 1a, b2 containing x0 for which Theorem 1 guaran-
tees the existence of a unique solution on 1a, b2.

Solution Putting equation (5) in standard form, we find that p11x2 = -3> 1x - 1), p21x2 = 6x> 1x - 1), 

p31x2 = - 1cos x2 > 3x1x - 124, and g1x2 = 2x + 5> 3x1x - 124. Now p11x2 and p21x2 
are continuous on every interval not containing x = 1, while p31x2 is continuous on every 
interval not containing x = 0 or x = 1. The function g1x2 is not defined for x 6 -5, x = 0,  
and x = 1, but is continuous on 1-5, 02, 10, 12, and 11, ∞ 2. Hence, the functions p1, p2, 
p3, and g are simultaneously continuous on the intervals 1-5, 02, 10, 12, and 11, ∞ 2. From 
Theorem 1 it follows that if we choose x0 ∈ 1-5, 02, then there exists a unique solution to the 
initial value problem (5)–(6) on the whole interval 1-5, 02. Similarly, for x0 ∈ 10, 12, there is 
a unique solution on 10, 12 and, for x0 ∈ 11, ∞ 2, a unique solution on 11, ∞ 2. ◆

If we let the left-hand side of equation (3) define the differential operator L,

(7) L3y4 J dny

dxn + p1 
dn−1y

dxn−1 + P + pny = 1Dn + p1D
n−1 + P + pn23y4 ,

then we can express equation (3) in the operator form

(8) L3y41x2 = g1x2 .
It is essential to keep in mind that L is a linear operator—that is, it satisfies

(9)  L3y1 + y2 + g + ym4 = L3y14 + L3y24 + g + L3ym4 ,

(10)  L3cy4 = cL3y4    (c any constant) .

These are familiar properties for the differentiation operator D, from which (9) and (10) follow 
(see Problem 25).

As a consequence of this linearity, if y1, . . . , ym are solutions to the homogeneous equation

(11) L3y41x2 = 0 ,

then any linear combination of these functions, C1y1 + g + Cmym, is also a solution, because

L3C1y1 + C2y2 + g + Cmym4 = C1
# 0 + C2

# 0 + g + Cm
# 0 = 0 .

Imagine now that we have found n solutions y1, . . . , yn to the nth-order linear equation (11). Is 
it true that every solution to (11) can be represented by

(12) C1y1 + C2y2 + g + Cnyn

†All references to Chapters 11–13 refer to the expanded text, Fundamentals of Differential Equations and Boundary 
Value Problems, 7th ed.
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Section 6.1  Basic Theory of Linear Differential Equations     321

for appropriate choices of the constants C1, . . . , Cn? The answer is yes, provided the solutions 
y1, . . . , yn satisfy a certain property that we now derive.

Let f1x2 be a solution to (11) on the interval 1a, b2 and let x0 be a fixed number in 1a, b2. 
If it is possible to choose the constants C1, . . . , Cn so that

(13)

 C1y11x02  + g + Cnyn1x02  = f1x02 ,
 C1y

=
11x02  + g + Cny

=
n1x02  = f′1x02 ,

f                                   f                     f

 C1y
1n-12
1 1x02 + g + Cny

1n-12
n 1x02 = f1n-121x02 ,

then, since f1x2 and C1y11x2 + g + Cnyn1x2 are two solutions satisfying the same initial 
conditions at x0, the uniqueness conclusion of Theorem 1 gives

(14) f1x2 = C1y11x2 + g + Cnyn1x2

for all x in 1a, b2.
The system (13) consists of n linear equations in the n unknowns C1, . . .  , Cn. It has a 

unique solution for all possible values of f1x02, f′1x02, . . . , f1n - 121x02 if and only if the 
determinant† of the coefficients is different from zero; that is, if and only if

(15) ∞
y11x02 y21x02 g yn1x02
y=11x02 y=21x02 g y=n1x02
     f       f        f
y1n - 12

1 1x02 y1n - 12
2 1x02 g y1n - 12

n 1x02
∞ ≠ 0 .

Hence, if y1, . . . , yn are solutions to equation (11) and there is some point x0 in 1a, b2 such 
that (15) holds, then every solution f1x2 to (11) is a linear combination of y1, . . . , yn. Before 
formulating this fact as a theorem, it is convenient to identify the determinant by name.

Wronskian

Definition 1. Let f1, . . . , fn be any n functions that are 1n - 12 times differentiable. 
The function

(16) W3f1, . . . , fn41x2 J ∞   
f11x2 f21x2 P fn1x2
f =11x2 f =21x2 P f =n1x2
     O O       O
f 1n − 12

1 1x2 f 1n − 12
2 1x2 P f 1n − 12

n 1x2
∞

is called the Wronskian of f1, . . . , fn.

We now state the representation theorem that we proved above for solutions to homoge-
neous linear differential equations.

†Readers unfamiliar with determinants and cofactor expansions can find these topics discussed in any linear algebra 
book (such as Fundamentals of Matrix Analysis with Applications, by Edward Barry Saff and Arthur David Snider, 
John Wiley & Sons, Hoboken, New Jersey, 2016.)
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322     Chapter 6  Theory of Higher-Order Linear Differential Equations

The linear combination of y1, . . . , yn in (19), written with arbitrary constants C1, . . . , Cn, 
is referred to as a general solution to (17).

In linear algebra a set of m column vectors 5v1, v2,c,vm6, each having m components, 
is said to be linearly dependent if and only if at least one of them can be expressed as a linear 
combination of the others.† A basic theorem then states that if a determinant is zero, its column 
vectors are linearly dependent, and conversely. So if a Wronskian of solutions to (17) is zero at 
a point x0, one of its columns (the final column, say; we can always renumber!) equals a linear 
combination of the others:

(20) D yn1x02
y=n1x02
     f
yn
1n - 121x02

T = d1D y11x02
y=11x02
     f
y1
1n - 121x02

T + d2D y21x02
y=21x02
      f
y2
1n - 121x02

T + g + dn - 1D yn - 11x02
y′n - 11x02
      f
yn - 1
1n - 121x02

T  .

Now consider the two functions yn1x2 and 3d1y11x2 + d2y21x2 + g + dn - 1yn - 11x24. 
They are both solutions to (17), and we can interpret (20) as stating that they satisfy the same 
initial conditions at x = x0. By the uniqueness theorem, then, they are one and the same 
function:

(21) yn1x2 = d1y11x2 + d2y21x2 + g + dn - 1yn - 11x2
for all x in the interval I. Consequently, their derivatives are the same also, and so

(22) D yn1x2
y=n1x2
      f
yn
1n - 121x2

T = d1D y11x2
y=11x2
      f
y1
1n - 121x2

T + d2D y21x2
y=21x2
      f
y2
1n - 121x2

T + g + dn - 1D yn - 11x2
y′n - 11x2
      f
yn - 1
1n - 121x2

T
for all x in I. Hence, the final column of the Wronskian W3y1, y2,c, yn4 is always a linear 
combination of the other columns, and consequently the Wronskian is always zero.

In summary, the Wronskian of n solutions to the homogeneous equation (17) is either 
identically zero, or never zero, on the interval 1a, b2. We have also shown that, in the former 

Representation of Solutions (Homogeneous Case)

Theorem 2. Let y1, . . . , yn be n solutions on 1a, b2 of

(17) y1n21x2 + p11x2y1n - 121x2 + g + pn1x2y1x2 = 0 ,

where p1, . . . , pn are continuous on 1a, b2. If at some point x0 in 1a, b2 these solutions 
satisfy

(18) W3y1, . . . , yn41x02 3 0 ,

then every solution of (17) on 1a, b2 can be expressed in the form

(19) y1x2 = C1y11x2 + P + Cnyn1x2 ,
where C1, . . . , Cn are constants.

†This is equivalent to saying there exist constants c1, c2, . . .  , cm not all zero, such that c1v1 + c2v2 + g + cmvm 
equals the zero vector.
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case, (21) holds throughout 1a, b2. Such a relationship among functions is an extension of the 
notion of linear dependence introduced in Section 4.2. We employ the same nomenclature for 
the general case.

Linear Dependence of Functions

Definition 2. The m functions f1, f2,c, fm are said to be linearly dependent on an 
interval I if at least one of them can be expressed as a linear combination of the others 
on I; equivalently, they are linearly dependent if there exist constants c1, c2, c, cm, not 
all zero, such that

(23) c1  f11x2 + c2  f21x2 + g + cm   fm(x2 = 0

for all x in I. Otherwise, they are said to be linearly independent on I.

Example 2 Show that the functions f11x2 = ex, f21x2 = e-2x, and f31x2 = 3ex - 2e-2x are linearly 
dependent on 1- ∞ , ∞ 2.

Solution Obviously, f3 is a linear combination of f1 and f2 :

f31x2 = 3ex - 2e-2x = 3f11x2 - 2f21x2 .
Note further that the corresponding identity 3f11x2 - 2f21x2 - f31x2 = 0 matches the pattern 
(23). Moreover, observe that f1, f2, and f3 are pairwise linearly independent on 1- ∞ , ∞ 2, but 
this does not suffice to make the triplet independent. ◆

To prove that functions f1, f2, . . .  , fm are linearly independent on the interval 1a, b2, a 
convenient approach is the following: Assume that equation (23) holds on 1a, b2 and show that 
this forces c1 = c2 = g = cm = 0.

Example 3 Show that the functions f11x2 = x, f21x2 = x2, and f31x2 = 1 - 2x2 are linearly independent 
on 1- ∞ , ∞ 2.

Solution Assume c1, c2, and c3 are constants for which

(24) c1x + c2x
2 + c311 - 2x22 = 0

holds at every x. If we can prove that (24) implies c1 = c2 = c3 = 0, then linear independence 
follows. Let’s set x = 0, 1, and -1 in equation (24). These x values are, essentially, “picked 
out of a hat,” but will get the job done. Substituting in (24) gives

(25)

  c3 = 0 1x = 02 ,
  c1 + c2 - c3 = 0 1x = 1) ,

  -c1 + c2 - c3 = 0 1x = -12 .
When we solve this system (or compute the determinant of the coefficients), we find that the 
only possible solution is c1 = c2 = c3 = 0. Consequently, the functions f1, f2, and f3 are lin-
early independent on 1- ∞ , ∞ 2.
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324     Chapter 6  Theory of Higher-Order Linear Differential Equations

A neater solution is to note that if (24) holds for all x, so do its first and second derivatives. 
At x = 0 these conditions are c3 = 0, c1 = 0, and 2c2 - 4c3 = 0. Obviously, each coefficient 
must be zero. ◆

Linear dependence of functions is, prima facie, different from linear dependence of vec-
tors in the Euclidean space Rn, because (23) is a functional equation that imposes a condition at 
every point of an interval. However, we have seen in (21) that when the functions are all solu-
tions to the same homogeneous differential equation, linear dependence of the column vectors 
of the Wronskian (at any point x0) implies linear dependence of the functions. The converse is 
also true, as demonstrated by (21) and (22). Theorem 3 summarizes our deliberations.

Linear Dependence and the Wronskian

Theorem 3. If y1, y2,c,yn are n solutions to y1n2 + p1y
1n - 12 + g + pny = 0 on the 

interval 1a, b2, with p1, p2,c, pn continuous on 1a, b2, then the following statements 
are equivalent:

 (i) y1, y2,c, yn are linearly dependent on 1a, b2.
 (ii) The Wronskian W3y1, y2,c, yn41x02 is zero at some point x0 in 1a, b2.
 (iii) The Wronskian W3y1, y2,c, yn41x2 is identically zero on 1a, b2.
The contrapositives of these statements are also equivalent:

 (iv) y1, y2,c, yn are linearly independent on 1a, b2.
 (v) The Wronskian W3y1, y2,c, yn41x02 is nonzero at some point x0 in 1a, b2.
 (vi) The Wronskian W3y1, y2,c, yn41x2 is never zero on 1a, b2.
Whenever (iv), (v), or (vi) is met, 5y1, y2, c, yn6 is called a fundamental solution set 
for (17) on 1a, b2.

The Wronskian is a curious function. If we take W3f1, f2,c, fn41x2 for n arbitrary func-
tions, we simply get a function of x with no particularly interesting properties. But if the n functions 
are all solutions to the same homogeneous differential equation, then either it is identically zero or 
never zero. In fact, one can prove Abel’s identity when the functions are all solutions to (17):

(26) W3y1, y2, c, yn41x2 = W3y1, y2,c, yn41x02   expaL
x

x0

p11t2dtb  ,

which clearly exhibits this property. Problem 30 on page 327 outlines a proof of (26) for n = 3.†

It is useful to keep in mind that the following sets consist of functions that are linearly 
independent on every open interval 1a, b2:

51, x, x2, . . . , xn6
51, cos x, sin x, cos 2x, sin 2x, . . . , cos nx, sin nx 6 ,

5eA1x, eA2x, . . . , eAnx6 1Ai’s distinct constants2 .
[See Problems 27 and 28 on page 326, and Section 6.2 (page 327).]

If we combine the linearity (superposition) properties (9) and (10) with the representation 
theorem for solutions of the homogeneous equation, we obtain the following representation 
theorem for nonhomogeneous equations.

†See Problem 32, Exercises 4.7, for the case n = 2.
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Proof. Let f1x2 be any solution to (27). Because both f1x2 and yp1x2 are solutions to 
(27), by linearity the difference f1x2 - yp1x2 is a solution to the homogeneous equation (28). 
It then follows from Theorem 2 that

f1x2 - yp1x2 = C1y11x2 + g + Cnyn1x2
for suitable constants C1, . . . , Cn. The last equation is equivalent to (29) 3with f1x2 in place 
of y1x24, so the theorem is proved. ◆

The linear combination of yp, y1, . . .  , yn in (29) written with arbitrary constants  
C1, . . . , Cn is, for obvious reasons, referred to as a general solution to (27). Theorem 4 can 
be easily generalized. For example, if L denotes the operator appearing as the left-hand side in 
equation (27) and if L3yp14 = g1 and L3yp24 = g2, then any solution of L3y4 = c1g1 + c2g2 
can be expressed as

y1x2 = c1yp11x2 + c2yp21x2 + C1y11x2 + C2y21x2 + g + Cnyn1x2 ,

for a suitable choice of the constants C1, C2, . . . , Cn.

Representation of Solutions (Nonhomogeneous Case)

Theorem 4. Let yp1x2 be a particular solution to the nonhomogeneous equation

(27) y1n21x2 + p11x2y1n - 121x2 + g + pn1x2y1x2 = g1x2
on the interval 1a, b2 with p1, p2, . . . , pn continuous on 1a, b2, and let {y1, . . . , yn} be a 
fundamental solution set for the corresponding homogeneous equation

(28) y1n21x2 + p11x2y1n-121x2 + g + pn1x2y1x2 = 0 .

Then every solution of (27) on the interval 1a, b2 can be expressed in the form

(29) y1x2 = yp1x2 + C1 y11x2 + P + Cn yn1x2 .

Example 4 Find a general solution on the interval 1- ∞ , ∞ 2 to

(30) L3y4 J y‴ - 2y″ - y′ + 2y = 2x2 - 2x - 4 - 24e-2x ,

given that yp11x2 = x2 is a particular solution to L3y4 = 2x2 - 2x - 4, that yp21x2 = e-2x is 
a particular solution to L3y4 = -12e-2x, and that y11x2 = e-x, y21x2 = ex, and y31x2 = e2x 
are solutions to the corresponding homogeneous equation.

Solution We previously remarked that the functions e-x, ex, e2x are linearly independent because the 
exponents -1, 1, and 2 are distinct. Since each of these functions is a solution to the cor-
responding homogeneous equation, then {e-x, ex, e2x} is a fundamental solution set. It now 
follows from the remarks above for nonhomogeneous equations that a general solution to 
(30) is

(31)  y1x2 = yp1 + 2yp2 + C1y1 + C2y2 + C3y3

  = x2 + 2e-2x + C1e
-x + C2e

x + C3e
2x . ◆
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In Problems 1–6, determine the largest interval 1a, b2 for 
which Theorem 1 guarantees the existence of a unique solu-
tion on 1a, b2 to the given initial value problem.

 1. xy‴ - 3y′ + exy = x2 - 1 ;

y1-22 = 1 ,  y′1-22 = 0 ,  y″1-22 = 2

 2. y‴ - 1xy = sin x ;

y1p2 = 0 ,  y′1p2 = 11 ,   y″1p2 = 3

 3. y‴ - y″ + 1x - 1y = tan x ;

y152 = y′152 = y″152 = 1

 4. x1x + 12y‴ - 3xy′ + y = 0 ;

y1-1>22 = 1 ,  y′1-1>22 = y″1-1>22 = 0

 5. x1x + 1y‴ - y′ + xy = 0 ;

y11>22 = y′11>22 = -1 ,  y″11>22 = 1

 6. 1x2 - 12y‴ + exy = ln x ;

y13>42 = 1 ,  y′13>42 = y″13>42 = 0

In Problems 7–14, determine whether the given functions are 
linearly dependent or linearly independent on the specified 
interval. Justify your decisions.

 7. 5e3x, e5x, e-x6 on 1- ∞ , ∞ 2
 8. 5x2, x2 - 1, 56 on 1- ∞ , ∞ 2
 9. 5sin2 x, cos2 x, 16 on 1- ∞ , ∞ 2
 10. 5sin x, cos x, tan x6 on 1-p>2, p>22
 11. 5x-1, x1>2, x6 on 10, ∞ 2
 12. 5cos 2x, cos2 x, sin2 x6 on 1- ∞ , ∞ 2
 13. 5x, x2, x3, x46 on 1- ∞ , ∞ 2
 14. 5x, xex, 16 on 1- ∞ , ∞ 2
Using the Wronskian in Problems 15–18, verify that the given 
functions form a fundamental solution set for the given differ-
ential equation and find a general solution.

 15. y‴ + 2y″ - 11y′ - 12y = 0 ;

5e3x, e-x, e-4x6
 16. y‴ - y″ + 4y′ - 4y = 0 ;

5ex, cos 2x, sin 2x6
 17. x3y‴ - 3x2y″ + 6xy′ - 6y = 0 , x 7 0 ;

5x, x2, x36
 18. y142 - y = 0 ; 5ex, e-x, cos x, sin x6
In Problems 19–22, a particular solution and a fundamental 
solution set are given for a nonhomogeneous equation and 
its corresponding homogeneous equation. (a) Find a general 
solution to the nonhomogeneous equation. (b) Find the solu-
tion that satisfies the specified initial conditions.

 19. y‴ + y″ + 3y′ - 5y = 2 + 6x - 5x2 ;

y102 = -1 ,  y′102 = 1 ,  y″102 = -3 ;

yp = x2 ;  5ex, e-x cos 2x, e-x sin 2x6

 20. xy‴ - y″ = -2 ; y112 = 2 , y′112 = -1 , 

y″112 = -4 ;  yp = x2 ;  51, x, x36
 21. x3y‴ + xy′ - y = 3 - ln x ,    x 7 0 ;

y112 = 3 ,  y′112 = 3 ,  y″112 = 0 ;

yp = ln x ;    5x, x ln x, x1ln x226
 22. y142 + 4y = 5 cos x ;

y102 = 2 ,  y′102 = 1 ,  y″102 = -1 ,

y‴102 = -2 ;    yp = cos x ;

5ex cos x, ex sin x, e-x cos x, e-x sin x6

 23. Let L3y4 J y‴ + y′ + xy, y11x2 J sin  x, and 
y21x2 J x. Verify that L3y141x2 = x sin  x and 
L3y241x2 = x2 + 1. Then use the superposition principle 
(linearity) to find a solution to the differential equation:

  (a) L3y4 = 2x sin x - x2 - 1 .
  (b) L3y4 = 4x2 + 4 - 6x sin x .

 24. Let L3y4 J y‴ - xy″ + 4y′ - 3xy, y11x2 = cos 2x, and 
y21x2 J -1>3. Verify that L3y141x2 = x cos 2x and 
L3y241x2 = x. Then use the superposition principle (lin-
earity) to find a solution to the differential equation:

  (a) L3y4 = 7x cos 2x - 3x .
  (b) L3y4 = -6x cos 2x + 11x .

 25. Prove that L defined in (7) is a linear operator by verify-
ing that properties (9) and (10) hold for any n-times dif-
ferentiable functions y, y1, c, ym on 1a, b2.

 26. Existence of Fundamental Solution Sets. By Theorem 
1, for each j = 1, 2, . . .  , n there is a unique solution 
yj1x2 to equation (17) satisfying the initial conditions

yj
1k21x02 = e1 ,

0 ,
for k = j - 1 ,
for k ≠ j - 1, 0 … k … n - 1 .

  (a)  Show that {y1, y2, . . . , yn} is a fundamental solution 
set for (17). [Hint: Write out the Wronskian at x0.]

  (b)  For given initial values g0, g1, . . . , gn - 1, express 
the solution y1x2 to (17) satisfying y1k21x02 = gk, 
k = 0, . . . , n - 1, [as in equations (4)] in terms of 
this fundamental solution set.

 27. Show that the set of functions 51, x, x2, . . . , xn6, where 
n is a positive integer, is linearly independent on every 
open interval 1a, b2. [Hint: Use the fact that a polyno-
mial of degree at most n has no more than n zeros unless 
it is identically zero.]

 28. The set of functions

51, cos x, sin x, . . . , cos nx, sin nx6,

where n is a positive integer, is linearly independent 
on every interval 1a, b2. Prove this in the special case 
n = 2 and 1a, b2 = 1- ∞ , ∞ 2.

6.1 EXERCISES
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 29. (a)  Show that if f1, . . .  , fm are linearly independent 
on 1-1, 12, then they are linearly independent on 
1- ∞ , ∞ 2.

  (b)  Give an example to show that if f1, . . . , fm are lin-
early independent on 1- ∞ , ∞ 2, then they need not 
be linearly independent on 1-1, 12.

 30. To prove Abel’s identity (26) for n = 3, proceed as  
follows:

  (a)  Let W1x2 J W3y1, y2, y341x2. Use the product rule 
for differentiation to show

W′1x2 = †
y=1 y=2 y=3
y=1 y=2 y=3
y>1 y>2 y>3

† + †
y1 y2 y3

y>1 y>2 y>3
y>1 y>2 y>3

†

 + †
y1 y2 y3

y=1 y=2 y=3
y?1 y?2 y?3

†  .

  (b) Show that the above expression reduces to

(32) W′1x2 = †
y1 y2 y3

y=1 y=2 y=3
y?1 y?2 y?3

†  .

  (c) Since each yi satisfies (17), show that

(33)  yi
1321x2 = − a3

k = 1
 pk1x2yi

13 − k21x2
  1i = 1, 2, 32 .

  (d)  Substituting the expressions in (33) into (32),  
show that

(34) W′1x2 = −p11x2W1x2 .
  (e)  Deduce Abel’s identity by solving the first-order dif-

ferential equation (34).

 31. Reduction of Order. If a nontrivial solution f1x2 is 
known for the homogeneous equation

y1n2 + p11x2y1n-12 + g + pn1x2y = 0 ,

the substitution y1x2 = y1x2f1x2 can be used to reduce 
the order of the equation, as was shown in Section 4.7 

for second-order equations. By completing the following 
steps, demonstrate the method for the third-order equation

(35) y‴ - 2y″ - 5y′ + 6y = 0 ,

given that f1x2 = ex is a solution.

  (a)  Set y1x2 = y1x2ex and compute y′, y″, and y‴.
  (b)  Substitute your expressions from (a) into (35) to 

obtain a second-order equation in w J y′.
  (c)  Solve the second-order equation in part (b) for w and 

integrate to find y. Determine two linearly indepen-
dent choices for y, say, y1 and y2.

  (d)  By part (c), the functions y11x2 = y11x2ex and 
y21x2 = y21x2ex are two solutions to (35). Verify 
that the three solutions ex, y11x2, and y21x2 are lin-
early independent on 1- ∞ , ∞ 2.

 32. Given that the function f1x2 = x is a solution to 
y‴ - x2y′ + xy = 0, show that the substitution 
y1x2 = y1x2f1x2 = y1x2x reduces this equation to 
xw″ + 3w′ - x3w = 0, where w = y′.

 33. Use the reduction of order method described in  
Problem 31 to find three linearly independent solutions 
to y‴ - 2y″ + y′ - 2y = 0, given that f1x2 = e2x is a  
solution.

 34. Constructing Differential Equations. Given three 
functions f11x2, f21x2, f31x2 that are each three times dif-
ferentiable and whose Wronskian is never zero on 1a, b2,  
show that the equation

∞  
f11x2 f21x2 f31x2 y
f =11x2 f =21x2 f =31x2 y′
f ″

11x2 f >21x2 f >31x2 y″
f ?1 1x2 f ?2 1x2 f ?3 1x2 y‴

∞ = 0

is a third-order linear differential equation for which 
5f1, f2, f36 is a fundamental solution set. What is the 
coefficient of y‴ in this equation?

 35. Use the result of Problem 34 to construct a third-order 
differential equation for which 5x, sin x, cos x6 is a fun-
damental solution set.

Our goal in this section is to obtain a general solution to an nth-order linear differential equa-
tion with constant coefficients. Based on the experience gained with second-order equations in 
Section 4.2, you should have little trouble guessing the form of such a solution. However, our 
interest here is to help you understand why these techniques work. This is done using an opera-
tor approach—a technique that is useful in tackling many other problems in analysis such as 
solving partial differential equations.

6.2  Homogeneous Linear Equations with  
Constant Coefficients
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Let’s consider the homogeneous linear nth-order differential equation

(1) any
1n21x2 + an-1y

1n-121x2 + g + a1y′1x2 + a0y1x2 = 0 ,

where an1≠02, an-1, . . . , a0 are real constants.† Since constant functions are everywhere 
continuous, equation (1) has solutions defined for all x in 1- ∞ , ∞ 2 (recall Theorem 1 in 
Section 6.1). If we can find n linearly independent solutions to (1) on 1- ∞ , ∞ 2 , say, 
y1, . . . , yn, then we can express a general solution to (1) in the form

(2) y1x2 = C1y11x2 + g + Cnyn1x2 ,
with C1, . . . , Cn as arbitrary constants.

To find these n linearly independent solutions, we capitalize on our previous success with 
second-order equations. Namely, experience suggests that we begin by trying a function of the 
form y = erx.

If we let L be the differential operator defined by the left-hand side of (1), that is,

(3) L3y4 J  an y1n2 + an − 1 y1n − 12 + P + a1 y ′ + a0 y ,

then we can write (1) in the operator form

(4) L3y41x2 = 0 .

For y = erx, we find

(5)  L3erx41x2 = anr
nerx + an-1r

n-1erx + g + a0e
rx

  = erx1anr
n + an-1r

n-1 + g + a02 = erxP1r2 ,
where P1r2 is the polynomial anr

n + an-1r
n-1 + g + a0. Thus, erx is a solution to equation 

(4), provided r is a root of the auxiliary (or characteristic) equation

(6) P1r2 = anrn + an − 1r
n − 1 + P + a0 = 0 .

According to the fundamental theorem of algebra, the auxiliary equation has n roots 
(counting multiplicities), which may be either real or complex. However, there are no formulas 
for determining the zeros of an arbitrary polynomial of degree greater than four, although if 
we can determine one zero r1, then we can divide out the factor r - r1 and be left with a poly-
nomial of lower degree. (For convenience, we have chosen most of our examples and exercises 
so that 0, {1, or {2 are zeros of any polynomial of degree greater than two that we must 
factor.) When a zero cannot be exactly determined, numerical algorithms such as Newton’s 
method or the quotient-difference algorithm can be used to compute approximate roots of the 
polynomial equation.‡ Some pocket calculators even have these algorithms built in.

We proceed to discuss the various possibilities.

Distinct Real Roots
If the roots r1, . . .  , rn of the auxiliary equation (6) are real and distinct, then n solutions to 
equation (1) are

(7) y11x2 = er1x,  y21x2 = er2x,  . . . ,  yn1x2 = ernx  .

†Historical Footnote: In a letter to John Bernoulli dated September 15, 1739, Leonhard Euler claimed to have solved 
the general case of the homogeneous linear nth-order equation with constant coefficients.
‡See, for example, Applied and Computational Complex Analysis, by P. Henrici (Wiley-Interscience, New York, 1993), 
Volume 1, or Numerical Analysis, 9th ed., by R. L. Burden and J. D. Faires (Brooks/Cole Cengage Learning, 2011).
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As stated in the previous section, these functions are linearly independent on 1- ∞ , ∞ 2, a fact 
that we now officially verify. Let’s assume that c1, . . . , cn are constants such that

(8) c1e
r1x + g + cne

rnx = 0

for all x in 1- ∞ , ∞ 2. Our goal is to prove that c1 = c2 = g = cn = 0.
One way to show this is to construct a linear operator Lk that annihilates (maps to zero) 

everything on the left-hand side of (8) except the kth term. For this purpose, we note that since 
r1, . . . , rn are the zeros of the auxiliary polynomial P1r2, then P1r2 can be factored as

(9) P1r2 = an1r - r12g1r - rn2 .
Consequently, the operator L3y4 = any

1n2 + an-1y
1n-12 + g + a0y can be expressed in terms 

of the differentiation operator D as the following composition:†

(10) L = P1D2 = an1D - r12g1D - rn2 .
We now construct the polynomial Pk1r2 by deleting the factor 1r - rk2 from P1r2. Then we set 
Lk J Pk1D2; that is,

(11) Lk J Pk1D2 = an1D - r1)g1D - rk-121D - rk+12g1D - rn2 .
Applying Lk to both sides of (8), we get, via linearity,

(12) c1Lk3er1x4 + g + cnLk3ernx4 = 0 .

Also, since Lk = Pk1D2, we find [just as in equation (5)] that Lk3erx41x2 = erxPk1r2 for all r. 
Thus (12) can be written as

c1e
r1xPk1r12 + g + cne

rnxPk1rn2 = 0 ,

which simplifies to

(13) cke
rkxPk1rk2 = 0 ,

because Pk1ri2 = 0 for i ≠ k. Since rk is not a root of Pk1r2, then Pk1rk2 ≠ 0. It now fol-
lows from (13) that ck = 0. But as k is arbitrary, all the constants c1, . . . , cn must be zero. Thus, 
y11x2, . . . , yn1x2 as given in (7) are linearly independent. (See Problem 26 for an alternative proof.)

We have proved that, in the case of n distinct real roots, a general solution to (1) is

(14) y1x2 = C1e
r1x + P + Cnernx ,

where C1, . . . , Cn are arbitrary constants.

Example 1 Find a general solution to

(15) y‴ - 2y″ - 5y′ + 6y = 0 .

†Historical Footnote: The symbolic notation P1D2 was introduced by Augustin Cauchy in 1827.

Solution The auxiliary equation is

(16) r3 - 2r2 - 5r + 6 = 0 .

By inspection we find that r = 1 is a root. Then, using polynomial division, we get

r3 - 2r2 - 5r + 6 = 1r - 121r2 - r - 62 ,
which further factors into 1r - 121r + 221r - 32. Hence the roots of equation (16) are r1 = 1,  
r2 = -2, r3 = 3. Since these roots are real and distinct, a general solution to (15) is

y1x2 = C1e
x + C2e

-2x + C3e
3x . ◆
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Complex Roots
If a + ib 1a, b real2 is a complex root of the auxiliary equation (6), then so is its complex 
conjugate a - ib, since the coefficients of P1r2 are real-valued (see Problem 24). If we accept 
complex-valued functions as solutions, then both e1a+ ib2x and e1a- ib2x are solutions to (1). 
Moreover, if there are no repeated roots, then a general solution to (1) is again given by (14). 
To find two real-valued solutions corresponding to the roots a { ib, we can just take the real 
and imaginary parts of e1a+ ib2x. That is, since

(17) e1a+ib2x = eax cos bx + ieax sin bx ,

then two linearly independent solutions to (1) are

(18) eax cos bx ,  eax sin bx .

In fact, using these solutions in place of e1a+ ib2x and e1a- ib2x in (14) preserves the linear inde-
pendence of the set of n solutions. Thus, treating each of the conjugate pairs of roots in this 
manner, we obtain a real-valued general solution to (1).

Example 2 Find a general solution to

(19) y‴ + y″ + 3y′ - 5y = 0 .

Solution The auxiliary equation is

(20) r3 + r2 + 3r - 5 = 1r - 121r2 + 2r + 5) = 0 ,

which has distinct roots r1 = 1, r2 = -1 + 2i, r3 = -1 - 2i. Thus, a general solution is

(21) y1x2 = C1e
x + C2e

-x cos 2x + C3e
-x sin 2x . ◆

Repeated Roots
If r1 is a root of multiplicity m, then the n solutions given in (7) are not even distinct, let alone 
linearly independent. Recall that for a second-order equation, when we had a repeated root r1 to 
the auxiliary equation, we obtained two linearly independent solutions by taking er1x and xer1x. So 
if r1 is a root of (6) of multiplicity m, we might expect that m linearly independent solutions are

(22) er1x , xer1x , x2er1x , . . . , xm−1er1x .

To see that this is the case, observe that if r1 is a root of multiplicity m, then the auxiliary 
equation can be written in the form

(23) an1r - r12m1r - rm + 12g1r - rn2 = 1r - r12m P
∼1r2 = 0 ,

where P
∼1r2 J an1r - rm + 12g1r - rn2 and P

∼1r12 ≠ 0. With this notation, we have the 
identity

(24) L3erx41x2 = erx1r - r12m P
∼1r2

[see (5) on page 328]. Setting r = r1 in (24), we again see that er1x is a solution to L3y4 = 0.
To find other solutions, we take the kth partial derivative with respect to r of both sides 

of (24):

(25) 
0k

0rk  L3erx41x2 =
0k

0rk  3erx1r - r12m P
∼1r24 .

Carrying out the differentiation on the right-hand side of (25), we find that the resulting expres-
sion will still have 1r - r12 as a factor, provided k … m - 1. Thus, setting r = r1 in (25) gives
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(26) 
0k

0rk  L3erx41x2  ̀   

r = r1

= 0 if k … m - 1 .

Now notice that the function erx has continuous partial derivatives of all orders with respect 
to r and x. Hence, for mixed partial derivatives of erx, it makes no difference whether the differen-
tiation is done first with respect to x, then with respect to r, or vice versa. Since L involves deriva-
tives with respect to x, this means we can interchange the order of differentiation in (26) to obtain

L c 0k

0rk  1erx2 2  
r = r1

d 1x2 = 0 .

Thus,

(27) 
0k

0rk  1erx2 2  
r = r1

= xker1x

will be a solution to (1) for k = 0, 1, . . . , m - 1. So m distinct solutions to (1), due to the root 
r = r1 of multiplicity m, are indeed given by (22). We leave it as an exercise to show that the m 
functions in (22) are linearly independent on 1- ∞ , ∞) (see Problem 25).

If a + ib is a repeated complex root of multiplicity m, then we can replace the 2m 
complex-valued functions

e1a+ ib2x , xe1a+ ib2x , . . . , xm - 1e1a+ ib2x ,
e1a- ib2x , xe1a- ib2x , . . . , xm - 1e1a- ib2x

by the 2m linearly independent real-valued functions

(28)
 eAx cos Bx , xeAx cos Bx , . . . , xm−1eAx cos Bx ,

 eAx sin Bx , xeAx sin Bx , . . . , xm−1eAx sin Bx .

Using the results of the three cases discussed above, we can obtain a set of n linearly 
independent solutions that yield a real-valued general solution for (1).

Example 3 Find a general solution to

(29) y142 - y132 - 3y″ + 5y′ - 2y = 0 .

Solution The auxiliary equation is

r4 - r3 - 3r2 + 5r - 2 = 1r - 1231r + 22 = 0 ,

which has roots r1 = 1, r2 = 1, r3 = 1, r4 = -2. Because the root at 1 has multiplicity 3, a 
general solution is

(30) y1x2 = C1e
x + C2xex + C3x

2ex + C4e
-2x . ◆

Example 4 Find a general solution to

(31) y142 - 8y132 + 26y″ - 40y′ + 25y = 0 ,

whose auxiliary equation can be factored as

(32) r4 - 8r3 + 26r2 - 40r + 25 = 1r2 - 4r + 522 = 0 .

Solution The auxiliary equation (32) has repeated complex roots: r1 = 2 + i, r2 = 2 + i, r3 = 2 - i, 
and r4 = 2 - i. Hence, a general solution is

y1x2 = C1e
2x cos x + C2xe2x cos x + C3e

2x sin x + C4xe2x sin x . ◆
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In Problems 1–14, find a general solution for the differential 
equation with x as the independent variable.

 1. y‴ + 2y″ - 8y′ = 0

 2. y‴ - 3y″ - y′ + 3y = 0

 3. 6z‴ + 7z″ - z′ - 2z = 0

 4. y‴ + 2y″ - 19y′ - 20y = 0

 5. y‴ + 3y″ + 28y′ + 26y = 0

 6. y‴ - y″ + 2y = 0

 7. 2y‴ - y″ - 10y′ - 7y = 0

 8. y‴ + 5y″ - 13y′ + 7y = 0

 9. u‴ - 9u″ + 27u′ - 27u = 0

 10. y‴ + 3y″ - 4y′ - 6y = 0

 11. y142 + 4y‴ + 6y″ + 4y′ + y = 0

 12. y‴ + 5y″ + 3y′ - 9y = 0

 13. y142 + 4y″ + 4y = 0

 14. y142 + 2y‴ + 10y″ + 18y′ + 9y = 0

[Hint: y1x2 = sin 3x is a solution.]

In Problems 15–18, find a general solution to the given 
homogeneous equation.

 15. 1D - 1221D + 321D2 + 2D + 5223y4 = 0

16. 1D + 1221D - 6231D + 521D2 + 121D2 + 423y4 = 0

17. 1D + 421D - 321D + 2231D2 + 4D + 522D53y4 = 0

18. 1D - 1231D - 221D2 + D + 12
# 1D2 + 6D + 10233y4 = 0

In Problems 19–21, solve the given initial value problem.

 19. y‴ - y″ - 4y′ + 4y = 0 ;

y102 = -4 ,  y′102 = -1 ,  y″102 = -19

 20. y‴ + 7y″ + 14y′ + 8y = 0 ;

y102 = 1 ,  y′102 = -3 ,  y″102 = 13

 21. y‴ - 4y″ + 7y′ - 6y = 0 ;

y102 = 1 ,  y′102 = 0 ,  y″102 = 0

In Problems 22 and 23, find a general solution for the given 
linear system using the elimination method of Section 5.2.

 22. d2x>dt2 - x + 5y = 0 ,

2x + d2y>dt2 + 2y = 0

 23. d3x>dt3 - x + dy>dt + y = 0 ,

dx>dt - x + y = 0

 24. Let P1r2 = anr
n + g + a1r + a0 be a polynomial 

with real coefficients an,c, a0. Prove that if r1 is a 
zero of P1r2, then so is its complex conjugate r1. [Hint: 
Show that P1r2 = P1r2, where the bar denotes complex  
conjugation.]

 25. Show that the m functions erx, xerx, . . . , xm-1erx are 
linearly independent on 1- ∞ , ∞ 2. [Hint: Show that 
these functions are linearly independent if and only if 
1, x, . . . , xm-1 are linearly independent.]

 26. As an alternative proof that the functions er1x, er2x, . . . ,
ernx are linearly independent on 1- ∞ , ∞ 2 when 
r1, r2, . . . , rn are distinct, assume

(33) C1e
r1x + C2e

r2x + g + Cne
rnx = 0

holds for all x in 1- ∞ , ∞ 2 and proceed as follows:

  (a)  Because the ri’s are distinct we can (if necessary) 
relabel them so that

r1 7 r2 7 g 7 rn .

Divide equation (33) by er1x to obtain

C1 + C2 
er2x

er1x
+ g + Cn 

ernx

er1x
= 0 .

Now let x S + ∞  on the left-hand side to obtain 
C1 = 0.

  (b) Since C1 = 0, equation (33) becomes

C2e
r2x + C3e

r3x + g + Cne
rnx = 0

for all x in 1- ∞ , ∞ 2. Divide this equation by er2x 
and let x S + ∞  to conclude that C2 = 0.

  (c)  Continuing in the manner of (b), argue that all the 
coefficients, C1, C2, . . .  , Cn are zero and hence 
er1x, er2x, . . . , ernx are linearly independent on 
1- ∞ , ∞ 2.

 27. Find a general solution to

y142 + 2y‴ - 3y″ - y′ +
1
2

 y = 0

by using Newton’s method (Appendix B) or some other 
numerical procedure to approximate the roots of the aux-
iliary equation.

 28. Find a general solution to y‴ - 3y′ - y = 0 by using 
Newton’s method or some other numerical procedure to 
approximate the roots of the auxiliary equation.

 29. Find a general solution to

y142 + 2y132 + 4y″ + 3y′ + 2y = 0

6.2 EXERCISES
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by using Newton’s method to approximate numeri-
cally the roots of the auxiliary equation. [Hint: To 
find complex roots, use the Newton recursion formula 
zn + 1 = zn - f1zn2 >f′1zn2 and start with a complex initial 
guess z0.]

 30. (a) Derive the form

y1x2 = A1e
x + A2e

-x + A3 cos x + A4 sin x

for the general solution to the equation y142 = y, 
from the observation that the fourth roots of unity 
are 1, -1,  i, and - i.

  (b) Derive the form

 y1x2 = A1e
x + A2e

-x>2 cos123x>22
 + A3e

-x>2 sin123x>22
for the general solution to the equation y132 = y, 
from the observation that the cube roots of unity are 
1, ei2p>3, and e-i2p>3.

 31. Higher-Order Cauchy–Euler Equations. A differen-
tial equation that can be expressed in the form

anx
ny1n21x2 + an-1x

n - 1y1n-121x2 + g+  a0y1x2 = 0 ,

where an, an-1, . . . , a0 are constants, is called a homoge-
neous Cauchy–Euler equation. (The second-order case 
is discussed in Section 4.7.) Use the substitution y = xr 
to help determine a fundamental solution set for the 
following Cauchy–Euler equations:

  (a) x3y‴ + x2y″ - 2xy′ + 2y = 0 , x 7 0 .

  (b) x4y142 + 6x3y‴ + 2x2y″ - 4xy′ + 4y = 0 , x 7 0

  (c) x3y‴ - 2x2y″ + 13xy′ - 13y = 0 , x 7 0

[Hint: xa+ ib = e1a+ ib2ln x

= xa5cos1b ln x2 + i sin1b ln x26.4
 32. Let y1x2 = Cerx, where C 1≠  02 and r are real num-

bers, be a solution to a differential equation. Suppose 
we cannot determine r exactly but can only approxi-
mate it by r∼. Let y∼1x2 J Ce

∼rx and consider the error 
0 y1x2 - y∼1x2 0 .

  (a)  If r and r∼ are positive, r ≠ r∼, show that the error 
grows exponentially large as x approaches + ∞ .

  (b)  If r and r∼ are negative, r ≠ r∼, show that the error 
goes to zero exponentially as x approaches + ∞ .

 33. On a smooth horizontal surface, a mass of m1 kg is 
attached to a fixed wall by a spring with spring con-
stant k1 N/m. Another mass of m2 kg is attached to the 
first object by a spring with spring constant k2 N/m. The 
objects are aligned horizontally so that the springs are 
their natural lengths. As we showed in Section 5.6, this 
coupled mass–spring system is governed by the system 
of differential equations

(34) m1 
d2x

dt2 + 1k1 + k22x − k2y = 0 ,

(35) m2 
d2y

dt2 − k2x + k2y = 0 .

 Let’s assume that m1 = m2 = 1, k1 = 3, and k2 = 2. 
If both objects are displaced 1 m to the right of their 
equilibrium positions (compare Figure 5.26, page 283) 
and then released, determine the equations of motion for 
the objects as follows:

  (a) Show that x1t2 satisfies the equation

(36) x1421t2 + 7x″1t2 + 6x1t2 = 0 .

  (b) Find a general solution x1t2 to (36).
  (c)  Substitute x1t2 back into (34) to obtain a general 

solution for y1t2.
  (d)  Use the initial conditions to determine the solutions, 

x1t2 and y1t2, which are the equations of motion.

 34. Suppose the two springs in the coupled mass–spring 
system discussed in Problem 33 are switched, giving 
the new data m1 = m2 = 1, k1 = 2, and k2 = 3. If both 
objects are now displaced 1 m to the right of their equi-
librium positions and then released, determine the equa-
tions of motion of the two objects.

 35. Vibrating Beam. In studying the transverse vibrations 
of a beam, one encounters the homogeneous equation

EI 
d4y

dx4 - ky = 0 ,

where y1x2 is related to the displacement of the beam 
at position x, the constant E is Young’s modulus, I is the 
area moment of inertia, and k is a parameter. Assuming 
E, I, and k are positive constants, find a general solution 
in terms of sines, cosines, hyperbolic sines, and hyper-
bolic cosines.
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Annihilator

Definition 3. A linear differential operator A is said to annihilate a function f if

(2) A3f41x2 = 0 ,    

for all x. That is, A annihilates f if f is a solution to the homogeneous linear differential 
equation (2) on 1- ∞ , ∞ 2.

In Sections 4.4 and 4.5 we mastered an easy method for obtaining a particular solution to a 
nonhomogeneous linear second-order constant-coefficient equation,

(1)  L3y4 = 1aD2 + bD + c23y4 = ƒ1x2 ,

when the nonhomogeneity ƒ1x2 had a particular form (namely, a product of a polynomial, 
an exponential, and a sinusoid). Roughly speaking, we were motivated by the observation 
that if a function ƒ, of this type, resulted from operating on y with an operator L of the form 
1aD2 + bD + c2, then we must have started with a y of the same type. So we solved (1) by 
postulating a solution form yp that resembled ƒ, but with undetermined coefficients, and we 
inserted this form into the equation to fix the values of these coefficients. Eventually, we real-
ized that we had to make certain accommodations when ƒ was a solution to the homogeneous 
equation L3y4 = 0.

In this section we are going to reexamine the method of undetermined coefficients from 
another, more rigorous, point of view—partly with the objective of tying up the loose ends in 
our previous exposition and more importantly with the goal of extending the method to higher-
order equations (with constant coefficients). At the outset we’ll describe the new point of view 
that will be adopted for the analysis. Then we illustrate its implications and ultimately derive 
a simplified set of rules for its implementation: rules that justify and extend the procedures of 
Section 4.4. The rigorous approach is known as the annihilator method.

The first premise of the annihilator method is the observation, gleaned from the analysis 
of the previous section, that all of the “suitable types” of nonhomogeneities ƒ1x2 (products of 
polynomials times exponentials times sinusoids) are themselves solutions to homogeneous 
differential equations with constant coefficients. Observe the following:

 (i) Any nonhomogeneous term of the form ƒ1x2 = erx satisfies 1D - r23f4 = 0.
 (ii) Any nonhomogeneous term of the form ƒ1x2 = xkerx satisfies 1D - r2m3f4 = 0 for 

k = 0, 1,c, m - 1 .
 (iii) Any nonhomogeneous term of the form ƒ1x2 = cos bx or sin bx satisfies 

1D2 + b223f4 = 0.
 (iv) Any nonhomogeneous term of the form ƒ1x2 = xkeax cos bx or xkeax sin bx satisfies 

31D - a22 + b24m3f4 = 0 for k = 0, 1,c, m - 1 .

In other words, each of these nonhomogeneities is annihilated by a differential operator with 
constant coefficients.

6.3  Undetermined Coefficients and the  
Annihilator Method
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Example 1 Find a differential operator that annihilates

(3) 6xe-4x + 5ex sin 2x .

Solution Consider the two functions whose sum appears in (3). Observe that 1D + 422 annihilates 
the function f11x2 J 6xe-4x. Further, f21x2 J 5ex sin 2x is annihilated by the operator 
1D - 122 + 4. Hence, the composite operator

A J 1D + 42231D - 122 + 44 ,
which is the same as the operator

31D - 122 + 441D + 422 ,

annihilates both f1 and f2. But then, by linearity, A also annihilates the sum f1 + f2. ◆

We now show how annihilators can be used to determine particular solutions to certain non-
homogeneous equations. Consider the nth-order differential equation with constant coefficients

(4) any
1n21x2 + an-1y

1n-121x2 + g + a0y1x2 = ƒ1x2 ,
which can be written in the operator form

(5) L3y41x2 = ƒ1x2 ,
where

L = anD
n + an - 1D

n - 1 + g + a0 .

Assume that A is a linear differential operator with constant coefficients that annihilates ƒ1x2. 
Then

A3L3y4 4 1x2 = A3f41x2 = 0 ,

so any solution to (5) is also a solution to the homogeneous equation

(6) AL3y41x2 = 0 ,

involving the composition of the operators A and L. But we are experts on homogeneous 
differential equations (with constant coefficients)! In particular, we can use the methods of  
Section 6.2 to write down a general solution of (6). From this we can deduce the form of a  
particular solution to (5). Let’s look at some examples and then summarize our findings. The 
differential equation in the next example is second order, so we will be able to see exactly how 
the annihilator method is related to the techniques of Sections 4.4 and 4.5.

Example 2 Find a general solution to

(7) y″ - y = xex + sin x .

Solution First let’s solve this by the methods of Sections 4.4 and 4.5, to get a perspective for the annihi-
lator method. The homogeneous equation corresponding to (7) is y″ - y = 0, with the general 
solution C1e

-x + C2e
x. Since ex is a solution of the homogeneous equation, the nonhomogene-

ity xex demands a solution form x1C3 + C4x2ex. To accommodate the nonhomogeneity sin  x, 
we need an undetermined coefficient form C5 sin x + C6 cos x. Values for C3 through C6 in the 
particular solution are determined by substitution:

y>p - yp = 3C3xex + C4x
2ex + C5 sin x + C6 cos x4 ″

- 3C3xex + C4x
2ex + C5 sin x + C6 cos x4 = sin x + xex ,
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eventually leading to the conclusion C3 = -1>4, C4 = 1>4, C5 = -1>2, and C6 = 0. Thus 
(for future reference), a general solution to (7) is

(8) y1x2 = C1e
-x + C2e

x + xa -  
1
4

+
1
4

xbex -
1
2

 sin x .

For the annihilator method, observe that 1D2 + 12 annihilates sin x and 1D - 122 anni-
hilates xex. Therefore, any solution to (7), expressed for convenience in operator form as 
1D2 - 123y41x2 = xex + sin x, is annihilated by the composition 1D2 + 121D - 1221D2 - 12; 
that is, it satisfies the constant-coefficient homogeneous equation

(9) 1D2 + 121D - 1221D2 - 123y4 = 1D + 121D - 1231D2 + 123y4 = 0 .

From Section 6.2 we deduce that the general solution to (9) is given by

(10) y = C1e
-x + C2e

x + C3xex + C4x
2ex + C5 sin x + C6 cos x .

This is precisely the solution form generated by the methods of Chapter 4; the first two terms 
are the general solution to the associated homogeneous equation, and the remaining four terms 
express the particular solution to the nonhomogeneous equation with undetermined coeffi-
cients. Substitution of (10) into (7) will lead to the quoted values for C3 through C6, and 
indeterminant values for C1 and C2; the latter are available to fit initial conditions.

Note how the annihilator method automatically accounts for the fact that the nonhomo-
geneity xex requires the form C3xex + C4x

2ex in the particular solution, by counting the total 
number of factors of 1D - 12 in the annihilator and the original differential operator. ◆

Example 3 Find a general solution, using the annihilator method, to

(11) y‴ - 3y″ + 4y = xe2x .

Solution The associated homogeneous equation takes the operator form

(12) 1D3 - 3D2 + 423y4 = 1D + 121D - 2223y4 = 0 .

The nonhomogeneity xe2x is annihilated by 1D - 222. Therefore, every solution of (11) also 
satisfies

(13) 1D - 2221D3 - 3D2 + 423y4 = 1D + 121D - 2243y4 = 0 .

A general solution to (13) is

(14) y1x2 = C1e
-x + C2e

2x + C3xe2x + C4x
2e2x + C5x

3e2x .

Comparison with (12) shows that the first three terms of (14) give a general solution to the 
associated homogeneous equation and the last two terms constitute a particular solution form 
with undetermined coefficients. Direct substitution reveals C4 = -1>18 and C5 = 1>18 and 
so a general solution to (11) is

y1x2 = C1e
-x + C2e

2x + C3xe2x -
1
18

x2e2x +
1
18

x3e2x . ◆

The annihilator method, then, rigorously justifies the method of undetermined coeffi-
cients of Section 4.4. It also tells us how to upgrade that procedure for higher-order equa-
tions with constant coefficients. Note that we don’t have to implement the annihilator method 
directly; we simply need to introduce the following modifications to the method of 
undetermined coefficients for second-order equations that was described in the procedural 
box on page 178. 
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Method of Undetermined Coefficients

To find a particular solution to the constant-coefficient differential equation 
L3y4 = Cxmerx, where m is a nonnegative integer, use the form

(15) yp1x2 = xs3Amxm + g + A1x + A04erx ,

with s = 0 if r is not a root of the associated auxiliary equation; otherwise, take s equal 
to the multiplicity of this root.
 To find a particular solution to the constant-coefficient differential equation 
L3y4 = Cxmeax cos bx or L3y4 = Cxmeax sin bx, where b ≠ 0, use the form

(16) yp1x2 = xs3Amxm + g + A1x + A04eax cos bx

+ xs3Bmxm + g + B1x + B04eax sin  bx ,

with s = 0 if a + ib is not a root of the associated auxiliary equation; otherwise, take s 
equal to the multiplicity of this root.

In Problems 1–4, use the method of undetermined coefficients 
to determine the form of a particular solution for the given 
equation.

 1. y‴ - 2y″ - 5y′ + 6y = ex + x2

 2. y‴ + y″ - 5y′ + 3y = e-x + sin x

 3. y‴ + 3y″ - 4y = e-2x

 4. y‴ + y″ - 2y = xex + 1

In Problems 5–10, find a general solution to the given equation.

 5. y‴ - 2y″ - 5y′ + 6y = ex + x2

 6. y‴ + y″ - 5y′ + 3y = e-x + sin x

 7. y‴ + 3y″ - 4y = e-2x

 8. y‴ + y″ - 2y = xex + 1

 9. y‴ - 3y″ + 3y′ - y = ex

 10. y‴ + 4y″ + y′ - 26y = e-3x sin 2x + x

In Problems 11–20, find a differential operator that annihi-
lates the given function.

 11. x4 - x2 + 11 12. 3x2 - 6x + 1

 13. e-7x  14. e5x

 15. e2x - 6ex 16. x2 - ex

 17. x2e-x sin 2x 18. xe3x cos 5x

 19. xe-2x + xe-5x sin 3x 20. x2ex - x sin 4x + x3

In Problems 21–30, use the annihilator method to determine 
the form of a particular solution for the given equation.

 21. u″ - 5u′ + 6u = cos 2x + 1

 22. y″ + 6y′ + 8y = e3x - sin x

 23. y″ - 5y′ + 6y = e3x - x2

 24. u″ - u = xex

 25. y″ - 6y′ + 9y = sin 2x + x

 26. y″ + 2y′ + y = x2 - x + 1

 27. y″ + 2y′ + 2y = e-x cos x + x2

 28. y″ - 6y′ + 10y = e3x - x

 29. z‴ - 2z″ + z′ = x - ex

 30. y‴ + 2y″ - y′ - 2y = ex - 1

In Problems 31–33, solve the given initial value problem.

 31. y‴ + 2y″ - 9y′ - 18y = -18x2 - 18x + 22 ;

  y102 = -2 ,  y′102 = -8 ,  y″102 = -12

 32. y‴ - 2y″ + 5y′ = -24e3x ;

  y102 = 4 ,  y′102 = -1 ,  y″102 = -5

 33.  y‴ - 2y″ - 3y′ + 10y

   = 34xe-2x - 16e-2x - 10x2 + 6x + 34 ;

  y102 = 3 ,  y′102 = 0 ,  y″102 = 0

 34. Use the annihilator method to show that if a0 ≠ 0 in 
equation (4) and f1x2 has the form

(17) f1x2 = bmxm + bm-1x
m-1 + g + b1x + b0 ,

then

yp1x2 = Bmxm + Bm - 1x
m - 1 + g + B1x + B0

is the form of a particular solution to equation (4).

 35. Use the annihilator method to show that if a0 = 0 and 
a1 ≠ 0 in (4) and f1x2 has the form given in (17), then 
equation (4) has a particular solution of the form

yp1x2 = x5Bmxm + Bm - 1x
m - 1 + g + B1x + B06 .

6.3 EXERCISES

As in Chapter 4, the superposition principle can be used to streamline the method for sums 
of nonhomogeneous terms of the above types.

M06_NAGL7069_09_SE_C06_319-349.indd   337 21/09/16   4:39 PM



338     Chapter 6  Theory of Higher-Order Linear Differential Equations

 36. Use the annihilator method to show that if f1x2 in (4) has 
the form f1x2 = Beax, then equation (4) has a particular 
solution of the form yp1x2 = xsBeax, where s is chosen to 
be the smallest nonnegative integer such that xseax is not a 
solution to the corresponding homogeneous equation.

 37. Use the annihilator method to show that if f1x2 in (4) has 
the form

f1x2 = a cos bx + b sin bx ,

then equation (4) has a particular solution of the form

(18) yp1x2 = xs{A cos Bx + B sin Bx} ,

where s is chosen to be the smallest nonnegative integer 
such that xs cos bx and xs sin bx are not solutions to the 
corresponding homogeneous equation.

In Problems 38 and 39, use the elimination method of 
Section 5.2 to find a general solution to the given system.

38. x - d2y>dt2 = t + 1 ,

  dx>dt + dy>dt - 2y = et

39. d2x>dt2 - x + y = 0 ,

  x + d2y>dt2 - y = e3t

 40. The currents in the electrical network in Figure 6.1 
satisfy the system

 
1
9

 I1 + 64I>2 = -2 sin 
t

24
 ,

 
1
64

 I3 + 9I>3 - 64I>2 = 0 ,

 I1 = I2 + I3 ,
where I1, I2, and I3 are the currents through the differ-
ent branches of the network. Using the elimination 
method of Section 5.2, determine the currents if ini-
tially I1102 = I2102 = I3102 = 0, I =1102 = 73>12, 
I =2102 = 3>4, and I =3102 = 16>3.

48 cos( t /24) 
volts 9 henrys 

9 farads 64 farads 

64 henrys 

I 1 
I 2 I 3 

Figure 6.1 An electrical network

In the previous section, we discussed the method of undetermined coefficients and the annihila-
tor method. These methods work only for linear equations with constant coefficients and when 
the nonhomogeneous term is a solution to some homogeneous linear equation with constant 
coefficients. In this section we show how the method of variation of parameters discussed 
in Sections 4.6 and 4.7 generalizes to higher-order linear equations with variable coefficients.

Our goal is to find a particular solution to the standard form equation

(1) L3y41x2 = g1x2 ,
where L3y4 J y1n2 + p1y

1n - 12 + g + pny and the coefficient functions p1, . . . , pn, as well 
as g, are continuous on 1a, b2. The method to be described requires that we already know a 
fundamental solution set 5y1, . . ., yn6 for the corresponding homogeneous equation

(2) L3y41x2 = 0 .

A general solution to (2) is then

(3) yh1x2 = C1y11x2 + g + Cnyn1x2 ,
where C1, . . . , Cn are arbitrary constants. In the method of variation of parameters, we assume 
there exists a particular solution to (1) of the form

(4) yp1x2 = Y11x2y11x2 + P + Yn1x2yn1x2
and try to determine the functions y1, . . . , yn.

There are n unknown functions, so we will need n conditions (equations) to determine 
them. These conditions are obtained as follows. Differentiating yp in (4) gives

(5) y=p = 1y1y
=
1 + g + yny

=
n2 + 1y=1y1 + g + y=nyn2 .

6.4 Method Of Variation of Parameters
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To prevent second derivatives of the unknowns y1, . . . , yn from entering the formula for y>p, we 
impose the condition

y=1y1 + g + y=nyn = 0 .

In a like manner, as we compute y>p, y?p , . . ., y1n - 12
p , we impose 1n - 22 additional conditions 

involving y=1, . . . , y
=
n; namely,

y=1y
=
1 + g + y=ny=n = 0,  . . . ,  y=1y

1n - 22
1 + g + y=ny1n - 22

n = 0 .

Finally, the nth condition that we impose is that yp satisfy the given equation (1). Using the pre-
vious conditions and the fact that y1, . . . , yn are solutions to the homogeneous equation, then 
L3yp4 = g reduces to

(6) y=1y
1n - 12
1 + g + y=ny1n - 12

n = g

(see Problem 12, page 341). We therefore seek n functions y=1, . . . , y
=
n that satisfy the system

(7)

 y1Y
=
1 +  P + ynY

=
n = 0 ,

O                               O   O O
  y1n − 22

1 Y=1 + P +  y
1n − 22
n Y=n = 0 ,

  y1n − 12
1 Y=1 + P +  y

1n − 12
n Y=n = g .

Caution. This system was derived under the assumption that the coefficient of the highest 
derivative y(n) in (1) is one. If, instead, the coefficient of this term is the constant a, then in the 
last equation in (7) the right-hand side becomes g>a.

A sufficient condition for the existence of a solution to system (7) for x in 1a, b2 is that the 
determinant of the matrix made up of the coefficients of y=1, . . . , y

=
n be different from zero for 

all x in 1a, b2. But this determinant is just the Wronskian:

(8) ∞
y1 . . . yn

f  f
y1n - 22

1 . . . y1n - 22
n

y1n - 12
1 . . . y1n - 12

n

∞ = W3y1, . . ., yn41x2 ,

which is never zero on 1a, b2 because 5y1, . . . , yn6 is a fundamental solution set. Solving (7) 
via Cramer’s rule (Appendix D), we find

(9) y=k1x2 =
g1x2Wk1x2

W3y1, . . . , yn41x2  ,  k = 1, . . ., n ,

where Wk1x2 is the determinant of the matrix obtained from the Wronskian W3y1, . . . yn41x2 
by replacing the kth column by col30, . . . , 0, 14. Using a cofactor expansion about this col-
umn, we can express Wk1x2 in terms of an 1n - 12th-order Wronskian:

(10) Wk1x2 = 1-12n - kW3y1, . . . , yk - 1, yk + 1, . . . , yn41x2 ,  k = 1, . . . , n .

Integrating y=k1x2 in (9) gives

(11) yk1x2 = L
g1x2Wk1x2

W3y1, . . . , yn41x2  dx ,  k = 1, . . . , n .

Finally, substituting the yk’s back into (4), we obtain a particular solution to equation (1):

(12) yp1x2 = an
k = 1

 yk1x2L
g1x2Wk1x2

W3y1, . . . , yn41x2   dx .

Note that in equation (1) we presumed that the coefficient of the leading term, y1n2, was unity. 
If, instead, it is p01x2, we must replace g1x2 by g1x2 >p01x2 in (12).
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Although equation (12) gives a neat formula for a particular solution to (1), its imple-
mentation requires one to evaluate n + 1 determinants and then perform n integrations. This 
may entail several tedious computations. However, the method does work in cases when the 
technique of undetermined coefficients does not apply (provided, of course, we know a funda-
mental solution set).

Example 1 Find a general solution to the Cauchy–Euler equation

(13) x3y‴ + x2y″ - 2xy′ + 2y = x3 sin x ,  x 7 0 ,

given that 5x, x-1, x26 is a fundamental solution set to the corresponding homogeneous equation.

Solution An important first step is to divide (13) by x3 to obtain the standard form

(14) y‴ +
1
x

 y″ -
2

x2 y′ +
2

x3 y = sin x ,  x 7 0 ,

from which we see that g1x2 = sin x. Since 5x, x-1, x26 is a fundamental solution set, we can 
obtain a particular solution of the form

(15) yp1x2 = y11x2x + y21x2x-1 + y31x2x2 .

To use formula (12), we must first evaluate the four determinants:

 W3x, x-1, x241x2 = †
x x-1 x2

1 -x-2 2x
0 2x-3 2 

† = -6x-1 ,

 W11x2 = 1-1213 - 12W3x-1, x241x2 = 1-122 ` x-1 x2

-x-2 2x2 ` = 3 ,

 W21x2 = 1-1213 - 22 ` x x2

1 2x2 ` = -x2 ,

 W31x2 = 1-1213 - 32 ` x x-1

1 -x-2 ` = -2x-1 .

Substituting the above expressions into (12), we find

 yp1x2 = xL
1sin x23
-6x-1  dx + x-1L

1sin x21-x22
-6x-1  dx + x2L

1sin x21-2x-12
 -6x-1  dx

 = xL a -  
1
2

 x sin xb  dx + x-1L
1
6

 x3 sin x dx + x2L
1
3

 sin x dx ,

which after some labor simplifies to

(16) yp1x2 = cos x - x-1sin x + C1x + C2x
-1 + C3x

2 ,

where C1, C2, and C3 denote the constants of integration. Since 5x, x-1, x26 is a fundamental 
solution set for the homogeneous equation, we can take C1, C2, and C3 to be arbitrary con-
stants. The right-hand side of (16) then gives the desired general solution. ◆

In the preceding example, the fundamental solution set 5x, x-1, x26 can be derived by 
substituting y = xr into the homogeneous equation corresponding to (13) (see Problem 31, 
Exercises 6.2). However, in dealing with other equations that have variable coefficients, the 
determination of a fundamental set may be extremely difficult. In Chapter 8 we tackle this 
problem using power series methods.
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In Problems 1–6, use the method of variation of parameters to 
determine a particular solution to the given equation.

 1. y‴ - 3y″ + 4y = e2x

 2. y‴ - 2y″ + y′ = x

 3. z‴ + 3z″ - 4z = e2x

 4. y‴ - 3y″ + 3y′ - y = ex

 5. y‴ + y′ = tan x ,  0 6 x 6 p>2
 6. y‴ + y′ = sec u tan u ,  0 6 u 6 p>2

 7. Find a general solution to the Cauchy–Euler equation

x3y‴ - 3x2y″ + 6xy′ - 6y = x-1 ,  x 7 0 ,

given that 5x, x2, x36 is a fundamental solution set for 
the corresponding homogeneous equation.

 8. Find a general solution to the Cauchy–Euler equation

x3y‴ - 2x2y″ + 3xy′ - 3y = x2 ,  x 7 0 ,

given that 5x, x ln x, x36 is a fundamental solution set 
for the corresponding homogeneous equation.

 9. Given that 5ex, e-x, e2x6 is a fundamental solution set 
for the homogeneous equation corresponding to the 
equation

y‴ - 2y″ - y′ + 2y = g1x2 ,
determine a formula involving integrals for a particular 
solution.

 10. Given that 5x, x-1, x46 is a fundamental solution set for 
the homogeneous equation corresponding to the equation

x3y‴ - x2y″ - 4xy′ + 4y = g1x2 ,  x 7 0 ,

determine a formula involving integrals for a particular 
solution.

 11. Find a general solution to the Cauchy–Euler equation

x3y‴ - 3xy′ + 3y = x4 cos x ,  x 7 0

 12. Derive the system (7) in the special case when n = 3.  
[Hint: To determine the last equation, require that 
L3yp4 = g and use the fact that y1, y2, and y3 satisfy the 
corresponding homogeneous equation.]

 13. Show that

Wk1x2 = 1-121n-k2W3y1, . . . , yk - 1, yk + 1, . . . , yn41x2 .

 14. Deflection of a Beam Under Axial Force. A uniform 
beam under a load and subject to a constant axial force is 
governed by the differential equation

y1421x2 - k2y″1x2 = q1x2 ,  0 6 x 6 L,

where y1x2 is the deflection of the beam, L is the length 
of the beam, k2 is proportional to the axial force, and 
q1x2 is proportional to the load (see Figure 6.2).

  (a) Show that a general solution can be written in the form

 y1x2 = C1 + C2x + C3e
kx + C4e

-kx

+
1

k2 Lq1x2  x dx -
x

k2 Lq1x2  dx

+
ekx

2k3 Lq1x2e-kx dx -
e-kx

2k3 Lq1x2ekx dx .

  (b)  Show that the general solution in part (a) can be 
rewritten in the form

 y1x2 = c1 + c2x + c3e
kx + c4e

-kx

+  L
x

0
 q1s2G1s, x2  ds ,

where

G1s, x2 J
s - x

k2  -  
sinh3k1s - x24

k3  .

  (c)  Let q1x2 K 1. First compute the general solution 
using the formula in part (a) and then using the for-
mula in part (b). Compare these two general solu-
tions with the general solution

y1x2 = B1 + B2x + B3e
kx + B4e

-kx -
1

2k2 x2 ,

which one would obtain using the method of undeter-
mined coefficients.

6.4 EXERCISES

x 
L 

y ( x ) 

Load 

Axial force

Figure 6.2 Deformation of a beam under axial force and load
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Section 7.2  Definition of the Laplace Transform     353

In earlier chapters we studied differential operators. These operators took a function and 
mapped or transformed it (via differentiation) into another function. The Laplace transform, 
which is an integral operator, is another such transformation.

7.2 Definition of the Laplace Transform

Laplace Transform

Definition 1. Let f1t2 be a function on 30, ∞ 2. The Laplace transform of f is the 
function F defined by the integral

(1) F1s2 J L
H

0
 e-stf1t2  dt .

The domain of F1s2 is all the values of s for which the integral in (1) exists.† The  
Laplace transform of f is denoted by both F and ℒ5f6.

Notice that the integral in (1) is an improper integral. More precisely,

L
∞

0
e-stf1t2  dt J lim

NS ∞ L
N

0
e-stf1t2  dt

whenever the limit exists.

Example 1 Determine the Laplace transform of the constant function f1t2 = 1, t Ú 0 .

Solution Using the definition of the transform, we compute

 F1s2 = L
∞

0
e-st # 1 dt = lim

NS ∞
 L

N

0
e-st dt

 = lim
NS ∞

-e-st

s
 2 t=N

t= 0
= lim

NS ∞
c 1

s
-

e-sN

s
d  .

Since e-sN S 0 when s 7 0 is fixed and N S ∞ , we get

F1s2 =
1
s
  for  s 7 0 .

When s … 0, the integral 1∞
0  e-st dt diverges. (Why?) Hence F1s2 = 1>s, with the domain of 

F1s2 being all s 7 0. ◆

†We treat s as real-valued, but in certain applications s may be a complex variable. For a detailed treatment of complex-
valued Laplace transforms, see Complex Variables and the Laplace Transform for Engineers, by Wilbur R. LePage 
(Dover Publications, New York, 2010), or Fundamentals of Complex Analysis with Applications to Engineering and 
Science (3rd ed.), by E. B. Saff and A. D. Snider (Pearson Education, Boston, MA, 2003).
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354     Chapter 7  Laplace Transforms

Example 2 Determine the Laplace transform of f1t2 = eat, where a is a constant.

Solution Using the definition of the transform,

 F1s2 = L
∞

0
e-steat dt = L

∞

0
e-1s - a2t dt

 = lim
NS ∞ L

N

0
e-1s - a2t dt = lim

NS ∞

-e-1s - a2t

s - a
2 N
0

 = lim
NS ∞
c 1
s - a

-
e-1s - a2N

s - a
d

 =
1

s - a
 for s 7 a .

Again, if s … a the integral diverges, and hence the domain of F1s2 is all s 7 a. ◆

It is comforting to note from Example 2 that the transform of the constant function 
f1t2 = 1 = e0t is 1> 1s - 02 = 1>s, which agrees with the solution in Example 1.

Example 3 Find ℒ5sin bt6, where b is a nonzero constant.

Solution We need to compute

ℒ5sin bt61s2 = L
∞

0
e-st sin bt dt = lim

NS ∞ L
N

0
e-st sin bt dt .

Referring to the table of integrals at the back of the book, we see that

 ℒ5sin bt61s2 = lim
NS ∞
c e-st

s2 + b2 1-s sin bt - b cos bt2  2 N
0
d

 = lim
NS ∞
c b

s2 + b2 -
e-sN

s2 + b2  1s sin bN + b cos bN2 d

 =
b

s2 + b2 for s 7 0

(since for such s we have limNS ∞ e-sN1s sin bN + b cos bN2 = 0; see Problem 32). ◆

Example 4 Determine the Laplace transform of

f1t2 = •
2 , 0 6 t 6 5 ,
0 , 5 6 t 6 10 ,
e4t , 10 6 t .
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Solution Since f1t2 is defined by a different formula on different intervals, we begin by breaking up the 
integral in (1) into three separate parts.† Thus,

 F1s2 = L
∞

0
e-stf1t2  dt

 = L
5

0
e-st # 2 dt + L

10

5
e-st # 0 dt + L

∞

10
e-ste4t dt

 = 2L
5

0
e-st dt + lim

NS ∞ L
N

10
e-1s - 42t dt

 =
2
s

-
2e-5s

s
+ lim

NS ∞
c e

-101s - 42

s - 4
-

e-1s - 42N

s - 4
d

 =
2
s

-
2e-5s

s
+

e-101s - 42

s - 4
  for s 7 4 . ◆

Notice that the function f1t2 of Example 4 has jump discontinuities at t = 5 and t = 10.  
These values are reflected in the exponential terms e-5s and e-10s that appear in the formula 
for F1s2. We’ll make this connection more precise when we discuss the unit step function in 
Section 7.6.

An important property of the Laplace transform is its linearity. That is, the Laplace trans-
form ℒ is a linear operator.

†Notice that f1t2 is not defined at the points t = 0, 5, and 10. Nevertheless, the integral in (1) is still meaningful and 
unaffected by the function’s values at finitely many points.

Linearity of the Transform

Theorem 1. Let f, f1, and f2 be functions whose Laplace transforms exist for s 7 a and 
let c be a constant. Then, for s 7 a,

(2)  ℒ5f1 + f26 = ℒ5f16 + ℒ5f26 ,

(3)  ℒ5cf6 = cℒ5f6 .

Proof. Using the linearity properties of integration, we have for s 7 a

 ℒ5f1 + f261s2 = L
∞

0
e-st3f11t2 + f21t24dt

 = L
∞

0
e-stf11t2  dt + L

∞

0
e-stf21t2  dt

 = ℒ5f161s2 + ℒ5f261s2 .

Hence, equation (2) is satisfied. In a similar fashion, we see that

 ℒ5cf61s2 = L
∞

0
e-st3cf1t24dt = c L

∞

0
e-stf1t2  dt

 = cℒ5f61s2 . ◆
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Example 5 Determine ℒ511 + 5e4t - 6 sin 2t6 .

Solution From the linearity property, we know that the Laplace transform of the sum of any finite num-
ber of functions is the sum of their Laplace transforms. Thus,

 ℒ511 + 5e4t - 6 sin 2t6 = ℒ5116 + ℒ55e4t6 + ℒ5-6 sin 2t6
 = 11ℒ516 + 5ℒ5e4t6 - 6ℒ5sin 2t6 .

In Examples 1, 2, and 3, we determined that

ℒ5161s2 =
1
s
 ,  ℒ5e4t61s2 =

1
s - 4

 ,  ℒ5sin 2t61s2 =
2

s2 + 22 .

Using these results, we find

 ℒ511 + 5e4t - 6 sin 2t61s2 = 11 a 1
s
b + 5 a 1

s - 4
b - 6 a 2

s2 + 4
b

 =
11
s

+
5

s - 4
-

12

s2 + 4
 .

Since ℒ516, ℒ5e4t6, and ℒ5sin 2t6 are all defined for s 7 4, so is the transform 
ℒ511 + 5e4t - 6 sin 2t6. ◆

Table 7.1 lists the Laplace transforms of some of the elementary functions. You should 
become familiar with these, since they are frequently encountered in solving linear differential 
equations with constant coefficients. The entries in the table can be derived from the defini-
tion of the Laplace transform. A more elaborate table of transforms is given on the inside back 
cover of this book.

TABLE 7.1  Brief Table of Laplace Transforms

f1t2 F1s2 = ℒ5f61s2

1 1
s
 ,  s 7 0

eat 1
s - a

 ,  s 7 a

tn , n = 1, 2, . . .
n!

sn+1 ,  s 7 0

sin bt
b

s2 + b2 ,  s 7 0

cos bt
s

s2 + b2 ,  s 7 0

eattn , n = 1, 2, . . .
n!

1s - a2n+1 ,  s 7 a

eat sin bt
b

1s - a22 + b2 ,  s 7 a

eat cos bt
s - a

1s - a22 + b2 ,  s 7 a
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Example 6 Use Table 7.1 to determine ℒ55t2e-3t - e12t cos 8t6 .

Solution From the table,

ℒ5t2e-3t6 =
2!

3s - 1-3242 + 1 =
2

1s + 323 for s 7 -3, 

and 

ℒ5e12t cos 8t6 =
s - 12

1s - 1222 + 82 for s 7 12 .

Therefore, by linearity,

ℒ55t2e-3t - e12t cos 8t6 =
10

1s + 323 -
s - 12

1s - 1222 + 64
 for s 7 12 . ◆

Existence of the Transform
There are functions for which the improper integral in (1) fails to converge for any value of s. 
For example, this is the case for the function f1t2 = 1>t, which grows too fast near zero. 
Likewise, no Laplace transform exists for the function f1t2 = et2, which increases too rap-
idly as t S ∞ . Fortunately, the set of functions for which the Laplace transform is defined 
includes many of the functions that arise in applications involving linear differential equa-
tions. We now discuss some properties that will (collectively) ensure the existence of the 
Laplace transform.

A function f1t2 on 3a, b4 is said to have a jump discontinuity at t0 ∈ 1a, b2 if f1t2 is 
discontinuous at t0, but the one-sided limits

lim
tS t-

0  
f1t2 and lim

tS t+
0
  f1t2

exist as finite numbers. We have encountered jump discontinuities in Example 4 (page 354) 
and in the input to the mixing tank in Section 7.1 (page 350). If the discontinuity occurs 
at an endpoint, t0 = a (or b), a jump discontinuity occurs if the one-sided limit of f1t2 as 
t S a+1t S b-2 exists as a finite number. We can now define piecewise continuity.

Piecewise Continuity

Definition 2. A function f1t2 is said to be piecewise continuous on a finite interval 
3a, b4 if f1t2 is continuous at every point in 3a, b4, except possibly for a finite number 
of points at which f1t2 has a jump discontinuity.

A function f1t2 is said to be piecewise continuous on 30, H 2 if f1t2 is piecewise 
continuous on 30, N4 for all N 7 0.

Example 7 Show that

f1t2 = •
t , 0 6 t 6 1 ,
2 , 1 6 t 6 2 ,
1t - 222 , 2 … t … 3 ,

whose graph is sketched in Figure 7.4 (on page 358), is piecewise continuous on 30, 34.
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358     Chapter 7  Laplace Transforms

Solution From the graph of f1t2 we see that f1t2 is continuous on the intervals (0, 1), (1, 2), and (2, 3]. 
Moreover, at the points of discontinuity, t = 0, 1, and 2, the function has jump discontinuities, 
since the one-sided limits exist as finite numbers. In particular, at t = 1, the left-hand limit is 1 
and the right-hand limit is 2. Therefore f1t2 is piecewise continuous on 30, 34. ◆

Observe that the function f1t2 of Example 4 on page 354 is piecewise continuous on 
30, ∞ 2 because it is piecewise continuous on every finite interval of the form 30, N4, with 
N 7 0. In contrast, the function f1t2 = 1>t is not piecewise continuous on any interval 
 containing the origin, since it has an “infinite jump” at the origin (see Figure 7.5).

A function that is piecewise continuous on a finite interval is necessarily integrable over 
that interval. However, piecewise continuity on 30, ∞ 2 is not enough to guarantee the exis-
tence (as a finite number) of the improper integral over 30, ∞ 2; we also need to consider the 

f (t)

0 1 2 3

1

2

t

Figure 7.4 Graph of f1t2 in Example 7
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0

10 
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t 

f ( t ) = 1/ t 

1 – t = +` 

1 – t = - ` 

lim 

lim 

t S 0+

t S 0-

Figure 7.5 Infinite jump at origin
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Section 7.2  Definition of the Laplace Transform     359

growth of the integrand for large t. Roughly speaking, we’ll show that the Laplace transform 
of a piecewise continuous function exists, provided the function does not grow “faster than an 
exponential.”

Exponential Order A

Definition 3. A function f1t2 is said to be of exponential order A if there exist positive 
constants T and M such that

(4) 0 f1t2 0 … Meat ,    for all t Ú T .

Conditions for Existence of the Transform

Theorem 2. If f1t2 is piecewise continuous on 30, ∞ 2 and of exponential order a, 
then ℒ5f61s2 exists for s 7 a.

For example, f1t2 = e5t sin 2t is of exponential order a = 5 since

0 e5t sin 2t 0 … e5t ,

and hence (4) holds with M = 1 and T any positive constant.
We use the phrase f1t2 is of exponential order to mean that for some value of a, the func-

tion f1t2 satisfies the conditions of Definition 3; that is, f1t2 grows no faster than a function of 
the form Meat. The function et2 is not of exponential order. To see this, observe that

lim
tS ∞

 
et2

eat = lim
tS ∞  

et1t-a2 = + ∞

for any a. Consequently, et2 grows faster than eat for every choice of a.
The functions usually encountered in solving linear differential equations with constant 

coefficients (e.g., polynomials, exponentials, sines, and cosines) are both piecewise continuous 
and of exponential order. As we now show, the Laplace transforms of such functions exist for 
large enough values of s.

Proof. We need to show that the integral

L
∞

0
e-stf1t2  dt

converges for s 7 a. We begin by breaking up this integral into two separate integrals:

(5) L
T

0
e-stf1t2  dt + L

∞

T
e-stf1t2  dt ,

where T is chosen so that inequality (4) holds. The first integral in (5) exists because f1t2 and 
hence e-stf1t2 are piecewise continuous on the interval 30, T4 for any fixed s. To see that the 
second integral in (5) converges, we use the comparison test for improper integrals.

Since f1t2 is of exponential order a, we have for t Ú T

0 f1t2 0 … Meat ,
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and hence

0 e-stf1t2 0 = e-st 0 f1t2 0 … Me-1s -a2t ,

for all t Ú T. Now for s 7 a.

L
∞

T
Me-1s -a2t dt = ML

∞

T
e-1s -a2t dt =

Me-1s -a2T

s - a 6 ∞  .

Since 0 e-stf1t2 0 … Me-1s -a2t for t Ú T  and the improper integral of the larger function con-
verges for s 7 a, then, by the comparison test, the integral

L
∞

T
e-stf1t2  dt

converges for s 7 a. Finally, because the two integrals in (5) exist, the Laplace transform 
ℒ5f61s2 exists for s 7 a. ◆

In Problems 1–12, use Definition 1 to determine the Laplace 
transform of the given function.

In Problems 21–28, determine whether f1t2 is continuous, 
piecewise continuous, or neither on 30, 104 and sketch the 
graph of f1t2.
21. f1t2 = e1 , 0 … t … 1 ,

1t - 222 , 1 6 t … 10 

22. f1t2 = e0 , 0 … t 6 2 ,
t , 2 … t … 10

23. f1t2 = •
1 , 0 … t 6 1 ,
t - 1 , 1 6 t 6 3 ,
t2 - 4 , 3 6 t … 10

24. f1t2 =
t2 - 3t + 2

t2 - 4

25. f1t2 =
t2 - t - 20

t2 + 7t + 10

26. f1t2 =
t

t2 - 1

27. f1t2 = •
1>t , 0 6 t 6 1 ,
1 , 1 … t … 2 ,
1 - t , 2 6 t … 10

28. f1t2 = •
sin t

t
 , t ≠ 0 ,

1 , t = 0

29. Which of the following functions are of exponential order?

  (a) t3 sin t (b) 100e49t (c) et3

  (d) t ln t (e) cosh1t22 (f ) 
1

t2 + 1
  (g) sin1t22 + t4e6t (h) 3 - et2 + cos 4t

  (i) exp5t2> 1t + 126 ( j) sin1et22 + esin t

30. For the transforms F1s2 in Table 7.1, what can be said 
about limsS ∞ F1s2?

7.2 EXERCISES

1. t 2. t2

3. e6t 4. te3t

5. cos 2t 6. cos bt, b a constant

7. e2t cos 3t 8. e-t sin 2t

9. f1t2 = e0 , 0 6 t 6 2 ,
t , 2 6 t

10. f1t2 = e1 - t , 0 6 t 6 1 ,
0 , 1 6 t

11. f1t2 = e sin t , 0 6 t 6 p ,
0 , p 6 t

12. f1t2 = e e2t , 0 6 t 6 3 ,
1 , 3 6 t

In Problems 13–20, use the Laplace transform table and the 
linearity of the Laplace transform to determine the following 
transforms.

13. ℒ56e-3t - t2 + 2t - 86

14. ℒ55 - e2t + 6t26

15. ℒ5t3 - tet + e4t cos t6

16. ℒ5t2 - 3t - 2e-t sin 3t6

17. ℒ5e3t sin 6t - t3 + et6

18. ℒ5t4 - t2 - t + sin22 t6

19. ℒ5t4e5t - et cos27t6

20. ℒ5e-2t cos23t - t2e-2t6
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31. Thanks to Euler’s formula (page 166) and the algebraic 
properties of complex numbers, several of the entries 
of Table 7.1 can be derived from a single formula; 
namely,

(6) ℒ5e1a + ib2t6 1s2 =
s - a + ib

1s - a22 + b2 ,  s 7 a.

  (a)  By computing the integral in the definition of the 
Laplace transform on page 353 with f1t2 = e1a+ib2t, 
show that

ℒ5e1a+ib2t6 1s2 =
1

s - 1a + ib2  ,  s 7 a.

 (b) Deduce (6) from part (a) by showing that
1

s - 1a + ib2 =
s - a + ib

1s - a22 + b2 .

 (c)  By equating the real and imaginary parts in formula 
(6), deduce the last two entries in Table 7.1.

32. Prove that for fixed s 7 0, we have

lim
NS ∞

e-sN1s sin bN + b cos bN2 = 0 .

33. Prove that if f is piecewise continuous on 3a, b4 and g 
is continuous on 3a, b4, then the product fg is piecewise 
continuous on 3a, b4.

In the previous section, we defined the Laplace transform of a function f1t2 as

ℒ5f61s2 J L
∞

0
 e-stf1t2dt .

Using this definition to get an explicit expression for ℒ5f6 requires the evaluation of the 
improper integral—frequently a tedious task! We have already seen how the linearity property 
of the transform can help relieve this burden. In this section we discuss some further properties 
of the Laplace transform that simplify its computation. These new properties will also enable 
us to use the Laplace transform to solve initial value problems.

7.3 Properties of the Laplace Transform

Translation in s

Theorem 3. If the Laplace transform ℒ5f61s2 = F1s2 exists for s 7 a, then

(1) ℒ5eatf1t261s2 = F1s - a2
for s 7 a + a .

Proof. We simply compute

 ℒ5eatf1t261s2 = L
∞

0
e-steatf1t2  dt

 = L
∞

0
e-1s - a2tf1t2  dt

 = F1s - a2 . ◆

Theorem 3 illustrates the effect on the Laplace transform of multiplication of a function 
f1t2 by eat .
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Example 1 Determine the Laplace transform of eat sin bt.

Solution In Example 3 in Section 7.2, page 354, we found that

ℒ5sin bt61s2 = F1s2 =
b

s2 + b2 .

Thus, by the translation property of F1s2, we have

ℒ5eat sin bt61s2 = F1s - a2 =
b

1s - a22 + b2 . ◆

Laplace Transform of the Derivative

Theorem 4. Let f1t2 be continuous on 30, ∞ 2 and f ′1t2 be piecewise continuous on 
30, ∞ 2, with both of exponential order a. Then, for s 7 a ,

(2) ℒ5f ′61s2 = sℒ5f61s2 − f102 .

Proof. Since ℒ5f ′6 exists, we can use integration by parts 3with u = e-st and dy =
f ′1t2dt4 to obtain

(3)  ℒ5f ′61s2 = L
∞

0
e-stf ′1t2  dt = lim

NS ∞ L
N

0
e-stf ′1t2  dt

  = lim
NS ∞
c e-stf1t2 2 N

0
+ s L

N

0
e-stf1t2  dt d

  = lim
NS ∞  

e-sNf1N2 - f102 + s lim
NS ∞ L

N

0
e-stf1t2  dt

  = lim
NS ∞  

e-sNf1N2 - f102 + sℒ5f61s2 .

To evaluate limNS ∞ e-sNf1N2, we observe that since f1t2 is of exponential order a, there exists 
a constant M such that for N large,

0 e-sNf1N2 0 … e-sNMeaN = Me-1s -a2N .

Hence, for s 7 a,

0 … lim
NS ∞
0 e-sNf1N2 0 … lim

NS ∞
Me-1s -a2N = 0 ,

so

lim
NS ∞

e-sNf1N2 = 0

for s 7 a. Equation (3) now reduces to

ℒ5f ′61s2 = sℒ5f61s2 - f102 . ◆

Using induction, we can extend the last theorem to higher-order derivatives of f1t2. For 
example,

 ℒ5f ″61s2 = sℒ5f ′61s2 - f ′102
 = s3sℒ5f61s2 - f1024 - f ′102 ,
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which simplifies to

ℒ5f ″61s2 = s2ℒ5f61s2 - sf102 - f ′102 .
In general, we obtain the following result.

Laplace Transform of Higher-Order Derivatives

Theorem 5. Let f1t2, f ′1t2, . . . , f 1n - 121t2 be continuous on 30, ∞ 2 and let f 1n21t2 
be piecewise continuous on 30, ∞ 2, with all these functions of exponential order a. 
Then, for s 7 a,

(4) ℒ5f 1n261s2 = snℒ5f61s2 − sn − 1f102 − sn − 2f ′102 − P − f 1n − 12102 .

The last two theorems shed light on the reason why the Laplace transform is such a useful 
tool in solving initial value problems. Roughly speaking, they tell us that by using the Laplace 
transform we can replace “differentiation with respect to t” with “multiplication by s,” thereby 
converting a differential equation into an algebraic one. This idea is explored in Section 7.5. 
For now, we show how Theorem 4 can be helpful in computing a Laplace transform.

Example 2 Using Theorem 4 and the fact that

ℒ5sin bt61s2 =
b

s2 + b2 ,

determine ℒ5cos bt6 .

Solution Let f1t2J sin bt. Then f102 = 0 and f ′1t2 = b cos bt. Substituting into equation (2), we have

 ℒ5f ′61s2 = sℒ5f61s2 - f102 ,
 ℒ5b cos bt61s2 = sℒ5sin bt61s2 - 0 ,

 bℒ5cos bt61s2 =
sb

s2 + b2 .

Dividing by b gives

ℒ5cos bt61s2 =
s

s2 + b2 . ◆

Example 3 Prove the following identity for continuous functions f1t2 (assuming the transforms exist):

(5) ℒe L
t

0
f1t2dt f 1s2 =

1
s

 ℒ5f1t261s2 .

Use it to verify the solution to Example 2.

Solution Define the function g1t2 by the integral

g1t2 J L
t

0
f1t2  dt .
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Observe that g102 = 0 and g′1t2 = f1t2. Thus, if we apply Theorem 4 to g1t2 3instead of 
f1t24, equation (2) on page 362 reads

ℒ5f1t261s2 = sℒe L
t

0
f1t2  dt f 1s2 - 0 ,

which is equivalent to equation (5).
Now since

sin bt = L
t

0
 b cos bt dt ,

equation (5) predicts

ℒ5sin bt61s2 =
1
s

 ℒ5b cos bt61s2 =
b
s

 ℒ5cos bt61s2 .

This identity is indeed valid for the transforms in Example 2. ◆

Another question arises concerning the Laplace transform. If F1s2  is the Laplace 
transform of f1t2, is F′1s2 also a Laplace transform of some function of t ? The answer is yes:

F′1s2 = ℒ5- t f1t261s2 .
In fact, the following more general assertion holds.

Derivatives of the Laplace Transform

Theorem 6. Let F1s2 = ℒ5f61s2 and assume f1t2 is piecewise continuous on 
30, ∞ 2 and of exponential order a. Then, for s 7 a,

(6) ℒ5tnf1t261s2 = 1−12n 
dnF
dsn  1s2 .

Proof. Consider the identity

dF
ds

 1s2 =
d
ds

 L
∞

0
e-stf1t2  dt .

Because of the assumptions on f1t2, we can apply a theorem from advanced calculus (some-
times called Leibniz’s rule) to interchange the order of integration and differentiation:

 
dF
ds

 1s2 = L
∞

0
 
d
ds
1e-st2f1t2  dt

 = - L
∞

0
e-stt f1t2  dt = -ℒ5t f1t261s2 .

Thus,

ℒ5t f1t261s2 = 1-12  
dF
ds

 1s2 .

The general result (6) now follows by induction on n. ◆

A consequence of the above theorem is that if f1t2 is piecewise continuous and of 
exponential order, then its transform F1s2 has derivatives of all orders.
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Example 4 Determine ℒ5t sin bt6.

Solution We already know that

ℒ5sin bt61s2 = F1s2 =
b

s2 + b2 .

Differentiating F1s2, we obtain

dF
ds

 1s2 =
-2bs

1s2 + b222 .

Hence, using formula (6), we have

ℒ5t sin bt61s2 = -   
dF
ds

 1s2 =
2bs

1s2 + b222 . ◆

For easy reference, Table 7.2 lists some of the basic properties of the Laplace transform 
derived so far.

TABLE 7.2  Properties of Laplace Transforms

ℒ5f + g6 = ℒ5f6 + ℒ5g6 .

ℒ5cf6 = cℒ5f6    for any constant c .

ℒ5eatf1t261s2 = ℒ5f61s - a2 .
ℒ5f ′61s2 = sℒ5f61s2 - f102 .
ℒ5f ″61s2 = s2ℒ5f61s2 - sf102 - f ′102 .
ℒ5 f 1n26 1s2 = s  

nℒ5f61s2 - s  

n - 1f102 - s  

n - 2f ′102 - g - f 1n - 12102 .

ℒ5tnf1t261s2 = 1-12n 
dn

dsn  1ℒ5f61s2 2  .

In Problems 1–20, determine the Laplace transform of the 
given function using Table 7.1 on page 356 and the properties 
of the transform given in Table 7.2. [Hint: In Problems 12–20, 
use an appropriate trigonometric identity.]

21. Given that ℒ5cos bt61s2 = s> 1s2 + b22, use the trans-
lation property to compute ℒ5eat cos bt6.

22. Starting with the transform ℒ5161s2 = 1>s, use for-
mula (6) for the derivatives of the Laplace transform 
to show that ℒ5t61s2 = 1>s2, ℒ5t261s2 = 2!>s3,  
and, by using induction, that ℒ5tn61s2 = n!>sn+1, 
n = 1, 2, . . . .

23. Use Theorem 4 on page 362 to show how entry 32 fol-
lows from entry 31 in the Laplace transform table on the 
inside back cover of the text.

24. Show that ℒ5eattn61s2 = n!> 1s - a2n+1 in two ways:

  (a) Use the translation property for F1s2.
  (b)  Use formula (6) for the derivatives of the Laplace 

transform.

7.3 EXERCISES

1. t2 + et sin 2t 2. 3t2 - e2t

3. e-t cos 3t + e6t - 1 4. 3t4 - 2t2 + 1

5. 2t2e-t - t + cos 4t 6. e-2t sin 2t + e3tt2

7. 1t - 124 8. 11 + e-t22

9. e-tt sin 2t 10. te2t cos 5t
11. cosh bt 12. sin 3t cos 3t

13. sin2 t 14. e7t sin2 t

19. cos nt sin mt , m ≠ n 20. t sin 2t sin 5t

17. sin 2t sin 5t 18. cos nt cos mt , m ≠ n

15. cos3 t 16. t sin2 t
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25. Use formula (6) to help determine

  (a) ℒ5t cos bt6 . (b) ℒ5t2cos bt6 .

26. Let f1t2 be piecewise continuous on 30, ∞ 2 and of 
exponential order.

  (a)  Show that there exist constants K and a such that

0 f1t2 0 … Keat    for all t Ú 0 .

  (b)  By using the definition of the transform and estimat-
ing the integral with the help of part (a), prove that

lim
sS ∞

ℒ5f61s2 = 0 .

27. Let f1t2 be piecewise continuous on 30, ∞ 2 and of 
exponential order a and assume limtS0+3f1t2 >t4 exists. 
Show that

ℒe f1t2
t
f  1s2 = L

∞

s
F1u2  du ,

where F1s2 = ℒ5f61s2. [Hint: First show that 
d
ds ℒ5f1t2 >t61s2 = -F1s2 and then use the result of 
Problem 26.]

28. Verify the identity in Problem 27 for the following func-
tions. (Use the table of Laplace transforms on the inside 
back cover.)

  (a) f1t2 = t5  (b) f1t2 = t3>2 
29. The transfer function of a linear system is defined as 

the ratio of the Laplace transform of the output function 
y1t2 to the Laplace transform of the input function g1t2, 
when all initial conditions are zero. If a linear system is 
governed by the differential equation

y″1t2 + 6y′1t2 + 10y1t2 = g1t2 ,  t 7 0 ,

use the linearity property of the Laplace transform and 
Theorem 5 on page 363 on the Laplace transform of 
higher-order derivatives to determine the transfer func-
tion H1s2 = Y1s2 >G1s2 for this system.

30. Find the transfer function, as defined in Problem 29, for 
the linear system governed by

y″1t2 + 5y′1t2 + 6y1t2 = g1t2 ,  t 7 0 .

31. Translation in t. Show that for c 7 0, the translated 
function

g1t2 = e0 , 0 6 t 6 c ,
f1t - c2 , c 6 t

has Laplace transform

ℒ5g61s2 = e-csℒ5f61s2 .
In Problems 32–35, let g1t2 be the given function f1t2 trans-
lated to the right by c units. Sketch f1t2 and g1t2 and find 
ℒ5g1t261s2. (See Problem 31.)

32. f1t2 K 1 , c = 2

33. f1t2 = t , c = 1

34. f1t2 = sin t , c = p
35. f1t2 = sin t , c = p>2

36. Use equation (5) to provide another derivation of 
the formula ℒ5tn61s2 = n!>sn+1. [Hint: Start with 
ℒ5161s2 = 1>s and use induction.]

37. Initial Value Theorem. Apply the relation

(7) ℒ5f ′61s2 = L
∞

0
e-stf ′1t2  dt = sℒ5f61s2 - f102

to argue that for any function f1t2 whose derivative 
is piecewise continuous and of exponential order on 
30, ∞ 2,

f102 = lim
sS ∞  

sℒ5f61s2 .
38. Verify the initial value theorem (Problem 37) for the fol-

lowing functions. (Use the table of Laplace transforms 
on the inside back cover.)

  (a) 1  (b) et  (c) e-t  (d) cos t
 (e) sin t  (f ) t2  (g) t cos t

In Section 7.2 we defined the Laplace transform as an integral operator that maps a function f1t2 
into a function F1s2. In this section we consider the problem of finding the function f1t2 when 
we are given the transform F1s2. That is, we seek an inverse mapping for the Laplace transform.

To see the usefulness of such an inverse, let’s consider the simple initial value problem

(1) y″ - y = - t ;  y102 = 0 ,  y′102 = 1 .

If we take the transform of both sides of equation (1) and use the linearity property of the 
transform, we find

ℒ5y″61s2 - Y1s2 = -  
1

s2 ,

7.4 Inverse Laplace Transform
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where Y1s2J ℒ5y61s2. We know the initial values of the solution y1t2, so we can use  
Theorem 5, page 363, on the Laplace transform of higher-order derivatives to express

ℒ5y″61s2 = s2Y1s2 - sy102 - y′102 = s2Y1s2 - 1 .

Substituting for ℒ5y″61s2 yields

s2Y1s2 - 1 - Y1s2 = -  
1

s2 .

Solving this algebraic equation for Y1s2 gives

Y1s2 =
1 - a 1

s2 b
s2 - 1

=
s2 - 1

s21s2 - 12 =
1

s2 .

We now recall that ℒ5t61s2 = 1>s2, and since Y1s2 = ℒ5y61s2, we have

ℒ5y61s2 = 1>s2 = ℒ5t61s2 .
It therefore seems reasonable to conclude that y1t2 = t is the solution to the initial value prob-
lem (1). A quick check confirms this!

Notice that in the above procedure, a crucial step is to determine y1t2 from its Laplace 
transform Y1s2 = 1>s2. As we noted, y1t2 = t is such a function, but it is not the only func-
tion whose Laplace function is 1>s2. For example, the transform of

g1t2 J e t , t ≠ 6 ,
0 , t = 6

is also 1>s2. This is because the transform is an integral, and integrals are not affected by 
changing a function’s values at isolated points. The significant difference between y1t2 and 
g1t2 as far as we are concerned is that y1t2 is continuous on 30, ∞ 2, whereas g1t2 is not. 
Naturally, we prefer to work with continuous functions, since solutions to differential equa-
tions are continuous. Fortunately, it can be shown that if two different functions have the same 
Laplace transform, at most one of them can be continuous.† With this in mind we give the  
following definition.

Inverse Laplace Transform

Definition 4. Given a function F1s2, if there is a function f1t2 that is continuous on 
30, ∞ 2 and satisfies

(2) ℒ5f6 = F ,

then we say that f1t2 is the inverse Laplace transform of F1s2 and employ the notation 
f = ℒ-15F6.

In case every function f1t2 satisfying (2) is discontinuous (and hence not a solution of a 
differential equation), one could choose any one of them to be the inverse transform; the dis-
tinction among them has no physical significance. [Indeed, two piecewise continuous functions 
satisfying (2) can only differ at their points of discontinuity.]

†For this result and further properties of the Laplace transform and its inverse, we refer you to Operational Mathematics, 
3rd ed., by R. V. Churchill (McGraw-Hill, New York, 1971).
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Naturally the Laplace transform tables will be a great help in determining the inverse 
Laplace transform of a given function F1s2.

Linearity of the Inverse Transform

Theorem 7. Assume that ℒ-15F6, ℒ-15F16, and ℒ-15F26 exist and are continuous 
on 30, ∞ 2 and let c be any constant. Then

(3)  ℒ-15F1 + F26 = ℒ-15F16 + ℒ-15F26 ,

(4)  ℒ-15cF6 = cℒ-15F6 .

Example 1 Determine ℒ-15F6, where

Solution To compute ℒ-15F6, we refer to the Laplace transform table on page 356.

(a) ℒ-1e 2

s3 f 1t2 = ℒ-1e 2!

s3 f 1t2 = t2 

(b) ℒ-1e 3

s2 + 9
f 1t2 = ℒ-1e 3

s2 + 32 f 1t2 = sin 3t 

(c) ℒ-1e s - 1

s2 - 2s + 5
f 1t2 = ℒ-1e s - 1

1s - 122 + 22 f 1t2 = et cos 2t 

In part (c) we used the technique of completing the square to rewrite the denominator in a form 
that we could find in the table. ◆

In practice, we do not always encounter a transform F1s2 that exactly corresponds to an 
entry in the second column of the Laplace transform table. To handle more complicated func-
tions F1s2, we use properties of ℒ-1, just as we used properties of ℒ. One such tool is the 
linearity of the inverse Laplace transform, a property that is inherited from the linearity of the 
operator ℒ.

(a) F1s2 =
2

s3 . (b) F1s2 =
3

s2 + 9
 . (c) F1s2 =

s - 1

s2 - 2s + 5
 .

The proof of Theorem 7 is outlined in Problem 37. We illustrate the usefulness of this 
theorem in the next example.

Example 2 Determine ℒ-1e 5
s - 6

-
6s

s2 + 9
+

3

2s2 + 8s + 10
f .

Solution We begin by using the linearity property. Thus,

ℒ-1e 5
s - 6

-
6s

s2 + 9
+

3

21s2 + 4s + 52 f

   = 5ℒ-1e 1
s - 6

f - 6ℒ-1e s

s2 + 9
f +

3
2

 ℒ-1e 1

s2 + 4s + 5
f  .
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Referring to the Laplace transform tables, we see that

ℒ-1e 1
s - 6

f 1t2 = e6t   and   ℒ-1e s

s2 + 32 f 1t2 = cos 3t .

This gives us the first two terms. To determine ℒ-151> 1s2 + 4s + 526, we complete the 
square of the denominator to obtain s2 + 4s + 5 = 1s + 222 + 1. We now recognize from the 
tables that

ℒ-1e 1

1s + 222 + 12 f 1t2 = e-2t sin t .

Hence,

ℒ-1e 5
s - 6

-
6s

s2 + 9
+

3

2s2 + 8s + 10
f 1t2 = 5e6t - 6 cos 3t +

3e-2t

2
  sin t . ◆

Example 3 Determine ℒ-1e 5

1s + 224 f .

Solution The 1s + 224 in the denominator suggests that we work with the formula

ℒ-1e n!

1s - a2n+1 f 1t2 = eattn .

Here we have a = -2 and n = 3, so ℒ-156> 1s + 22461t2 = e-2tt3. Using the linearity 
property, we find

ℒ-1e 5

1s + 224 f 1t2 =
5
6

 ℒ-1e 3!

1s + 224 f 1t2 =
5
6

 e-2tt3 . ◆

Example 4 Determine ℒ-1e 3s + 2

s2 + 2s + 10
f  .

Solution By completing the square, the quadratic in the denominator can be written as

s2 + 2s + 10 = s2 + 2s + 1 + 9 = 1s + 122 + 32 .

The form of F1s2 now suggests that we use one or both of the formulas

ℒ-1e s - a

1s - a22 + b2 f 1t2 = eat cos bt ,

ℒ-1e b

1s - a22 + b2 f 1t2 = eat sin bt .

In this case, a = -1 and b = 3. The next step is to express

(5) 
3s + 2

s2 + 2s + 10
= A 

s + 1

1s + 122 + 32 + B 
3

1s + 122 + 32 ,

where A, B are constants to be determined. Multiplying both sides of (5) by s2 + 2s + 10 leaves

3s + 2 = A1s + 12 + 3B = As + 1A + 3B2 ,
which is an identity between two polynomials in s. Equating the coefficients of like terms gives

A = 3 ,  A + 3B = 2 ,
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so A = 3 and B = -1>3. Finally, from (5) and the linearity property, we find

 ℒ-1e 3s + 2

s2 + 2s + 10
f 1t2 = 3ℒ-1e s + 1

1s + 122 + 32 f 1t2 -
1
3

 ℒ-1e 3

1s + 122 + 32 f 1t2

 = 3e-t cos 3t -
1
3

 e-t sin 3t . ◆

Given the choice of finding the inverse Laplace transform of

F11s2 =
7s2 + 10s - 1

s3 + 3s2 - s - 3

or of

F21s2 =
2

s - 1
+

1
s + 1

+
4

s + 3
 ,

which would you select? No doubt F21s2 is the easier one. Actually, the two functions F11s2 
and F21s2 are identical. This can be checked by combining the simple fractions that form 
F21s2. Thus, if we are faced with the problem of computing ℒ-1 of a rational function such as 
F11s2, we will first express it, as we did F21s2, as a sum of simple rational functions. This is 
accomplished by the method of partial fractions.

We briefly review this method. Recall from calculus that a rational function of the form 
P1s2 >Q1s2, where P1s2 and Q1s2 are polynomials with the degree of P less than the degree 
of Q, has a partial fraction expansion whose form is based on the linear and quadratic factors 
of Q1s2. (We assume the coefficients of the polynomials to be real numbers.) There are three 
cases to consider:

1. Nonrepeated linear factors.
2. Repeated linear factors.
3. Quadratic factors.

1. Nonrepeated Linear Factors
If Q1s2 can be factored into a product of distinct linear factors,

Q1s2 = 1s - r121s - r22g1s - rn2 ,
where the ri’s are all distinct real numbers, then the partial fraction expansion has the form

P1s2
Q1s2 =

A1

s − r1
+

A2

s − r2
+ P +

An

s − rn
 ,

where the Ai’s are real numbers. There are various ways of determining the constants 
A1, . . . , An. In the next example, we demonstrate two such methods.

Example 5 Determine ℒ-15F6, where

F1s2 =
7s - 1

1s + 121s + 221s - 32  .

Solution We begin by finding the partial fraction expansion for F1s2. The denominator consists of three 
distinct linear factors, so the expansion has the form

(6) 
7s - 1

1s + 121s + 221s - 32 =
A

s + 1
+

B
s + 2

+
C

s - 3
 ,

where A, B, and C are real numbers to be determined.
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One procedure that works for all partial fraction expansions is first to multiply the expan-
sion equation by the denominator of the given rational function. This leaves us with two 
identical polynomials. Equating the coefficients of sk leads to a system of linear equations 
that we can solve to determine the unknown constants. In this example, we multiply (6) by 
1s + 121s + 221s - 32 and find

(7) 7s - 1 = A1s + 221s - 32 + B1s + 121s - 32 + C1s + 121s + 22 ,†

which reduces to

7s - 1 = 1A + B + C2s2 + 1-A - 2B + 3C2s + 1-6A - 3B + 2C2 .
Equating the coefficients of s2, s, and 1 gives the system of linear equations

 A + B + C = 0 ,

 -A - 2B + 3C = 7 ,

 -6A - 3B + 2C = -1 .

Solving this system yields A = 2, B = -3, and C = 1. Hence,

(8) 
7s - 1

1s + 121s + 221s - 32 =
2

s + 1
-

3
s + 2

+
1

s - 3
 .

An alternative method for finding the constants A, B, and C from (7) is to choose three 
values for s and substitute them into (7) to obtain three linear equations in the three unknowns. 
If we are careful in our choice of the values for s, the system is easy to solve. In this case, equa-
tion (7) obviously simplifies if s = -1, -2, or 3. Putting s = -1 gives

 -7 - 1 = A1121-42 + B102 + C102 ,
 -8 = -4A .

Hence A = 2. Next, setting s = -2 gives

 -14 - 1 = A102 + B1-121-52 + C102 ,
 -15 = 5B ,

and so B = -3. Finally, letting s = 3, we similarly find that C = 1. In the case of  
nonrepeated linear factors, the alternative method is easier to use.

Now that we have obtained the partial fraction expansion (8), we use linearity to compute

 ℒ-1e 7s - 1
1s + 121s + 221s - 32 f 1t2 = ℒ-1e 2

s + 1
-

3
s + 2

+
1

s - 3
f 1t2

 = 2ℒ-1e 1
s + 1

f 1t2 - 3ℒ-1e 1
s + 2

f 1t2

 = + ℒ-1e 1
s - 3

f 1t2

 = 2e-t - 3e-2t + e3t . ◆

†Rigorously speaking, equation (7) was derived for s different from -1, -2, and 3, but by continuity it holds for these 
values as well.
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2. Repeated Linear Factors
If s - r is a factor of Q1s2 and 1s - r2m is the highest power of s - r that divides Q1s2, 
then the portion of the partial fraction expansion of P1s2 >Q1s2 that corresponds to the term 
1s - r2m is

A1

s − r
+

A2

1s − r22 + P +
Am

1s − r2m ,

where the Ai’s are real numbers.

Example 6 Determine ℒ-1e s2 + 9s + 2

1s - 1221s + 32 f  .

Solution Since s - 1 is a repeated linear factor with multiplicity two and s + 3 is a nonrepeated linear 
factor, the partial fraction expansion has the form

s2 + 9s + 2

1s - 1221s + 32 =
A

s - 1
+

B

1s - 122 +
C

s + 3
 .

We begin by multiplying both sides by 1s - 1221s + 32 to obtain

(9) s2 + 9s + 2 = A1s - 121s + 32 + B1s + 32 + C1s - 122 .

Now observe that when we set s = 1 (or s = -3), two terms on the right-hand side of (9) 
vanish, leaving a linear equation that we can solve for B (or C). Setting s = 1 in (9) gives

 1 + 9 + 2 = A102 + 4B + C102 ,
 12 = 4B ,

and, hence, B = 3. Similarly, setting s = -3 in (9) gives

 9 - 27 + 2 = A102 + B102 + 16C

 -16 = 16C .

Thus, C = -1. Finally, to find A, we pick a different value for s, say s = 0. Then, since B = 3 
and C = -1, plugging s = 0 into (9) yields

2 = -3A + 3B + C = -3A + 9 - 1

so that A = 2. Hence,

(10) 
s2 + 9s + 2

1s - 1221s + 32 =
2

s - 1
+

3

1s - 122 -
1

s + 3
 .

We could also have determined the constants A, B, and C by first rewriting equation (9) in 
the form

s2 + 9s + 2 = 1A + C2s2 + 12A + B - 2C2s + 1-3A + 3B + C2 .
Then, equating the corresponding coefficients of s2, s, and 1 and solving the resulting system, 
we again find A = 2, B = 3, and C = -1 .
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Now that we have derived the partial fraction expansion (10) for the given rational func-
tion, we can determine its inverse Laplace transform:

 ℒ-1e s2 + 9s + 2

1s - 1221s + 32 f 1t2 = ℒ-1e 2
s - 1

+
3

1s - 122 -
1

s + 3
f 1t2

 = 2ℒ-1e 1
s - 1

f 1t2 + 3ℒ-1e 1

1s - 122 f 1t2

 = - ℒ-1e 1
s + 3

f 1t2
 = 2et + 3tet - e-3t . ◆

3. Quadratic Factors
If 1s - a22 + b2 is a quadratic factor of Q1s2 that cannot be reduced to linear factors with real 
coefficients and m is the highest power of 1s - a22 + b2 that divides Q1s2, then the portion of 
the partial fraction expansion that corresponds to 1s - a22 + b2 is

C1s + D1

1s - a22 + b2 +
C2s + D2

31s - a22 + b242 + g +
Cms + Dm

31s - a22 + b24m .

As we saw in Example 4, page 369, it is more convenient to express Cis + Di in the form 
Ai1s - a2 + bBi when we look up the Laplace transforms. So let’s agree to write this 
 portion of the partial fraction expansion in the equivalent form

A11s − A2 + BB1

1s − A22 + B2 +
A21s − A2 + BB2

31s − A22 + B242 + P +
Am1s − A2 + BBm

31s − A22 + B24m .

Example 7 Determine ℒ-1e 2s2 + 10s

1s2 - 2s + 521s + 12 f  .

Solution We first observe that the quadratic factor s2 - 2s + 5 is irreducible (check the sign of the 
discriminant in the quadratic formula). Next we write the quadratic in the form 1s - a22 + b2 
by completing the square:

s2 - 2s + 5 = 1s - 122 + 22 .

Since s2 - 2s + 5 and s + 1 are nonrepeated factors, the partial fraction expansion has the form

2s2 + 10s

1s2 - 2s + 521s + 12 =
A1s - 12 + 2B

1s - 122 + 22 +
C

s + 1
 .

When we multiply both sides by the common denominator, we obtain

(11) 2s2 + 10s = 3A1s - 12 + 2B41s + 12 + C1s2 - 2s + 52 .
In equation (11), let’s put s = -1, 1, and 0. With s = -1, we find

 2 - 10 = 3A1-22 + 2B4102 + C182 ,
 -8 = 8C ,
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and, hence, C = -1. With s = 1 in (11), we obtain

2 + 10 = 3A102 + 2B4122 + C142 ,
and since C = -1, the last equation becomes 12 = 4B - 4. Thus B = 4. Finally, setting 
s = 0 in (11) and using C = -1 and B = 4 gives

 0 = 3A1-12 + 2B4112 + C152 ,
 0 = -A + 8 - 5 ,

 A = 3 .

Hence, A = 3, B = 4, and C = -1 so that

2s2 + 10s

1s2 - 2s + 521s + 12 =
31s - 12 + 2142
1s - 122 + 22  -  

1
s + 1

 .

With this partial fraction expansion in hand, we can immediately determine the inverse 
Laplace transform:

 ℒ-1e 2s2 + 10s

1s2 - 2s + 521s + 12 f 1t2 = ℒ-1e 31s - 12 + 2142
1s - 122 + 22  -  

1
s + 1

f 1t2

 = 3ℒ-1e s - 1

1s - 122 + 22 f 1t2

 = + 4ℒ-1e 2

1s - 122 + 22 f 1t2 - ℒ-1e 1
s + 1

f 1t2

 = 3et cos 2t + 4et sin 2t - e-t . ◆

In Section 7.8, we discuss a different method (involving convolutions) for computing 
inverse transforms that does not require partial fraction decompositions. Moreover, the convo-
lution method is convenient in the case of a rational function with a repeated quadratic factor in 
the denominator. Other helpful tools are described in Problems 33–36 and 38–43.

In Problems 1–10, determine the inverse Laplace transform  
of the given function.

In Problems 11–20, determine the partial fraction expansion 
for the given rational function.

7.4 EXERCISES

1. 
6

1s - 124 2. 
2

s2 + 4

3. 
s + 1

s2 + 2s + 10
4. 

4

s2 + 9

5. 
1

s2 + 4s + 8
6. 

3

12s + 523

7. 
2s + 16

s2 + 4s + 13
8. 

1

s5

9. 
3s - 15

2s2 - 4s + 10
10. 

s - 1

2s2 + s + 6

11. 
s2 - 26s - 47

1s - 121s + 221s + 52
12. 

-s - 7
1s + 121s - 22

13. 
-2s2 - 3s - 2

s1s + 122 14. 
-8s2 - 5s + 9

1s + 121s2 - 3s + 22

15. 
8s - 2s2 - 14

1s + 121s2 - 2s + 52
16. 

-5s - 36

1s + 221s2 + 92

17. 
3s + 5

s1s2 + s - 62 18. 
3s2 + 5s + 3

s4 + s3
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In Problems 21–30, determine ℒ-15F6.

21. F1s2 =
6s2 - 13s + 2

s1s - 121s - 62
22. F1s2 =

s + 11
1s - 121s + 32

23. F1s2 =
5s2 + 34s + 53

1s + 3221s + 12

24. F1s2 =
7s2 - 41s + 84

1s - 121s2 - 4s + 132

25. F1s2 =
7s2 + 23s + 30

1s - 221s2 + 2s + 52

26. F1s2 =
7s3 - 2s2 - 3s + 6

s31s - 22
27. s2F1s2 - 4F1s2 =

5
s + 1

28. s2F1s2 + sF1s2 - 6F1s2 =
s2 + 4

s2 + s

29. sF1s2 + 2F1s2 =
10s2 + 12s + 14

s2 - 2s + 2

30. sF1s2 - F1s2 =
2s + 5

s2 + 2s + 1

31. Determine the Laplace transform of each of the follow-
ing functions:

  (a) f11t2 = e0 , t = 2 ,
t , t ≠ 2 .

  (b) f21t2 = •
5 , t = 1 ,
2 , t = 6 ,
t , t ≠ 1, 6 .

  (c) f31t2 = t .

Which of the preceding functions is the inverse Laplace 
transform of 1>s2?

32. Determine the Laplace transform of each of the follow-
ing functions:

  (a) f11t2 = e t , t = 1, 2, 3, . . . ,
et , t ≠ 1, 2, 3, . . . .

  (b) f21t2 = •
et , t ≠ 5, 8 ,
6 , t = 5 ,
0 , t = 8 .

  (c) f31t2 = e t .

Which of the preceding functions is the inverse Laplace 
transform of 1> 1s - 12?

Theorem 6 in Section 7.3 on page 364 can be expressed in 
terms of the inverse Laplace transform as

ℒ-1e dnF
dsn f 1t2 = 1- t2nf1t2 ,

where f = ℒ-15F6. Use this equation in Problems 33–36 to 
compute ℒ-15F6.

19. 
1

1s - 321s2 + 2s + 22
20. 

s

1s - 121s2 - 12

†Historical Footnote: This formula played an important role in the “operational solution” to ordinary differential equations developed by Oliver 
Heaviside in the 1890s.

33. F1s2 = ln a s + 2
s - 5

b  34. F1s2 = ln a s - 4
s - 3

b  

35. F1s2 = ln a s2 + 9

s2 + 1
b  36. F1s2 = arctan11>s2 

37. Prove Theorem 7, page 368, on the linearity of the 
inverse transform. [Hint: Show that the right-hand side of 
equation (3) is a continuous function on 30, ∞ 2 whose 
Laplace transform is F11s2 + F21s2.4

38. Residue Computation. Let P1s2 >Q1s2 be a rational 
function with deg P 6  deg Q and suppose s - r is a non-
repeated linear factor of Q1s2. Prove that the portion of 
the partial fraction expansion of P1s2 >Q1s2 correspond-
ing to s - r is

A
s − r

 ,

where A (called the residue) is given by the formula

A = lim
sSr

1s − r2P1s2
Q1s2 =  

P1r2
Q′1r2  .

39. Use the residue computation formula derived in  
Problem 38 to determine quickly the partial fraction 
expansion for

F1s2 =
2s + 1

s1s - 121s + 22  .

40. Heaviside’s Expansion Formula.† Let P1s2 and 
Q1s2 be polynomials with the degree of P1s2 less than 
the degree of Q1s2. Let

Q1s2 = 1s - r121s - r22g1s - rn2 ,
where the ri’s are distinct real numbers. Show that

ℒ-1e P
Q
f 1t2 = an

i= 1

P1ri2
Q′1ri2  eri t .
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41. Use Heaviside’s expansion formula derived in Prob-
lem 40 to determine the inverse Laplace transform of

F1s2 =
3s2 - 16s + 5

1s + 121s - 321s - 22  .

42. Complex Residues. Let P1s2 >Q1s2 be a rational 
function with deg P 6 deg Q and suppose 1s - a22 + b2 
is a nonrepeated quadratic factor of Q. (That is, a { ib 
are complex conjugate zeros of Q.) Prove that the  
portion of the partial fraction expansion of P1s2 >Q1s2 
corresponding to 1s - a22 + b2 is

A1s - a2 + bB

1s - a22 + b2  ,

where the complex residue bB + ibA is given by the 
formula

bB + ibA = lim
sSa+ ib

31s - a22 + b24P1s2
Q1s2  .

(Thus we can determine B and A by taking the real  
and imaginary parts of the limit and dividing them  
by b.2

43. Use the residue formulas derived in Problems 38 and 42 
to determine the partial fraction expansion for

F1s2 =
6s2 + 28

1s2 - 2s + 521s + 22  .

Our goal is to show how Laplace transforms can be used to solve initial value problems for 
linear differential equations. Recall that we have already studied ways of solving such initial 
value problems in Chapter 4. These previous methods required that we first find a general 
solution of the differential equation and then use the initial conditions to determine the desired 
solution. As we will see, the method of Laplace transforms leads to the solution of the initial 
value problem without first finding a general solution.

Other advantages to the transform method are worth noting. For example, the technique can 
easily handle equations involving forcing functions having jump discontinuities, as illustrated 
in Section 7.1. Further, the method can be used for certain linear differential equations with 
variable coefficients, a special class of integral equations, systems of differential equations, and 
partial differential equations.

7.5 Solving Initial Value Problems

Method of Laplace Transforms

To solve an initial value problem:

(a) Take the Laplace transform of both sides of the equation.
(b) Use the properties of the Laplace transform and the initial conditions to obtain an 

equation for the Laplace transform of the solution and then solve this equation for 
the transform.

(c) Determine the inverse Laplace transform of the solution by looking it up in a table or 
by using a suitable method (such as partial fractions) in combination with the table.

In step (a) we are tacitly assuming the solution is piecewise continuous on 30, ∞ 2 and of  
exponential order. Once we have obtained the inverse Laplace transform in step (c), we can 
verify that these tacit assumptions are satisfied.

Example 1 Solve the initial value problem

(1) y″ - 2y′ + 5y = -8e-t ;  y102 = 2 ,  y′102 = 12 .
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Solution The differential equation in (1) is an identity between two functions of t. Hence equality holds 
for the Laplace transforms of these functions:

ℒ5y″ - 2y′ + 5y6 = ℒ5-8e-t6 .

Using the linearity property of ℒ and the previously computed transform of the exponential 
function, we can write

(2) ℒ5y″61s2 - 2ℒ5y′61s2 + 5ℒ5y61s2 =
-8

s + 1
 .

Now let Y1s2 J ℒ5y61s2. From the formulas for the Laplace transform of higher-order 
derivatives (see Section 7.3) and the initial conditions in (1), we find

 ℒ5y′61s2 = sY1s2 - y102 = sY1s2 - 2 ,

 ℒ5y″61s2 = s2Y1s2 - sy102 - y′102 = s2Y1s2 - 2s - 12 .

Substituting these expressions into (2) and solving for Y1s2 yields

3s2Y1s2 - 2s - 124 - 23sY1s2 - 24 + 5Y1s2 =
-8

s + 1

 1s2 - 2s + 52Y1s2 = 2s + 8 -
8

s + 1

 1s2 - 2s + 52Y1s2 =
2s2 + 10s

s + 1

 Y1s2 =
2s2 + 10s

1s2 - 2s + 521s + 12  .

Our remaining task is to compute the inverse transform of the rational function Y1s2. This 
was done in Example 7 of Section 7.4, page 373, where, using a partial fraction expansion, we 
found

(3) y1t2 = 3et cos 2t + 4et sin 2t - e-t ,

which is the solution to the initial value problem (1). ◆

As a quick check on the accuracy of our computations, the reader is advised to verify that 
the computed solution satisfies the given initial conditions.

The reader is probably questioning the wisdom of using the Laplace transform method to 
solve an initial value problem that can be easily handled by the methods discussed in Chapter 4.  
The objective of the first few examples in this section is simply to make the reader familiar  
with the Laplace transform procedure. We will see in Example 4 and in later sections that the 
method is applicable to problems that cannot be readily handled by the techniques discussed in 
the previous chapters.

Example 2 Solve the initial value problem

(4) y″ + 4y′ - 5y = tet ;  y102 = 1 ,  y′102 = 0 .

Solution Let Y1s2 J ℒ5y61s2. Taking the Laplace transform of both sides of the differential equation 
in (4) gives

(5) ℒ5y″61s2 + 4ℒ5y′61s2 - 5Y1s2 =
1

1s - 122 .
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Using the initial conditions, we can express ℒ5y′61s2 and ℒ5y″61s2 in terms of Y1s2. That is,

 ℒ5y′61s2 = sY1s2 - y102 = sY1s2 - 1 ,

 ℒ5y″61s2 = s2Y1s2 - sy102 - y′102 = s2Y1s2 - s .

Substituting back into (5) and solving for Y1s2 gives

 3s2Y1s2 - s4 + 43sY1s2 - 14 - 5Y1s2 =
1

1s - 122

 1s2 + 4s - 52Y1s2 = s + 4 +
1

1s - 122

 1s + 521s - 12Y1s2 =
s3 + 2s2 - 7s + 5

1s - 122

 Y1s2 =
s3 + 2s2 - 7s + 5

1s + 521s - 123  .

The partial fraction expansion for Y1s2 has the form

(6) 
s3 + 2s2 - 7s + 5

1s + 521s - 123 =
A

s + 5
+

B
s - 1

+
C

1s - 122 +
D

1s - 123 .

Solving for the numerators, we ultimately obtain A = 35>216, B = 181>216, C = -1>36, 
and D = 1>6. Substituting these values into (6) gives

Y1s2 =
35
216

 a 1
s + 5

b +
181
216

 a 1
s - 1

b -
1
36

 a 1

1s - 122 b +
1
12

 a 2

1s - 123 b  ,

where we have written D = 1>6 = (1>12)2 to facilitate the final step of taking the inverse 
transform. From the tables, we now obtain

(7) y1t2 =
35
216

 e-5t +
181
216

 et -
1
36

 tet +
1
12

 t2et

as the solution to the initial value problem (4). ◆

Example 3 Solve the initial value problem

(8) w″1t2 - 2w′1t2 + 5w1t2 = -8ep- t ; w1p2 = 2 , w′1p2 = 12 .

Solution To use the method of Laplace transforms, we first move the initial conditions to t = 0. This 
can be done by setting y1t2 J w1t + p2. Then

y′1t2 = w′1t + p2 ,  y″1t2 = w″1t + p2 .
Replacing t by t + p in the differential equation in (8), we have

(9) w″1t + p2 - 2w′1t + p2 + 5w1t + p2 = -8ep-1t+p2 = -8e-t .

Substituting y1t2 = w1t + p2 in (9), the initial value problem in (8) becomes

y″1t2 - 2y′1t2 + 5y1t2 = -8e-t ;  y102 = 2 ,  y′102 = 12 .

Because the initial conditions are now given at the origin, the Laplace transform method is 
applicable. In fact, we carried out the procedure in Example 1, page 376, where we found

(10) y1t2 = 3et cos 2t + 4et sin 2t - e-t .
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Since w1t + p2 = y1t2, then w1t2 = y1t - p2. Hence, replacing t by t - p in (10) gives

 w1t2 = y1t - p2 = 3et-pcos 321t - p24 + 4et-psin 321t - p24 - e-1t-p2

 = 3et-pcos 2t + 4et-psin 2t - ep- t . ◆

Thus far we have applied the Laplace transform method only to linear equations with 
constant coefficients. Yet several important equations in mathematical physics involve linear 
equations whose coefficients are polynomials in t. To solve such equations using Laplace trans-
forms, we apply Theorem 6, page 364, where we proved that

(11) ℒ5tnf1t261s2 = 1-12n 
dnℒ5f6

dsn 1s2 .

If we let n = 1 and f1t2 = y′1t2, we find

 ℒ5ty′1t261s2 = -  
d
ds

 ℒ5y′61s2

 = -  
d
ds

 3sY1s2 - y1024 = -sY′1s2 - Y1s2 .

Similarly, with n = 1 and f1t2 = y″1t2, we obtain from (11)

 ℒ5ty″1t261s2 = -  
d
ds

 ℒ5y″61s2

 = -  
d
ds

 3s2Y1s2 - sy102 - y′1024
 = -s2Y′1s2 - 2sY1s2 + y102 .

Thus, we see that for a linear differential equation in y1t2 whose coefficients are polynomials 
in t, the method of Laplace transforms will convert the given equation into a linear differential 
equation in Y1s2 whose coefficients are polynomials in s. Moreover, if the coefficients of the 
given equation are polynomials of degree 1 in t, then (regardless of the order of the given equa-
tion) the differential equation for Y1s2 is just a linear first-order equation. Since we know how 
to solve this first-order equation, the only serious obstacle we may encounter is obtaining the 
inverse Laplace transform of Y1s2. [This problem may be insurmountable, since the solution 
y1t2 may not have a Laplace transform.]

In illustrating the technique, we make use of the following fact. If f1t2  is piecewise 
continuous on 30, ∞ 2 and of exponential order, then

(12) lim
sS ∞

ℒ5f61s2 = 0 .

(You may have already guessed this from the entries in Table 7.1, page 356.) An outline of the 
proof of (12) is given in Exercises 7.3, page 366, Problem 26.

Example 4 Solve the initial value problem

(13) y″ + 2ty′ - 4y = 1 ,  y102 = y′102 = 0 .

Solution Let Y1s2 = ℒ5y61s2 and take the Laplace transform of both sides of the equation in (13):

(14) ℒ5y″61s2 + 2ℒ5ty′1t261s2 - 4Y1s2 =
1
s
 .

Using the initial conditions, we find

ℒ5y″61s2 = s2Y1s2 - sy102 - y′102 = s2Y1s2
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and

 ℒ5ty′1t261s2 = -  
d
ds

 ℒ5y′61s2

 = -  
d
ds

 3sY1s2 - y1024 = -sY′1s2 - Y1s2 .

Substituting these expressions into (14) gives

 s2Y1s2 + 23-sY′1s2 - Y1s24 - 4Y1s2 =
1
s

 -2sY′1s2 + 1s2 - 62Y1s2 =
1
s

(15)  Y′1s2 + a 3
s

-
s
2
bY1s2 =

-1

2s2 .

Equation (15) is a linear first-order equation and has the integrating factor

m1s2 = e113>s - s>22ds = eln s3 - s2>4 = s3e-s2>4

(see Section 2.3). Multiplying (15) by m1s2, we obtain

d
ds

 5m1s2Y1s26 =
d
ds

 5s3e-s2>4Y1s2 6 = -  
s
2

 e-s2>4 .

Integrating and solving for Y1s2 yields

 s3e-s2>4Y1s2 = - L
s
2

 e-s2>4 ds = e-s2>4 + C

(16)  Y1s2 =
1

s3 + C 
es2>4

s3  .

Now if Y1s2 is the Laplace transform of a piecewise continuous function of exponential order, 
then it follows from equation (12) that

lim
sS ∞

Y1s2 = 0 .

For this to occur, the constant C in equation (16) must be zero. Hence, Y1s2 = 1>s3, and  
taking the inverse transform gives y1t2 = t2>2. We can easily verify that y1t2 = t2>2 is the 
solution to the given initial value problem by substituting it into (13). ◆

We end this section with an application from control theory. Let’s consider a servomecha-
nism that models an automatic pilot. Such a mechanism applies a torque to the steering control 
shaft so that a plane or boat will follow a prescribed course. If we let y1t2 be the true direction 
(angle) of the craft at time t and g1t2 be the desired direction at time t, then

e1t2 J y1t2 - g1t2
denotes the error or deviation between the desired direction and the true direction.

Let’s assume that the servomechanism can measure the error e1t2 and feed back to the 
steering shaft a component of torque that is proportional to e1t2 but opposite in sign (see 
Figure 7.6 on page 381). Newton’s second law, expressed in terms of torques, states that

1moment of inertia2 : 1angular acceleration2 = total torque.
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For the servomechanism described, this becomes

(17) Iy″1t2 = -ke1t2 ,
where I is the moment of inertia of the steering shaft and k is a positive proportionality 
constant.

e ( t ) 5 y(t) 2 g(t)    

Desired 
direction 

Error 

Feedback 

True 
direction 

y ( t ) 

y ( t ) 
Iy" 5 2  ke 

g(t)

Figure 7.6 Servomechanism with feedback

Example 5 Determine the error e1t2 for the automatic pilot if the steering shaft is initially at rest in the 
zero direction and the desired direction is given by g1t2 = at, where a is a constant.

Solution Based on the discussion leading to equation (17), a model for the mechanism is given by the 
initial value problem

(18) Iy″1t2 = -ke1t2 ;  y102 = 0 ,  y′102 = 0 ,

where e1t2 = y1t2 - g1t2 = y1t2 - at. We begin by taking the Laplace transform of both 
sides of (18):

 Iℒ5y″61s2 = -kℒ5e61s2
 I3s2Y1s2 - sy102 - y′1024 = -kE1s2

(19)  s2IY1s2 = -kE1s2 ,
where Y1s2 = ℒ5y61s2 and E1s2 = ℒ5e61s2. Since

E1s2 = ℒ5y1t2 - at61s2 = Y1s2 - ℒ5at61s2 = Y1s2 - as-2 ,

we find from (19) that

s2IE1s2 + aI = -kE1s2 .
Solving this equation for E1s2 gives

E1s2 = -  
aI

s2I + k
=

-a2k>I
 
2k>I

s2 + k>I .

Hence, on taking the inverse Laplace transform, we obtain the error

(20) e1t2 = -  
a2k>I

 sin12k>I t2  . ◆

As we can see from equation (20), the automatic pilot will oscillate back and forth about 
the desired course, always “oversteering” by the factor a>2k>I. Clearly, we can make the 
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error small by making k large relative to I, but then the term 2k>I becomes large, causing the 
error to oscillate more rapidly. (See Figure 7.7.) As with vibrations, the oscillations or over-
steering can be controlled by introducing a damping torque proportional to e′1t2 but opposite 
in sign (see Problem 40).

e(t)

8642

1

0.5
k

5 16
I

I

0

20.5

21

t

k
5 1

Figure 7.7 Error for automatic pilot when k>I = 1 and when k>I = 16

In Problems 1–14, solve the given initial value problem using 
the method of Laplace transforms.

1. y″ - 2y′ + 5y = 0 ;  y102 = 2 ,  y′102 = 4

2. y″ - y′ - 2y = 0 ;  y102 = -2 ,  y′102 = 5

3. y″ + 6y′ + 9y = 0 ;  y102 = -1 ,  y′102 = 6

4. y″ + 6y′ + 5y = 12e t ; y102 = -1 ,  y′102 = 7

5. w″ + w = t2 + 2 ;  w102 = 1 ,  w′102 = -1

6. y″ - 4y′ + 5y = 4e3t ;  y102 = 2 ,  y′102 = 7

7. y″ - 7y′ + 10y = 9 cos t + 7 sin t ;

y102 = 5 ,  y′102 = -4

8. y″ + 4y = 4t2 - 4t + 10 ;

y102 = 0 ,  y′102 = 3

9. z″ + 5z′ - 6z = 21e t- 1 ;

z112 = -1 ,  z′112 = 9

10. y″ - 4y = 4t - 8e-2t ;  y102 = 0 ,  y′102 = 5

11. y″ - y = t - 2 ;  y122 = 3 ,  y′122 = 0

12. w″ - 2w′ + w = 6t - 2 ;

w1-12 = 3 ;  w′1-12 = 7

13. y″ - y′ - 2y = -8 cos t - 2 sin t ;

y1p>22 = 1 ,  y′1p>22 = 0

14. y″ + y = t ;  y1p2 = 0 ,  y′1p2 = 0

In Problems 15–24, solve for Y1s2, the Laplace transform  
of the solution y1t2 to the given initial value problem.

15. y″ - 3y′ + 2y = cos t ; y102 = 0 ,  y′102 = -1

16. y″ + 6y = t2 - 1 ;  y102 = 0 ,  y′102 = -1

17. y″ + y′ - y = t3 ;  y102 = 1 ,  y′102 = 0

18. y″ - 2y′ - y = e 2t - e t ;  y102 = 1 ,  y′102 = 3

19. y″ + 5y′ - y = e t - 1 ;  y102 = 1 ,  y′102 = 1

20. y″ + 3y = t3 ;  y102 = 0 ,  y′102 = 0

21. y″ - 2y′ + y = cos t - sin t ; y102 = 1 , y′102 = 3

7.5 EXERCISES
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22. y″ - 6y′ + 5y = tet ;  y102 = 2 ,  y′102 = -1

23. y″ + 4y = g1t2 ;  y102 = -1 ,  y′102 = 0 , 
where

g1t2 = e t , t 6 2 ,
5 , t 7 2

24. y″ - y = g1t2 ;  y102 = 1 ,  y′102 = 2 ,  
where 

g1t2 = e1 , t 6 3 ,
t , t 7 3

In Problems 25–28, solve the given third-order initial value 
problem for y1t2 using the method of Laplace transforms.

25. y‴ - y″ + y′ - y = 0 ;

y102 = 1 ,  y′102 = 1 ,  y″102 = 3

26. y‴ + 4y″ + y′ - 6y = -12 ;

y102 = 1 ,  y′102 = 4 ,  y″102 = -2

27. y‴ + 3y″ + 3y′ + y = 0 ;

y102 = -4 ,  y′102 = 4 ,  y″102 = -2

28. y‴ + y″ + 3y′ - 5y = 16e-t ;

y102 = 0 ,  y′102 = 2 ,  y″102 = -4

In Problems 29–32, use the method of Laplace transforms 
to find a general solution to the given differential equation 
by assuming y102 = a and y′102 = b, where a and b are  
arbitrary constants.

34. Use Theorem 6 in Section 7.3, page 364, to show that

ℒ5t2y″1t261s2 = s2Y″1s2 + 4sY′1s2 + 2Y1s2 ,
where Y1s2 = ℒ5y61s2 .

In Problems 35–38, find solutions to the given initial value 
problem.

35. y″ + 3ty′ - 6y = 1 ;  y102 = 0 ,  y′102 = 0

36. ty″ - ty′ + y = 2 ;  y102 = 2 ,  y′102 = -1

37. ty″ - 2y′ + ty = 0 ;  y102 = 1 ,  y′102 = 0

[Hint: ℒ-151> 1s2 + 12261t2 = 1sin t - t cos t2 >2.4
38. y″ + ty′ - y = 0 ;

y102 = 0 ,  y′102 = 3

39. Determine the error e1t2 for the automatic pilot in 
Example 5, page 381, if the shaft is initially at rest in 
the zero direction and the desired direction is g1t2 = a, 
where a is a constant.

40. In Example 5 assume that in order to control oscillations, 
a component of torque proportional to e′1t2, but oppo-
site in sign, is also fed back to the steering shaft. Show 
that equation (17) is now replaced by

Iy″1t2 = -ke1t2 - me′1t2 ,
where m is a positive constant. Determine the error 
e1t2 for the automatic pilot with mild damping (i.e., 
m 6 22Ik2 if the steering shaft is initially at rest in 
the zero direction and the desired direction is given by 
g1t2 = a, where a is a constant.

41. In Problem 40 determine the error e1t2 when the  
desired direction is given by g1t2 = at, where a is a 
constant.

29. y″ - 4y′ + 3y = 0 30. y″ + 6y′ + 5y = t

31. y″ + 2y′ + 2y = 5 32. y″ - 5y′ + 6y = -6te2t

33. Use Theorem 6 in Section 7.3, page 364, to show that

ℒ5t2y′1t261s2 = sY″1s2 + 2Y′1s2 ,
where Y1s2 = ℒ5y61s2 .

In this section we study special functions that often arise when the method of Laplace trans-
forms is applied to physical problems. Of particular interest are methods for handling func-
tions with jump discontinuities. As we saw in the mixing problem of Section 7.1, jump 
discontinuities occur naturally in any physical situation that involves switching. Finding the 
Laplace transforms of such functions is straightforward; however, we need some theory for 
inverting these transforms. To facilitate this, Oliver Heaviside introduced the following step 
function.

7.6 Transforms of Discontinuous Functions
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384     Chapter 7  Laplace Transforms

By shifting the argument of u1t2, the jump can be moved to a different location. That is,

(2) u1t - a2 = e0 , t - a 6 0 ,
1 , 0 6 t - a

  = e0 , t 6 a
1 , a 6 t

has its jump at t = a. By multiplying by a constant M, the height of the jump can also be 
modified:

Mu1t - a2 = e0 , t 6 a ,
M , a 6 t .

See Figure 7.8.

Unit Step Function

Definition 5. The unit step function u1t2 is defined by

(1) u1t2 J e0 , t 6 0 ,
1 , 0 6 t .

(Any Riemann integral, like the Laplace transform, of a function is unaffected if the 
integrand’s value at a single point is changed by a finite amount. Therefore, we do not 
specify a value for u1t2 at t = 0.)

2 

1 

1 2 3 4 0 
t 

2 u ( t  - 1) 

u ( t  - 2) 

Figure 7.8 Two-step functions expressed using the unit step function

To simplify the formulas for piecewise continuous functions, we employ the rectangular 
window, which turns the step function on and then turns it back off.

†Also known as the square pulse, or the boxcar function.

Rectangular Window Function

Definition 6. The rectangular window function Πa,b1t2 is defined by†

(3) Πa,b1t2 J u1t - a2 - u1t - b2 = •
0 ,     t 6 a ,

1 ,      a 6 t 6 b ,

0 ,      b 6 t  .
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The function Πa,b1t2 is displayed in Figure 7.9, and Figure 7.10, illustrating multiplication of a 
function by Πa,b1t2, justifies its name.

1

a b

Pa,b(t)

Figure 7.9 The rectangular window

a b

f (t)

a b

f (t)Pa,b(t)

Figure 7.10 The windowing effect of Πa,b1t2

Any piecewise continuous function can be expressed in terms of window and step 
functions.

Example 1 Write the function

(4) f1t2 = µ
3 , t 6 2 ,
1 , 2 6 t 6 5 ,
t , 5 6 t 6 8 ,
t2>10 , 8 6 t 

(see Figure 7.11 on page 386) in terms of window and step functions.

Solution Clearly, from the figure we want to window the function in the intervals (0, 2), (2, 5), and  
(5, 8), and to introduce a step for t 7 8. From (5) we read off the desired representation as

(5) f1t2 = 3Π0,21t2 + 1Π2,51t2 + tΠ5,81t2 + 1t2>10)u1t - 82. ◆

The Laplace transform of u1t - a2 with a Ú 0 is

(6) ℒ5u1t − a261s2 =
e−as

s
 ,

since, for s 7 0,

 ℒ5u1t - a261s2 = L
∞

0
e-stu1t - a2  dt = L

∞

a
e-st dt

 = lim
NS ∞

 
-e-st

s
 2 N

a
=

e-as

s
 .
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386     Chapter 7  Laplace Transforms

Conversely, for a 7 0, we say that the piecewise continuous function u1t - a2 is an 
inverse Laplace transform for e-as>s and we write

ℒ- 1e e-as

s
f 1t2 = u1t - a2 .

For the rectangular window function, we deduce from (6) that

(7) ℒ5Πa,b1t261s2 = ℒ5u1t - a2 - u1t - b261s2 = 3e-sa - e-sb4 >s  ,   0 6 a 6 b.

The translation property of F1s2 discussed in Section 7.3 described the effect on the 
Laplace transform of multiplying a function by eat. The next theorem illustrates an analogous 
effect of multiplying the Laplace transform of a function by e-as.

t

f(t)

2

3

0 4 6 8 1210

Figure 7.11 Graph of f1t2 in equation (4)

Translation in t

Theorem 8. Let F1s2 = ℒ5f61s2 exist for s 7 a Ú 0. If a is a positive constant, then

(8) ℒ5f1t − a2u1t − a261s2 = e−asF1s2 ,
and, conversely, an inverse Laplace transform† of e-asF1s2 is given by

(9) ℒ−15e−asF1s261t2 = f1t − a2u1t − a2 .

Proof. By the definition of the Laplace transform,

(10)  ℒ5f1t - a2u1t - a261s2 = L
∞

0
e-stf1t - a2u1t - a2  dt

  = L
∞

a
e-stf1t - a2  dt ,

†This inverse transform is in fact a continuous function of t if f102 = 0 and f1t2 is continuous for t Ú 0; the values of 
f1t2 for t 6 0 are of no consequence, since the factor u1t - a2 is zero there.
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where, in the last equation, we used the fact that u(t - a2 is zero for t 6 a and equals 1 for 
t 7 a. Now let y = t - a. Then we have dy = dt, and equation (10) becomes

 ℒ5f1t - a2u1t - a261s2 = L
∞

0
e-ase-syf1y2  dy

 = e-as L
∞

0
e-syf1y2  dy = e-asF1s2 . ◆

Notice that formula (8) includes as a special case the formula for ℒ5u1t - a26; indeed, if 
we take f1t2 K 1, then F1s2 = 1>s and (8) becomes ℒ5u1t - a261s2 = e-as>s.

In practice it is more common to be faced with the problem of computing the trans-
form of a function expressed as g1t2u1t - a2 rather than f1t - a2u1t - a2. To compute 
ℒ5g1t2u1t - a26, we simply identify g1t2 with f1t - a2 so that f1t2 = g1t + a2. Equation 
(8) then gives

(11) ℒ5g1t2u1t − a261s2 = e−asℒ5g1t + a261s2 .

Example 2 Determine the Laplace transform of t2u1t - 12 .
Solution To apply equation (11), we take g1t2 = t2 and a = 1. Then

g1t + a2 = g1t + 12 = 1t + 122 = t2 + 2t + 1 .

Now the Laplace transform of g1t + a2 is

ℒ5g1t + a261s2 = ℒ5t2 + 2t + 161s2 =
2

s3 +
2

s2 +
1
s
 .

So, by formula (11), we have

ℒ5t2u1t - 1261s2 = e-se 2

s3 +
2

s2 +
1
s
f  . ◆

Example 3 Determine ℒ51cos t2  u1t - p26 .

Solution Here g1t2 = cos t and a = p. Hence,

g1t + a2 = g1t + p2 = cos1t + p2 = -cos t ,

and so the Laplace transform of g1t + a2 is

ℒ5g1t + a261s2 = -ℒ5cos t61s2 = -  
s

s2 + 1
 .

Thus, from formula (11), we get

ℒ51cos t2u1t - p261s2 = -e-ps 
s

s2 + 1
 . ◆
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388     Chapter 7  Laplace Transforms

In Examples 2 and 3, we could also have computed the Laplace transform directly from 
the definition. In dealing with inverse transforms, however, we do not have a simple alternative 
formula† upon which to rely, and so formula (9) is especially useful whenever the transform 
has e-as as a factor.

(t - 2) u(t - 2)

0 2
t

Figure 7.12 Graph of solution to Example 4

Example 4 Determine ℒ-1 e e-2s

s2 f  and sketch its graph.

Solution To use the translation property (9), we first express e-2s>s2 as the product e-asF1s2. For this 
purpose, we put e-as = e-2s and F1s2 = 1>s2. Thus, a = 2 and

f1t2 = ℒ-1 e 1

s2 f  1t2 = t .

It now follows from the translation property that

ℒ-1 e e-2s

s2 f 1t2 = f1t - 22u1t - 22 = 1t - 22u1t - 22 .

See Figure 7.12. ◆

As we anticipated in the beginning of this section, step functions arise in the modeling of 
on/off switches, changes in polarity, etc.

Example 5 The current I in an LC series circuit is governed by the initial value problem

(12) I″1t2 + 4I1t2 = g1t2 ;  I102 = 0 ,  I′102 = 0 ,

where

g1t2 J •
1 , 0 6 t 6 1 ,

-1 , 1 6 t 6 2 ,
0 , 2 6 t .

Determine the current as a function of time t.

Solution Let J1s2 J ℒ5I61s2. Then we have ℒ5I″61s2 = s2J1s2.

†Under certain conditions, the inverse transform is given by the contour integral

ℒ-15F61t2 =
1

2pi
 L

a + i ∞

a - i ∞
 estF1s2  ds .

See, for example, Complex Variables and the Laplace Transform for Engineers, by Wilbur R. LePage (Dover Publications, New York, 2010), or 
Fundamentals of Complex Analysis with Applications to Engineering and Science, 3rd ed., by E. B. Saff and A. D. Snider (Pearson Education, 
Boston. MA, 2003).
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Writing g1t2 in terms of the rectangular window function Πa,b1t2 = u1t - a2 - u1t - b2, 
we get

 g1t2 = Π0,11t2 + 1-12Π1,21t2 = u1t2 - u1t - 12 - 3u1t - 12 - u1t - 224
 = 1 - 2u1t - 12 + u1t - 22 ,

and so

ℒ5g61s2 =
1
s

-
2e-s

s
+

e-2s

s
 .

Thus, when we take the Laplace transform of both sides of (12), we obtain

 ℒ5I″61s2 + 4ℒ5I61s2 = ℒ5g61s2
 s2J1s2 + 4J1s2 =

1
s

-
2e-s

s
+

e-2s

s

 J1s2 =
1

s1s2 + 42 -
2e-s

s1s2 + 42 +
e-2s

s1s2 + 42  .

To find I = ℒ-15J6, we first observe that

J1s2 = F1s2 - 2e-sF1s2 + e-2sF1s2 ,
where

F1s2 J
1

s1s2 + 42 =
1
4
a 1

s
b -

1
4
a s

s2 + 4
b  .

Computing the inverse transform of F1s2 gives

f1t2 J ℒ-15F61t2 =
1
4

-
1
4

 cos 2t .

Hence, via the translation property (9), we find

 I1t2 = ℒ-15F1s2 - 2e-sF1s2 + e-2sF1s261t2
 = f1t2 - 2 f1t - 12u1t - 12 + f1t - 22u1t - 22
 = a 1

4
-

1
4

 cos 2tb - c 1
2

-
1
2

 cos 21t - 12 du1t - 12

 = + c 1
4

-
1
4

 cos 21t - 22 du1t - 22 .

The current is graphed in Figure 7.13. Note that I1t2 is smoother than g1t2; the former has 
discontinuities in its second derivative at the points where the latter has jumps. ◆

t

I(t)

10

1

2 3 4

Figure 7.13 Solution to Example 5
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In Problems 1– 4, sketch the graph of the given function  
and determine its Laplace transform.

10. 

t
43

(t - 1)2

21

1

2

3

0

g(t)

Figure 7.17 Function in Problem 10

In Problems 11–18, determine an inverse Laplace transform 
of the given function.

7.6 EXERCISES

1. 1t - 122u1t - 12 2. u1t - 12 - u1t - 42
3. t2u1t - 22 4. tu1t - 12

In Problems 5–10, express the given function using window 
and step functions and compute its Laplace transform.

5. g1t2 = µ
0 , 0 6 t 6 1 ,
2 , 1 6 t 6 2 ,
1 , 2 6 t 6 3 ,
3 , 3 6 t

6. g1t2 = e0 , 0 6 t 6 2 ,
t + 1 , 2 6 t

7. g ( t ) 

t

2

1

0
1 2

Figure 7.14 Function in Problem 7

8. 

1 

t 

g ( t ) 

-1

sin t

Figure 7.15 Function in Problem 8

9. g ( t ) 

t

1

10 2 3 4

Figure 7.16 Function in Problem 9

11. 
e-2s

s - 1
12. 

e-3s

s2

13. 
e-2s - 3e-4s

s + 2
14. 

e-3s

s2 + 9

15. 
se-3s

s2 + 4s + 5
16. 

e-s

s2 + 4

17. 
e-3s1s - 52
1s + 121s + 22 18. 

e-s13s2 - s + 22
1s - 121s2 + 12

19. The current I1t2 in an RLC series circuit is governed by 
the initial value problem

I″1t2 + 2I′1t2 + 2I1t2 = g1t2 ;
I102 = 10 ,  I′102 = 0 ,

where

g1t2 J •
20 , 0 6 t 6 3p ,
0 , 3p 6 t 6 4p ,
20 , 4p 6 t .

Determine the current as a function of time t. Sketch I1t2 
for 0 6 t 6 8p.

20. The current I1t2 in an LC series circuit is governed by 
the initial value problem

I″1t2 + 4I1t2 = g1t2 ;
I102 = 1 ,  I′102 = 3 ,

where

g1t2 J e3 sin t , 0 … t … 2p ,
0 , 2p 6 t .

Determine the current as a function of time t.
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In Problems 21–24, solve the given initial value problem 
using the method of Laplace transforms. Sketch the graph of 
the solution.

21. y″ + y = u1t - 32 ;
y102 = 0 ,  y′102 = 1

22. w″ + w = u1t - 22 - u1t - 42 ;
w102 = 1 ,  w′102 = 0

23. y″ + y = t - 1t - 42u1t - 22 ;
y102 = 0 ,  y′102 = 1

24. y″ + y = 3 sin 2t - 31sin 2t2u1t - 2p2 ;
y102 = 1 ,  y′102 = -2

In Problems 25–32, solve the given initial value problem 
using the method of Laplace transforms.

25. y″ + 2y′ + 2y = u1t - 2p2 - u1t - 4p2 ;
y102 = 1 ,  y′102 = 1

26. y″ + 4y′ + 4y = u1t - p2 - u1t - 2p2 ;
y102 = 0 ,  y′102 = 0

27. z″ + 3z′ + 2z = e-3t u1t - 22 ;
z102 = 2 ,  z′102 = -3

28. y″ + 5y′ + 6y = tu1t - 22 ;
y102 = 0 ,  y′102 = 1

29. y″ + 4y = g1t2 ;  y102 = 1 ,  y′102 = 3 ,

where g1t2 = e sin t , 0 … t … 2p ,
0 , 2p 6 t

30. y″ + 2y′ + 10y = g1t2 ;
y102 = -1 ,  y′102 = 0 ,

where g1t2 = •
10 , 0 … t … 10 ,
20 , 10 6 t 6 20 ,
0 , 20 6 t

31. y″ + 5y′ + 6y = g1t2 ;    
y102 = 0 ,    y′102 = 2 ,

where g1t2 = •
0 , 0 … t 6 1 ,
t , 1 6 t 6 5 ,
1 , 5 6 t

32. y″ + 3y′ + 2y = g1t2 ;    
y102 = 2 ,  y′102 = -1 ,

where g1t2 = e e-t , 0 … t 6 3 ,
1 , 3 6 t

33. The mixing tank in Figure 7.18 initially holds 500 L  
of a brine solution with a salt concentration of  
0.02 kg/L. For the first 10 min of operation, valve A is 
open, adding 12 L/min of brine containing a 0.04 kg/L 
salt concentration. After 10 min, valve B is switched in, 
adding a 0.06 kg/L concentration at 12 L/min. The exit 
valve C removes 12 L/min, thereby keeping the volume 
constant. Find the concentration of salt in the tank as a 
function of time.

C

A

12 L/min
0.04 kg/L

12 L/min
0.06 kg/L

B

Figure 7.18 Mixing tank

34. Suppose in Problem 33 valve B is initially opened for  
10 min and then valve A is switched in for 10 min. 
Finally, valve B is switched back in. Find the concentra-
tion of salt in the tank as a function of time.

35. Suppose valve C removes only 6 L/min in Problem 33. 
Can Laplace transforms be used to solve the problem? 
Discuss.

36. The unit triangular pulse Λ1t2 is defined by

Λ1t2 J µ
0 , t 6 0 ,
2t , 0 6 t 6 1>2 ,
2 - 2t , 1>2 6 t 6 1 ,
0 , t 7 1 .

  (a)  Sketch the graph of Λ1t2. Why is it so named? Why 
is its symbol appropriate?

 (b) Show that Λ1t2 = L
t

-∞
25Π0, 1/21t2 - Π1/2, 11t26 dt.

 (c) Find the Laplace transform of Λ1t2.
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392     Chapter 7  Laplace Transforms

*The volume of a body increases as the cube of its length; its surface area increases as the square of the length. First 
formulated by Galileo in 1638 (Discourses and Mathematical Demonstrations Relating to Two New Sciences), this 
principle is useful in explaining the limitations on animal growth.

Periodic functions arise frequently in physical situations such as sinusoidal vibrations in struc-
tures, and in electromagnetic oscillations in AC machinery and microwave transmission. Power 
functions 1tn2 occur in more specialized applications: the square-cube law of biomechanics*, 
the cube rule of electoral politics,† Coulomb’s inverse-square force, and, most significantly, the 
Taylor series of Section 3.7 and Chapter 8. The manipulation of these functions’ transforms 
(when they exist) is facilitated by the techniques described in this section.

7.7 Transforms of Periodic and Power Functions

†In a two-party system, the ratio of the seats won equals the cube of the ratio of the votes cast. (G. Upton, “Blocks of 
voters and the cube law,” British Journal of Political Science. Vol. 15, Issue 03 (1985): 388–398.)

Periodic Function

Definition 7. A function f1t2 is said to be periodic of period T 1≠02 if
f1t + T2 = f1t2

for all t in the domain of f.

As we know, the sine and cosine functions are periodic with period 2p and the tangent 
function is periodic with period p.‡ To specify a periodic function, it is sufficient to give its 
values over one period. For example, the square wave function in Figure 7.19 can be expressed 
as

(1) f1t2 J e1 , 0 6 t 6 1 ,
-1 , 1 6 t 6 2 ,

     and f1t2 has period 2.

t
-2 -1

-1

0 1

1

2 3

Figure 7.19 Graph of square wave function f1t2

t
0 T

fT (t)
f (t)

Figure 7.20 Windowed version of periodic function

‡A function that has period T will also have period 2T, 3T, etc. For example, the sine function has periods 2p, 4p,  
6p, etc. Some authors refer to the smallest period as the fundamental period or just the period of the function.
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It is convenient to introduce a notation for the “windowed” version of a periodic function 
f1t2, using a rectangular window whose width is the period:

(2) fT1t2 J f1t2Π0,T1t2 = f1t23u1t2 - u1t - T24 = e f1t2 , 0 6 t 6 T ,
0 , otherwise .

(See Figure 7.20 on page 392.) The Laplace transform of fT1t2 is given by

FT1s2 = L
∞

0
 e-st fT1t2  dt = L

T

0
 e-st f1t2  dt .

It is related to the Laplace transform of f1t2 as follows.

Transform of Periodic Function

Theorem 9. If  f  has period T and is piecewise continuous on 30, T4, then the Laplace 
transforms

F1s2 = L
∞

0
 e-st f1t2  dt  and  FT1s2 = L

∞

0
 e-st fT1t2  dt = L

T

0
 e-st f1t2  dt 

are related by

(3) FT1s2 = F1s2  31 - e-sT4     or  F1s2 =
FT1s2

1−e−sT .

Proof. From (2) and the periodicity of ƒ, we have

(4) fT1t2 = f1t2u1t2 - f1t2u1t - T2 = f1t2u1t2 - f1t - T2u1t - T2 ,
so taking transforms and applying the translation-in-t property (Theorem 8, page 386) yields 
FT1s2 = F1s2  - e-sTF1s2, which is equivalent to (3). ◆

Example 1 Determine ℒ5f6, where  f  is the periodic square wave function in Figure 7.19.

Solution Here T = 2. Windowing the function results in fT1t2 = Π0,11t2 - Π1,21t2, so from the for-
mula for the transform of the window function (equation (7) in Section 7.6, page 386) we get 
FT1s2 = 11 - e-s2 >s - 1e-s - e-2s2 >s = 11 - e-s22>s. Therefore (3) implies

ℒ5f61s2 =
11 - e-s22>s

1 - e-2s =
1 - e-s

11 + e-s2s . ◆

Example 2 Determine ℒ5f6, where

f1t2 J •
sin t

t
 , t ≠ 0 ,

1 , t = 0 .

We next turn to the problem of finding transforms of functions given by a power series. 
Our approach is simply to apply the formula ℒ5tn61s2 = n!/sn+1, n = 0, 1, 2, . . . , to the 
terms of the series.
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Solution We begin by expressing f1t2 in a Taylor series† about t = 0. Since

sin t = t -
t3

3!
+

t5

5!
-

t7

7!
+ g ,

then dividing by t, we obtain

f1t2 =
sin t

t
= 1 -

t2

3!
+

t4

5!
-

t6

7!
+ g

for t 7 0. This representation also holds at t = 0 since

lim
tS0  

 f1t2 = lim
tS0

 
sin t

t
= 1 .

Observe that f1t2 is continuous on 30, ∞ 2 and of exponential order. Hence, its Laplace trans-
form exists for all s sufficiently large. Because of the linearity of the Laplace transform, we 
would expect that

 ℒ5f61s2 = ℒ5161s2 -
1
3!

 ℒ5t261s2 +
1
5!

 ℒ5t461s2 + g

 =
1
s

-
2!

3!s3 +
4!

5!s5 -
6!

7!s7 + g

 =
1
s

-
1

3s3 +
1

5s5 -
1

7s7 + g .

Indeed, using tools from analysis, it can be verified that this series representation is valid for 
all s 7 1. Moreover, one can show that the series converges to the function arctan11>s2 (see 
Problem 22). Thus,

(5) ℒe sin t
t
f 1s2 = arctan  

1
s
 . ◆

A similar procedure involving the series expansion for F1s2 in powers of 1>s can be used 
to compute f1t2 = ℒ-15F61t2 (see Problems 23–25).

We have previously shown, for every nonnegative integer n, that ℒ5tn61s2 = n!>sn+1. 
But what if the power of t is not an integer? Is this formula still valid? To answer this question, 
we need to extend the idea of “factorial.” This is accomplished by the gamma function.‡

Gamma Function

Definition 8. The gamma function Γ1r2 is defined by

(6) �1r2 J L
H

0
 e−uu r − 1 du ,  r + 0 .

†For a discussion of Taylor series, see Sections 8.1 and 8.2.
‡Historical Footnote: The gamma function was introduced by Leonhard Euler.

It can be shown that the integral in (6) converges for r 7 0. A useful property of the 
gamma function is the recursive relation

(7) �1r + 12 = r�1r2 .
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This identity follows from the definition (6) after performing an integration by parts:

 Γ1r + 12 = L
∞

0
e-uu r du = lim

NS ∞ L
N

0
e-uu r du

 = lim
NS ∞
e e-uu r `

N

0
+ L

N

0
re-uu r - 1 du f

 = lim
NS ∞
1e-NNr2 + r lim

NS ∞ L
N

0
e-uu r - 1 du

 = 0 + r Γ1r2 = r Γ1r2 .
When r is a positive integer, say r = n, then the recursive relation (7) can be repeatedly 

applied to obtain

 Γ1n + 12 = nΓ1n2 = n1n - 12Γ1n - 12 = g
 = n1n - 121n - 22g2Γ112 .

It follows from the definition (6) that Γ112 = 1, so we find

�1n + 12 = n! .

Thus, the gamma function extends the notion of factorial.
As an application of the gamma function, let’s return to the problem of determining the 

Laplace transform of an arbitrary power of t. We will verify that the formula

(8) ℒ5t r61s2 =
�1r + 12

s r + 1

holds for every constant r 7 -1 .
By definition,

ℒ5tr61s2 = L
∞

0
e-sttr dt .

Let’s make the substitution u = st. Then du = s dt, and we find

 ℒ5tr61s2 = L
∞

0
e-ua u

s
b

r

a 1
s
b  du

 =
1

sr + 1 L
∞

0
e-uu r du =

Γ1r + 12
s r + 1  .

Notice that when r = n is a nonnegative integer, then Γ1n + 12 = n!, and so formula (8) 
reduces to the familiar formula for ℒ5tn6.

Example 3 Given that Γ11>22 = 1p (see Problem 26), find the Laplace transform of f1t2 = t3>2e2t.

Solution We’ll apply the translation-in-s property (Theorem 3, page 361) to the transform for t3>2, which from 

(8) is given by Γ13
2 + 12 >s 

3
2 + 1. Thanks to the basic gamma function property (7), we can write

Γa 3
2

+ 1b =
3
2

Γa 3
2
b =

3
2

Γa 1
2

+ 1b = a 3
2
b a 1

2
bΓa 1

2
b =

3
4
1p .

Hence ℒ5t3>261s2 = 31p
4s5>2 , and so

ℒ5 t3>2e2t6 1s2 =
31p

41s - 225>2 . ◆
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In Problems 1 – 4, determine ℒ5f6, where f1t2 is periodic 
with the given period. Also graph f1t2.
1. f1t2 = t , 0 6 t 6 2 , and f1t2 has period 2.

2. f1t2 = et , 0 6 t 6 1 , and f1t2 has period 1.

3. f1t2 = e e-t, 0 6 t 6 1 ,
1, 1 6 t 6 2 ,

 and f1t2 has period 2.

4. f1t2 = e t, 0 6 t 6 1 ,
1 - t, 1 6 t 6 2 ,

 and f1t2 has period 2.

In Problems 5–8, determine ℒ5f6, where the periodic function 
is described by its graph.

5. 

2a

f (t)

t 
a 3a 4a0

1

Figure 7.21 Square wave

6. 

5a2a

f (t)

t 
a 3a 4a0

1

Figure 7.22 Sawtooth wave

7. 

2a

f (t)

t 
a 3a 4a0

1

Figure 7.23 Triangular wave

8. f (t)

t 
0

1

Figure 7.24 Half-rectified sine wave

9. Show that if ℒ5g61s2 = 31s + a211 - e-Ts24-1, where 
T 7 0 is fixed, then

(9) g1t2 = e−at + e−A1t− T2u1t − T2
+ e−A1t− 2T2u1t − 2T2
+ e−A1t− 3T2u1t − 3T2 + P .

[Hint: Use the fact that 1 + x + x2 + g = 1> 11 - x2.4
10. The function g1t2 in (9) can be expressed in a more con-

venient form as follows:

  (a) Show that for each n = 0, 1, 2, . . . ,

g1t2 = e-at c e
1n+12aT - 1

eaT - 1
d  for nT 6 t 6 1n + 12T.

  [Hint: Use the fact that 1 + x + x2 + g + xn =
1xn+1 - 12 >1x - 12.4

 (b)  Let y = t - 1n + 12T. Show that when  
nT 6 t 6 1n + 12T, then -T 6 y 6 0 and

(10) g1t2 =
e−AY

eAT − 1
-

e−At

eAT − 1
 .

 (c)  Use the facts that the first term in (10) is periodic 
with period T and the second term is independent of 
n to sketch the graph of g1t2 in (10) for a = 1 and 
T = 2.

11. Show that if ℒ5g61s2 = b31s2 + b2211 - e-Ts24-1, 
then

 g1t2 = sin Bt + 3sin B1t − T24u1t − T2
 + 3sin B1t − 2T24u1t − 2T2
 + 3sin B1t − 3T24u1t − 3T2 + P .

12. Use the result of Problem 11 to show that

ℒ-1e 1

1s2 + 1211 - e-ps2 f 1t2 = g1t2 ,

where g1t2 is periodic with period 2p and

g1t2 J e sin t , 0 … t … p ,
0 , p … t … 2p .

In Problems 13 and 14, use the method of Laplace transforms 
and the results of Problems 9 and 10 to solve the initial value 
problem.

y″ + 3y′ + 2y = f1t2 ;    
y102 = 0 ,  y′102 = 0 ,

where f1t2 is the periodic function defined in the stated  
problem.

13. Problem 2

14. Problem 5 with a = 1

7.7 EXERCISES
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In Problems 15–18, find a Taylor series for f1t2 about t = 0. 
Assuming the Laplace transform of f1t2 can be computed 
term by term, find an expansion for ℒ5f61s2 in powers of 
1>s. If possible, sum the series.

in terms of 1>sn+1>2. Assuming the inverse Laplace trans-
form can be computed term by term, show that

ℒ-15s-1>2e-1>s61t2 =
11pt

 cos 21t .

[Hint: Use the result of Problem 20.]

24. Use the procedure discussed in Problem 23 to show that

ℒ-15s-3>2e-1>s61t2 =
11p 

 sin 21t .

25. Find an expansion for ln31 + 11>s224 in powers of 1>s.  
Assuming the inverse Laplace transform can be com-
puted term by term, show that

ℒ-1e ln a1 +
1

s2 b f 1t2 =
2
t

 11 - cos t2 .
26. Evaluate Γ11>22 by setting r = x2 in (6) and relating it

to the Gaussian integral 1 ∞
- ∞e-x2

dx = 1p. (The latter 
formula is proved by using polar coordinates to evaluate its 
square; type “Gaussian integral” into your web browser.)

27. Which of these periodic functions coincides with the 
square wave in Figure 7.19?

  (a)  f1t2 = -1, -1 6 t 6 0; f1t2 = 1, 0 6 t 6 1; 
and f  has period 2.

  (b)  f1t2 = 1, 2 6 t 6 3; f1t2 = -1, 3 6 t 6 4; 
and f  has period 2. 

  (c)  f1t2 = 1, 3 6 t 6 4; f1t2 = -1, 4 6 t 6 5; 
and f  has period 2. 

15. f1t2 = et 16. f1t2 = sin t

17. f1t2 =
1 - cos t

t
18. f1t2 = e-t2

19. Using the recursive relation (7) and the fact that 
Γ11>22 = 1p, determine

  (a) ℒ5t-1>26 . (b) ℒ5t7>26 .

20. Use the recursive relation (7) and the fact that 
Γ11>22 = 1p to show that

ℒ-15s-1n+1>226 1t2 =
2ntn - 1>2

1 # 3 # 5g12n - 121p ,

where n is a positive integer.

21. Verify (3) in Theorem 9 for the function ƒ1t2 = sin t, 
taking the period as 2p. Repeat, taking the period as 4p.

22. By replacing s by 1>s in the Maclaurin series expansion 
for arctan s, show that

arctan  
1
s
=

1
s

-
1

3s3 +
1

5s5 -
1

7s7 + g .

23. Find an expansion for e-1>s in powers of 1>s. Use the 
expansion for e-1>s to obtain an expansion for s-1>2e-1>s 

Consider the initial value problem

(1) y″ + y = g1t2 ;  y102 = 0 ,  y′102 = 0 .

If we let Y1s2 = ℒ5y61s2 and G1s2 = ℒ5g61s2, then taking the Laplace transform of 
both sides of (1) yields

s2Y1s2 + Y1s2 = G1s2 ,

and hence

(2) Y1s2 = a 1

s2 + 1
b  G1s2 .

That is, the Laplace transform of the solution to (1) is the product of the Laplace transform 
of sin t and the Laplace transform of the forcing term g1t2. What we would now like to have 
is a simple formula for y1t2 in terms of sin t and g1t2. Just as the integral of a product is not 
the product of the integrals, y1t2 is not the product of sin t and g1t2. However, we can express 
y1t2 as the “convolution” of sin t and g1t2.

7.8 Convolution
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For example, the convolution of t and t2 is

 t * t2 = L
t

0
1t - y2y2 dy = L

t

0
1ty2 - y32  dy

 = a ty3

3
-
y4

4
b 2 t

0
=

t4

3
-

t4

4
=

t4

12
 .

Convolution is certainly different from ordinary multiplication. For example, 
1 * 1 = t ≠ 1 and in general 1 * f ≠ f. However, convolution does satisfy some of the same 
properties as multiplication.

Convolution

Definition 9. Let f1t2 and g1t2 be piecewise continuous on 30, ∞ 2. The convolution 
of f1t2 and g1t2, denoted f * g, is defined by

(3) 1f * g21t2 J L
t

0
 f1t − Y2g1Y2  dY .

Properties of Convolution

Theorem 10. Let f1t2, g1t2, and h1t2 be piecewise continuous on 30, ∞ 2. Then

(4) f * g = g * f ,

(5) f *1g + h2 = 1f * g2 + 1f * h2 ,
(6) 1f * g2 * h = f * 1g * h2 ,
(7) f * 0 = 0 .

Proof. To prove equation (4), we begin with the definition

1f * g21t2 J L
t

0
 f1t - y2g1y2  dy .

Using the change of variables w = t - y, we have

1f * g21t2 = L
0

t
 f1w2g1t - w21-dw2 = L

t

0
g1t - w2f1w2  dw = 1g * f21t2 ,

which proves (4). The proofs of equations (5) and (6) are left to the exercises (see Problems 33 
and 34). Equation (7) is obvious, since f1t - y2 # 0 K 0. ◆

Returning to our original goal, we now prove that if Y1s2 is the product of the Laplace 
transforms F1s2 and G1s2, then y1t2 is the convolution 1f * g21t2.
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Proof. Starting with the left-hand side of (8), we use the definition of convolution to 
write for s 7 a

ℒ5f * g61s2 = L
∞

0
e-st c L

t

0
 f1t - y2g1y2 dy d  dt .

To simplify the evaluation of this iterated integral, we introduce the unit step function u1t - y2 
and write

ℒ5f * g61s2 = L
∞

0
e-st c L

∞

0
 u1t - y2f1t - y2g1y2 dy d  dt ,

where we have used the fact that u1t - y2 = 0 if y 7 t. Reversing the order of integration† 
gives

(10) ℒ5f * g61s2 = L
∞

0
g1y2 c L

∞

0
 e-stu1t - y2f1t - y2 dt d  dy .

Recall from the translation property in Section 7.6 that the integral in brackets in equation (10) 
equals e-syF1s2. Hence,

ℒ5f * g61s2 = L
∞

0
g1y2e-syF1s2 dy = F1s2L

∞

0
e-syg1y2 dy = F1s2G1s2 .

This proves formula (8). ◆

For the initial value problem (1), recall that we found

Y1s2 = a 1

s2 + 1
bG1s2 = ℒ5sin t61s2 ℒ5g61s2 .

It now follows from the convolution theorem that

y1t2 = sin t * g1t2 = L
t

0
 sin1t - y2g1y2  dy .

Thus we have obtained an integral representation for the solution to the initial value problem (1) 
for any forcing function g1t2 that is piecewise continuous on 30, ∞ 2 and of exponential order.

Convolution Theorem

Theorem 11. Let f1t2 and g1t2 be piecewise continuous on 30, ∞ 2 and of exponential 
order a and set F1s2 = ℒ5f61s2 and G1s2 = ℒ5g61s2. Then

(8) ℒ5f * g61s2 = F1s2G1s2 ,
or, equivalently,

(9) ℒ−15F1s2G1s261t2 = 1f * g21t2 .

†This is permitted since, for each s 7 a, the absolute value of the integrand is integrable on 10, ∞ 2 * 10, ∞ 2.

Example 1 Use the convolution theorem to solve the initial value problem

(11) y″ - y = g1t2 ;  y102 = 1 ,  y′102 = 1 ,

where g1t2 is piecewise continuous on 30, ∞ 2 and of exponential order.

M07_NAGL7069_09_SE_C07_350-420.indd   399 9/27/16   3:26 PM



400     Chapter 7  Laplace Transforms

Solution Let Y1s2 = ℒ5y61s2 and G1s2 = ℒ5g61s2. Taking the Laplace transform of both sides of 
the differential equation in (11) and using the initial conditions gives

s2Y1s2 - s - 1 - Y1s2 = G1s2 .
Solving for Y1s2, we have

Y1s2 =
s + 1

s2 - 1
+ a 1

s2 - 1
bG1s2 =

1
s - 1

+ a 1

s2 - 1
bG1s2 .

Hence,

 y1t2 = ℒ-1e 1
s - 1

f 1t2 + ℒ-1e 1

s2 - 1
  G1s2 f 1t2

 = et + ℒ-1e 1

s2 - 1
  G1s2 f 1t2 .

Referring to the table of Laplace transforms on the inside back cover, we find

ℒ5sinh t61s2 =
1

s2 - 1
 ,

so we can now express

ℒ-1e 1

s2 - 1
 G1s2 f 1t2 = sinh t * g1t2 .

Thus,

y1t2 = et + L
t

0
 sinh1t - y2g1y2  dy

is the solution to the initial value problem (11). ◆

Example 2 Use the convolution theorem to find ℒ-151> 1s2 + 1226.

Solution Write

1

1s2 + 122 = a 1

s2 + 1
b a 1

s2 + 1
b  .

Since ℒ5sin t61s2 = 1> 1s2 + 12, it follows from the convolution theorem that

 ℒ-1e 1

1s2 + 122 f 1t2 = sin t * sin t = L
t

0
 sin1t - y2  sin y dy

 =
1
2

 L
t

0
3cos12y - t2 - cos t4dy†

 =
1
2
c sin12y - t2

2
d

t

0
-

1
2

 t cos t

 =
1
2
c sin t

2
-

sin1- t2
2

d -
1
2

 t cos t

 =
sin t - t cos t

2
 . ◆

†Here we used the identity sin a sin b = 1
23cos1b - a2 - cos1b + a24.
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As the preceding example attests, the convolution theorem is useful in determining the 
inverse transforms of rational functions of s. In fact, it provides an alternative to the method of 
partial fractions. For example,

ℒ-1e 1
1s - a21s - b2 f 1t2 = ℒ-1e a 1

s - a
b a 1

s - b
b f 1t2 = eat * ebt ,

and all that remains in finding the inverse is to compute the convolution eat * ebt.

In the early 1900s, V. Volterra introduced integro-differential equations in his study of 
population growth. These equations enabled him to take into account “hereditary influences.” 
In certain cases, these equations involved a convolution. As the next example shows, the con-
volution theorem helps to solve such integro-differential equations.

Example 3 Solve the integro-differential equation

(12) y′1t2 = 1 - L
t

0
 y1t - y2e-2y dy ,  y102 = 1 .

Solution Equation (12) can be written as

(13) y′1t2 = 1 - y1t2 * e-2t .

Let Y1s2 = ℒ5y61s2. Taking the Laplace transform of (13) (with the help of the convolution 
theorem) and solving for Y1s2, we obtain

 sY1s2 - 1 =
1
s

- Y1s2 a 1
s + 2

b

 sY1s2 + a 1
s + 2

bY1s2 = 1 +
1
s

 a s2 + 2s + 1
s + 2

bY1s2 =
s + 1

s

 Y1s2 =
1s + 121s + 22

s1s + 122 =
s + 2

s1s + 12

 Y1s2 =
2
s

-
1

s + 1
 .

Hence, y1t2 = 2 - e-t . ◆

The transfer function H1s2 of a linear system is defined as the ratio of the Laplace trans-
form of the output function y1t2 to the Laplace transform of the input function g1t2, under 
the assumption that all initial conditions are zero. That is, H1s2 = Y1s2 >G1s2. If the linear 
system is governed by the differential equation

(14) ay″ + by′ + cy = g1t2 ,  t 7 0 ,

where a, b, and c are constants, we can compute the transfer function as follows. Take the 
Laplace transform of both sides of (14) to get

as2Y1s2 - asy102 - ay′102 + bsY1s2 - by102 + cY1s2 = G1s2 .
Because the initial conditions are assumed to be zero, the equation reduces to

1as2 + bs + c2Y1s2 = G1s2 .
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Thus the transfer function for equation (14) is

(15) H1s2 =
Y1s2
G1s2 =

1

as2 + bs + c
 .

You may note the similarity of these calculations to those for finding the auxiliary  
equation for the homogeneous equation associated with (14) (recall Section 4.2, page 157). 
Indeed, the first step in inverting Y1s2 = G1s2 >1as2 + bs + c2 would be to find the roots 
of the denominator as2 + bs + c, which is identical to solving the characteristic equation  
for (14).

The function h1t2 J ℒ-15H61t2 is called the impulse response function for the system 
because, physically speaking, it describes the solution when a mass–spring system is struck by 
a hammer (see Section 7.9). We can also characterize h1t2 as the unique solution to the homo-
geneous problem

(16) ah″ + bh′ + ch = 0 ;  h102 = 0 ,  h′102 = 1>a .

Indeed, observe that taking the Laplace transform of the equation in (16) gives

(17) a3s2H1s2 - sh102 - h′1024 + b3sH1s2 - h1024 + cH1s2 = 0 .

Substituting in h102 = 0 and h′102 = 1>a and solving for H1s2 yields

H1s2 =
1

as2 + bs + c
 ,

which is the same as the formula for the transfer function given in equation (15).
One nice feature of the impulse response function h is that it can help us describe the 

solution to the general initial value problem

(18) ay″ + by′ + cy = g1t2 ;  y102 = y0 ,  y′102 = y1 .

From the discussion of equation (14), we can see that the convolution h * g is the solution to (18) in 
the special case when the initial conditions are zero (i.e., y0 = y1 = 02. To deal with nonzero 
initial conditions, let yk denote the solution to the corresponding homogeneous initial value 
problem; that is, yk solves

(19) ay″ + by′ + cy = 0 ;  y102 = y0 ,  y′102 = y1 .

Then, the desired solution to the general initial value problem (18) must be h * g + yk. 
Indeed, it follows from the superposition principle (see Theorem 3 in Section 4.5) that since 
h * g is a solution to equation (14) and yk is a solution to the corresponding homogeneous 
equation, then h * g + yk is a solution to equation (14). Moreover, since h * g has initial con-
ditions zero,

1h * g2102 + yk102 = 0 + y0 = y0 ,

1h * g2 ′102 + y=k102 = 0 + y1 = y1 .

We summarize these observations in the following theorem.
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Equation (20) is instructive in that it highlights how the value of y at time t depends on the 
initial conditions (through yk1t22 and on the nonhomogeneity g1t2 (through the convolution 
integral). It even displays the causal nature of the dependence, in that the value of g1y2 cannot 
influence y1t2 until t Ú y.

A proof of Theorem 12 that does not involve Laplace transforms is outlined in Project E 
in Chapter 4.

In the next example, we use Theorem 12 to find a formula for the solution to an initial 
value problem.

Solution Using Impulse Response Function

Theorem 12. Let I be an interval containing the origin. The unique solution to the initial 
value problem

ay″ + by′ + cy = g ;  y102 = y0 ,  y′102 = y1 ,

where a, b, and c are constants and g is continuous on I, is given by

(20) y1t2 = 1h * g21t2 + yk1t2 = L
t

0
 h1t - y2g1y2dy + yk1t2 ,

where h is the impulse response function for the system and yk is the unique solution to (19).

Example 4 A linear system is governed by the differential equation

(21) y″ + 2y′ + 5y = g1t2 ;  y102 = 2 ,  y′102 = -2 .

Find the transfer function for the system, the impulse response function, and a formula for the 
solution.

Solution According to formula (15), the transfer function for (21) is

H1s2 =
1

as2 + bs + c
=

1

s2 + 2s + 5
=

1

1s + 122 + 22 .

The inverse Laplace transform of H1s2 is the impulse response function

 h1t2 = ℒ-15H61t2 =
1
2

 ℒ-1e 2

1s + 122 + 22 f 1t2

 =
1
2

 e-t sin 2t .

To solve the initial value problem, we need the solution to the corresponding homogeneous 
problem. The auxiliary equation for the homogeneous equation is r2 + 2r + 5 = 0, which has 
roots r = -1 { 2i. Thus a general solution is C1e

-t cos 2t + C2e
-t sin 2t. Choosing C1 and C2 

so that the initial conditions in (21) are satisfied, we obtain yk1t2 = 2e-t cos 2t.
Hence, a formula for the solution to the initial value problem (21) is

1h * g21t2 + yk1t2 =
1
2

 L
t

0
e-1t-y2 sin321t - y24g1y2  dy + 2e-t cos 2t . ◆
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In Problems 1– 4, use the convolution theorem to obtain a for-
mula for the solution to the given initial value problem, where 
g1t2 is piecewise continuous on 30, ∞ 2 and of exponential 
order.

1. y″ - 2y′ + y = g1t2 ;  y102 = -1 ,  y′102 = 1

2. y″ + 9y = g1t2 ;  y102 = 1 ,  y′102 = 0

3. y″ + 4y′ + 5y = g1t2 ;  y102 = 1 ,  y′102 = 1

4. y″ + y = g1t2 ;  y102 = 0 ,  y′102 = 1

In Problems 5–12, use the convolution theorem to find the 
inverse Laplace transform of the given function.

20. y′1t2 + L
t

0
1t - y2y1y2  dy = t ,  y102 = 0

21. y′1t2 + y1t2 - L
t

0
 y1y2sin1t - y2  dy = -sin t ,

y102 = 1

22. y′1t2 - 2 L
t

0
 et-yy1y2  dy = t ,  y102 = 2

In Problems 23–28, a linear system is governed by the given 
initial value problem. Find the transfer function H1s2 for the 
system and the impulse response function h1t2 and give a  
formula for the solution to the initial value problem.

23. y″ + 9y = g1t2 ;  y102 = 2 ,  y′102 = -3

24. y″ - 9y = g1t2 ;  y102 = 2 ,  y′102 = 0

25. y″ - y′ - 6y = g1t2 ;  y102 = 1 ,  y′102 = 8

26. y″ + 2y′ - 15y = g1t2 ;    y102 = 0 ,  y′102 = 8

27. y″ - 2y′ + 5y = g1t2 ;  y102 = 0 ,  y′102 = 2

28. y″ - 4y′ + 5y = g1t2 ;  y102 = 0 ,  y′102 = 1

In Problems 29 and 30, the current I1t2 in an RLC circuit 
with voltage source E1t2 is governed by the initial value 
problem

LI ″1t2 + RI′1t2 +
1
C

 I1t2 = e1t2 ,
I102 = a ,  I′102 = b ,

where e1t2 = E′1t2 (see Figure 7.25). For the given con-
stants R, L, C, a, and b, find a formula for the solution I1t2 in 
terms of e1t2 .

E 

Resistance R 

Voltage
source

Capacitance C 

Inductance L 

Figure 7.25 Schematic representation of an RLC series circuit

29. R = 20 Ω, L = 5 H, C = 0.005 F, a = -1 A,  
b = 8 A/sec.

7.8 EXERCISES

5. 
1

s1s2 + 12 6. 
1

1s + 121s + 22
7. 

14
1s + 221s - 52 8. 

1

1s2 + 422

9. 
s

1s2 + 122 10. 
1

s31s2 + 12

11. 
s

1s - 121s + 22  cHint: 
s

s - 1
= 1 +

1
s - 1

 . d

12. 
s + 1

1s2 + 122

13. Find the Laplace transform of

f1t2 J L
t

0
1t - y2e3ydy .

14. Find the Laplace transform of

f1t2 J L
t

0
 ey sin1t - y2   dy .

In Problems 15–22, solve the given integral equation or  
integro-differential equation for y1t2.
15. y1t2 + 3 L

t

0
 y1y2sin1t - y2  dy = t

16. y1t2 + L
t

0
 et-yy1y2  dy = sin t

17. y1t2 + L
t

0
1t - y2y1y2  dy = 1

18. y1t2 + L
t

0
1t - y2y1y2  dy = t2

19. y1t2 + L
t

0
1t - y22y1y2  dy = t3 + 3
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30. R = 80 Ω, L = 10 H, C = 1>410 F, a = 2 A,  
b = -8 A/sec.

31. Use the convolution theorem and Laplace transforms to 
compute 1 * 1 * 1.

32. Use the convolution theorem and Laplace transforms to 
compute 1 * t * t2.

33. Prove property (5) in Theorem 10.

34. Prove property (6) in Theorem 10.

35. Use the convolution theorem to show that

ℒ-1e F1s2
s
f 1t2 = L

t

0
 f1y2  dy ,

where F1s2 = ℒ5f61s2.

36. Using Theorem 5 in Section 7.3 and the convolution  
theorem, show that

 L
t

0
 L
y

0
 f1z2dz dy = ℒ-1e F1s2

s2 f 1t2

 = t L
t

0
 f1y2dy - L

t

0
y f1y2dy ,

where F1s2 = ℒ5f61s2.
37. Prove directly that if h1t2 is the impulse response func-

tion characterized by equation (16), then for any con-
tinuous g1t2, we have 1h * g2102 = 1h * g2′102 = 0. 
[Hint: Use Leibniz’s rule, described in Project E of 
Chapter 4.]

In mechanical systems, electrical circuits, bending of beams, and other applications, one 
encounters functions that have a very large value over a very short interval. For example, the 
strike of a hammer exerts a relatively large force over a relatively short time, and a heavy 
weight concentrated at a spot on a suspended beam exerts a large force over a very small sec-
tion of the beam. To deal with violent forces of short duration, physicists and engineers use the 
delta function introduced by Paul A. M. Dirac. Relaxing our standards of rigor for the moment, 
we present the following somewhat informal definition.

7.9 Impulses and the Dirac Delta Function

Dirac Delta Function

Definition 10. The Dirac delta function d1t2 is characterized by the following two 
properties:

(1) D1t2 = e0 , t 3 0 ,
“infinite,” t = 0 ,

and

(2) L
H

−H
 f1t2D1t2dt = f102

for any function f1t2 that is continuous on an open interval containing t = 0.

By shifting the argument of d1t2, we have d1t - a2 = 0, t ≠ a, and

(3) L
∞

-∞
 f1t2d1t - a2dt = f1a2

for any function f1t2 that is continuous on an interval containing t = a.
It is obvious that d1t - a2 is not a function in the usual sense; instead it is an example of 

what is called a generalized function or a distribution. Despite this shortcoming, the Dirac 
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406     Chapter 7  Laplace Transforms

delta function was successfully used for several years to solve various physics and engineering 
problems before Laurent Schwartz mathematically justified its use!

A heuristic argument for the existence of the Dirac delta function can be made by consid-
ering the impulse of a force over a short interval. If a force ℱ1t2 is applied from time t0 to time 
t1, then the impulse due to ℱ is the integral

Impulse J L
t1

t0

 ℱ1t2dt .

By Newton’s second law, we see that

(4) L
t1

t0

 ℱ1t2  dt = L
t1

t0

 m 
dy
dt

 dt = my1t12 - my1t02 ,

where m denotes mass and y denotes velocity. Since my represents the momentum, we can 
interpret equation (4) as saying: The impulse equals the change in momentum.

When a hammer strikes an object, it transfers momentum to the object. This change in 
momentum takes place over a very short period of time, say, 3t0, t14. If we let ℱ11t2 represent 
the force due to the hammer, then the area under the curve ℱ11t2 is the impulse or change in 
momentum (see Figure 7.26). If, as is illustrated in Figure 7.27, the same change in momentum 
takes place over shorter and shorter time intervals—say, 3t0, t24 or 3t0, t34—then the average 
force must get greater and greater in order for the impulses (the areas under the curves ℱn) to 
remain the same. In fact, if the forces ℱn having the same impulse act, respectively, over the 
intervals 3t0, tn4, where tn S t0 as n S ∞ , then ℱn approaches a function that is zero for t ≠ t0 
but has an infinite value for t = t0. Moreover, the areas under the ℱn’s have a common value. 
Normalizing this value to be 1 gives

L
∞

-∞
 ℱn1t2  dt = 1  for all n .

t 0 0 
t 

t 1 

^ 
1 

Impulse 

Figure 7.26 Force due to a blow from a hammer

t 0 0 
t 

t 3 t 2 t 1 

^ 
3 

^ 
2 

^ 
1 

Figure 7.27 Forces with the same impulse
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Section 7.9  Impulses and the Dirac Delta Function     407

When t0 = 0, we derive from the limiting properties of the ℱn’s a “function” d that satisfies 
property (1) and the integral condition

(5) L
∞

-∞
d1t2  dt = 1 .

Notice that (5) is a special case of property (2) that is obtained by taking f1t2 K 1. It is inter-
esting to note that (1) and (5) actually imply the general property (2) (see Problem 33).

The Laplace transform of the Dirac delta function can be quickly derived from property 
(3). Since d1t - a2 = 0 for t ≠ a, then setting f1t2 = e-st in (3), we find for a Ú 0

L
∞

0
e-std1t - a2  dt = L

∞

-∞
e-std1t - a2  dt = e-as .

Thus, for a Ú 0,

(6) ℒ5D1t − a261s2 = e-as .

An interesting connection exists between the unit step function and the Dirac delta func-
tion. Observe that as a consequence of equation (5) and the fact that d1x - a2 is zero for x 6 a 
and for x 7 a, we have

(7)  L
t

-∞
d1x - a2  dx = e0 , t 6 a ,

1 , t 7 a

  = u1t - a2 .
If we formally differentiate both sides of (7) with respect to t (in the spirit of the fundamental 
theorem of calculus), we find

d1t - a2 = u′1t - a2 .
Thus it appears that the Dirac delta function is the derivative of the unit step function. That is, 
in fact, the case if we consider “differentiation” in a more general sense.†

The Dirac delta function is used in modeling mechanical vibration problems involving 
an impulse. For example, a mass–spring system at rest that is struck by a hammer exerting an 
impulse on the mass might be governed by the symbolic initial value problem

(8) x″ + x = d1t2 ;  x102 = 0 ,  x′102 = 0 ,

where x1t2 denotes the displacement from equilibrium at time t. We refer to this as a symbolic 
problem because while the left-hand side of equation (8) represents an ordinary function, the 
right-hand side does not. Consequently, it is not clear what we mean by a solution to problem (8). 
Because d1t2 is zero everywhere except at t = 0, one might be tempted to treat (8) as a homo-
geneous equation with zero initial conditions. But the solution to the latter is zero everywhere, 
which certainly does not describe the motion of the spring after the mass is struck by the hammer.

To define what is meant by a solution to (8), recall that d1t2 is depicted as the limit of 
forces ℱn1t2 having unit impulse and acting over shorter and shorter intervals. If we let yn1t2 
be the solution to the initial value problem

(9) y>n + yn = ℱn1t2 ;  yn102 = 0 ,  y=n102 = 0 ,

where d is replaced by ℱn, then we can think of the solution x1t2 to (8) as the limit (as n S ∞ 2 
of the solutions yn1t2.

†See Distributions, Complex Variables, and Fourier Transforms, by H. J. Bremermann (Addison-Wesley, Reading, 
MA, 1965).
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For example, let

ℱn1t2 J n - nu1t - 1>n2 = en , 0 6 t 6 1>n ,
0 , otherwise .

Taking the Laplace transform of equation (9), we find

1s2 + 12Yn1s2 =
n
s

 11 - e-s>n2 ,
and so

Yn1s2 =
n

s1s2 + 12 - e-s>n 
n

s1s2 + 12  .
Now

n

s1s2 + 12 =
n
s

-
ns

s2 + 1
= ℒ5n - n cos t61s2 .

Hence,

(10)  yn1t2 = n - n cos t - 3n - n cos1t - 1>n24 u1t - 1>n2
  = en - n cos t , 0 6 t 6 1>n ,

n cos1t - 1>n2 - n cos t , 1>n 6 t .

Fix t 7 0. Then for n large enough, we have 1>n 6 t. Thus,

 lim
nS ∞  

yn1t2 = lim
nS ∞
3n cos1t - 1>n2 - n cos t4

 = - lim
nS ∞

cos1t - 1>n2 - cos t

-1>n
 = - lim

hS ∞

cos1t + h2 - cos t

h
  (where h = -1>n) ,

 = -  
d
dt
1cos t2 = sin t .

Also, for t = 0, we have limnS ∞ yn102 = 0 = sin 0. Therefore,

lim
nS ∞  

yn1t2 = sin t .

Hence, the solution to the symbolic initial value problem (8) is x1t2 = sin t.
Fortunately, we do not have to go through the tedious process of solving for each yn in 

order to find the solution x of the symbolic problem. It turns out that the Laplace transform 
method when applied directly to (8) yields the derived solution x1t2. Indeed, simply taking the 
Laplace transform of both sides of (8), we obtain from (6) (with a = 0)

 1s2 + 12X1s2 = 1 ,

 X1s2 =
1

s2 + 1
 ,

which gives

x1t2 = ℒ-1 e 1

s2 + 1
f 1t2 = sin t .

A peculiarity of using the Dirac delta function is that the solution x1t2 = sin t of the sym-
bolic initial value problem (8) does not satisfy both initial conditions; that is, x′102 = 1 ≠ 0. 
This reflects the fact that the impulse d1t2 is applied at t = 0. Thus, the momentum x′ (observe 
that in equation (8) the mass equals one) jumps abruptly from x′102 = 0 to x′10+2 = 1.
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Section 7.9  Impulses and the Dirac Delta Function     409

In the next example, the Dirac delta function is used in modeling a mechanical vibration 
problem.

Example 1 A mass attached to a spring is released from rest 1 m below the equilibrium position for the 
mass–spring system and begins to vibrate. After p seconds, the mass is struck by a hammer 
exerting an impulse on the mass. The system is governed by the symbolic initial value problem

(11) 
d2x

dt2 + 9x = 3 d1t - p2 ;  x102 = 1 ,  
dx
dt

 102 = 0 ,

where x1t2 denotes the displacement from equilibrium at time t. Determine x1t2.
Solution Let X1s2 = ℒ5x61s2. Since

ℒ5x″61s2 = s2X1s2 - s   and   ℒ5d1t - p261s2 = e-ps ,

taking the Laplace transform of both sides of (11) and solving for X1s2 yields

 s2X1s2 - s + 9X1s2 = 3e-ps

 X1s2 =
s

s2 + 9
+ e-ps 3

s2 + 9
 = ℒ5cos 3t61s2 + e-psℒ5sin 3t61s2 .

Using the translation property (cf. page 386) to determine the inverse Laplace transform of 
X1s2, we find

 x1t2 = cos 3t + 3sin 31t - p24u1t - p2

 = e cos 3t , t 6 p ,
cos 3t - sin 3t , p 6 t

 = •
cos 3t , t 6 p ,22 cosa3t +

p

4
b  , p 6 t .

The graph of x1t2 is given in color in Figure 7.28. For comparison, the dashed curve depicts 
the displacement of an undisturbed vibrating spring. Note that the impulse effectively adds  
3 units to the momentum at time t = p. ◆

x(t)

t

2

2

1

0
3

3 4 12

12

-1

-

Figure 7.28 Displacement of a vibrating spring that is struck by a hammer at t = p
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In Section 7.8 we defined the impulse response function for

(12) ay″ + by′ + cy = g1t2
as the function h1t2 J ℒ-15H61t2, where H1s2 is the transfer function. Recall that H1s2 
is the ratio

H1s2 J
Y1s2
G1s2  ,

where Y1s2 is the Laplace transform of the solution to (12) with zero initial conditions and G1s2 
is the Laplace transform of g1t2. It is important to note that H1s2, and hence h1t2, does not 
depend on the choice of the function g1t2 in (12) [see equation (15) in Section 7.8, page 402]. 
However, it is useful to think of the impulse response function as the solution of the symbolic 
initial value problem

(13) ay″ + by′ + cy = D1t2 ;  y102 = 0 ,  y′102 = 0 .

Indeed, with g1t2 = d1t2, we have G1s2 = 1, and hence H1s2 = Y1s2. Consequently, 
h1t2 = y1t2. So we see that the function h1t2 is the response to the impulse d1t2 for a 
mechanical system governed by the symbolic initial value problem (13).

In Problems 1–6, evaluate the given integral.

1. L
∞

-∞
1t2 - 12d1t2  dt

2. L
∞

-∞
e3td1t2  dt

3. L
∞

-∞
1sin 3t2da t -

p

2
bdt

4. L
∞

-∞
 e-2td1t + 12  dt

5. L
∞

0
 e-2td1t - 12  dt

6. L
1

-1
1cos 2t2d1t2  dt

In Problems 7–12, determine the Laplace transform of the 
given generalized function.

15. y″ + 2y′ - 3y = d1t - 12 - d1t - 22 ;
y102 = 2 ,  y′102 = -2

16. y″ - 2y′ - 3y = 2 d1t - 12 - d1t - 32 ;
y102 = 2 ,  y′102 = 2

17. y″ - y = 4 d1t - 22 + t2 ;

y102 = 0 ,  y′102 = 2

18. y″ - y′ - 2y = 3 d1t - 12 + et ;

y102 = 0 ,  y′102 = 3

19. w″ + 6w′ + 5w = et d1t - 12 ;
w102 = 0 ,  w′102 = 4

20. y″ + 5y′ + 6y = e-t d1t - 22 ;
y102 = 2 ,  y′102 = -5

In Problems 21–24, solve the given symbolic initial value 
problem and sketch a graph of the solution.

21. y″ + y = d1t - 2p2 ;
y102 = 0 ,  y′102 = 1

22. y″ + y = d1t - p>22 ;
y102 = 0 ,  y′102 = 1

23. y″ + y = -d1t - p2 + d1t - 2p2 ;
y102 = 0 ,  y′102 = 1

24. y″ + y = d1t - p2 - d1t - 2p2 ;
y102 = 0 ,  y′102 = 1

7.9 ExErcisEs

7. d1t - 12 - d1t - 32 8. 3d1t - 12
9. td1t - 12 10. t3d1t - 32

11. d1t - p2sin t 12. etd1t - 32
In Problems 13–20, solve the given symbolic initial value 
problem.

13. w″ + w = d1t - p2 ; w102 = 0 ,  w′102 = 0

14. y″ + 2y′ + 2y = d1t - p2 ; y102 = 1 , y′102 = 1
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In Problems 25–28, find the impulse response function h1t2 
by using the fact that h1t2 is the solution to the symbolic 
initial value problem with g1t2 = d1t2 and zero initial  
conditions.

Formally using the mean value theorem for definite inte-
grals, verify that if f1t2 is continuous, then the above 
properties imply

L
∞

-∞
 f1t2d1t2  dt = f102 .

34. Formally using integration by parts, show that

L
∞

-∞
 f1t2d′1t2  dt = - f ′102 .

Also show that, in general,

L
∞

-∞
 f1t2d1n21t2  dt = 1-12n f 1n2102 .

35. Figure 7.29 shows a beam of length 2l that is imbed-
ded in a support on the left side and free on the right. 
The vertical deflection of the beam a distance x from the 
support is denoted by y1x2. If the beam has a concen-
trated load L acting on it in the center of the beam, then 
the deflection must satisfy the symbolic boundary value 
problem

EIy1421x2 = L d1x - l2 ;
y102 = y′102 = y″12l2 = y‴12l2 = 0 ,

where E, the modulus of elasticity, and I, the moment 
of inertia, are constants. Find a formula for the dis-
placement y1x2 in terms of the constants l, L, E, and 
I. [Hint: Let y″102 = A and y‴102 = B. First solve 
the fourth-order symbolic initial value problem and 
then use the conditions y″12l2 = y‴12l2 = 0 to 
determine A and B.]

25. y″ + 4y′ + 8y = g1t2 26. y″ - 6y′ + 13y = g1t2
27. y″ - 2y′ + 5y = g1t2 28. y″ - y = g1t2
29. A mass attached to a spring is released from rest 1 m 

below the equilibrium position for the mass–spring sys-
tem and begins to vibrate. After p>2 sec, the mass is 
struck by a hammer exerting an impulse on the mass. The 
system is governed by the symbolic initial value problem

 
d2x

dt2 + 9x = -3 da t -
p

2
b  ;

 x102 = 1 , 
dx
dt

 102 = 0 ,

where x1t2 denotes the displacement from equilibrium at 
time t. What happens to the mass after it is struck?

30. You have probably heard that soldiers are told not to 
march in cadence when crossing a bridge. By solving the 
symbolic initial value problem

y″ + y = a∞
k = 1
d1t - 2kp2 ; y102 = 0 , y′102 = 0 ,

explain why soldiers are so instructed. [Hint: See  
Section 4.10.]

31. A linear system is said to be stable if its impulse response 
function h1t2 remains bounded as t S + ∞ . If the linear 
system is governed by

ay″ + by′ + cy = g1t2 ,
where b and c are not both zero, show that the system is 
stable if and only if the real parts of the roots to

ar2 + br + c = 0

are less than or equal to zero.

32. A linear system is said to be asymptotically stable 
if its impulse response function satisfies h1t2S 0 as 
t S + ∞ . If the linear system is governed by

ay″ + by′ + cy = g1t2 ,
show that the system is asymptotically stable if and only 
if the real parts of the roots to

ar2 + br + c = 0

are strictly less than zero.

33. The Dirac delta function may also be characterized by 
the properties

d1t2 = e0 , t ≠ 0 ,
“infinite,” t = 0 ,

and        L
∞

-∞
d1t2  dt = 1 .

Imbedded
in support

L

2l
l

y(x)

x
Free

Figure 7.29 Beam imbedded in a support  
under a concentrated load at x = l
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We can use the Laplace transform to reduce certain systems of linear differential equations with 
initial conditions to a system of linear algebraic equations, where again the unknowns are the 
transforms of the functions that make up the solution. Solving for these unknowns and taking 
their inverse Laplace transforms, we can then obtain the solution to the initial value problem 
for the system.

7.10 Solving Linear Systems with Laplace Transforms

Example 1 Solve the initial value problem

(1)
  x′1t2 - 2y1t2 = 4t ;  x102 = 4 ,

  y′1t2 + 2y1t2 - 4x1t2 = -4t - 2 ;   y102 = -5 .

Solution Taking the Laplace transform of both sides of the differential equations gives

(2)

  ℒ5x′61s2 - 2ℒ5y61s2 =
4

s2 ,

  ℒ5y′61s2 + 2ℒ5y61s2 - 4ℒ5x61s2 = -  
4

s2 -
2
s
 .

Let X1s2 J ℒ5x61s2 and Y1s2 J ℒ5y61s2. Then, by Theorem 4 on page 362,

 ℒ5x′61s2 = sX1s2 - x102 = sX1s2 - 4 ,

 ℒ5y′61s2 = sY1s2 - y102 = sY1s2 + 5 .

Substituting these expressions into system (2) and simplifying, we find

(3)
  sX1s2 - 2Y1s2 =

4s2 + 4

s2  ,

  -4X1s2 + 1s + 22Y1s2 = -  
5s2 + 2s + 4

s2  .

To eliminate Y1s2 from the system, we multiply the first equation by 1s + 22 and the 
second by 2 and then add to obtain

3s1s + 22 - 84X1s2 =
1s + 2214s2 + 42

s2  -  
10s2 + 4s + 8

s2  .

This simplifies to

X1s2 =
4s - 2

1s + 421s - 22  .

To compute the inverse transform, we first write X1s2 in the partial fraction form

X1s2 =
3

s + 4
+

1
s - 2

 .

Hence, from the Laplace transform table on the inside back cover, we find that

(4) x1t2 = 3e-4t + e2t .
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Section 7.10  Solving Linear Systems with Laplace Transforms     413

To determine y1t2, we could solve system (3) for Y1s2 and then compute its inverse 
Laplace transform. However, it is easier just to solve the first equation in system (1) for y1t2 in 
terms of x1t2. Thus,

y1t2 =
1
2

 x′1t2 - 2t .

Substituting x1t2 from equation (4), we find that

(5) y1t2 = -6e-4t + e2t - 2t .

The solution to the initial value problem (1) consists of the pair of functions x1t2, y1t2 given 
by equations (4) and (5). ◆

In Problems 1–19, use the method of Laplace transforms to 
solve the given initial value problem. Here x′, y′, etc., denotes 
differentiation with respect to t; so does the symbol D.

1.  x′ = 3x - 2y ;   x102 = 1 ,

 y′ = 3y - 2x ;   y102 = 1

2.  x′ = x - y ;   x102 = -1 ,

 y′ = 2x + 4y ;   y102 = 0

3.  z′ + w′ = z - w ;   z102 = 1 ,

 z′ - w′ = z - w ;   w102 = 0

4. x′ - 3x + 2y = sin t ;   x102 = 0 ,

4x - y′ - y = cos t ;   y102 = 0

5.  x′ = y + sin t ;   x102 = 2 ,

 y′ = x + 2 cos t ;   y102 = 0

6. x′ - x - y = 1 ;    x102 = 0 ,

 -x + y′ - y = 0 ;   y102 = -5>2
7.  1D - 423x4 + 6y = 9e-3t ;    x102 = -9 ,

x - 1D - 123y4 = 5e-3t ;   y102 = 4

8.  D3x4 + y = 0 ;   x102 = 7>4 ,

 4x + D3y4 = 3 ;   y102 = 4

9. x″ + 2y′ = -x ;  x102 = 2 ,   x′102 = -7 ,

-3x″ + 2y″ = 3x - 4y ;  y102 = 4 ,  y′102 = -9

10. x″ + y = 1 ;   x102 = 1 ,   x′102 = 1 ,

 x + y″ = -1 ;   y102 = 1 ,     y′102 = -1

11.  x′ + y = 1 - u1t - 22 ;   x102 = 0 ,

 x + y′ = 0 ;   y102 = 0

12. x′ + y = x ;  x102 = 0 ,   y102 = 1 ,

 2x′ + y″ = u1t - 32 ;   y′102 = -1

13.  x′ - y′ = 1sin t2u1t - p2 ;   x102 = 1 ,

 x + y′ = 0 ;   y102 = 1

14. x″ = y + u1t - 12 ;  x102 = 1 ,   x′102 = 0 ,

y″ = x + 1 - u1t - 12 ;   y102 = 0 ,  y′102 = 0

15. x′ - 2y = 2 ;    x112 = 1 ,

 x′ + x - y′ = t2 + 2t - 1 ;   y112 = 0

16.  x′ - 2x + y′ = - 1cos t + 4 sin t2 ;   x1p2 = 0 ,

 2x + y′ + y  = sin t + 3 cos t ;   y1p2 = 3

17. x′ + x - y′ = 21t - 22e t- 2 ;     x122 = 0 ,

 x″ - x′ - 2y = -e t-2 ;   x′122 = 1 ,  y122 = 1

18. x′ - 2y = 0 ;   x102 = 0 ,

x′ - z′ = 0 ;   y102 = 0 ,

x + y′ - z = 3 ;   z102 = -2

19. x′ = 3x + y - 2z ;   x102 = -6 ,

y′ = -x + 2y + z ;   y102 = 2 ,

z′ = 4x + y - 3z ;   z102 = -12

20. Use the method of Laplace transforms to solve

 x″ + y′ = 2 ;   x102 = 3 ,  x′102 = 0 ,

 4x + y′ = 6 ;   y112 = 4 .

[Hint: Let y102 = c and then solve for c.]

21. For the interconnected tanks problem of Section 5.1, 
page 241, suppose that the input to tank A is now con-
trolled by a valve which for the first 5 min delivers 6 L/min 
of pure water, but thereafter delivers 6 L/min of brine 
at a concentration of 0.02 kg/L. Assuming that all other 
data remain the same (see Figure 5.1, page 241), deter-
mine the mass of salt in each tank for t 7 0 if x0 = 0 and 
y0 = 0.04.

22. Recompute the coupled mass–spring oscillator motion 
in Problem 1, Exercises 5.6 (page 287), using Laplace 
transforms.

7.10 ExErcisEs
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414     Chapter 7  Laplace Transforms

In Problems 23 and 24, find a system of differential equations 
and initial conditions for the currents in the networks given by 
the schematic diagrams; the initial currents are all assumed to 
be zero. Solve for the currents in each branch of the network. 
(See Section 5.7 for a discussion of electrical networks.)

23. 

6 V

2 V

I2 I3

I1

I1

1 V

0.2 H

0.1 H

Figure 7.30 RL network for Problem 23

24. 

50 V

I1 I3
I2

20 V10 V

0.005 H 0.01 H

Figure 7.31 RL network for Problem 24

chapter 7 summary

The use of the Laplace transform helps to simplify the process of solving initial value problems 
for certain differential and integral equations, especially when a forcing function with jump 
discontinuities is involved. The Laplace transform ℒ5f6 of a function f1t2 is defined by

ℒ5f61s2 J L
∞

0
 e−stf1t2  dt

for all values of s for which the improper integral exists. If f1t2 is piecewise continuous on 
30, ∞ 2 and of exponential order a (that is, 0 f1t2 0  grows no faster than a constant times eat as 
t S ∞ ), then ℒ5f61s2 exists for all s 7 a.

The Laplace transform can be interpreted as an integral operator that maps a function f1t2 
to a function F1s2. The transforms of commonly occurring functions appear in Table 7.1, page 
356, and on the inside back cover of this book. The use of these tables is enhanced by several 
important properties of the operator ℒ.

Linearity: ℒ5af + bg6 = aℒ5f6 + bℒ5g6.

Translation in s: ℒ5eatf1t261s2 = F1s - a2, where F = ℒ5f6.

Translation in t: ℒ5g1t2u1t - a261s2 = e-asℒ5g1t + a261s2, where u1t - a2 
is the step function that equals 1 for t 7 a and 0 for t 6 a. If f1t2 is continuous and 
f102 = 0, then

ℒ-15e-asF1s261t2 = f1t - a2u1t - a2 ,
where f = ℒ-15F6.

Convolution Property: ℒ5f * g6 = ℒ5f6ℒ5g6, where f * g denotes the 
 convolution function

1f * g21t2 J L
t

0
 f1t - y2g1y2  dy .
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Probably the best tool for numerically approximating a function f1x2 near a particular point 
x0 is the Taylor polynomial. The formula for the Taylor polynomial of degree n centered at x0, 
approximating a function f1x2 possessing n derivatives at x0, is given by

(1)  pn1x2 = f1x02 + f ′1x021x - x02 +
f ″1x02

2!
 1x - x022

  = +  
f ‴1x02

3!
 1x - x023 + g +

f 1n21x02
n!

 1x - x02n

  = an

j= 0
 
f 1j21x02

j!
 1x - x02j .

This polynomial matches the value of f and the values of its derivatives, up to the order of the 
polynomial, at the point x0:

 pn1x02 = f1x02 ,
 p=n1x02 = f ′1x02 ,
 p>n1x02 = f ″1x02 ,

f
 p1n2n 1x02 = f 1n21x02 .

For example, the first four Taylor polynomials for ex, expanded around x0 = 0, are

(2)

  p01x2 = 1 ,

  p11x2 = 1 + x ,

  p21x2 = 1 + x +
x2

2
 ,

  p31x2 = 1 + x +
x2

2
+

x3

6
 .

Their efficacy in approximating the exponential function is demonstrated in Figure 8.1, page 422.
The Taylor polynomial of degree n differs from the polynomial of the next lower degree 

only in the addition of a single term:

pn1x2 = pn - 11x2 +
f 1n21x02

n!
 1x - x02n ,

8.1  Introduction: The Taylor Polynomial  
Approximation
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422     Chapter 8  Series Solutions of Differential equations

so a listing like (2) is clearly redundant—one can read off p01x2, p11x2, and p21x2 from the 
formula for p31x2. In fact, if f is infinitely differentiable, pn1x2 is just the 1n + 12st partial 
sum of the Taylor series†

(3) aH
j= 0

 
f 1 j21x02

j!
 1x − x02 j .

†Truncated Taylor series were introduced in Section 3.7 (page 132) as a tool for constructing recursive formulas for 
approximate solutions of differential equations.

Example 1 Determine the fourth-degree Taylor polynomials matching the functions ex, cos x, and sin x at 
x0 = 2.

Solution For f1x2 = ex we have f 1j2122 = e2 for each j = 0, 1, . . . , so from (1) we obtain

ex ≈ e2 + e21x - 22 +
e2

2!
 1x - 222 +

e2

3!
 1x - 223 +

e2

4!
 1x - 224 .

For f1x2 = cos x, we have f ′1x2 = -sin x, f ″1x2 = -cos x, f ‴1x2 = sin x, f 1421x2 = cos x, 
so that

cos x ≈ cos 2 - 1sin 221x - 22 -
cos 2

2!
 1x - 222 +

sin 2
3!

 1x - 223 +
cos 2

4!
 1x - 224 .

In a similar fashion we find

sin x ≈ sin 2 + 1cos 221x - 22 -
sin 2
2!

 1x - 222 -
cos 2

3!
 1x - 223

      +
sin 2
4!

 1x - 224 . ◆

0

2

3

1

1

1 + x +

1 + x

2 3

-1

-1-2-3

1 + x + + x3

6
x2

2
x2

ex

2

Figure 8.1 Graphs of Taylor polynomials for ex
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Section 8.1  Introduction: the taylor polynomial approximation      423

To relate this approximation scheme to our theme (the solution of differential equations), 
we alter our point of view; we regard a differential equation not as a “condition to be satisfied,” 
but as a prescription for constructing the Taylor polynomials for its solutions. Besides provid-
ing a very general method for computing accurate approximate solutions to the equation near 
any particular “starting” point, this interpretation also provides insight into the role of the ini-
tial conditions. The following example illustrates the method.

Example 2 Find the first few Taylor polynomials approximating the solution around x0 = 0 of the initial 
value problem

y″ = 3y′ + x2y ;  y102 = 10 ,  y′102 = 5 .

Solution To construct

pn1x2 = y102 + y′102x +
y″102

2!
 x2 +

y‴102
3!

 x3 + g +
y1n2102

n!
 xn ,

we need the values of y102, y′102, y″102, y‴102, etc. The first two are provided by the given 
initial conditions. The value of y″102 can be deduced from the differential equation itself and 
the values of the lower derivatives:

y″102 = 3y′102 + 02y102 = 3 # 5 + 0 # 10 = 15 .

Now since y″ = 3y′ + x2y holds for some interval around x0 = 0, we can differentiate both 
sides to derive

 y‴ = 3y″ + 2 xy + x2y′ ,
 y142 = 3y‴ + 2y + 2xy′ +  2xy′ + x2y″ = 3y‴ + 2y +  4xy′ + x2y″ ,
 y152 = 3y142 + 2y′ + 4y′ + 4xy″ + 2xy″ + x2y‴ = 3y142 + 6y′ + 6xy″ + x2y‴ .

Thus on substituting x = 0 we deduce, in turn, that

 y‴102 = 3 # 15 + 2 # 0 # 10 + 02 # 5 = 45 ,

 y142102 = 3 # 45 + 2 # 10 + 4 # 0 # 5 + 02 # 15 = 155 ,

 y152102 = 3 # 155 + 6 # 5 + 6 # 0 # 15 + 02 # 45 = 495 .

Consequently the Taylor polynomial of degree 5 for the solution is given by

 p51x2 = 10 + 5x +
15
2!

 x2 +
45
3!

 x3 +
155
4!

 x4 +
495
5!

 x5

 = 10 + 5x +
15
2

 x2 +
15
2

 x3 +
155
24

 x4 +
33
8

 x5 . ◆

It is of interest to note that if the original equation in Example 2 were replaced by 
y″ = 3y′ + x1>3y, the third derivative would look like y‴ = 3y″ + y> 13x2>32 + x1>3y′, and 
y‴102 would not exist. Only Taylor polynomials of degree 0 through 2 can be constructed for 
the solution to this problem.

The next example demonstrates the application of the Taylor polynomial method to a 
nonlinear equation.

Example 3 Determine the Taylor polynomial of degree 3 for the solution to the initial value problem

(4) y′ =
1

x + y + 1
 ,  y102 = 0 .
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424     Chapter 8  Series Solutions of Differential equations

Solution Using y102 = 0, we substitute x = 0 and y = 0 into equation (4) and find that y′102 = 1. 
To determine y″102, we differentiate both sides of the equation in (4) with respect to x, thereby 
getting an expression for y″1x2 in terms of x, y1x2, and y′1x2. That is,

(5) y″1x2 = 1-123x + y1x2 + 14-231 + y′1x24 .
Substituting x = 0, y102 = 0, and y′102 = 1 in (5), we obtain

y″102 = 1-12112-211 + 12 = -2 .

Similarly, differentiating (5) and substituting, we obtain

 y‴1x2 = 23x + y1x2 + 14-331 + y′1x242 - 3x + y1x2 + 14-2y″1x2 ,
 y‴102 = 2112-311 + 122 - 112-21-22 = 10 .

Thus, the Taylor polynomial of degree 3 is

p31x2 = 0 + x - x2 +
10
6

 x3 = x - x2 +
5
3

 x3 . ◆

In a theoretical sense we can estimate the accuracy to which a Taylor polynomial pn1x2 
approximates its target function f1x2 for x near x0. Indeed, if we let en1x2 measure the accu-
racy of the approximation,

en1x2 J f1x2 - pn1x2 ,
then calculus provides us with several formulas for estimating en. The most transparent is due 
to Lagrange: if the 1n + 12st derivative of f exists and is continuous on an interval containing 
x0 and x, then

(6) En1x2 =
f  1n + 121J2
1n + 12!  1x − x02n + 1 ,

where j, although unknown, is guaranteed to lie between x0 and x.†

Figure 8.1 on page 422 and equation (6) suggest that one might control the error in the 
Taylor polynomial approximation by increasing the degree n of the polynomial (i.e., taking 
more terms), thereby increasing the factor 1n + 12! in the denominator. This possibility is lim-
ited, of course, by the number of times f can be differentiated. In Example 2, for instance, 
the solution did not have a fifth derivative at x0 = 0 (f 152102 is “infinite”). Thus, we could 
not construct p51x2, nor could we conclude anything about the accuracy of p41x2 from the 
Lagrange formula.

However, for Example 3 we could, in theory, compute every derivative of the solution 
y1x2 at x0 = 0, and speculate on the convergence of the Taylor series

a∞
j= 0

 
y1j21x02

j!
 1x - x02j = lim

nS ∞
 an
j= 0

 
y1j21x02

j!
 1x - x02j

to the solution y1x2. Now for nonlinear equations such as (4), the factor f (n + 1)1j2 in the 
Lagrange error formula may grow too rapidly with n, and the convergence can be thwarted. 
But if the differential equation is linear and its coefficients and nonhomogeneous term enjoy 
a feature known as analyticity, our wish is granted; the error does indeed diminish to zero as 
the degree n goes to infinity, and the sequence of Taylor polynomials can be guaranteed to 
converge to the actual solution on a certain (known) interval. For instance, the exponential, 

†Equation (6) is proved by invoking the mean value theorem; see, e.g., Principles of Mathematical Analysis, 3rd ed., 
by Walter Rudin (McGraw-Hill, New York, 1976).
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sine, and cosine functions in Example 1 all satisfy linear differential equations with constant 
coefficients, and their Taylor series converge to the corresponding function values. (Indeed, 
all their derivatives are bounded on any interval of finite length, so the Lagrange formula for 
their approximation errors approaches zero as n increases, for each value of x.) This topic is the 
theme for the early sections of this chapter.

In Sections 8.5 and 8.6 we’ll see that solutions to second-order linear equations can exhibit 
very wild behavior near points x0 where the coefficient of y″ is zero; so wild, in fact, that no 
Euler or Runge–Kutta algorithm could hope to keep up with them. But a clever modification 
of the Taylor polynomial method, due to Frobenius, provides very accurate approximations to 
the solutions in such regions. It is this latter feature, perhaps, that underscores the value of the 
Taylor methodology in the current practice of applied mathematics.

In Problems 1–8, determine the first three nonzero terms in 
the Taylor polynomial approximations for the given initial 
value problem.

1. y′ = x2 + y2 ;  y102 = 1

2. y′ = y2 ;  y102 = 2

3. y′ = sin y + ex ;    y102 = 0

4. y′ = sin1x + y2 ;  y102 = 0

5. x″ + tx = 0 ;  x102 = 1 ,  x′102 = 0

6. y″ + y = 0 ;  y102 = 0 ,  y′102 = 1

7. y″1u2 + y1u23 = sin u ;

y102 = 0 ,  y′102 = 0

8. y″ + sin y = 0 ;  y102 = 1 ,  y′102 = 0

9. (a)  Construct the Taylor polynomial p31x2 of degree 3 
for the function f1x2 = ln x around x = 1.

 (b) Using the error formula (6), show that

0 ln11.52 - p311.52 0 … 10.524

4
= 0.015625 .

 (c)  Compare the estimate in part (b) with the actual 
error by calculating 0 ln11.52 - p311.52 0  .

 (d)  Sketch the graphs of ln x and p31x2 (on the same 
axes) for 0 6 x 6 2.

10. (a)  Construct the Taylor polynomial p31x2 of degree 3 
for the function f1x2 = 1> 12 - x2 around x = 0.

 (b) Using the error formula (6), show that

` f   a1
2
b - p3a1

2
b ` = ` 2

3
- p3a1

2
b ` … 2

35 .

 (c)  Compare the estimate in part (b) with the actual 
error

` 2
3

- p3a 1
2
b `  .

 (d)  Sketch the graphs of 1> 12 - x2 and p31x2 (on the 
same axes) for -2 6 x 6 2.

11. Argue that if y = f1x2 is a solution to the differential 
equation y″ + p1x2y′ + q1x2y = g1x2 on the interval 
1a, b2, where p, q, and g are each twice-differentiable, 
then the fourth derivative of f1x2 exists on 1a, b2.

12. Argue that if y = f1x2 is a solution to the differential 
equation y″ + p1x2y′ + q1x2y = g1x2 on the inter-
val 1a, b2, where p, q, and g possess derivatives of all 
orders, then f has derivatives of all orders on 1a, b2.

13. Duffing’s Equation. In the study of a nonlinear spring 
with periodic forcing, the following equation arises:

y″ + ky + ry3 = A cos vt .

Let k = r = A = 1 and v = 10. Find the first three 
nonzero terms in the Taylor polynomial approximations 
to the solution with initial values y102 = 0, y′102 = 1.

14. Soft versus Hard Springs. For Duffing’s equa-
tion given in Problem 13, the behavior of the solutions 
changes as r changes sign. When r 7 0, the restoring 
force ky + ry3 becomes stronger than for the linear spring 
1r = 02. Such a spring is called hard. When r 6 0, the 
restoring force becomes weaker than the linear spring and 
the spring is called soft. Pendulums act like soft springs.

  (a)  Redo Problem 13 with r = -1. Notice that for the 
initial conditions y102 = 0, y′102 = 1, the soft 
and hard springs appear to respond in the same way 
for t small.

  (b)  Keeping k = A = 1 and v = 10, change the initial 
conditions to y102 = 1 and y′102 = 0. Now redo 
Problem 13 with r = {1.

  (c)  Based on the results of part (b), is there a difference 
between the behavior of soft and hard springs for t 
small? Describe.

8.1 ExErcIsEs
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426     Chapter 8  Series Solutions of Differential equations

15. The solution to the initial value problem

xy″1x2 + 2y′1x2 + xy1x2 = 0 ;

y102 = 1 ,  y′102 = 0

has derivatives of all orders at x = 0 (although this is far 
from obvious). Use L’Hôpital’s rule to compute the Tay-
lor polynomial of degree 2 approximating this solution.

16. van der Pol Equation. In the study of the vacuum 
tube, the following equation is encountered:

y″ + 10.121y2 - 12y′ + y = 0 .

Find the Taylor polynomial of degree 4 approximat-
ing the solution with the initial values y102 = 1, 
y′102 = 0.

The differential equations studied in earlier sections often possessed solutions y1x2 that could 
be written in terms of elementary functions such as polynomials, exponentials, sines, and 
cosines. However, many important equations arise whose solutions cannot be so expressed.  
In the previous chapters, when we encountered such an equation we either settled for express-
ing the solution as an integral (see Exercises 2.2, Problem 27, page 46) or as a numerical 
approximation (Sections 3.6, 3.7, and 5.3). However, the Taylor polynomial approximation 
scheme of the preceding section suggests another possibility. Suppose the differential equation 
(and initial conditions) permit the computation of every derivative y1n2 at the expansion point 
x0. Are there any conditions that would guarantee that the sequence of Taylor polynomials 
would converge to the solution y1x2 as the degree of the polynomials tends to infinity:

lim
nS ∞

 an

j= 0
 
y1j21x02

j!
 1x - x02j = a∞

j= 0
 
y1j21x02

j!
 1x - x02j = y1x2 ?

In other words, when can we be sure that a solution to a differential equation is represented 
by its Taylor series? As we’ll see, the answer is quite favorable, and it enables a powerful new 
technique for solving equations.

The most efficient way to begin an exploration of this issue is by investigating the alge-
braic and convergence properties of generic expressions that include Taylor series—“long 
polynomials” so to speak, or more conventionally, power series.

Power series
A power series about the point x0 is an expression of the form

(1) a∞
n = 0

 an1x - x02n = a0 + a11x - x02 + a21x - x022 + g ,

where x is a variable and the an’s are constants. We say that (1) converges at the point x = c if 
the infinite series (of real numbers) Σ∞

n = 0 an1c - x02n converges; that is, the limit of the partial 
sums,

lim
NS ∞

 a
N

n = 0
 an1c - x02n ,

exists (as a finite number). If this limit does not exist, the power series is said to diverge at  
x = c. Observe that (1) converges at x = x0, since

a∞
n = 0

 an1x0 - x02n = a0 + 0 + 0 + g = a0 .

8.2 Power series and Analytic Functions
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But what about convergence for other values of x? As stated in the following Theorem 1, a 
power series of the form (1) converges for all values of x in some “interval” centered at x0 and 
diverges for x outside this interval. Moreover, at the interior points of this interval, the power 
series converges absolutely in the sense that Σ∞

n = 0 0 an1x - x02n 0  converges. [Recall that abso-
lute convergence of a series implies (ordinary) convergence of the series.]

Ratio Test for Power Series

Theorem 2. If, for n large, the coefficients an are nonzero and satisfy

lim
nS ∞
` an

an + 1
` = L  10 … L … ∞ 2 ,

then the radius of convergence of the power series Σ∞
n = 0 an1x - x02n is r = L.

Radius of Convergence

Theorem 1. For each power series of the form (1), there is a number r 10 … r … ∞ 2, 
called the radius of convergence of the power series, such that (1) converges absolutely 
for 0 x - x0 0 6 r and diverges for 0 x - x0 0 7 r. (See Figure 8.2.)

If the series (1) converges for all values of x, then r = ∞ . When the series (1) 
converges only at x0, then r = 0.

Notice that Theorem 1 settles the question of convergence except at the endpoints x0 { r. 
Thus, these two points require separate analysis. To determine the radius of convergence r, one 
method that is often easy to apply is the ratio test.

2 1 2 1 

  Absolute
convergence DivergenceDivergence ? ? 

x 0 x 0 - x 0  + 

Figure 8.2 Interval of convergence

Remark. We caution that if the ratio 0 an>an + 1 0  does not have a limit, then methods other 
than the ratio test (e.g., root test) must be used to determine r. In particular, if infinitely many 
of the an’s are zero, then the ratio test cannot be directly applied. (However, Problem 7 demon-
strates how to apply the result for series containing only “even-order” or “odd-order” terms.)

Example 1 Determine the convergence set of

(2) a∞
n = 0

 
1-22n

n + 1
 1x - 32n .
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Power Series Vanishing on an Interval

Theorem 3. If Σ∞
n = 0 an1x - x02n = 0 for all x in some open interval, then each 

coefficient an equals zero.

Solution Since an = 1-22n> 1n + 12, we have

 lim
nS ∞
` an

an + 1
` = lim

nS ∞
` 1-22n1n + 22
1-22n + 11n + 12 `

 = lim
nS ∞

 
n + 2

21n + 12 =
1
2
= L .

By the ratio test, the radius of convergence is r = 1>2. Hence, the series (2) converges abso-
lutely for 0 x - 3 0 6 1>2 and diverges when 0 x - 3 0 7 1>2. It remains only to determine what 
happens when 0 x - 3 0 = 1>2, that is, when x = 5>2 and x = 7>2.

Set x = 5>2, and the series (2) becomes the harmonic series Σ∞
n = 0 1n + 12-1, which is 

known to diverge. When x = 7>2, the series (2) becomes an alternating harmonic series, 
which is known to converge. Thus, the power series converges for each x in the half-open inter-
val 15>2, 7>24; outside this interval it diverges. ◆

For each value of x for which the power series Σ∞
n = 0 an 1x - x02n converges, we get a 

number that is the sum of the series. It is appropriate to denote this sum by f1x2, since its value 
depends on the choice of x. Thus, we write

f1x2 = a∞
n = 0

 an1x - x02n

for all numbers x in the convergence interval. For example, the geometric series Σ∞
n = 0 x

n has 
the radius of convergence r = 1 and the sum function f1x2 = 1> 11 - x2; that is,

(3) 
1

1 − x
= 1 + x + x2 + P = aH

n = 0
 xn for  −1 * x * 1 .

In this chapter we’ll frequently appeal to the following basic property of power series.

Given two power series

(4) f1x2 = a∞
n = 0

 an1x - x02n ,  g1x2 = a∞
n = 0

 bn1x - x02n ,

with nonzero radii of convergence, we want to find power series representations for the sum, 
product, and quotient of the functions f1x2 and g1x2. The sum is simply obtained by termwise 
addition:

f1x2 + g1x2 = a∞
n = 0
1an + bn21x - x02n

for all x in the common interval of convergence of the power series in (4). The power series 
representation for the product f1x2g1x2 is a bit more complicated. To provide motivation for 
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the formula, we treat the power series for f1x2 and g1x2 as “long polynomials,” apply the dis-
tributive law, and group the terms in powers of 1x - x02:

3a0 + a11x - x02 + a21x - x022 + g4 # 3b0 + b11x - x02 + b21x - x022 + g4
   = a0b0 + 1a0b1 + a1b021x - x02 + 1a0b2 + a1b1 + a2b021x - x022 + g .

The general formula for the product is

(5) f1x2g1x2 = a∞
n = 0

 cn1x - x02n ,

where

(6) cn J an

k = 0
 akbn - k .

The power series in (5) is called the Cauchy product, and it will converge for all x in the 
common open interval of convergence for the power series of f and g.†

The quotient f1x2 >g1x2 will also have a power series expansion about x0, provided 
g1x02 ≠ 0. However, the radius of convergence for this quotient series may be smaller than 
that for f1x2 or g1x2. Unfortunately, there is no nice formula for obtaining the coefficients 
in the power series for f1x2 >g1x2. However, we can use the Cauchy product to divide power 
series indirectly (see Problem 15 on page 434). The quotient series can also be obtained by 
formally carrying out polynomial long division (see Problem 16).

The next theorem explains, in part, why power series are so useful.

Differentiation and Integration of Power Series

Theorem 4. If the series f1x2 = Σ∞
n = 0 an1x - x02n has a positive radius of conver-

gence r, then f is differentiable in the interval 0 x - x0 0 6 r and termwise differentiation 
gives the power series for the derivative:

f ′1x2 = a∞
n = 1

 nan1x - x02n - 1  for  0 x - x0 0 6 r .
Furthermore, termwise integration gives the power series for the integral of f:

L f1x2dx = a∞
n = 0

 
an

n + 1
 1x - x02n + 1 + C for 0 x - x0 0 6 r .

†Actually, it may happen that the radius of convergence of the power series for f1x2g1x2 or f1x2 + g1x2 is larger 
than that for the power series of f or g.

Example 2 Starting with the geometric series (3) for 1> 11 - x2, find a power series for each of the follow-
ing functions:

(a) 
1

1 + x2 .  (b) 
1

11 - x22 . (c) arctan x.

Solution (a) Replacing x by -x2 in (3) immediately gives

(7) 
1

1 + x2 = 1 - x2 + x4 - x6 + g + 1-12nx2n + g .
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(b) Notice that 1> 11 - x22 is the derivative of the function f1x2 = 1> 11 - x2. Hence, 
on differentiating (3) term by term, we obtain

(8) f ′1x2 =
1

11 - x22 = 1 + 2x + 3x2 + 4x3 + g + nxn - 1 + g .

(c) Since

arctan x = L
x

0

1

1 + t2 dt ,

we can integrate the series in (7) termwise to obtain the series for arctan x. Thus,

L
x

0

1

1 + t2 dt = L
x

0
{1 - t2 + t4 - t6 + g + 1-12nt2n + g} dt

(9) arctan  x = x -
1
3

 x3 +
1
5

 x5 -
1
7

 x7 + g +
1-12nx2n + 1

2n + 1
+ g . ◆

It is important to keep in mind that since the geometric series (3) has the (open) interval 
of convergence 1-1, 12, the representations (7), (8), and (9) are at least valid in this interval. 
[Actually, the series (9) for arctan x converges for all 0 x 0 … 1.]

shifting the summation Index
The index of summation in a power series is a dummy index just like the variable of integration 
in a definite integral. Hence,

a∞
n = 0

 an1x - x02n = a∞
k = 0

 ak1x - x02k = a∞
i= 0

 ai1x - x02i .

Just as there are times when we want to change the variable of integration, there are situa-
tions (and we will encounter many in this chapter) when it is desirable to change or shift the 
index of summation. This is particularly important when one has to combine two different 
power series.

Example 3 Express the series

a∞
n = 2

 n1n - 12an xn - 2

as a series where the generic term is xk instead of xn - 2.

Solution Writing out a few terms of the series, we have

a∞
n = 2

 n1n - 12an xn - 2

= 2 # 1a2 x2 - 2 + 3 # 2a3 x3 - 2 + 4 # 3a4 x4 - 2 + 5 # 4a5 x5 - 2 + 6 # 5a6 x6 - 2 + g
= 2 # 1a2 x0 + 3 # 2a3 x1 + 4 # 3a4 x2 + 5 # 4a5 x3 + 6 # 5a6 x4 + g .

Relabeling the terms by the exponents of x, we get

a∞
k = 0

 1k + 221k + 12ak + 2 xk

In effect we have implemented the change of variables k = n - 2, or n = k + 2; thus when 
n = 2, then k = 0. ◆
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We employ this technique for changing indices in the next two examples.

Example 4 Show that

x3 a∞
n = 0

 n
21n - 22an xn = a∞

n = 3
1n - 3221n - 52an - 3 xn .

Solution We start by taking the x3 inside the summation on the left-hand side:

x3 a∞
n = 0

 n
21n - 22an xn = a∞

n = 0
 n

21n - 22an xn + 3 .

To rewrite this with generic term xk, we set k = n + 3. Thus n = k - 3, and n = 0 corre-
sponds to k = 3. Straightforward substitution thus yields

a∞
n = 0

 n
21n - 22an xn + 3 = a∞

k = 3
1k - 3221k - 52ak - 3 xk .

By replacing k by n, we obtain the desired form. ◆

Example 5 Show that the identity

a∞
n = 1

 nan - 1x
n - 1 + a∞

n = 2
 bn xn + 1 = 0

implies that a0 = a1 = a2 = 0 and an = -bn - 1> 1n + 12 for n Ú 3.

Solution First, we rewrite both series in terms of xk. For the first series, we set k = n - 1, and hence 
n = k + 1, to write

a∞
n = 1

 nan - 1x
n - 1 = a∞

k = 0
1k + 12ak xk .

Then with k = n + 1, n = k - 1, the second series becomes

a∞
n = 2

 bn xn + 1 = a∞
k = 3

 bk - 1x
k .

The identity thus states

a∞
k = 0
1k + 12ak xk + a∞

k = 3
 bk - 1x

k = 0 ,

and so we have a power series that sums to zero; consequently, by Theorem 3, each of its coef-
ficients equals zero. For k = 3, 4, . . . , both series contribute to the coefficient of xk, and thus 
we confirm that

1k + 12ak + bk - 1 = 0

or ak = -bk - 1> 1k + 12 for k Ú 3. For k = 0, 1, or 2, only the first series contributes, and we 
find, in turn,

10 + 12a0 = 0 ,
11 + 12a1 = 0 ,

12 + 12a2 = 0 .

Hence, a0 = a1 = a2 = 0. ◆
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Analytic Functions
Not all functions are expressible as power series. Those distinguished functions that can be so 
represented are called analytic.

Analytic Function

Definition 1. A function f is said to be analytic at x0 if, in an open interval about x0, 
this function is the sum of a power series Σ∞

n = 0 an1x - x02n that has a positive radius of 
convergence.

For example, a polynomial function b0 + b1x + g + bn xn is analytic at every x0, since 
we can always rewrite it in the form a0 + a11x - x02 + g + an1x - x02n. A rational func-
tion P1x2 >Q1x2, where P1x2 and Q1x2 are polynomials without a common factor, is an ana-
lytic function except at those x0 for which Q1x02 = 0. As you may recall from calculus, the 
elementary functions ex, sin x, and cos x are analytic for all x, while ln x is analytic for x 7 0. 
Some familiar representations are

(10)  ex = 1 + x +
x2

2!
+

x3

3!
+ g  = a∞

n = 0
 
xn

n!
 ,

(11)  sin x = x -
x3

3!
+

x5

5!
- g  = a∞

n = 0
 
1-12n

12n + 12! x2n + 1 ,

(12)  cos x = 1 -
x2

2!
+

x4

4!
- g  = a∞

n = 0
 
1-12n

12n2!  x2n ,

(13)  ln x = 1x - 12 -
1
2

 1x - 122 +
1
3

 1x - 123 - g = a∞
n = 1

1-12n - 1

n
 1x - 12n ,

where (10), (11), and (12) are valid for all x, whereas (13) is valid for x in the half-open interval 
10, 24.

From Theorem 4 on the differentiation of power series, we see that a function f analytic 
at x0 is differentiable in a neighborhood of x0. Moreover, because f ′ has a power series rep-
resentation in this neighborhood, it too is analytic at x0. Repeating this argument, we see that 
f ″, f 132, etc., exist and are analytic at x0. Consequently, if a function does not have derivatives 
of all orders at x0, then it cannot be analytic at x0. The function f1x2 = 0 x - 1 0  is not analytic 
at x0 = 1 because f ′112 does not exist; and f1x2 = x7>3 is not analytic at x0 = 0 because 
f ‴102 does not exist.

Now we can deduce something very specific about the possible power series that can rep-
resent an analytic function. If f1x2 is analytic at x0, then (by definition) it is the sum of some 
power series that converges in a neighborhood of x0:

f1x2 = a∞
n = 0

 an1x - x02n .
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By the reasoning in the previous paragraph, the derivatives of f have convergent power series 
representations

 f ′1x2 = a∞
n = 0

 nan1x - x02n - 1 = 0 + a∞
n = 1

 nan1x - x02n - 1 ,

 f ″1x2 = a∞
n = 0

 n1n - 12an1x - x02n - 2 = 0 + 0 + a∞
n = 2

 n1n - 12an1x - x02n - 2 ,

f

 f 1j21x2 = a∞
n = 0

 n1n - 12g1n - 3j - 14 2an1x - x02n - j ,

 = a∞
n = j

 n1n - 12g1n - 3j - 14 2an1x - x02n - j ,

f

But if we evaluate these series at x = x0, we learn that

 f1x02 = a0 ,

 f ′1x02 = 1 # a1 ,

 f ″1x02 = 2 # 1 # a2 ,
f

 f 1j21x02 = j! # aj ,
f

that is, aj = f 1j21x02 >j! and the power series must coincide with the Taylor series†

a∞
j= 0

 
f 1j21x02

j!
 1x - x02j

about x0. Any power series—regardless of how it is derived—that converges in some neighbor-
hood of x0 to a function has to be the Taylor series of that function. For example, the expansion 
for arctan x given in (9) of Example 2 must be its Taylor expansion.

With these facts in mind we are ready to turn to the study of the effectiveness of power 
series techniques for solving differential equations. In the next sections, you will find it helpful 
to keep in mind that if f and g are analytic at x0, then so are f + g, cf, fg, and f>g if g1x02 ≠ 0. 
These facts follow from the algebraic properties of power series discussed earlier.

†When the expansion point x0 is zero, the Taylor series is also known as the Maclaurin series.

In Problems 1–6, determine the convergence set of the given 
power series. 3. a∞

n= 0
 
n2

2n  1x + 22n

8.2 ExErcIsEs

1. a∞
n= 0

 
2-n

n + 1
 1x - 12n 2. a∞

n= 0
 
3n

n!
 xn

5. a∞
n= 1

 
3

n3 1x - 22n

4. a∞
n= 1

 
4

n2 + 2n
 1x - 32n

6. a∞
n= 0

 
1n + 22!

n!
 1x + 22n
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7. Sometimes the ratio test (Theorem 2) can be applied to a  
power series containing an infinite number of zero  
coefficients, provided the zero pattern is regular. Use 
Theorem 2 to show, for example, that the series

a0 + a2 x2 + a4 x4 + a6 x6 + g = a∞
k = 0

 a2k x2k

has a radius of convergence r = 2L, if

lim
nS ∞
` a2k

a2k + 2
` = L ,

and that

a1x + a3 x3 + a5 x5 + a7 x7 + g

   = a∞
k = 0

 a2k + 1 x2k + 1

has a radius of convergence r = 2M, if

lim
kS ∞
` a2k + 1

a2k + 3
` = M .

[Hint: Let z = x2.4
8. Determine the convergence set of the given power series.

  (a) a∞
k = 0

 2
2kx2k (b) a∞

k = 0
 22k + 1x2k + 1

  (c) sin x [equation (11)] (d) cos x [equation (12)]

  (e) 1sin x2 >x = a∞
n= 0
1-12nx2n> 12n + 12!

  (f) a∞
k = 0

 22kx4k

In Problems 9 and 10, find the power series expansion 
Σ∞

n= 0 an xn for f1x2 + g1x2, given the expansions for 
f1x2 and g1x2.
9. f1x2 = a∞

n= 0
 

1
n + 1

 xn ,  g1x2 = a∞
n= 1

 2
-nxn - 1

10. f1x2 = a∞
n= 3

  
2n

n!
 1x - 12n - 2 , g1x2 = a∞

n= 1
 
n2

2n  1x - 12n - 1

In Problems 11–14, find the first three nonzero terms in the 
power series expansion for the product f1x2g1x2.
11. f1x2 = ex = a∞

n= 0
 
1
n!

 xn ,

g1x2 = sin x = a∞
k = 0

 
1-12k

12k + 12! x2k + 1

12. f1x2 = sin x = a∞
k = 0

  
1-12k

12k + 12! x2k + 1 ,

g1x2 = cos x = a∞
k = 0

 
1-12k

12k2!  x2k

13. f1x2 = e-x = a∞
n= 0

 
1-12n

n!
 xn ,

g1x2 = 11 + x2-1 = a∞
n= 0

 1-12nxn

14. f1x2 = ex = a∞
n= 0

  
1
n!

 xn ,

g1x2 = e-x = a∞
n= 0

  
1-12n

n!
 xn

15. Find the first few terms of the power series for the  
quotient

q1x2 = aa∞
n= 0

 
1
2n  xnbn aa∞

n= 0
 
1
n!

 xnb
by completing the following:

  (a)  Let q1x2 = Σ∞
n= 0 an  xn, where the coefficients an  

are to be determined. Argue that Σ∞
n= 0 x

n>2n is the 
Cauchy product of q1x2 and Σ∞

n= 0 x
n>n!.

  (b)  Use formula (6) of the Cauchy product (page 429) to 
deduce the equations

1

20 = a0 , 
1
2
= a0 + a1 , 

1

22 =
a0

2
+ a1 + a2 ,

1

23 =
a0

6
+

a1

2
+ a2 + a3 , c .

  (c)  Solve the equations in part (b) to determine the con-
stants a0, a1, a2, a3.

16. To find the first few terms in the power series for the quo-
tient q1x2 in Problem 15, treat the power series in the 
numerator and denominator as “long polynomials” and 
carry out long division. That is, perform

1 + x +
1
2

 x2 + g ` 1 +
1
2

 x +
1
4

 x2 + g .

In Problems 17–20, find a power series expansion for f ′1x2, 
given the expansion for f1x2.
17. f1x2 = 11 + x2-1 = a∞

n - 0
1-12nxn

18. f1x2 = sin x = a∞
k = 0

 
1-12k

12k + 12! x2k + 1

19. f1x2 = a∞
k = 0

 ak x2k 20. f1x2 = a∞
n= 1

 nan xn - 1

In Problems 21 and 22, find a power series expansion for 
g1x2 J 1 x

0  f1t2  dt, given the expansion for f1x2.
21. f1x2 = 11 + x2-1 = a∞

n= 0
 1-12nxn

22. f1x2 =
sin x

x
= a∞

k = 0
  
1-12k

12k + 12! x2k
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In Problems 23–26, express the given power series as a series 
with generic term xk.

  (b)  Since ln x = 1 x
1  1>t dt, use the result of part (a) and 

termwise integration to obtain the Taylor series for 
f1x2 = ln x about x0 = 1.

36. Let f1x2 and g1x2 be analytic at x0. Determine whether 
the following statements are always true or sometimes 
false:

  (a) 3 f1x2 + g1x2 is analytic at x0

  (b) f1x2 >g1x2 is analytic at x0

  (c) f′1x2 is analytic at x0

  (d) 3f1x243 - 1 x
x0

 g1t2  dt is analytic at x0

37. Let

f1x2 = e e-1>x2
 , x ≠ 0 ,

0 , x = 0 .

Show that f 1n2102 = 0 for n = 0, 1, 2, . . . and hence 
that the Maclaurin series for f1x2 is 0 + 0 + 0 + g, 
which converges for all x but is equal to f1x2 only when 
x = 0. This is an example of a function possessing 
derivatives of all orders (at x0 = 0), whose Taylor series 
converges, but the Taylor series (about x0 = 0) does not 
converge to the original function! Consequently, this 
function is not analytic at x = 0.

38. Compute the Taylor series for f1x2 = ln11 + x22 about 
x0 = 0. [Hint: Multiply the series for 11 + x22-1 by 2x 
and integrate.]

23. a∞
n= 1

 nan xn - 1 24. a∞
n= 2

 n1n - 12an xn + 2

25. a∞
n= 0

 an xn + 1 26. a
∞

n= 1
  

an

n + 3
 xn + 3

27. Show that

x2 a∞
n= 0

 n1n + 12an xn = a∞
n= 2

 1n - 221n - 12an - 2 x
n .

28. Show that

2a∞
n= 0

 an xn + 1 + a∞
n= 1

 nbn xn - 1

    = b1 + a∞
n= 1

 32an - 1 + 1n + 12b 
n + 14xn

 .

In Problems 29–34, determine the Taylor series about the 
point x0 for the given functions and values of x0.

29. f1x2 = cos  x ,  x0 = p
30. f1x2 = x-1 ,  x0 = 1

31. f1x2 =
1 + x
1 - x

 ,  x0 = 0

32. f1x2 = ln11 + x2 ,  x0 = 0

33. f1x2 = x3 + 3x - 4 ,  x0 = 1

34. f1x2 = 1x ,  x0 = 1

35. The Taylor series for f1x2 = ln x about x0 = 1 given in 
equation (13) can also be obtained as follows:

  (a)  Starting with the expansion 1> 11 - s2 = Σ∞
n= 0 s

n 
and observing that
1
x
=

1
1 + 1x - 12  ,

  obtain the Taylor series for 1>x about x0 = 1.

In this section we demonstrate a method for obtaining a power series solution to a linear differ-
ential equation with polynomial coefficients. This method is easier to use than the Taylor series 
method discussed in Section 8.1 and sometimes gives a nice expression for the general term in 
the power series expansion. Knowing the form of the general term also allows us to test for the 
radius of convergence of the power series.

We begin by writing the linear differential equation

(1) a21x2y″ + a11x2y′ + a01x2y = 0

in the standard form

(2) y″ + p1x2y′ + q1x2y = 0 ,

where p1x2 J a11x2 >a21x2 and q1x2 J a01x2 >a21x2.

8.3  Power Series Solutions to Linear  
Differential Equations
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Ordinary and Singular Points

Definition 2. A point x0 is called an ordinary point of equation (2) if both p and q are 
analytic at x0. If x0 is not an ordinary point, it is called a singular point of the equation.

Example 1 Determine all the singular points of

xy″ + x11 - x2-1y′ + 1sin x2y = 0 .

Solution Dividing the equation by x, we find that

p1x2 =
x

x11 - x2  ,  q1x2 =
sin x

x
 .

The singular points are those points where p1x2 or q1x2 fails to be analytic. Observe that 
p1x2 and q1x2 are the ratios of functions that are everywhere analytic. Hence, p1x2 and q1x2 
are analytic except, perhaps, when their denominators are zero. For p1x2 this occurs at x = 0 
and x = 1. But since we can cancel an x in the numerator and denominator of p1x2, that is,

p1x2 =
x

x11 - x2 =
1

1 - x
 ,

we see that p1x2 is actually analytic at x = 0.† Therefore, p1x2 is analytic except at x = 1.  
For q1x2, the denominator is zero at x = 0. Just as with p1x2, this zero is removable since 
q1x2 has the power series expansion

q1x2 =
sin x

x
=

x -
x3

3!
+

x5

5!
- g

x
= 1 -

x2

3!
+

x4

5!
- g .

Thus, q1x2 is everywhere analytic. Consequently, the only singular point of the given equation 
is x = 1. ◆

At an ordinary point x0 of equation (1) (or (2)), the coefficient functions p1x2 and q1x2 
are analytic. Hence, we might expect that the solutions to these equations inherit this property. 
From the discussion in Section 6.1 on linear equations, the continuity of p and q in a neigh-
borhood of x0 is sufficient to imply that equation (2) has two linearly independent solutions 
defined in that neighborhood. But analytic functions are not merely continuous—they possess 
derivatives of all orders in a neighborhood of x0. Thus we can differentiate equation (2) to show 
that y132 exists and, by a “bootstrap” argument, prove that solutions to (2) must likewise pos-
sess derivatives of all orders. Although we cannot conclude by this reasoning that the solutions 
enjoy the stronger property of analyticity, this is nonetheless the case (see Theorem 5 in 
Section 8.4, page 445). Hence, in a neighborhood of an ordinary point x0, the solutions to (1) 
(or (2)) can be expressed as a power series about x0.

To illustrate the power series method about an ordinary point, let’s look at a simple 
first-order linear differential equation.

†Such points are called removable singularities. In this chapter we assume in such cases that the function has been 
defined (or redefined) so that it is analytic at the point.
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Example 2 Find a power series solution about x = 0 to

(3) y′ + 2xy = 0 .

Solution The coefficient of y is the polynomial 2x, which is analytic everywhere, so x = 0 is an ordi-
nary point† of equation (3). Thus, we expect to find a power series solution of the form

(4) y1x2 = a0 + a1x + a2 x
2 + g = a∞

n = 0
 an xn .

Our task is to determine the coefficients an.
For this purpose we need the expansion for y′1x2 that is given by termwise differentiation 

of (4):

y′1x2 = 0 + a1 + 2a2 x + 3a3 x2 + g = a∞
n = 0

 nan xn - 1 .

We now substitute the series expansions for y and y′ into (3) and obtain

a∞
n = 0

 nan xn - 1 + 2xa∞
n = 0

 an xn = 0 ,

which simplifies to

(5) a∞
n = 0

 nan xn - 1 + a∞
n = 0

 2an xn + 1 = 0 .

To add the two power series in (5), we add the coefficients of like powers of x. If we write out 
the first few terms of these summations and add, we get

  1a1 + 2a2 x + 3a3 x2 + 4a4 x3 + g2 + 12a0 x + 2a1 x2 + 2a2 x3 + g2 = 0 ,

(6)  a1 + 12a2 + 2a02x + 13a3 + 2a12x2 + 14a4 + 2a22x3 + g = 0 .

For the power series on the left-hand side of equation (6) to be identically zero, we must have 
all the coefficients equal to zero. Thus,

 a1 = 0 ,  2a2 + 2a0 = 0 ,

 3a3 + 2a1 = 0 ,   4a4 + 2a2 = 0 ,    etc.

Solving the preceding system, we find

a1 = 0 ,  a2 = -a0 ,  a3 = -  
2
3

 a1 = 0 ,

a4 = -  
1
2

  a2 = -  
1
2

 1-a02 =
1
2

 a0 .

Hence, the power series for the solution takes the form

(7) y1x2 = a0 - a0 x2 +
1
2

  a0 x4 + g .

Although the first few terms displayed in (7) are useful, it is sometimes advantageous to 
have a formula for the general term in the power series expansion for the solution. To achieve 
this goal, let’s return to equation (5). This time, instead of just writing out a few terms, let’s 

†By an ordinary point of a first-order equation y′ + q1x2y = 0, we mean a point where q1x2 is analytic.
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shift the indices in the two power series so that they sum over the same powers of x, say, xk. To 
do this we shift the index in the first summation in (5) by letting k = n - 1. Then n = k + 1 
and k = 0 when n = 1. Hence, the first summation in (5) becomes

(8) a∞
n = 0

 nan xn - 1 = a∞
k = 0

 1k + 12ak + 1 xk .

In the second summation of (5), we put k = n + 1 so that n = k - 1 and k = 1 when n = 0. 
This gives

(9) a∞
n = 0

 2an xn + 1 = a∞
k = 1

 2ak - 1 xk .

Substituting (8) and (9) into (5) yields

(10) a∞
k = 0

 1k + 12ak + 1 xk + a∞
k = 1

 2ak - 1 xk = 0 .

Since the first summation in (10) begins at k = 0 and the second at k = 1, we break up the 
first into

a∞
k = 0

 1k + 12ak + 1 xk = a1 + a∞
k = 0

 1k + 12ak + 1 xk .

Then (10) becomes

(11) a1 + a∞
k = 1
31k + 12ak + 1 + 2ak - 14xk = 0 .

When we set all the coefficients in (11) equal to zero, we find

a1 = 0 ,

and, for all k Ú 1,

(12) 1k + 12ak + 1 + 2ak - 1 = 0 .

Equation (12) is a recurrence relation that we can use to determine the coefficient ak + 1 in 
terms of ak - 1; that is,

ak + 1 = -  
2

k + 1
 ak - 1 .

Setting k = 1, 2, . . . , 8 and using the fact that a1 = 0, we find

a2 = -  
2
2

 a0 = −a0  1k = 12 ,  a3 = -  
2
3

 a1 = 0  1k = 22 ,

a4 = -  
2
4

 a2 =
1
2

 a0  1k = 32 ,  a5 = -  
2
5

 a3 = 0  1k = 42 ,

a6 = -  
2
6

 a4 = −  
1
3!

 a0   1k = 52 ,   a7 = -  
2
7

 a5 = 0   1k = 62 ,

a8 = -  
2
8

 a6 =
1
4!

 a0  1k = 72 ,  a9 = -  
2
9

 a7 = 0  1k = 82 .

After a moment’s reflection, we realize that

a2n =
1-12n

n!
 a0 ,  n = 1, 2,c ,

a2n + 1 = 0 ,  n = 0, 1, 2,c .
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Substituting back into the expression (4), we obtain the power series solution

(13) y1x2 = a0 - a0 x2 +
1
2!

 a0 x4 + g = a0 a∞
n = 0

 
1-12n

n!
 x2n . 

Since a0 is left undetermined, it serves as an arbitrary constant, and hence (13) gives a general 
solution to equation (3). ◆

Applying the ratio test as described in Problem 7, Exercises 8.2 (page 434), we can verify 
that the power series in (13) has radius of convergence r = ∞ . Moreover, (13) is reminiscent 
of the expansion for the exponential function; you can check that it converges to

y1x2 = a0 e
-x2

 .

This general solution to the simple equation (3) can also be obtained by the method of separa-
tion of variables.

The convergence of the partial sums of (13), with a0 = 1, to the actual solution e-x2
 is 

depicted in Figure 8.3. Notice that taking more terms results in better approximations around 
x = 0. Note also, however, that every partial sum is a polynomial and hence must diverge at 
x = {∞ , while e-x2

 converges to zero, of course. Thus, each partial sum approximation even-
tually deteriorates for large 0 x 0 . This is a typical feature of power series approximations.

In the next example we use the power series method to obtain a general solution to a linear 
second-order differential equation.

4

3

2

1

 

-1

-2

-3 -2 -1 1 320

degree 4

degree 20

degree 0

degree 2

e-x2

Figure 8.3 Partial sum approximations to e-x2

Example 3 Find a general solution to

(14) 2y″ + xy′ + y = 0

in the form of a power series about the ordinary point x = 0.

Solution Writing

(15) y1x2 = a0 + a1 x + a2 x2 + g = a∞
n = 0

 an xn ,
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we differentiate termwise to obtain

 y′1x2 = a1 + 2a2 x + 3a3 x2 + g = a∞
n = 1

 nan xn - 1 ,

 y″1x2 = 2a2 + 6a3 x + 12a4 x2 + g = a∞
n = 2

 n1n - 12an xn - 2 .

Substituting these power series into equation (14), we find

(16) a∞
n = 2

 2n1n - 12an xn - 2 + a∞
n = 1

 nan xn + a∞
n = 0

 an xn = 0 .

To simplify the addition of the three summations in (16), let’s shift the indices so that the general 
term in each is a constant times xk. For the first summation, we substitute k = n - 2 and get

a∞
n = 2

 2n1n - 12an xn - 2 = a∞
k = 0

21k + 221k + 12ak + 2 xk .

In the second and third summations, we simply substitute k for n. With these changes of indi-
ces, equation (16) becomes

a∞
k = 0

 21k + 221k + 12ak + 2 xk + a
∞

k = 1
 kak xk + a∞

k = 0
 ak xk = 0 .

Next, we separate the x0 terms from the others and then combine the like powers of x in the 
three summations to get

4a2 + a0 + a∞
k = 1

 321k + 221k + 12ak + 2 + kak + ak4xk = 0 .

Setting the coefficients of this power series equal to zero yields

(17) 4a2 + a0 = 0

and the recurrence relation

(18) 21k + 221k + 12ak + 2 + 1k + 12ak = 0 ,  k Ú 1 .

We can now use (17) and (18) to determine all the coefficients ak of the solution in terms of a0 
and a1. Solving (18) for ak + 2 gives

(19) ak + 2 =
-1

21k + 22  ak ,  k Ú 1 .

Thus,

 a2 =
-1

22  a0 ,

 a3 =
-1

2 # 3
 a1  1k = 12 ,

 a4 =
-1

2 # 4
 a2 =

1

22 # 2 # 4
 a0   1k = 22 ,

 a5 =
-1

2 # 5
 a3 =

1

22 # 3 # 5
 a1   1k = 32 ,

 a6 =
-1

2 # 6
 a4 =

-1

23 # 2 # 4 # 6
 a0 =

-1

26 # 3!
 a0  1k = 42 ,

 a7 =
-1

2 # 7
 a5 =

-1

23 #  3 # 5 # 7
 a1  1k = 52 ,

 a8 =
-1

2 # 8
 a6 =

1

24 # 2 # 4 # 6 # 8
 a0 =

1

28 # 4!
 a0     1k = 62 .
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The pattern for the coefficients is now apparent. Since a0 and a1 are not restricted, we find

a2n =
1-12n

22nn!
 a0 ,  n Ú 1 ,

and

a2n + 1 =
1-12n

2n31 # 3 # 5g12n + 124  a1 ,  n Ú 1.

From this, two linearly independent solutions emerge; namely,

(20) y11x2 = a∞
n = 0

 
1-12n

22nn!
 x2n  1take a0 = 1, a1 = 02 ,

(21) y21x2 = a∞
n = 0

 
1-12n

2n31 # 3 # 5g12n + 124  x2n + 1  1take a0 = 0, a1 = 12 .

Hence, a general solution to (14) is a0y11x2 + a1y21x2. Approximations to the solutions 
y11x2, y21x2 are depicted in Figure 8.4. ◆

The method illustrated in Example 3 can also be used to solve initial value problems. 
Suppose we are given the values of y102 and y′102; then, from equation (15), we see that 
a0 = y102 and a1 = y′102. Knowing these two coefficients leads to a unique power series 
solution for the initial value problem.

The recurrence relation (18) in Example 3 involved just two of the coefficients, ak + 2 and 
ak, and we were fortunate in being able to deduce from this relation the general form for the 
coefficient an. However, many cases arise that lead to more complicated two-term or even to 
many-term recurrence relations. When this occurs, it may be impossible to determine the gen-
eral form for the coefficients an. In the next example, we consider an equation that gives rise to 
a three-term recurrence relation.

0

degree 5

degree 9

degree 21

degree 20

degree 4

degree 8

4

2

-2

-2

-4

2 4-4
x

y

partial sums
for y2(x)

partial sums
for y1(x)

Figure 8.4 Partial sum approximations to solutions for Example 3
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Example 4 Find the first few terms in a power series expansion about x = 0 for a general solution to

(22) 11 + x22y″ - y′ + y = 0 .

Solution Since p1x2 = - 11 + x22-1 and q1x2 = 11 + x22-1 are analytic at x = 0, then x = 0 is an 
ordinary point for equation (22). Hence, we can express its general solution in the form

y1x2 = a∞
n = 0

 an xn .

Substituting this expansion into (22) yields

 11 + x22a∞
n = 2

 n1n - 12an xn - 2 - a∞
n = 1

 nan xn - 1 + a∞
n = 0

 an xn = 0 ,

(23) a∞
n = 2

 n1n - 12an xn - 2 + a∞
n = 2

 n1n - 12an xn - a∞
n = 1

 nan xn - 1 + a∞
n = 0

 an xn = 0 .

To sum over like powers xk, we put k = n - 2 in the first summation of (23), k = n - 1 in the 
third, and k = n in the second and fourth. This gives

a∞
k = 0

 1k + 221k + 12ak + 2 xk + a∞
k = 2

 k1k - 12ak xk - a∞
k = 0

 1k + 12ak + 1 xk + a∞
k = 0

 ak xk = 0 .

Separating the terms corresponding to k = 0 and k = 1 and combining the rest under one 
summation, we have

 12a2 - a1 + a02 + 16a3 - 2a2 + a12x
 + a∞

k = 2
 31k + 221k + 12ak + 2 - 1k + 12ak + 1 + 1k1k - 12 + 12ak4xk = 0 .

Setting the coefficients equal to zero gives

(24)  2a2 - a1 + a0 = 0 ,

(25)  6a3 - 2a2 + a1 = 0 ,

and the recurrence relation

(26) 1k + 221k + 12ak + 2 - 1k + 12ak + 1 + 1k2 - k + 12ak = 0 ,  k Ú 2 .

We can solve (24) for a2 in terms of a0 and a1:

a2 =
a1 - a0

2
 .

Now that we have a2, we can use (25) to express a3 in terms of a0 and a1:

a3 =
2a2 - a1

6
=
1a1 - a02 - a1

6
=

-a0

6
 .

Solving the recurrence relation (26) for ak + 2, we obtain

(27) ak + 2 =
1k + 12ak + 1 - 1k2 - k + 12ak

1k + 221k + 12  ,    k Ú 2 .
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For k = 2, 3, and 4, this gives

 a4 =
3a3 - 3a2

4 # 3
=

a3 - a2

4

 =

-a0

6
- a a1 - a0

2
b

4
=

2a0 - 3a1

24
   1k = 22 ,

 a5 =
4a4 - 7a3

5 # 4
=

3a0 - a1

40
 1k = 32 ,

 a6 =
5a5 - 13a4

6 # 5
=

36a1 - 17a0

720
 1k = 42 .

We can now express a general solution in terms up to order 6, using a0 and a1 as the arbitrary 
constants. Thus,

(28)  y1x2 = a0 + a1x + a a1 - a0

2
bx2 -

a0

6
 x3

  + a 2a0 - 3a1

24
bx4 + a 3a0 - a1

40
bx5 + a 36a1 - 17a0

720
bx6 + g

  = a0a1 -
1
2

 x2 -
1
6

 x3 +
1
12

 x4 +
3
40

 x5 -
17
720

 x6 + gb

  + a1ax +
1
2

 x2 -
1
8

 x4 -
1
40

 x5 +
1
20

 x6 + gb  . ◆

Given specific values for a0 and a1, will the partial sums of the power series representation (28) 
yield useful approximations to the solution when x = 0.5? What about when x = 2.3 or x = 7.8? 
The answers to these questions certainly depend on the radius of convergence of the power series in 
(28). But since we were not able to determine a general form for the coefficients an in this example, 
we cannot use the ratio test (or other methods such as the root test, integral test, or comparison test) 
to compute the radius r. In the next section we remedy this situation by giving a simple procedure 
that determines a lower bound for the radius of convergence of power series solutions.

In Problems 1–10, determine all the singular points of the 
given differential equation.

1. 1x + 12y″ - x2y′ + 3y = 0 

2. x2y″ + 3y′ - xy = 0 

3. 1u2 - 22y″ + 2y′ + 1sin u2y = 0 

4. 1x2 + x2y″ + 3y′ - 6xy = 0 

5. 1t2 - t - 22x″ + 1t + 12x′ - 1t - 22x = 0 

6. 1x2 - 12y″ + 11 - x2y′ + 1x2 - 2x + 12y = 0 

7. 1sin x2y″ + 1cos x2y = 0 

8. exy″ - 1x2 - 12y′ + 2xy = 0 

9. 1sin u2y″ - 1ln u2y = 0 

10. 3ln1x - 124y″ + 1sin 2x2y′ - exy = 0 

In Problems 11–18, find at least the first four nonzero terms in 
a power series expansion about x = 0 for a general solution 
to the given differential equation.

11. y′ + 1x + 22y = 0 

12. y′ - y = 0 

13. z″ - x2z = 0 

14. 1x2 + 12y″ + y = 0 

15. y″ + 1x - 12y′ + y = 0 

16. y″ - 2y′ + y = 0 

17. w″ - x2w′ + w = 0 

18. 12x - 32y″ - xy′ + y = 0 

8.3 ExErcIsEs
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In Problems 19–24, find a power series expansion about 
x = 0 for a general solution to the given differential equa-
tion. Your answer should include a general formula for the 
coefficients.

19. y′ - 2xy = 0 

20. y″ + y = 0 

21. y″ - xy′ + 4y = 0 

22. y″ - xy = 0 

23. z″ - x2z′ - xz = 0 

24. 1x2 + 12y″ - xy′ + y = 0 

In Problems 25–28, find at least the first four nonzero terms in 
a power series expansion about x = 0 for the solution to the 
given initial value problem.

25. w″ + 3xw′ - w = 0 ;

w102 = 2 , w′102 = 0 

26. 1x2 - x + 12y″ - y′ - y = 0 ;

y102 = 0 , y′102 = 1 

27. 1x + 12y″ - y = 0 ;

y102 = 0 , y′102 = 1 

28. y″ + 1x - 22y′ - y = 0 ;

y102 = -1 , y′102 = 0 

In Problems 29–31, use the first few terms of the power series 
expansion to find a cubic polynomial approximation for the 
solution to the given initial value problem. Graph the lin-
ear, quadratic, and cubic polynomial approximations for 
-5 … x … 5.

29. y″ + y′ - xy = 0 ;

y102 = 1 , y′102 = -2 

30. y″ - 4xy′ + 5y = 0 ;

y102 = -1 , y′102 = 1 

31. 1x2 + 22y″ + 2xy′ + 3y = 0 ;

y102 = 1 ,  y′102 = 2 

32. Consider the initial value problem

y″ - 2xy′ - 2y = 0 ;

y102 = a0 ,  y′102 = a1 ,

where a0 and a1 are constants.

  (a)  Show that if a0 = 0, then the solution will be an odd 
function [that is, y1-x2 = -y1x2 for all x]. What 
happens when a1 = 0?

  (b)  Show that if a0 and a1 are positive, then the solution 
is increasing on 10, ∞ 2.

  (c)  Show that if a0 is negative and a1 is positive, then the 
solution is increasing on 1- ∞ , 02.

  (d)  What conditions on a0 and a1 would guarantee that 
the solution is increasing on 1- ∞ , ∞ 2?

33. Use the ratio test to show that the radius of convergence 
of the series in equation (13) is infinite. [Hint: See 
Problem 7, Exercises 8.2, page 434.]

34. Emden’s Equation. A classical nonlinear equation that 
occurs in the study of the thermal behavior of a spherical 
cloud is Emden’s equation

y″ +
2
x

 y′ + yn = 0 ,

with initial conditions y102 = 1, y′102 = 0. Even 
though x = 0 is not an ordinary point for this equation 
(which is nonlinear for n ≠ 1), it turns out that there 
does exist a solution analytic at x = 0. Assuming that n 
is a positive integer, show that the first few terms in a 
power series solution are

y = 1 -
x2

3!
+ n 

x4

5!
+ g  .

[Hint: Substitute y = 1 + c2 x2 + c3 x3 + c4 x4 + c5 x5 + g 
into the equation and carefully compute the first few 
terms in the expansion for yn.]

35. Variable Resistor. In Section 5.7, we showed that the 
charge q on the capacitor in a simple RLC circuit is gov-
erned by the equation

Lq″1t2 + Rq′1t2 +
1
C

 q1t2 = E1t2 ,

where L is the inductance, R the resistance, C the capac-
itance, and E the voltage source. Since the resistance 
of a resistor increases with temperature, let’s assume 
that the resistor is heated so that the resistance at time 
t is R1t2 = 1 + t>10 Ω (see Figure 8.5). If L = 0.1 H,  
C = 2 F, E1t2 K 0, q102 = 10 C, and q′102 = 0 A,  
find at least the first four nonzero terms in a power 
series expansion about t = 0 for the charge on the 
capacitor.

0.1 henrys

R ( t )  = 1 + t /10 ohms 

2 farads 
q (0) = 10 coulombs
q'(0) = 0 amps 

Figure 8.5 An RLC circuit whose resistor is being heated
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Existence of Analytic Solutions

Theorem 5. Suppose x0 is an ordinary point for equation (1). Then (1) has two lin-
early independent analytic solutions of the form

(2) y1x2 = a∞
n = 0

 an1x - x02n .

Moreover, the radius of convergence of any power series solution of the form given 
by (2) is at least as large as the distance from x0 to the nearest singular point (real or 
complex-valued) of equation (1).

2 kg 

k ( t ) = 6 – t  N/m 1 N-sec/m 

x ( t ) 
x (0) = 3 m 
x' (0) = 0 m/sec

Figure 8.6 A mass–spring system whose spring is being heated

36. Variable Spring Constant. As a spring is heated, 
its spring “constant” decreases. Suppose the spring 
is heated so that the spring “constant” at time t is 
k(t) = 6 - t N/m (see Figure 8.6). If the unforced 
mass–spring system has mass m = 2 kg and a damping 
constant b = 1 N-sec/m with initial conditions x102 = 3 m  
and x′102 = 0 m/sec, then the displacement x1t2 is 
governed by the initial value problem

2x″1t2 + x′1t2 + 16 - t2x(t) = 0 ;

x102 = 3 ,  x′102 = 0 .

Find at least the first four nonzero terms in a power 
series expansion about t = 0 for the displacement.

In Section 8.3 we introduced a method for obtaining a power series solution about an ordinary 
point. In this section we continue the discussion of this procedure. We begin by stating a basic 
existence theorem for the equation

(1) y″1x2 + p1x2y′1x2 + q1x2y1x2 = 0 ,

which justifies the power series method.

8.4 Equations with Analytic coefficients

The key element in the proof of Theorem 5 is the construction of a convergent geometric 
series that dominates the series expansion (2) of a solution to equation (1). The convergence of 
the series in (2) then follows by the comparison test. The details of the proof can be found in 
more advanced books on differential equations.†

As we saw in Section 8.3, the power series method gives us a general solution in the 
same form as (2), with a0 and a1 as arbitrary constants. The two linearly independent solutions 
referred to in Theorem 5 can be obtained by taking a0 = 1, a1 = 0 for the first and a0 = 0, 
a1 = 1 for the second. Thus, we can extend Theorem 5 by saying that equation (1) has a gen-
eral solution of the form (2) with a0 and a1 as the arbitrary constants.

†See, for example, Ordinary Differential Equations, 4th ed., by G. Birkhoff and G.-C. Rota (Wiley, New York, 1989).
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The second part of Theorem 5 gives a simple way of determining a minimum value 
for the radius of convergence of the power series. We need only find the singular points of 
equation (1) and then determine the distance between the ordinary point x0 and the nearest 
singular point.

Example 1 Find a minimum value for the radius of convergence of a power series solution about x = 0 to

(3) 2y″ + xy′ + y = 0 .

Solution For this equation, p1x2 = x>2 and q1x2 = 1>2. Both of these functions are analytic for all 
real or complex values of x. Since equation (3) has no singular points, the distance between 
the ordinary point x = 0 and the nearest singular point is infinite. Hence, the radius of conver-
gence is infinite. ◆

The next example helps to answer the questions posed at the end of the last section.

Example 2 Find a minimum value for the radius of convergence of a power series solution about x = 0 to

(4) 11 + x22y″ - y′ + y = 0 .

Solution Here p1x2 = -1> 11 + x22, q1x2 = 1> 11 + x22, and so the singular points of equation (4) 
occur when 1 + x2 = 0; that is, when x = {1-1 = { i. Since the only singular points of 
equation (4) are the complex numbers { i, we see that x = 0 is an ordinary point. Moreover, 
the distance† from 0 to either { i is 1. Thus, the radius of convergence of a power series solu-
tion about x = 0 is at least 1. ◆

In equation (28) of Section 8.3, page 443, we found the first few terms of a power 
series solution to equation (4). Because we now know that this series has radius of conver-
gence at least 1, the partial sums of this series will converge to the solution for 0 x 0 6 1. 
However, when 0 x 0 Ú 1, we have no basis on which to decide whether we can use the series 
to approximate the solution.

Power series expansions about x0 = 0 are somewhat easier to manipulate than expansions 
about nonzero points. As the next example shows, a simple shift in variable enables us always 
to expand about the origin.

Example 3 Find the first few terms in a power series expansion about x = 1 for a general solution to

(5) 2y″ + xy′ + y = 0 .

Also determine the radius of convergence of the series.

Solution As seen in Example 1, there are no singular points for equation (5). Thus, x = 1 is an ordinary 
point, and, as a consequence of Theorem 5, equation (5) has a general solution of the form

(6) y1x2 = a∞
n = 0

 an1x - 12n .

Moreover, the radius of convergence of the series in (6) must be infinite.

†Recall that the distance between the two complex numbers z = a + bi and w = c + di is given by 21a - c22 + 1b - d22.
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We can simplify the computation of the coefficients an by shifting the center of the expan-
sion (6) from x0 = 1 to t0 = 0. This is accomplished by the substitution x = t + 1. Setting 
Y1t2 = y1t + 12, we find via the chain rule

dy

dx
=

dY
dt

 ,  
d2y

dx2 =
d2Y

dt2  ,

and, hence, equation (5) is changed into

(7) 2 
d2Y

dt2 + 1t + 12   
dY
dt

+ Y = 0 .

We now seek a general solution of the form

(8) Y1t2 = a∞
n = 0

 an  

tn ,

where the an’s in equations (6) and (8) are the same. Proceeding as usual, we substitute the 
power series for Y1t2 into (7), derive a recurrence relation for the coefficients, and ultimately 
find that

Y1t2 = a0 e1 -
1
4

 t2 +
1
24

 t3 + g f + a1 e t -
1
4

 t2 -
1
8

 t3 + g f

(the details are left as an exercise). Thus, restoring t = x - 1 we have

(9) y1x2 = a0 e1 -
1
4

 1x - 122 +
1
24

 1x - 123 + g f

 + a1 e 1x - 12 -
1
4

 1x - 122 -
1
8

 1x - 123 + g f  . ◆

When the coefficients of a linear equation are not polynomials in x, but are analytic 
functions, we can still find analytic solutions by essentially the same method.

Example 4 Find a power series expansion for the solution to

(10) y″1x2 + e  

x y′1x2 + 11 + x22y1x2 = 0 ;  y102 = 1 ,  y′102 = 0 .

Solution Here p1x2 = e  

x and q1x2 = 1 + x2, and both are analytic for all x. Thus, by Theorem 5, the 
initial value problem (10) has a power series solution

(11) y1x2 = a∞
n = 0

 an xn

that converges for all x 1r = ∞ 2. To find the first few terms of this series, we first expand 
p1x2 = e  

x in its Maclaurin series:

e  

x = 1 + x +
x2

2!
+

x3

3!
+ g .

Substituting the expansions for y1x2, y′1x2, y″1x2, and ex into (10) gives

(12) a∞
n = 2

 n1n - 12an xn - 2 + a1 + x +
x2

2
+

x3

6
+

x4

24
+ gb  a∞

n = 1
 nan xn - 1

 + 11 + x22  a∞
n = 0

 an xn = 0 .
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Because of the computational difficulties due to the appearance of the product of the power 
series for e  

x and y′1x2, we concern ourselves with just those terms up to order 4. Writing out 
(12) and keeping track of all such terms, we find

(13) 12a2 + 6a3 x + 12a4 x2 + 20a5 x3 + 30a6 x4 + g2
 + 1a1 + 2a2 x + 3a3 x2 + 4a4 x3 + 5a5 x4 + g2 1 # Σ nan xn - 1

 + 1a1 x + 2a2  x2 + 3a3 x3 + 4a4 x4 + g2 x # Σ nan xn - 1

 + a 1
2

 a1  x2 + a2 x3 +
3
2

 a3 x4 + gb  
x2

2
# Σ nan xn - 1

 + a 1
6

 a1 x3 +
1
3

 a2 x4 + gb   
f

 + a 1
24

 a1 x4 + gb

 + 1a0 + a1 x + a2  x2 + a3 x3 + a4 x4 + g2 1 # Σ an xn

 + 1a0 x2 + a1 x3 + a2 x4 + g2 = 0 . x2 # Σ an xn

Grouping the like powers of x in equation (13) (for example, the x2 terms are shown in color) 
and then setting the coefficients equal to zero yields the system of equations

 2a2 + a1 + a0 = 0  1x0 term2 ,
 6a3 + 2a2 + 2a1 = 0  1x1 term2 ,

 12a4 + 3a3 + 3a2 +
1
2

 a1 + a0 = 0  1x2 term2 ,

 20a5 + 4a4 + 4a3 + a2 +
7
6

 a1 = 0  1x3 term2 ,

 30a6 + 5a5 + 5a4 +
3
2

 a3 +
4
3

 a2 +
1
24

 a1 = 0  1x4 term2 .

The initial conditions in (10) imply that y102 = a0 = 1 and y′102 = a1 = 0. Using these 
values for a0 and a1, we can solve the above system first for a2, then a3, and so on:

 2a2 + 0 + 1 = 0 1 a2 = -  
1
2

 ,

 6a3 - 1 + 0 = 0 1 a3 =
1
6

 ,

 12a4 +
1
2

-
3
2

+ 0 + 1 = 0 1 a4 = 0 ,

 20a5 + 0 +
2
3

-
1
2

+ 0 = 0 1 a5 = -  
1

120
 ,

 30a6 -
1
24

+ 0 +
1
4

-
2
3

+ 0 = 0 1 a6 =
11
720

 .

Thus, the solution to the initial value problem in (10) is

(14) y1x2 = 1 -
1
2

 x2 +
1
6

 x3 -
1

120
 x5 +

11
720

 x6 + g . ◆
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Thus far we have used the power series method only for homogeneous equations. But the 
same method applies, with obvious modifications, to nonhomogeneous equations of the form

(15) y″1x2 + p1x2y′1x2 + q1x2y1x2 = g1x2 ,
provided the forcing term g1x2 and the coefficient functions are analytic at x0. For example, to 
find a power series about x = 0 for a general solution to

(16) y″1x2 - xy′1x2 - y1x2 = sin x ,

we use the substitution y1x2 = Σ an xn to obtain a power series expansion for the left-hand 
side of (16). We then equate the coefficients of this series with the corresponding coefficients of 
the Maclaurin expansion for sin x:

sin x = a∞
n = 0

   
1-12n

12n + 12! x2n + 1 .

Carrying out the details (see Problem 20 on page 450), we ultimately find that an expansion for 
a general solution to (16) is

(17) y1x2 = a0y11x2 + a1y21x2 + yp1x2 ,
where

(18) y11x2 = 1 +
1
2

 x2 +
1
8

 x4 +
1
48

 x6 + g ,

(19) y21x2 = x +
1
3

 x3 +
1
15

 x5 +
1

105
 x7 + g

are the solutions to the homogeneous equation associated with equation (16) and

(20) yp1x2 =
1
6

 x3 +
1
40

 x5 +
19

5040
 x7 + g

is a particular solution to equation (16).

In Problems 1–6, find a minimum value for the radius of  
convergence of a power series solution about x0.

1. 1x + 12y″ - 3xy′ + 2y = 0 ;  x0 = 1 

2. y″ - xy′ - 3y = 0 ;  x0 = 2 

3. 11 + x + x22y″ - 3y = 0 ;  x0 = 1 

4. 1x2 - 5x + 62y″ - 3xy′ - y = 0 ;  x0 = 0 

5. y″ - 1tan x2y′ + y = 0 ;  x0 = 0 

6. 11 + x32y″ - xy′ + 3x2y = 0 ;  x0 = 1 

In Problems 7–12, find at least the first four nonzero terms 
in a power series expansion about x0 for a general solution 
to the given differential equation with the given value for x0.

7. y′ + 21x - 12y = 0 ;  x0 = 1 

8. y′ - 2xy = 0 ;    x0 = -1 

9. 1x2 - 2x2y″ + 2y = 0 ;  x0 = 1 

10. x2y″ - xy′ + 2y = 0 ;  x0 = 2 

11. x2y″ - y′ + y = 0 ;  x0 = 2 

12. y″ + 13x - 12y′ - y = 0 ;  x0 = -1 

In Problems 13–19, find at least the first four nonzero terms 
in a power series expansion of the solution to the given initial 
value problem.

13. x′ + 1sin t2x = 0 ;  x102 = 1 

14. y′ - exy = 0 ;    y102 = 1 

15. 1x2 + 12y″ - exy′ + y = 0 ; y102 = 1 , y′102 = 1 

16. y″ + ty′ + ety = 0 ;  y102 = 0 ,  y′102 = -1 

17. y″ - 1sin x2y = 0 ;  y1p2 = 1 ,  y′1p2 = 0 

8.4 ExErcIsEs
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450     Chapter 8  Series Solutions of Differential equations

18. y″ - 1cos x2y′ - y = 0 ;

y1p>22 = 1 ,  y′1p>22 = 1 

19. y″ - e2xy′ + 1cos x2y = 0 ;

y102 = -1 ,  y′102 = 1 

20. To derive the general solution given by equations (17) – (20) 
for the nonhomogeneous equation (16), complete the  
following steps:

  (a)  Substitute y1x2 = Σ∞
n= 0 an xn and the Maclaurin 

series for sin x into equation (16) to obtain

12a2 - a02 + a∞
k = 1

 31k + 221k + 12ak + 2 - 1k + 12ak4xk

= a∞
n= 0

  
1-12n

12n + 12! x2n + 1 .

  (b)  Equate the coefficients of like powers of x on both 
sides of the equation in part (a) and thereby deduce 
the equations

a2 =
a0

2
 ,  a3 =

1
6

+
a1

3
 ,  a4 =

a0

8
 ,

a5 =
1
40

+
a1

15
 ,  a6 =

a0

48
 ,  

a7 =
19

5040
+

a1

105
 .

  (c)  Show that the relations in part (b) yield the general 
solution to (16) given in equations (17)–(20).

In Problems 21–28, use the procedure illustrated in Prob-
lem 20 to find at least the first four nonzero terms in a power 
series expansion about x = 0 of a general solution to the 
given differential equation.

21. y′ - xy = sin x 

22. w′ + xw = ex 

23. z″ + xz′ + z = x2 + 2x + 1 

24. y″ - 2xy′ + 3y = x2 

25. 11 + x22y″ - xy′ + y = e-x 

26. y″ - xy′ + 2y = cos x 

27. 11 - x22y″ - y′ + y = tan x 

28. y″ - 1sin x2y = cos x 

29. The equation

11 - x22y″ - 2xy′ + n1n + 12y = 0,

where n is an unspecified parameter, is called Legendre’s 
equation. This equation occurs in applications of dif-
ferential equations to engineering systems in spherical 
coordinates.

  (a)  Find a power series expansion about x = 0 for a 
solution to Legendre’s equation.

  (b)  Show that for n a nonnegative integer, there exists an 
nth-degree polynomial that is a solution to Legen-
dre’s equation. These polynomials, up to a constant 
multiple, are called Legendre polynomials.

  (c)  Determine the first three Legendre polynomials (up 
to a constant multiple).

30. Aging Spring. As a spring ages, its spring “constant” 
decreases in value. One such model for a mass–spring 
system with an aging spring is

mx″1t2 + bx′1t2 + ke-h tx1t2 = 0 ,

where m is the mass, b the damping constant, k and h 
positive constants, and x1t2 the displacement of the 
spring from its equilibrium position. Let m = 1 kg,  
b = 2 N-sec/m, k = 1 N/m, and h = 11sec2-1. The 
system is set in motion by displacing the mass 1 m 
from its equilibrium position and then releasing it 
1x102 = 1, x′102 = 02. Find at least the first four non-
zero terms in a power series expansion about t = 0 for 
the displacement.

31. Aging Spring without Damping. In the mass– 
spring system for an aging spring discussed in Problem 30, 
assume that there is no damping (i.e., b = 0), m = 1,  
and k = 1. To see the effect of aging, consider h as a 
positive parameter.

  (a)  Redo Problem 30 with b = 0 and h arbitrary but 
fixed.

  (b)  Set h = 0 in the expansion obtained in part (a). 
Does this expansion agree with the expansion for the 
solution to the problem with h = 0? [Hint: When 
h = 0, the solution is x1t2 =  cos t.4

In the previous sections we considered methods for obtaining power series solutions about an 
ordinary point for a linear second-order equation. However, in certain cases we may want a 
series expansion about a singular point of the equation. To motivate a procedure for finding such 
expansions, we consider the class of Cauchy–Euler equations. In Section 4.7 we studied this 
topic briefly. Here we will use the operator approach to rederive and extend our conclusions.

A second-order homogeneous Cauchy–Euler equation has the form

(1) ax2y″1x2 + bxy′1x2 + cy1x2 = 0 ,  x + 0 ,

8.5 cauchy–Euler (Equidimensional) Equations
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In the previous section we showed that a homogeneous Cauchy–Euler equation has a solution 
of the form y1x2 = xr, x 7 0, where r is a certain constant. Cauchy–Euler equations have, of 
course, a very special form with only one singular point (at x = 0). In this section we show 
how the theory for Cauchy–Euler equations generalizes to other equations that have a special 
type of singularity.

To motivate the procedure, let’s rewrite the Cauchy–Euler equation,

(1) ax2y″1x2 + bxy′1x2 + cy1x2 = 0 ,  x 7 0 ,

in the standard form

(2) y″1x2 + p1x2y′1x2 + q1x2y1x2 = 0 ,  x 7 0 ,

where

p1x2 =
p0

x
 ,  q1x2 =

q0

x2 ,

and p0, q0 are the constants b>a and c>a, respectively. When we substitute w1r, x2 = xr for y 
into equation (2), we get

3r1r - 12 + p0r + q04xr - 2 = 0 ,

which yields the indicial equation

(3) r1r - 12 + p0r + q0 = 0 .

Thus, if r1 is a root of (3), then w1r1, x2 = xr1 is a solution to equations (1) and (2).
Let’s now assume, more generally, that (2) is an equation for which xp1x2 and x2q1x2, 

instead of being constants, are analytic functions. That is, in some open interval about 
x = 0,

(4)  xp1x2 = p0 + p1 x + p2 x2 + g = a∞
n = 0

 pn  xn ,

(5)  x2q1x2 = q0 + q1 x + q2 x2 + g = a∞
n = 0

 qn  xn .

It follows from (4) and (5) that

(6) lim
xS0

 xp1x2 = p0  and  lim
xS0

 x2q1x2 = q0 ,

and hence, for x near 0 we have xp1x2 ≈ p0 and x2q1x2 ≈ q0. Therefore, it is reasonable to 
expect that the solutions to (2) will behave (for x near 0) like the solutions to the Cauchy–Euler 
equation

x2y″ + p0 xy′ + q0 y = 0 .

When p1x2 and q1x2 satisfy (4) and (5), we say that the singular point at x = 0 is regular. 
More generally, we state the following.

8.6 Method of Frobenius
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Regular Singular Point

Definition 3. A singular point x0 of

(7) y″1x2 + p1x2y′1x2 + q1x2y1x2 = 0

is said to be a regular singular point if both 1x - x02p1x2 and 1x - x022q1x2 are analytic 
at x0.

† Otherwise x0 is called an irregular singular point.

†In the terminology of complex variables, p has a pole of order at most 1, and q has a pole of order at most 2, at x0.
‡Historical Footnote: George Frobenius (1848–1917) developed this method in 1873. He is also known for his 
research on group theory.

Example 1 Classify the singular points of the equation

(8) 1x2 - 122 y″1x2 + 1x + 12y′1x2 - y1x2 = 0 .

Solution Here

p1x2 =
x + 1

1x2 - 122 =
1

1x + 121x - 122 ,

q1x2 =
-1

1x2 - 122 =
-1

1x + 1221x - 122 ,

from which we see that {1 are the singular points of (8). For the singularity at 1, we have

1x - 12p1x2 =
1

1x + 121x - 12  ,

which is not analytic at x = 1. Therefore, x = 1 is an irregular singular point.
For the singularity at -1, we have

1x + 12p1x2 =
1

1x - 122 ,  1x + 122q1x2 =
-1

1x - 122 ,

both of which are analytic at x = -1. Hence, x = -1 is a regular singular point. ◆

Let’s assume that x = 0 is a regular singular point for equation (7) so that p1x2 and q1x2 
satisfy (4) and (5); that is,

(9) p1x2 = a∞
n = 0

 pn xn - 1 ,  q1x2 = a∞
n = 0

 qn xn - 2 .

The idea of the mathematician Frobenius was that since Cauchy–Euler equations have solu-
tions of the form xr, then for the regular singular point x = 0, there should be solutions to (7) 
of the form xr times an analytic function.‡ Hence we seek solutions to (7) of the form

(10) w1r, x2 = xr aH
n = 0

 an xn = aH
n = 0

 an xn + r ,  x + 0 .

In writing (10), we have assumed a0 is the first nonzero coefficient, so we are left with 
determining r and the coefficients an, n Ú 1. Differentiating w1r, x2 with respect to x, we have

(11)  w′1r, x2 = a∞
n = 0

 1n + r2an xn + r - 1 ,

(12)  w″1r, x2 = a∞
n = 0

 1n + r21n + r - 12an xn + r - 2 .
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If we substitute the above expansions for w1r, x2, w′1r, x2, w″1r, x2, p1x2, and q1x2 into (7), 
we obtain

(13) a∞
n = 0

 1n + r21n + r - 12an xn + r - 2 + ¢ a∞
n = 0

 pn xn - 1≤ ¢ a∞
n = 0

 1n + r2an xn + r - 1≤
 + ¢ a∞

n = 0
 qn xn - 2≤ ¢ a∞

n = 0
 an xn + r≤ = 0 .

Now we use the Cauchy product to perform the series multiplications and then group like 
powers of x, starting with the lowest power, xr - 2. This gives

(14) 3r1r - 12 + p0 r + q04a0 xr-2

 + 31r + 12ra1 + 1r + 12p0 a1 + p1ra0 + q0 a1 + q1a04xr - 1 + g = 0 .

For the expansion on the left-hand side of equation (14) to sum to zero, each coefficient must 
be zero. Considering the first term, xr - 2, we find

(15) 3r1r - 12 + p0 r + q04a0 = 0 .

We have assumed that a0 ≠ 0, so the quantity in brackets must be zero. This gives the indicial 
equation; it is the same as the one we derived for Cauchy–Euler equations.

Indicial Equation

Definition 4. If x0 is a regular singular point of y″ + py′ + qy = 0, then the indicial 
equation for this point is

(16) r1r − 12 + p0 r + q0 = 0 ,

where

p0 J lim
xSx0
1x - x02p1x2 ,  q0 J lim

xSx0
1x - x022 q1x2 .

The roots of the indicial equation are called the exponents (indices) of the singularity x0.

Example 2 Find the indicial equation and the exponents at the singularity x = -1 of

(17) 1x2 - 122 y″1x2 + 1x + 12y′1x2 - y1x2 = 0 .

Solution In Example 1 we showed that x = -1 is a regular singular point. Since p1x2 =
1x + 12-11x - 12-2 and q1x2 = - 1x + 12-2 1x - 12-2, we find

p0 = lim
xS -1

1x + 12p1x2 = lim
xS -1

1x - 12-2 =
1
4

 ,

q0 = lim
xS -1

1x + 122 q1x2 = lim
xS -1

3- 1x - 12-24 = -  
1
4

 .

Substituting these values for p0 and q0 into (16), we obtain the indicial equation

(18) r1r - 12 +
1
4

 r -
1
4
= 0 .

Multiplying by 4 and factoring gives 14r + 121r - 12 = 0. Hence, r = 1, -1>4 are the 
exponents. ◆
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As we have seen, we can use the indicial equation to determine those values of r for which the 
coefficient of xr - 2 in (14) is zero. If we set the coefficient of xr - 1 in (14) equal to zero, we have

(19) 31r + 12r + 1r + 12p0 + q04a1 + 1p1r + q12a0 = 0 .

Since a0 is arbitrary and we know the pi’s, qi’s, and r, we can solve equation (19) for a1, pro-
vided the coefficient of a1 in (19) is not zero. This will be the case if we take r to be the larger 
of the two roots of the indicial equation (see Problem 43, page 464).† Similarly, when we set 
the coefficient of xr equal to zero, we can solve for a2 in terms of the pi’s, qi’s, r, a0, and a1. 
Continuing in this manner, we can recursively solve for the an’s. The procedure is illustrated in 
the following example.

Example 3 Find a series expansion about the regular singular point x = 0 for a solution to

(20) 1x + 22x2y″1x2 - xy′1x2 + 11 + x2y1x2 = 0 ,  x 7 0 .

Solution Here p1x2 = -x-11x + 22-1 and q1x2 = x-21x + 22-111 + x2, so

p0 = lim
xS0

  xp1x2 = lim
xS0 3- 1x + 22-14 = -  

1
2

 ,

q0 = lim
xS0

  x2q1x2 = lim
xS0 1x + 22-111 + x2 =

1
2

 .

Since x = 0 is a regular singular point, we seek a solution to (20) of the form

(21) w1r, x2 = xr a∞
n = 0

 an xn = a∞
n = 0

 an xn + r .

By the previous discussion, r must satisfy the indicial equation (16). Substituting for p0 and q0 
in (16), we obtain

r1r - 12 -
1
2

 r +
1
2
= 0 ,

which simplifies to 2r2 - 3r + 1 = 12r - 121r - 12 = 0. Thus, r = 1 and r = 1>2 are the 
roots of the indicial equation associated with x = 0.

Let’s use the larger root r = 1 and solve for a1, a2, etc., to obtain the solution w11, x2. We 
can simplify the computations by substituting w1r, x2 directly into equation (20), where the 
coefficients are polynomials in x, rather than dividing by 1x + 22x2 and having to work with 
the rational functions p1x2 and q1x2. Inserting w1r, x2 in (20) and recalling the formulas for 
w′1r, x2 and w″1r, x2 in (11) and (12) gives (with r = 1)

(22) 1x + 22x2 a∞
n = 0

 1n + 12nan xn - 1 - x a∞
n = 0

 1n + 12an xn

    + 11 + x2  a∞
n = 0

 an xn + 1 = 0 ,

which we can write as

(23) a∞
n = 0

 1n + 12nan xn + 2 + a∞
n = 0

 21n + 12nan xn + 1 - a∞
n = 0

 1n + 12an xn + 1

    + a∞
n = 0

 an xn + 1 + a∞
n = 0

 an xn + 2 = 0 .

†“Larger” in the sense of Problem 43.

M08_NAGL7069_09_SE_C08_421-495.indd   457 14/10/16   2:55 PM



458     Chapter 8  Series Solutions of Differential equations

Next we shift the indices so that each summation in (23) is in powers xk. With k = n + 2 in the 
first and last summations and k = n + 1 in the rest, (23) becomes

(24) a∞
k = 2

 31k - 121k - 22 + 14ak - 2 xk + a∞
k = 1

 32k1k - 12 - k + 14ak - 1 xk = 0 .

Separating off the k = 1 term and combining the rest under one summation yields

(25) 32112102 - 1 + 14a0 x + a∞
k = 2

 31k2 - 3k + 32ak - 2 + 12k - 121k - 12ak - 14xk = 0 .

Notice that the coefficient of x in (25) is zero. This is because r = 1 is a root of the indicial 
equation, which is the equation we obtained by setting the coefficient of the lowest power of x 
equal to zero.

We can now determine the ak’s in terms of a0 by setting the coefficients of xk in equation 
(25) equal to zero for k = 2, 3, etc. This gives the recurrence relation

(26) 1k2 - 3k + 32ak - 2 + 12k - 121k - 12ak - 1 = 0 ,

or, equivalently,

(27) ak - 1 = -  
k2 - 3k + 3

12k - 121k - 12  ak - 2 ,  k Ú 2  .

Setting k = 2, 3, and 4 in (27), we find

 a1 = -  
1
3

 a0  1k = 22 ,

 a2 = -  
3
10

 a1 =
1
10

 a0  1k = 32 ,

 a3 = -  
1
3

 a2 = -  
1
30

 a0   1k = 42 .

Substituting these values for r, a1, a2, and a3 into (21) gives

(28) w11, x2 = a0 x1 a1 -
1
3

 x +
1
10

 x2 -
1
30

 x3 + gb  ,

where a0 is arbitrary. In particular, for a0 = 1, we get the solution

y11x2 = x -
1
3

 x2 +
1
10

 x3 -
1
30

 x4 + g  1x 7 02 .

See Figure 8.8 on page 459. ◆

To find a second linearly independent solution to equation (20), we could try setting 
r = 1>2 and solving for a1, a2, . . . to obtain a solution w11>2, x2 (see Problem 44, page 464). 
In this particular case, the approach would work. However, if we encounter an indicial equa-
tion that has a repeated root, then the method of Frobenius would yield just one solution 
(apart from constant multiples). To find the desired second solution, we must use another 
technique, such as the reduction of order procedure discussed in Section 4.7 or Exercises 6.1, 
Problem 31, page 327. We tackle the problem of finding a second linearly independent solution 
in the next section.
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The method of Frobenius can be summarized as follows.

0

2

1

1

degree 4

degree 20

2 3 4

-1

-1-2-3

-2

-3

-4

-5

Figure 8.8 Partial sums approximating the solution y11x2 of Example 3

Method of Frobenius

To derive a series solution about the singular point x0 of

(29) a21x2y″1x2 + a11x2y′1x2 + a01x2y1x2 = 0 ,  x 7 x0 :

(a) Set p1x2 J a11x2 >a21x2, q1x2 J a01x2 >a21x2. If both 1x - x02p1x2 and 
1x - x022q1x2 are analytic at x0, then x0 is a regular singular point and the  
remaining steps apply.

(b) Let

(30) w1r, x2 = 1x - x02r a∞
n = 0

an1x - x02n = a∞
n = 0

an1x - x02n + r ,

and, using termwise differentiation, substitute w1r, x2 into equation (29) to obtain an 
equation of the form

A01x - x02r + J + A11x - x02r + J + 1 + g = 0 .

(c) Set the coefficients A0, A1, A2, . . . equal to zero. [Notice that the equation A0 = 0 is 
just a constant multiple of the indicial equation r1r - 12 + p0r + q0 = 0.]

(d) Use the system of equations

A0 = 0 ,  A1 = 0 ,  . . . ,  Ak = 0

to find a recurrence relation involving ak and a0, a1, . . . , ak - 1.

(e) Take r = r1, the larger root of the indicial equation, and use the relation obtained in 
step (d) to determine a1, a2, . . . recursively in terms of a0 and r1.

(f) A series expansion of a solution to (29) is

(31) w1r1, x2 = 1x - x02r1 a∞
n = 0

an1x - x02n ,  x 7 x0 ,

where a0 is arbitrary and the an’s are defined in terms of a0 and r1.
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460     Chapter 8  Series Solutions of Differential equations

One important question that remains concerns the radius of convergence of the power 
series that appears in (31). The following theorem contains an answer.†

†For a proof of this theorem, see Ordinary Differential Equations, by E. L. Ince (Dover Publications, New York, 
1956), Chapter 16.

Frobenius’s Theorem

Theorem 6. If x0 is a regular singular point of equation (29), then there exists at 
least one series solution of the form (30), where r = r1 is the larger root of the  
associated indicial equation. Moreover, this series converges for all x such that  
0 6 x - x0 6 R, where R is the distance from x0 to the nearest other singular point 
(real or complex) of (29).

For simplicity, in the examples that follow we consider only series expansions about the 
regular singular point x = 0 and only those equations for which the associated indicial equa-
tion has real roots.

The following three examples not only illustrate the method of Frobenius but also are 
important models to which we refer in later sections.

Example 4 Find a series solution about the regular singular point x = 0 of

(32) x2y″1x2 - xy′1x2 + 11 - x2y1x2 = 0 ,  x 7 0 .

Solution Here p1x2 = -x-1 and q1x2 = 11 - x2x-2. It is easy to check that x = 0 is a regular singular 
point of (32), so we compute

 p0 = lim
xS0 

 xp1x2 = lim
xS0
1-12 = -1 ,

 q0 = lim
xS0

  x2q1x2 = lim
xS0
11 - x2 = 1 .

Then the indicial equation is

r1r - 12 - r + 1 = r2 - 2r + 1 = 1r - 122 = 0 ,

which has the roots r1 = r2 = 1.
Next we substitute

(33) w1r, x2 = xr a∞
n = 0

 an xn = a∞
n = 0

 an xn + r

into (32) and obtain

(34) x2 a∞
n = 0

 1n + r21n + r - 12an xn + r - 2 - x a∞
n = 0

 1n + r2an xn + r - 1

    + 11 - x2  a∞
n = 0

 an xn + r = 0 ,

which we write as

(35) a∞
n = 0

 1n + r21n + r - 12an xn + r - a∞
n = 0

 1n + r2an xn + r

    + a∞
n = 0

 an xn + r - a∞
n = 0

 an xn + r + 1 = 0 .
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Shifting the indices so that each summation in (35) is in powers xk + r, we take k = n + 1 in the 
last summation and k = n in the rest. This gives

(36) a∞
k = 0

 31k + r21k + r - 12 - 1k + r2 + 14akx
k + r - a∞

k = 1
 ak - 1x

k + r = 0 .

Singling out the term corresponding to k = 0 and combining the rest under one summation 
yields

(37) 3r1r - 12 - r + 14a0 xr

    + a∞
k = 1

 531k + r21k + r - 12 - 1k + r2 + 14ak - ak - 16xk + r = 0 .

When we set the coefficients equal to zero, we recover the indicial equation

(38) 3r1r - 12 - r + 14a0 = 0 ,

and obtain, for k Ú 1, the recurrence relation

(39) 31k + r22 - 21k + r2 + 14ak - ak - 1 = 0 ,

which reduces to

(40) 1k + r - 122ak - ak - 1 = 0 .

Relation (40) can be used to solve for ak in terms of ak - 1:

(41) ak =
1

1k + r - 122 ak - 1 ,  k Ú 1 .

Setting r = r1 = 1 in (38) gives (as expected) 0 # a0 = 0, and in (41) gives

(42) ak =
1

k2 ak − 1 ,  k # 1 .

For k = 1, 2, and 3, we now find

 a1 =
1

12 a0 = a0  1k = 12 ,

 a2 =
1

22 a1 =
1

12 # 122 a0 =
1
4

 a0  1k = 22 ,

 a3 =
1

32 a2 =
1

13 # 2 # 122 a0 =
1
36

 a0   1k = 32 .

In general, we have

(43) ak =
1

1k!22 a0 .

Hence, equation (32) has a series solution given by

(44)  w11, x2 = a0 x e1 + x +
1
4

 x2 +
1
36

 x3 + g f

  = a0  x a∞
k = 0

1

1k!22 xk ,  x 7 0 . ◆

Since x = 0 is the only singular point for equation (32), it follows from Frobenius’s theo-
rem or directly by the ratio test that the series solution (44) converges for all x 7 0.
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In the next two examples, we only outline the method; we leave it to you to furnish the 
intermediate steps.

Example 5 Find a series solution about the regular singular point x = 0 of

(45) xy″1x2 + 4y′1x2 - xy1x2 = 0 ,  x 7 0 .

Solution Since p1x2 = 4>x and q1x2 = -1, we see that x = 0 is indeed a regular singular point and

p0 = lim
xS0

 xp1x2 = 4 ,  q0 = lim
xS0

 x2q1x2 = 0 .

The indicial equation is

r1r - 12 + 4r = r2 + 3r = r1r + 32 = 0 ,

with roots r1 = 0 and r2 = -3.
Now we substitute

(46) w1r, x2 = xr a∞
n = 0

 an xn = a∞
n = 0

 an xn + r

into (45). After a little algebra and a shift in indices, we get

(47) 3r1r - 12 + 4r4a0x
r - 1 + 31r + 12r + 41r + 124a1x

r

    + a∞
k = 1

 31k + r + 121k + r + 42ak + 1 - ak - 14xk + r = 0 .

Next we set the coefficients equal to zero and find

(48) 3r1r - 12 + 4r4a0 = 0 ,

(49) 31r + 12r + 41r + 124a1 = 0 ,

and, for k Ú 1, the recurrence relation

(50) 1k + r + 121k + r + 42ak + 1 - ak - 1 = 0 .

For r = r1 = 0, equation (48) becomes 0 # a0 = 0 and (49) becomes 4 # a1 = 0. Hence, 
although a0 is arbitrary, a1 must be zero. Setting r = r1 = 0 in (50), we find

(51) ak + 1 =
1

1k + 121k + 42  ak − 1 ,  k # 1 ,

from which it follows (after a few experimental computations) that a2k + 1 = 0 for k = 0, 1, . . . , 
and

(52)  a2k =
1

32 # 4g12k2435 # 7g12k + 324  a0

  =
1

2kk!35 # 7g12k + 324  a0 ,  k Ú 1 .

Hence equation (45) has the power series solution

(53) w10, x2 = a0 b1 + a∞
k = 1

 
1

2kk!35 # 7g12k + 324  x2k r  ,  x 7 0 . ◆
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Solution Since p1x2 = 3>x and q1x2 = -1, we see that x = 0 is a regular singular point. Moreover,

p0 = lim
xS0 

 xp1x2 = 3 ,  q0 = lim
xS0  

x2q1x2 = 0 .

So the indicial equation is

(55) r1r - 12 + 3r = r2 + 2r = r1r + 22 = 0 ,

with roots r1 = 0 and r2 = -2.
Substituting

(56) w1r, x2 = xr a∞
n = 0

 an xn = a∞
n = 0

 an xn + r

into (54) ultimately gives

(57) 3r1r - 12 + 3r4a0 xr - 1 + 31r + 12r + 31r + 124a1 xr

    + a∞
k = 1

 31k + r + 121k + r + 32ak + 1 - ak - 14xk + r = 0 .

Setting the coefficients equal to zero, we have

(58)  3r1r - 12 + 3r4a0 = 0 ,

(59)  31r + 12r + 31r + 124a1 = 0 ,

and, for k Ú 1, the recurrence relation

(60) 1k + r + 121k + r + 32ak + 1 − ak−1 = 0 .

With r = r1 = 0, these equations lead to the following formulas: a2k + 1 = 0, k = 0, 1, . . . , 
and

(61) a2k =
1

32 # 4g12k2434 # 6g12k + 224  a0 =
1

22kk!1k + 12! a0 ,  k Ú 0 .

Hence equation (54) has the power series solution

(62) w10, x2 = a0 a∞
k = 0

 
1

22kk!1k + 12! x2k ,  x 7 0 . ◆

Unlike in Example 5, if we work with the second root r = r2 = -2 in Example 6, then 
we do not obtain a second linearly independent solution (see Problem 46).

In the preceding examples we were able to use the method of Frobenius to find a series 
solution valid to the right (x 7  0) of the regular singular point x = 0. For x 6 0, we can use 
the change of variables x = - t and then solve the resulting equation for t 7 0.

The method of Frobenius also applies to higher-order linear equations (see Problems 35–38).

If in Example 5 we had worked with the root r = r2 = -3, then we would actually have 
obtained two linearly independent solutions (see Problem 45).

Example 6 Find a series solution about the regular singular point of x = 0 of

(54) xy″1x2 + 3y′1x2 - xy1x2 = 0 ,  x 7 0 .
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In Problems 1–10, classify each singular point (real or  
complex) of the given equation as regular or irregular.

1. 1x2 - 12y″ + xy′ + 3y = 0 

2. x2y″ + 8xy′ - 3xy = 0 

3. 1x2 + 12z″ + 7x2z′ - 3xz = 0 

4. x2y″ - 5xy′ + 7y = 0 

5. 1x2 - 122y″ - 1x - 12y′ + 3y = 0 

6. 1x2 - 42y″ + 1x + 22y′ + 3y = 0 

7. 1t2 - t - 222x″ + 1t2 - 42x′ - tx = 0 

8. 1x2 - x2y″ + xy′ + 7y = 0 

9. 1x2 + 2x - 822y″ + 13x + 122y′ - x2y = 0 

10. x31x - 12y″ + 1x2 - 3x21sin x2y′ - xy = 0 

In Problems 11–18, find the indicial equation and the  
exponents for the specified singularity of the given differential 
equations.

11. x2y″ - 2xy′ - 10y = 0 , at x = 0 

12. x2y″ + 4xy′ + 2y = 0 , at x = 0 

13. 1x2 - x - 222z″ + 1x2 - 42z′ - 6xz = 0 , at x = 2 

14. 1x2 - 42y″ + 1x + 22y′ + 3y = 0 , at x = -2 

15. u3y″ + u1sin u2y′ - 1tan u2y = 0 , at u = 0 

16. 1x2 - 12y″ - 1x - 12y′ - 3y = 0 , at x = 1 

17. 1x - 122y″ + 1x2 - 12y′ - 12y = 0 , at x = 1 

18. 4x1sin x2y″ - 3y = 0 , at x = 0 

In Problems 19–24, use the method of Frobenius to find at 
least the first four nonzero terms in the series expansion about 
x = 0 for a solution to the given equation for x 7 0.

19. 9x2y″ + 9x2y′ + 2y = 0 

20. 2x1x - 12y″ + 31x - 12y′ - y = 0 

21. x2y″ + xy′ + x2y = 0 

22. xy″ + y′ - 4y = 0 

23. x2z″ + 1x2 + x2z′ - z = 0 

24. 3xy″ + 12 - x2y′ - y = 0 

In Problems 25–30, use the method of Frobenius to find a 
general formula for the coefficient an in a series expansion 
about x = 0 for a solution to the given equation for x 7 0.

25. 4x2y″ + 2x2y′ - 1x + 32y = 0 

26. x2y″ + 1x2 - x2y′ + y = 0 

27. xw″ - w′ - xw = 0 

28. 3x2y″ + 8xy′ + 1x - 22y = 0 

29. xy″ + 1x - 12y′ - 2y = 0 

30. x1x + 12y″ + 1x + 52y′ - 4y = 0 

In Problems 31–34, first determine a recurrence formula for 
the coefficients in the (Frobenius) series expansion of the 
solution about x = 0. Use this recurrence formula to deter-
mine if there exists a solution to the differential equation that 
is decreasing for x 7 0.

31. xy″ + 11 - x2y′ - y = 0 

32. x2y″ - x11 + x2y′ + y = 0 

33. 3xy″ + 211 - x2y′ - 4y = 0 

34. xy″ + 1x + 22y′ - y = 0 

In Problems 35–38, use the method of Frobenius to find at least 
the first four nonzero terms in the series expansion about x = 0 
for a solution to the given linear third-order equation for x 7 0.

35. 6x3y‴ + 13x2y″ + 1x + x22y′ + xy = 0 

36. 6x3y‴ + 11x2y″ - 2xy′ - 1x - 22y = 0 

37. 6x3y‴ + 13x2y″ - 1x2 + 3x2y′ - xy = 0

38. 6x3y‴ + 113x2 - x32y″ + xy′ - xy = 0

In Problems 39 and 40, try to use the method of Frobenius to 
find a series expansion about the irregular singular point x = 0 
for a solution to the given differential equation. If the method 
works, give at least the first four nonzero terms in the expansion. 
If the method does not work, explain what went wrong.

39. x2y″ + 13x - 12y′ + y = 0

40. x2y″ + y′ - 2y = 0

In certain applications, it is desirable to have an expansion 
about the point at infinity. To obtain such an expansion, we 
use the change of variables z = 1>x and expand about z = 0. 
In Problems 41 and 42, show that infinity is a regular singular 
point of the given differential equation by showing that z = 0 is 
a regular singular point for the transformed equation in z. Also 
find at least the first four nonzero terms in the series expansion 
about infinity of a solution to the original equation in x.

41. x3y″ - x2y′ - y = 0

42. 181x - 4221x - 62y″ + 9x1x - 42y′ - 32y = 0

43. Show that if r1 and r2 are roots of the indicial equation 
(16) on page 456, with r1 the larger root (Re r1 Ú Re r22, 
then the coefficient of a1 in equation (19) on page 457 is 
not zero when r = r1 .

44. To obtain a second linearly independent solution to equa-
tion (20):

  (a)  Substitute w1r, x2 given in (21) into (20) and con-
clude that the coefficients ak, k Ú 1, must satisfy the 
recurrence relation

1k + r - 1212k + 2r - 12ak

+ 31k + r - 121k + r - 22 + 14ak - 1 = 0 .

8.6 ExErcIsEs
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  (b)  Use the recurrence relation with r = 1>2 to derive 
the second series solution

wa1
2

, xb =  

a0 ax1>2 -
3
4

 x3>2 +
7
32

 x5>2 -
133
1920

 x7>2 + gb  .

  (c)  Use the recurrence relation with r = 1 to obtain 
w11, x2 in (28) on page 458.

45. In Example 5, show that if we choose r = r2 = -3, then 
we obtain two linearly independent solutions to equation 
(45). [Hint: a0 and a3 are arbitrary constants.]

46. In Example 6, page 463, show that if we choose 
r = r2 = -2, then we obtain a solution that is a constant 
multiple of the solution given in (62). [Hint: Show that 
a0 and a1 must be zero while a2 is arbitrary.]

47. In applying the method of Frobenius, the following 
recurrence relation arose: ak + 1 = 157ak> 1k + 129, 
k = 0, 1, 2, . . .  .

  (a)  Show that the coefficients are given by the formula 
ak = 157ka0> 1k!29, k = 0, 1, 2, . . .  .

  (b)  Use the formula obtained in part (a) with a0 = 1 to 
compute a5, a10, a15, a20, and a25 on your computer 
or calculator. What goes wrong?

  (c)  Now use the recurrence relation to compute ak for 
k = 1, 2, 3, . . . , 25, assuming a0 = 1.

  (d)  What advantage does the recurrence relation have 
over the formula?

In the previous section we showed that if x = 0 is a regular singular point of

(1) y″1x2 + p1x2y′1x2 + q1x2y1x2 = 0 ,  x 7 0 ,

then the method of Frobenius can be used to find a series solution valid for x near zero. The 
first step in the method is to find the roots r1 and r2 1Re r1 Ú Re r22 of the associated indicial 
equation

(2) r1r - 12 + p0r + q0 = 0 .

Then, utilizing the larger root r1, equation (1) has a series solution of the form

(3) w1r1, x2 = xr1 a∞
n = 0

 an xn = a∞
n = 0

 an xn + r1 ,

where a0 ≠ 0. To find a second linearly independent solution, our first inclination is to set 
r = r2 and seek a solution of the form

(4) w1r2, x2 = xr2 a∞
n = 0

 an xn = a∞
n = 0

 an xn + r2 .

We’ll see that this procedure works, provided r1 - r2 is not an integer. However, when r1 - r2 
is an integer, the Frobenius method with r = r2 may just lead to the same solution that we 
obtained using the root r1. (This is obviously true when r1 = r2.2

8.7 Finding a second Linearly Independent solution

Example 1 Find the first few terms in the series expansion about the regular singular point x = 0 for a 
general solution to

(5) 1x + 22x2y″1x2 - xy′1x2 + 11 + x2y1x2 = 0 ,  x 7 0 .

Solution In Example 3 of Section 8.6, we used the method of Frobenius to find a series solution for 
(5). In the process we determined that p0 = -1>2, q0 = 1>2 and that the indicial equation 
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CHAPTER

9
Matrix Methods for Linear 
Systems

In this chapter we return to the analysis of systems of differential equations. When the equa-
tions in the system are linear, matrix algebra provides a compact notation for expressing the 
system. In fact, the notation itself suggests new and elegant ways of characterizing the solution 
properties, as well as novel, efficient techniques for explicitly obtaining solutions.

9.1 Introduction

In Chapter 5 we analyzed physical situations wherein two fluid tanks containing 
brine solutions were interconnected and pumped so as ultimately to deplete the salt 
content in each tank. By accounting for the various influxes and outfluxes of brine, 
a system of differential equations for the salt contents 1x1t2 and y1t22 of each tank 
was derived; a typical model is

(1)
 dx>dt = −4x + 2y ,

 dy>dt = 4x − 4y .

Express this system in matrix notation as a single equation.

The right-hand side of the first member of (1) possesses a mathematical structure that is familiar 
from vector calculus; namely, it is the dot product† of two vectors:

(2) -4x + 2y = 3-4 24 # 3x y4  .
Similarly, the second right-hand side in (1) is the dot product

4x - 4y = 34 -44 # 3x y4 .
The frequent occurrence in mathematics of arrays of dot products, such as evidenced in the 
system (1), led to the development of matrix algebra, a mathematical discipline whose basic 
operation—the matrix product—is the arrangement of a set of dot products according to the 
following plan:

c -4 2
4 -4

d c x
y
d = c 3-4 24 # 3x y4

34 -44 # 3x y4 d = c
-4x + 2y

4x - 4y
d  .

In general, the product of a matrix—i.e., an m by n rectangular array of numbers—and a 
column vector is defined to be the collection of dot products of the rows of the matrix with the 

†Recall that the dot product of two vectors u and v equals the length of u times the length of v times the cosine of the 
angle between u and v. However, it is more conveniently computed from the components of u and v by the “inner 
product” indicated in equation (2).
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vector, arranged as a column vector:D row # 1
row # 2
f

row # m

T   DvT = D 3row # 14 # v
3row # 24 # v

f
3row # m4 # v

T   ,

where the vector v has n components; the dot product of two n-dimensional vectors is com-
puted in the obvious way:

3a1 a2 gan4 # 3x1 x2 g xn4 = a1x1 + a2x2 + g + anxn .

Using the notation for the matrix product, we can write the system (1) for the intercon-
nected tanks as

c x′
y′
d = c -4 2

4 -4
d c x

y
d  .

The following example demonstrates a four-dimensional implementation of this notation. 
Note that the coefficients in the linear system need not be constants.

Example 1 Express the system

(3)

  x=1 =  2x1 + t2x2 + 14t + et2x4 ,

  x=2 = 1sin t2x2 + 1cos t2x3 , 

  x=3 = x1 + x2 + x3 + x4 ,

  x=4 = 0

as a matrix equation.

Solution We express the right-hand side of the first member of (3) as the dot product

2x1 + t2x2 + 14t + et2x4 = 32 t2 0 14t + et24 # 3x1 x2 x3 x44  .
The other dot products are similarly identified, and the matrix form is given byD x=1

x=2
x=3
x=4

T = D2 t2 0 14t + et2
0 sin t cos t 0
1 1 1 1
0 0 0 0

T   D x1

x2

x3

x4

T  . ◆

In general, if a system of differential equations is expressed as

 x=1 = a111t2x1 + a121t2x2 + g + a1n1t2xn

 x=2 = a211t2x1 + a221t2x2 + g + a2n1t2xn

f
 x=n = an11t2x1 + an21t2x2 + g + ann1t2xn  ,

it is said to be a linear homogeneous system in normal form.† The matrix formulation of such 

†The normal form was defined for general systems in Section 5.3, page 256.
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a system is then

x′ = Ax ,

where A is the coefficient matrix

A = A1t2 = Da111t2 a121t2 g a1n1t2
a211t2 a221t2 g a2n1t2
f f  f

an11t2 an21t2 g ann1t2
T

and x is the solution vector

x = D x1

x2

f
xn

T   .

Note that we have used x′ to denote the vector of derivatives

x′ = D x1

x2

f
xn

T ′

= D x=1
x=2
f
x=n

T  .

Example 2 Express the differential equation for the undamped, unforced mass–spring oscillator (recall 
Section 4.1, page 152)

(4) my″ + ky = 0

as an equivalent system of first-order equations in normal form, expressed in matrix notation.

Solution We have to express the second derivative, y″, as a first derivative in order to formulate (4) as a 
first-order system. This is easy; the acceleration y″ is the derivative of the velocity y = y′, so 
(4) becomes

(5) my′ + ky = 0 .

The first-order system is then assembled by identifying y with y′, and appending it to (5):

 y′ = y
 my′ = -ky .

To put this system in normal form and express it as a matrix equation, we need to divide the 
second equation by the mass m:

c y
y
d ′ = c 0 1

-k>m 0
d c y
y
d  . ◆

In general, the customary way to write an nth-order linear homogeneous differential 
equation

an1t2y1n2 + an - 11t2y1n - 12 + g + a11t2y′ + a01t2y = 0
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as an equivalent system in normal form is to define the first 1n - 12 derivatives of y (including 
y, the zeroth derivative, itself) to be new unknowns:

 x11t2 = y1t2 ,
 x21t2 = y′1t2 ,
f
 xn1t2 = y1n - 121t2 .

Then the system consists of the identification of xj1t2 as the derivative of xj- 11t2, together 
with the original differential equation expressed in these variables (and divided by an1t2):

x=1  = x2 ,

x=2  = x3 ,
f
x=n - 1 = xn ,

x=n  = -  
a01t2
an1t2  x1 -

a11t2
an1t2  x2 - g -

an - 11t2
an1t2  xn  .

For systems of two or more higher-order differential equations, the same procedure is applied 
to each unknown function in turn; an example will make this clear.

Example 3 The coupled mass–spring oscillator depicted in Figure 5.26 on page 283 was shown to be 
governed by the system

(6)
 2 

d2x

dt2 + 6x - 2y = 0 ,

 
d2y

dt2 + 2y - 2x = 0 .

Write (6) in matrix notation.

Solution We introduce notation for the lower-order derivatives:

(7) x1 = x ,  x2 = x′ ,  x3 = y ,  x4 = y′ .

In these variables, the system (6) states

(8)
 2x=2 + 6x1 - 2x3 = 0 ,

 x=4 + 2x3 - 2x1 = 0 .

The normal form is then

 x=1 = x2 ,

 x=2 = -3x1 + x3 ,

 x=3 = x4 ,

 x=4 = 2x1 - 2x3

or in matrix notationD x1

x2

x3

x4

T ′

= D 0 1 0 0
-3 0 1 0

0 0 0 1
2 0 -2 0

T  D x1

x2

x3

x4

T  . ◆
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In Problems 1–6, express the given system of differential 
equations in matrix notation.

1.  x′ = 7x + 2y ,

 y′ = 3x - 2y

2.  x′ = y ,

 y′ = -x

3.  x′ = x + y + z ,

 y′ = 2z - x ,

 z′ = 4y

4.  x=1 = x1 - x2 + x3 - x4 ,

 x=2 = x1 + x4 ,

 x=3 = 1px1 - x3 ,

 x=4 = 0

5.  x′ = 1sin t2x + ety ,

 y′ = 1cos t2x + 1a + bt32y
6.  x=1 = 1cos 2t2x1 ,

 x=2 = 1sin 2t2x2 ,

 x=3 = x1 - x2

In Problems 7–10, express the given higher-order differential 
equation as a matrix system in normal form.

7. The damped mass–spring oscillator equation 
my″ + by′ + ky = 0

8. Legendre’s equation 11 - t22y″ - 2ty′ + 2y = 0

9. The Airy equation y″ - ty = 0

10. Bessel’s equation y″ +
1
t

 y′ + a1 -
n2

t2 by = 0

In Problems 11–13, express the given system of higher-
order differential equations as a matrix system in normal 
form.

11. x″ + 3x + 2y = 0 ,

y″ - 2x = 0

12. x″ + 3x′ - y′ + 2y = 0 ,

y″ + x′ + 3y′ + y = 0

13. x″ - 3x′ + t2y - 1cos t2x = 0 ,

y‴ + y″ - tx′ + y′ + etx = 0

9.1 EXERCISES

Here and in the next section we review some basic facts concerning linear algebraic systems 
and matrix algebra that will be useful in solving linear systems of differential equations in nor-
mal form. Readers competent in these areas may proceed to Section 9.4.

A set of equations of the form

a11x1 + a12x2 + g + a1nxn = b1 ,

a21x1 + a22x2 + g + a2nxn = b2 ,
f

an1x1 + an2x2 + g + annxn = bn

(where the aij’s and bi’s are given constants) is called a linear system of n algebraic equa-
tions in the n unknowns x1, x2,c, xn. The procedure for solving the system using elimination 
methods is well known. Herein we describe a particularly convenient implementation of the 
method called the Gauss–Jordan elimination algorithm.† The basic idea of this formulation 
is to use the first equation to eliminate x1 in all the other equations; then use the second equa-
tion to eliminate x2 in all the others; and so on. If all goes well, the resulting system will be 
“uncoupled,” and the values of the unknowns x1, x2,c, xn will be apparent. A short example 
will make this clear.

9.2 Review 1: Linear Algebraic Equations

†The Gauss–Jordan algorithm is neither the fastest nor the most accurate computer algorithm for solving a linear sys-
tem of algebraic equations, but for solutions executed by hand it has many pedagogical advantages. Usually it is much 
faster than Cramer’s rule, described in Appendix D.
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Example 1 Solve the system

2x1 +  6x2 +  8x3 = 16 ,

4x1 +  15x2 +  19x3 = 38 ,

2x1  +  3x3 = 6 .

Solution By subtracting 2 times the first equation from the second, we eliminate x1 from the latter. 
Similarly, x1 is eliminated from the third equation by subtracting 1 times the first equation 
from it:

 2x1 + 6x2 + 8x3 = 16 ,

 3x2 + 3x3 = 6 ,

 -6x2 - 5x3 = -10 .

Next we subtract multiples of the second equation from the first and third to eliminate x2 in 
them; the appropriate multiples are 2 and -2, respectively:

 2x1 + 2x3 = 4 ,

 3x2 + 3x3 = 6 ,

 x3 = 2 .

Finally, we eliminate x3 from the first two equations by subtracting multiples (2 and 3, respec-
tively) of the third equation:

2x1 = 0 ,

3x2 = 0 ,

x3 = 2 .

The system is now uncoupled; i.e., we can solve each equation separately:

x1 = 0 , x2 = 0 , x3 = 2 . ◆

Two complications can disrupt the straightforward execution of the Gauss–Jordan algorithm. 
The first occurs when the impending variable to be eliminated (say, xj ) does not occur in the  
jth equation. The solution is usually obvious; we employ one of the subsequent equations to 
eliminate xj. Example 2 illustrates this maneuver.

Example 2 Solve the system

x1 + 2x2 + 4x3 + x4 = 0 ,

-x1 - 2x2 - 2x3 = 1 ,

-2x1 - 4x2 - 8x3 + 2x4 = 4 ,

x1 + 4x2 + 2x3 = -3 .

Solution The first unknown x1 is eliminated from the last three equations by subtracting multiples of the 
first equation:

 x1 + 2x2 + 4x3 + x4 = 0 ,

 2x3 + x4 = 1 ,

 4x4 = 4 ,

 2x2 - 2x3 - x4 = -3 .
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Now, we cannot use the second equation to eliminate the second unknown because x2 is not 
present. The next equation that does contain x2 is the fourth, so we switch the second and 
fourth equation:

 x1 + 2x2 + 4x3 + x4 = 0 ,

 2x2 - 2x3 - x4 = -3 ,

 4x4 = 4 ,

 2x3 + x4 = 1 ,

and proceed to eliminate x2:

x1 + 6x3 + 2x4 = 3 ,

2x2 - 2x3 - x4 = -3 ,

4x4 = 4 ,

2x3 + x4 = 1 .

To eliminate x3, we have to switch again,

x1 + 6x3 + 2x4 = 3 ,

2x2 - 2x3 - x4 = -3 ,

2x3 + x4 = 1 ,

4x4 = 4 ,

and eliminate, in turn, x3 and x4. This gives

x1 - x4 = 0 ,          x1 = 1 ,
2x2 = -2 ,  and   2x2 = -2 ,

2x3 + x4 = 1 ,          2x3 = 0 ,

4x4 = 4 ,          4x4 = 4 .

The solution to the uncoupled equations is

x1 = 1 , x2 = -1 , x3 = 0 , x4 = 1 . ◆

The other complication that can disrupt the Gauss–Jordan algorithm is much more 
profound. What if, when we are “scheduled” to eliminate the unknown xj, it is absent from all 
of the subsequent equations? The first thing to do is to move on to the elimination of the next 
unknown xj+ 1, as demonstrated in Example 3.

Example 3 Apply the Gauss–Jordan algorithm to the system

(1)

  2x1 +  4x2 +  x3 = 8 ,

  2x1 +  4x2  = 6 ,

  -4x1 -  8x2 +  x3 = -10 .

Solution Elimination of x1 proceeds as usual:

 2x1 + 4x2 +  x3 = 8 ,
 -  x3 = -2 ,

  3x3 = 6 .
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Now since x2 is absent from the second and third equations, we use the second equation to 
eliminate x3 :

(2)
  2x1 + 4x2  = 6 ,

  -  x3 = -2 ,

   0 = 0 .

How do we interpret the system (2)? The final equation contains no information, of course, 
and we ignore it.† The second equation implies that x3 = 2.

The first equation implies that x1 = 3 - 2x2, but there is no equation for x2. Evidently, 
x2 is a “free” variable, and we can assign any value to it—as long as we take x1 to be 3 - 2x2. 
Thus (1) has an infinite number of solutions, and a convenient way of characterizing them is

x1 = 3 - 2s , x2 = s , x3 = 2 ; - ∞ 6 s 6 ∞  .

We remark that an equivalent solution can be obtained by treating x1 as the free variable, 
say x1 = s, and taking x2 = 13 - s2 >2, x3 = 2. ◆

The final example is contrived to demonstrate all the features that we have encountered.

Example 4 Find all solutions to the system

 x1 -  x2 +  2x3 +  2x4 = 0 ,

 2x1 -  2x2 +  4x3 +  3x4 = 1 ,

 3x1 -  3x2 +  6x3 +  9x4 = -3 ,

 4x1 -  4x2 +  8x3 +  8x4 = 0 .

Solution We use the first equation to eliminate x1:

 x1 - x2 + 2x3 +  2x4 = 0 ,

 -  x4 = 1 ,

  3x4 = -3 ,

  0 = 0 .

Now, both x2 and x3 are absent from all subsequent equations, so we use the second equation 
to eliminate x4.

 x1 - x2 + 2x3  = 2 ,

 -x4 = 1 ,

 0 = 0 ,

 0 = 0 .

There are no constraints on either x2 or x3; thus we take them to be free variables and characterize 
the solutions by

x1 = 2 + s - 2t , x2 = s , x3 = t , x4 = -1, - ∞ 6 s, t 6 ∞  . ◆

In closing, we note that if the execution of the Gauss–Jordan algorithm results in a display 
of the form 0 = 1 (or 0 = k, where k ≠ 0), the original system has no solutions; it is inconsistent. 
This is explored in Problem 12.

†The occurrence of the identity 0 = 0 in the Gauss–Jordan algorithm implies that one of the original equations was 
redundant. In this case you may observe that the final equation in (1) can be derived by subtracting 3 times the second 
equation from the first.
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In Problems 1–11, find all solutions to the system using the 
Gauss–Jordan elimination algorithm.

1.  x1 +  2x2 +  2x3 = 6 ,

 2x1 +  x2 +  x3 = 6 ,

 x1 +  x2 +  3x3 = 6

2.  x1 +  x2 +  x3 +  x4 = 1 ,

x1 + x4 = 0 ,

 2x1 +  2x2 -  x3 +  x4 = 0 ,

 x1 +  2x2 -  x3 +  x4 = 0

3.  x1 +  x2 -  x3 = 0 ,

 -x1 -  x2 +  x3 = 0 ,

 x1 +  x2 -  x3 = 0

4.     x3 +  x4 = 0 ,

 x1 +  x2 +  x3 +  x4 = 1 ,

 2x1 -  x2 +  x3 +  2x4 = 0 ,

 2x1 -  x2 +  x3 +  x4 = 0

5.  -x1 +  2x2 = 0 ,

 2x1 +  3x2 = 0

6.  -2x1 +  2x2 -  x3 = 0 ,

 x1 -  3x2 +  x3 = 0 ,

 4x1 -  4x2 +  2x3 = 0

7.  -x1 +  3x2 = 0 ,

 -3x1 +  9x2 = 0

8.  x1 +  2x2 +  x3 = -3 ,

 2x1 +  4x2 -  x3 = 0 ,

 x1 +  3x2 -  2x3 = 3

9. 11 - i2x1 + 2x2 = 0 ,

-x1 - 11 + i2x2 = 0

10.  x1 +  x2 +  x3 = i ,

 2x1 +  3x2 - ix3 = 0 ,

 x1 +  2x2 +  x3 = i

11. 2x1    +  x3 = -1 ,

 -3x1 +  x2 +  4x3 = 1 ,

 -x1 +  x2 +  5x3 = 0

12. Use the Gauss–Jordan elimination algorithm to  
show that the following systems of equations are  
inconsistent. That is, demonstrate that the exis-
tence of a solution would imply a mathematical  
contradiction.

  (a)  2x1 -  x2 = 2 ,
    -6x1 +  3x2 = 4

  (b) 2x1    +  x3 = -1 ,
    -3x1 +  x2 +  4x3 = 1 ,
    -x1 +  x2 +  5x3 = 1

13. Use the Gauss–Jordan elimination algorithm to show that 
the following system of equations has a unique solution 
for r = 2, but an infinite number of solutions for r = 1.

 2x1 -  3x2 = rx1 ,

 x1 -  2x2 = rx2

14. Use the Gauss–Jordan elimination algorithm to show 
that the following system of equations has a unique solu-
tion for r = -1, but an infinite number of solutions for 
r = 2.

x1 + 2x2 - x3 = rx1 ,

x1 + x3 = rx2 ,

4x1 - 4x2 + 5x3 = rx3

9.2 EXERCISES

A matrix is a rectangular array of numbers arranged in rows and columns. An m * n matrix—
that is, a matrix with m rows and n columns—is usually denoted by

A J D a11 a12 a13 g a1n

a21 a22 a23 g a2n

f f f g f
am1 am2 am3 g amn

T  ,

where the element in the ith row and jth column is aij. The notation 3aij4 is also used to desig-
nate A. The matrices we will work with usually consist of real numbers, but in certain instances 
we allow complex-number entries.

9.3 Review 2: Matrices and Vectors

M09_NAGL7069_09_SE_C09_496-559.indd   504 21/09/16   4:33 PM



Section 9.3  Review 2: Matrices and Vectors     505

Some matrices of special interest are square matrices, which have the same number of 
rows and columns; diagonal matrices, which are square matrices with only zero entries off the 
main diagonal (that is, aij = 0 if i ≠ j); and (column) vectors, which are n * 1 matrices. For 
example, if

A = £
3 4 -1
2 6 5
0 1 4

§  ,  B = £
3 0 0
0 0 0
0 0 7

§  ,  x = £
4
2
1
§  ,

then A is a square matrix, B is a diagonal matrix, and x is a vector. An m * n matrix whose 
entries are all zero is called a zero matrix and is denoted by 0. For consistency, we denote 
matrices by boldfaced capitals, such as A, B, C, I, X, and Y, and reserve boldfaced lower-
case letters, such as c, x, y, and z, for vectors.

Algebra of Matrices
Matrix Addition and Scalar Multiplication. The operations of matrix addition and scalar 
multiplication are very straightforward. Addition is performed by adding corresponding elements:

c1 2 3
4 5 6

d + c1 1 1
1 1 1

d = c2 3 4
5 6 7

d  .

Formally, the sum of two m * n matrices is given by

A + B = 3aij4 + 3bij4 = 3aij + bij4 .
(The sole novelty here is that addition is not defined for two matrices whose dimensions m, n 
differ.)

To multiply a matrix by a scalar (number), we simply multiply each element in the matrix 
by the number:

3 c1 2 3
4 5 6

d = c 3 6 9
12 15 18

d  .

In other words, rA = r3aij4 = 3raij4. The notation -A stands for 1-12A.

Properties of Matrix Addition and Scalar Multiplication. Matrix addition and scalar mul-
tiplication are nothing more than mere bookkeeping, and the usual algebraic properties hold. If 
A, B, and C are m * n matrices and r, s are scalars, then

A + 1B + C2 = 1A + B2 + C ,  A + B = B + A ,

A + 0 = A , A + 1-A2 = 0 ,

r1A + B2 = rA + rB , 1r + s2A = rA + sA ,

r1sA2 = 1rs2A = s1rA2 .

Matrix Multiplication. The matrix product is what makes matrix algebra interesting and 
useful. We indicated in Section 9.1 that the product of a matrix A and a column vector x is the 
column vector composed of dot products of the rows of A with x:

c 1 2 3
4 5 6

d £
1
0
2
§ = c 1

# 1 + 2 # 0 + 3 # 2
4 # 1 + 5 # 0 + 6 # 2

d = c 7
16
d  .
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More generally, the product of two matrices A and B is formed by taking the array of dot prod-
ucts of the rows of the first “factor” A with the columns of the second factor B; the dot product 
of the ith row of A with the jth column of B is written as the ijth entry of the product AB:

 c 1 0 1
3 -1 2

d £
1 2 x

-1 −1 y
4 1 z

§ = c 1 + 0 + 4 2 + 0 + 1 x + 0 + z
3 + 1 + 8 6 + 1 + 2 3x - y + 2z

d

 = c 5 3 x + z
12 9 3x - y + 2z

d  .

Note that AB is only defined when the number of columns of A matches the number of rows of 
B. A useful formula for the product of an m * n matrix A and an n * p matrix B is

AB J 3cij4 ,    where  cij J an

k = 1
aikbkj .

The dot product of the ith row of A and the jth column of B is seen in the “sum of products” 
expression for cij.

Since AB is computed in terms of the rows of the first factor and the columns of the second 
factor, it should not be surprising that, in general, AB does not equal BA (matrix multiplication 
does not commute):

c1 2
3 4

d c0 1
1 0

d = c2 1
4 3

d  ,    but    c0 1
1 0

d c1 2
3 4

d = c3 4
1 2

d  .

In fact, the dimensions of A and B may render one or the other of these products undefined:

c1 2
3 4

d c0
1
d = c2

4
d  ;  c0

1
d c1 2

3 4
d  not defined .

By the same token, one might not expect (AB)C to equal A(BC), since in (AB)C we take 
dot products with the columns of B, whereas in A(BC) we employ the rows of B. So it is a 
pleasant surprise that this complication does not arise, and the “parenthesis grouping” rules are 
the customary ones:

Properties of Matrix Multiplication

1AB2C = A1BC2 (Associativity)

1A + B2C = AC + BC (Distributivity)

A1B + C2 = AB + AC (Distributivity)

1rA)B = r1AB2 = A1rB2 (Associativity)

To summarize, the algebra of matrices proceeds much like the standard algebra of num-
bers, except that we should never presume that we can switch the order of matrix factors.  
(If you think 1A + B22 = A2 + B2 + 2AB, what error have you made?)

Matrices as Linear Operators. Let A be an m * n matrix and let x and y be n * 1 vectors. 
Then Ax is an m * 1 vector, and so we can think of multiplication by A as defining an operator 
that maps n * 1 vectors into m * 1 vectors. A consequence of the distributivity and associativ-
ity properties is that multiplication by A defines a linear operator, since A(x + y) = Ax + Ay 
and A(rx) = rAx. Moreover, if A is an m * n matrix and B is an n * p matrix, then the m * p 
matrix AB defines a linear operator that is the composition of the linear operator defined by B 
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with the linear operator defined by A. That is, (AB)x = A(Bx), where x is a p * 1 vector.
Examples of linear operations are
(i) stretching or contracting the components of a vector by constant factors;

(ii) rotating a vector through some angle about a fixed axis;
(iii) reflecting a vector in a plane mirror.

The Matrix Formulation of Linear Algebraic Systems. Matrix algebra was developed to 
provide a convenient tool for expressing and analyzing linear algebraic systems. Note that the 
set of equations

x1 +  2x2 +  x3 = 1 ,

x1 +  3x2 +  2x3 = -1 ,

x1  +  x3 = 0

can be written using the matrix product

(1) £
1 2 1
1 3 2
1 0 1

§ £
x1

x2

x3

§ = £
1

-1
0
§  .

In general, we express the linear system

  a11x1 +  a12x2 + g +  a1nxn = b1 ,

  a21x1 +  a22x2 + g +  a2nxn = b2 ,
f

 an1x1 +  an2x2 + g +  annxn = bn

in matrix notation as Ax = b, where A is the coefficient matrix, x is the vector of unknowns, 
and b is the vector of constants occurring on the right-hand side:

A = Da11 a12 g a1n

a21 a22 g a2n

 f f  f
an1 an2 g ann

T  ,  x = D x1

x2

f
xn

T  ,  b = Db1

b2

f
bn

T  .

If b = 0, the system Ax = b is said to be homogeneous (analogous to the nomenclature of  
Section 4.2).

Matrix Transpose. The matrix obtained from A by interchanging its rows and columns is 
called the transpose of A and is denoted by AT. For example, if

A = c 1 2 6
-1 2 -1

d  ,    then

AT = £
1 -1
2 2
6 -1

§  .

In general, we have 3aij4T = 3bij4, where bij = aji. Properties of the transpose are explored in 
Problem 7.
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Matrix Identity. There is a “multiplicative identity” in matrix algebra, namely, a square 
diagonal matrix I with ones down the main diagonal. Multiplying I on the right or left by any 
other matrix (with compatible dimensions) reproduces the latter matrix:

£
1 0 0
0 1 0
0 0 1

§ £
1 2 1
1 3 2
1 0 1

§ = £
1 2 1
1 3 2
1 0 1

§ = £
1 2 1
1 3 2
1 0 1

§ £
1 0 0
0 1 0
0 0 1

§  .

(The notation In is used if it is convenient to specify the dimensions, n * n, of the identity matrix.)

Matrix Inverse. Some square matrices A can be paired with other (square) matrices B 
having the property that BA = I:

(2) E 3
2 -1 1

2

1
2 0 -  12

-  32 1 1
2

U £ 1 2 1
1 3 2
1 0 1

§ = £
1 0 0
0 1 0
0 0 1

§  .

When this happens, it can be shown that

(i) B is the unique matrix satisfying BA = I, and
(ii) B also satisfies AB = I.

In such a case, we say that B is the inverse of A and write B = A-1.
Not every matrix possesses an inverse; the zero matrix 0, for example, can never satisfy 

the equation 0B = I. A matrix that has no inverse is said to be singular.
If we know an inverse for the coefficient matrix A in a system of linear equations Ax = b, 

the solution can be calculated directly by computing A-1b, as the following derivation shows:

Ax = b implies A-1Ax = A-1b implies x = A-1b .

Using (2), for example, we can solve equation (1) quite efficiently:

£
x1

x2

x3

§ = E 3
2 -1 1

2

1
2 0 -  12

-  32 1 1
2

U £ 1
-1

0
§ = E 5

2

1
2

-  52

U  .

On the other hand, the coefficient matrix for any inconsistent system has no inverse. For example, 
the coefficient matrices

c 2 -1
-6 3

d  and £
2 0 1

-3 1 4
-1 1 5

§

for the inconsistent systems of Problem 12, Exercises 9.2 (page 504), are necessarily singular.
When A-1 is known, solving Ax = b by multiplying b by A-1 is certainly easier than 

applying the Gauss–Jordan algorithm of the previous section†. So it appears advantageous to 
be able to find matrix inverses. Some inverses can be obtained directly from the interpretation 
of the matrix as a linear operator. For example, the inverse of a matrix that rotates a vector is 

†(When the effort to compute the inverse is accounted for, Gauss–Jordan emerges as the winner.)
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the matrix that rotates it in the opposite direction. A matrix that performs a mirror reflection 
is its own inverse (what do you get if you reflect twice?). But in general one must employ  
an algorithm to compute a matrix inverse. The underlying strategy for this algorithm is based 
on the observation that if X denotes the inverse of A, then X must satisfy the equation AX = I; 
finding X amounts to solving n linear systems of equations for the columns 5x1, x2, . . . , xn6 
of X:

Ax1 = F 1
0
0
f
0
0

V ,  Ax2 = F 0
1
0
f
0
0

V  , g , Axn = F 0
0
0
f
0
1

V  .

The implementation of this operation is neatly executed by the following variation of the 
Gauss–Jordan algorithm.

Finding the Inverse of a Matrix. By a row operation, we mean any one of the following:
(a) Interchanging two rows of the matrix
(b) Multiplying a row of the matrix by a nonzero scalar
(c) Adding a scalar multiple of one row of the matrix to another row.

If the n * n matrix A has an inverse, then A-1 can be determined by performing row oper-
ations on the n * 2n matrix 3A?I4 obtained by writing A and I side by side. In particular, we 
perform row operations on the matrix 3A?I4 until the first n rows and columns form the iden-
tity matrix; that is, the new matrix is 3I?B4. Then A-1 = B. We remark that if this procedure 
fails to produce a matrix of the form 3I?B4, then A has no inverse.

Example 1 Find the inverse of A = £
1 2 1
1 3 2
1 0 1

§  .

Solution We first form the matrix 3A?I4 and row-reduce the matrix to 3I?A-14. Computing, we find 
the following:

The matrix 3A?I4 £
1 2 1 ? 1 0 0
1 3 2 ? 0 1 0
1 0 1 ? 0 0 1

§  .

Subtract the first row from 
the second and third to 
obtain

£
1 2 1 ? 1 0 0
0 1 1 ? -1 1 0
0 -2 0 ? -1 0 1

§  .

Add 2 times the second 
row to the third row to 
obtain

£
1 2 1 ? 1 0 0
0 1 1 ? -1 1 0
0 0 2 ? -3 2 1

§  .

Subtract 2 times the second 
row from the first to obtain

£
1 0 -1 ? 3 -2 0
0 1 1 ? -1 1 0
0 0 2 ? -3 2 1

§  .
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Multiply the third row by 
1>2 to obtain ≥

1 0 -1 ? 3 -2 0

0 1 1 ? -1 1 0

0 0 1 ? -  32 1 1
2

¥  .

Add the third row to the 
first and then subtract the 
third row from the sec-
ond to obtain

≥
1 0 0 ? 3

2 −1 1
2

0 1 0 ? 1
2 0 −  12

0 0 1 ? −  32 1 1
2

¥  .

The matrix shown in color is A-1. [Compare equation (2).] ◆

It is convenient to have an expression for the inverse of a generic 2 * 2 matrix. The 
following formula is easily verified by mental arithmetic:

(3) ca b
c d

d
-1

=
1

ad - bc
 c d -b

-c a
d  if ad - bc ≠ 0 .

The denominator in (3), whose nonvanishing is the crucial condition for the existence of the 
inverse, is known as the determinant.

Determinants. The determinant of a 2 * 2 matrix A, denoted det A or � A � , is defined by

det A = ` a11 a12

a21 a22
` = a11a22 - a12a21.

The determinants of higher-order square matrices can be defined recursively in terms of 
lower-order determinants, using the concept of the minor; the minor of a particular entry is 
the determinant of the submatrix formed when that entry’s row and column are deleted. Then 
the determinant of an n * n matrix equals the alternating-sign sum of the products of the 
entries of the first row with their minors. For a 3 * 3 matrix A this looks like

det A J †
a11 a12 a13

a21 a22 a23

a31 a32 a33

† = a11 `
a22 a23

a32 a33
` - a12 `

a21 a23

a31 a33
` + a13 `

a21 a22

a31 a32
`  .

For example,

†
1 2 1
0 3 5
2 1 -1

† = 1 ` 3 5
1 -1

` - 2 ` 0 5
2 -1

` + 1 ` 0 3
2 1

`

 = 11-3 - 52 - 210 - 102 + 110 - 62 = 6 .

For a 4 * 4 matrix, we have

∞
4 3 2 -6

-2 1 2 1
3 0 3 5
5 2 1 -1

∞ = 4 †
1 2 1
0 3 5
2 1 -1

† - 3 †
-2 2 1

3 3 5
5 1 -1

†

+ 2 †
-2 1 1

3 0 5
5 2 -1

† - 1-62 †
-2 1 2

3 0 3
5 2 1

†  .
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As we have shown, the first minor is 6; and the others are computed the same way, resulting in

∞
4 3 2 -6

-2 1 2 1
3 0 3 5
5 2 1 -1

∞ = 4162 - 31602 + 21542 - 1-621362 = 168 .

Although higher-order determinants can be calculated similarly, a more practical way to 
evaluate them involves the row-reduction of the matrix to upper triangular form. Here we will 
deal mainly with low-order determinants, and direct the reader to a linear algebra text for fur-
ther discussion.†

Determinants have a geometric interpretation: det A is the volume (in n-dimensional space) 
of the parallelepiped whose edges are given by the column vectors of  A. But their chief value 
lies in the role they play in the following theorem, which summarizes many of the results from 
linear algebra that we shall need, and in Cramer’s rule, described in Appendix D.

†Your authors’ personal favorite is Fundamentals of Matrix Analysis with Applications, by Edward Barry Saff and 
Arthur David Snider (John Wiley & Sons, Hoboken, New Jersey, 2016).

Matrices and Systems of Equations

Theorem 1. Let A be an n * n matrix. The following statements are equivalent:

(a) A is singular (does not have an inverse).

(b) The determinant of A is zero.

(c) Ax = 0 has nontrivial solutions (x ≠ 0).

(d) The columns (rows) of A form a linearly dependent set.

In part (d), the statement that the n columns of A are linearly dependent means that there 
exist scalars c1, c, cn, not all zero, such that

c1a1 + c2a2 + g + cnan = 0 ,

where aj is the vector forming the jth column of A.
If A is a singular square matrix (so det A = 0), then Ax = 0 has infinitely many solutions. 

Indeed, Theorem 1 asserts that there is a vector x0 ≠ 0 such that Ax0 = 0, and we can get 
infinitely many other solutions by multiplying x0 by any scalar, i.e., taking x = cx0. Furthermore, 
Ax = b either has no solutions or it has infinitely many of them of the form

x = xp + xh ,

where xp is a particular solution to Ax = b and xh is any of the infinity of solutions to Ax = 0 
(see Problem 15). The resemblance of this situation to that of solving nonhomogeneous linear 
differential equations should be quite apparent.

To illustrate, in Example 3 of Section 9.2 (page 502) we saw that the system

£
2 4 1
2 4 0

-4 -8 1
§ £

x1

x2

x3

§ = £
8
6

-10
§

has solutions

x1 = 3 - 2s ,  x2 = s ,  x3 = 2 ; - ∞ 6 s 6 ∞  .
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Writing these in matrix notation, we can identify the vectors xp and xh mentioned above:

x = £
3 - 2s

s
2
§ = £

3
0
2
§ + s£

-2
1
0
§ = xp + xh .

Note further that the determinant of A is indeed zero,

det A = 2 ` 4 0
-8 1

` - 4 ` 2 0
-4 1

` + 1 ` 2 4
-4 -8

` = 2 # 4 - 4 # 2 + 1 # 0 = 0 ,

and that the linear dependence of the columns of A is exhibited by the identity

-2£
2
2

-4
§ + 1£

4
4

-8
§ + 0£

1
0
1
§ = £

0
0
0
§  .

If A is a nonsingular square matrix (i.e., A has an inverse and det A ≠ 02, then the homo-
geneous system Ax = 0 has x = 0 as its only solution. More generally, when det A ≠ 0, the 
system Ax = b has a unique solution (namely, x = A-1b2.

Calculus of Matrices
If we allow the entries aij1t2 in a matrix A1t2 to be functions of the variable t, then A1t2 is a 
matrix function of t. Similarly, if the entries xi1t2 of a vector x1t2 are functions of t, then x1t2 
is a vector function of t.

These matrix and vector functions have a calculus much like that of real-valued functions. 
A matrix A1t2 is said to be continuous at t0 if each entry aij1t2 is continuous at t0. Moreover, 
A1t2 is differentiable at t0 if each entry aij1t2 is differentiable at t0, and we write

(4) 
dA
dt

 1t02 = A′1t02 J 3a=ij1t024 .

Similarly, we define

(5) L
b

a
 A1t2  dt J c L

b

a
 aij1t2  dt d  .

Example 2 Let A1t2 = c t
2 + 1 cos t

et 1
d  .

Find:  (a) A′1t2 .    (b) L
1

0
A1t2dt .

Solution Using formulas (4) and (5), we compute

(a) A′1t2 = c2t -sin t
et 0

d  .    (b) L
1

0

A1t2dt = c
4
3 sin 1

e - 1 1
d  . ◆

Example 3 Show that x1t2 = c cos vt
sin vt

d  is a solution of the matrix differential equation x′ = Ax, where

A = c 0 -v
v 0

d  .
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Solution We simply verify that x′1t2 and Ax1t2 are the same vector function:

x′1t2 = c -v sin vt
v cos vt

d  ;  Ax = c 0 -v
v 0

d c cos vt
sin vt

d = c -v sin vt
v cos vt

d  . ◆

The basic properties of differentiation are valid for matrix functions.

Differentiation Formulas for Matrix Functions

d
dt

 1CA2 = C 
dA
dt
  (C a constant matrix) .

d
dt

 1A + B2 =
dA
dt

+
d  B
dt

 .

d
dt

 1AB2 = A 
d  B
dt

+
dA
dt

 B .

In the last formula, the order in which the matrices are written is very important because, 
as we have emphasized, matrix multiplication does not always commute.

1. Let A J c 2 1
3 5

d  and B J c -1 0
2 -3

d  .
Find: (a) A + B . (b) 3A - B .

2. Let A J c 2 0 5
2 1 1

d  and B J c 1 -1 2
0 3 -2

d  .
Find: (a) A + B . (b) 7A - 4B .

3. Let A J c 2 4
1 1

d  and B J c -1 3
5 2

d  .
Find: (a) AB .  (b) A2 = AA .   (c) B2 = BB .

4. Let A J £
2 1
0 4

-1 3
§  and B J c 1 1 -1

0 3 1
d  .

Find: (a) AB . (b) BA .

5. Let A J c 1 -2
2 -3

d  , B J c 1 0
1 1

d  , and

 C J c -1 1
2 1

d  .
Find: (a) AB .  (b) AC .  (c) A1B + C2 .

6. Let A J c 1 2
1 1

d  , B J c 0 3
1 2

d  , and

 C J c 1 -4
1 1

d  .
Find: (a) AB .  (b) 1AB2C .  (c) 1A + B2C .

7. (a)  Show that if u and v are each n * 1 column vectors, 
then the matrix product uTv is the same as the dot 
product u # v.

 (b)  Let v be a 3 * 1 column vector with 
vT = 32 3 54. Show that, for A as given in 
Example 1 (page 509), 1Av2T = vTAT.

 (c)  Does 1Av2T = vTAT hold for every m * n matrix A 
and n * 1 vector v?

 (d)  Does 1AB2T = BTAT hold for every pair of matri-
ces A, B such that both matrix products are defined? 
Justify your answer.

8. Let A J c 2 -1
-3 4

d  and B J c 1 2
3 2

d  .
Verify that AB ≠ BA.

In Problems 9–14, use the method of Example 1 to compute 
the inverse of the given matrix, if it exists. For Problems 9 and 
10, confirm your answer by comparison with formula (3).

9.3 EXERCISES

9. c 2 1
-1 4

d 10. c 4 1
5 9

d

11. £
1 1 1
1 2 1
2 3 2

§ 12. £
1 1 1
1 2 3
0 1 1

§

13. £
-2 -1 1

2 1 0
3 1 -1

§ 14. £
1 1 1
1 -1 2
1 1 4

§
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15. Prove that if xp satisfies Axp = b, then every solution 
to the nonhomogeneous system Ax = b is of the form 
x = xp + xh, where xh is a solution to the corresponding 
homogeneous system Ax = 0.

16. Let A = £
2 -1 1

-1 2 1
1 1 2

§  .

  (a) Show that A is singular.

  (b) Show that Ax = £
3
1
3
§  has no solutions.

  (c) Show that Ax = £
3
0
3
§  has infinitely many solutions.

In Problems 17–20, find the matrix function X-11t2 whose 
value at t is the inverse of the given matrix X1t2.
17. X1t2 = c e

t e4t

et 4e4t d

18. X1t2 = c sin 2t cos 2t
2 cos 2t -2 sin 2t

d

19. X1t2 = £
et e-t e2t

et -e-t 2e2t

et e-t 4e2t

§

20. X1t2 = £
e3t 1 t

3e3t 0 1
9e3t 0 0

§

In Problems 21–26, evaluate the given determinant.

  (a)  Show that the row-reduction procedure applied to 
3A?I4 fails to produce the inverse of A.

  (b) Calculate det A.
  (c) Determine a nontrivial solution x to Ax = 0.
  (d)  Find scalars c1, c2, and c3, not all zero, so that 

c1a1 + c2a2 + c3a3 = 0, where a1, a2, and a3 are the 
columns of A.

In Problems 31 and 32, find dx>dt for the given vector  
functions.

21. ` 4 3
-1 2

` 22. ` 12 8
3 2

`

23. †
1 0 0
3 1 2
1 5 -2

† 24. †
1 0 2
0 3 -1

-1 2 1
†

25. †
1 4 3

-1 -1 2
4 5 2

† 26. †
1 4 4
3 0 -3
1 6 2

†

In Problems 27–29, determine the values of r for which 
det1A - rI2 = 0.

27. A = c 1 1
-2 4

d 28. A = c 3 3
2 4

d

29. A = £
0 0 0
0 1 0
1 0 1

§

30. Illustrate the equivalence of the assertions (a)–(d) in  
Theorem 1 (page 511) for the matrix

A = £
4 -2 2

-2 4 2
2 2 4

§

as follows.

31. x1t2 = £
e3t

2e3t

-e3t

§ 32. x1t2 = £
e-t sin 3t

0
-e-t sin 3t

§

In Problems 33 and 34, find dX>dt for the given matrix  
functions.

33. X1t2 = c e5t 3e2t

-2e5t -e2t d

34. X1t2 = £
sin 2t cos 2t e-2t

-sin 2t 2 cos 2t 3e-2t

3 sin 2t cos 2t e-2t

§

In Problems 35 and 36, verify that the given vector function 
satisfies the given system.

35. x′ = c 1 1
-2 4

d x ,  x1t2 = c e3t

2e3t d

36. x′ = £
0 0 0
0 1 0
1 0 1

§ x ,  x1t2 = £
0
et

-3et

§

In Problems 37 and 38, verify that the given matrix function 
satisfies the given matrix differential equation.

37. X′ = c 1 -1
2 4

dX ,  X1t2 = c e2t e3t

-e2t -2e3t d

38. X′ = £
1 0 0
0 3 -2
0 -2 3

§X ,  

X1t2 = £
et 0 0
0 et e5t

0 et -e5t

§

In Problems 39 and 40, the matrices A1t2 and B1t2 are 
given. Find

(a) L  A1t2dt . (b) L
1

0
B1t2dt . (c) 

d
dt

 3A1t2B1t24 .

39. A1t2 = c t et

1 et d  ,  B1t2 = c cos t -sin t
sin t   cos t

d

40. A1t2 = c 1 e-2t

3 e-2t d  ,  B1t2 = c e-t e-t

-e-t 3e-t d
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41. An n * n matrix A is called symmetric if AT = A; that 
is, if aij = aji, for all i, j = 1, … , n. Show that if A is an 
n * n matrix, then A + AT is a symmetric matrix.

42. Let A be an m * n matrix. Show that ATA is a symmetric 
n * n matrix and AAT is a symmetric m * m matrix (see 
Problem 41).

43. The inner product of two vectors is a generalization of 
the dot product, for vectors with complex entries. It is 
defined by

1x, y2 J an

i= 1
xiyi ,  where

x = col 1x1, x2, . . . , xn2, y = col 1y1, y2, . . . , yn2 are  
complex vectors and the overbar denotes complex  
conjugation.

  (a)  Show that 1x, y2 = xTy, where  
y =  col 1y1, y2,c, yn2 .

  (b)  Prove that for any n * 1 vectors x, y, z and any  
complex number l, we have

1x, y) = 1y, x2 , 
1x, y + z2 = 1x, y2 + 1x, z2 ,
1lx, y2 = l1x, y) , 1x, ly2 = l1x, y2 .

In keeping with the introduction presented in Section 9.1, we say that a system of n linear dif-
ferential equations is in normal form if it is expressed as

(1) x′1t2 = A1t2x1t2 + f1t2 ,
where x1t2 = col1x11t2,c, xn1t2 2 , f1t2 = col1 f11t2,c, fn1t2 2 , and A1t2 = 3aij1t24 
is an n * n matrix. As with a scalar linear differential equation, a system is called homogeneous 
when f1t2 K 0; otherwise, it is called nonhomogeneous. When the elements of A are all  
constants, the system is said to have constant coefficients. Recall that an nth-order linear  
differential equation

(2) y1n21t2 + pn - 11t2y1n-121t2 + g + p01t2y1t2 = g1t2
can be rewritten as a first-order system in normal form using the substitution x11t2 J y1t2, 
x21t2 J y′1t2,c, xn1t2 J y1n-121t2; indeed, equation (2) is equivalent to x′1t2 =  
A1t2x1t2 +  f1t2, where x1t2 = col1x11t2,c, xn1t22, f1t2 J col10,c, 0, g1t2 2 , and

A1t2 J E 0 1 0 g 0 0
0 0 1  0 0
f f f  f f
0 0 0 g 0 1

-p01t2 -p11t2 -p21t2 g -pn - 21t2 -pn - 11t2

U  .

The theory for systems in normal form parallels very closely the theory of linear differential 
equations presented in Chapters 4 and 6. In many cases the proofs for scalar linear differential 
equations carry over to normal systems with appropriate modifications. Conversely, results for 
normal systems apply to scalar linear equations since, as we showed, any scalar linear equation 
can be expressed as a normal system. This is the case with the existence and uniqueness theo-
rems for linear differential equations.

The initial value problem for the normal system (1) is the problem of finding a differen-
tiable vector function x1t2 that satisfies the system on an interval I and also satisfies the initial 
condition x1t02 = x0, where t0 is a given point of I and x0 = col1x1,0,c, xn,02 is a given 
vector.

9.4 Linear Systems in Normal Form
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We give a proof of this result in Chapter 13† and obtain as corollaries the existence and 
uniqueness theorems for second-order equations (Theorem 4, Section 4.5, page 182) and 
higher-order linear equations (Theorem 1, Section 6.1, page 319).

If we rewrite system (1) as x′ - Ax = f and define the operator L3x4 J x′ - Ax, then 
we can express system (1) in the operator form L3x4 = f. Here the operator L maps vector 
functions into vector functions. Moreover, L is a linear operator in the sense that for any scalars 
a, b and differentiable vector functions x, y, we have

L3ax + by4 = aL3x4 + bL3y4 .
The proof of this linearity follows from the properties of matrix multiplication (see Problem 27).

As a consequence of the linearity of L, if x1,c, xn are solutions to the homogeneous sys-
tem x′ = Ax, or L3x4 = 0 in operator notation, then any linear combination of these vectors, 
c1x1 + g + cnxn, is also a solution. Moreover, we will see that if the solutions x1, c, xn are 
linearly independent, then every solution to L3x4 = 0 can be expressed as c1x1 + g + cnxn 
for an appropriate choice of the constants c1,c, cn.

Existence and Uniqueness

Theorem 2. If A1t2 and f1t2 are continuous on an open interval I that contains the 
point t0, then for any choice of the initial vector x0, there exists a unique solution x1t2 
on the whole interval I to the initial value problem

x′1t2 = A1t2x1t2 + f1t2 ,  x1t02 = x0 .

Linear Dependence of Vector Functions

Definition 1. The m vector functions x1,c, xm are said to be linearly dependent on 
an interval I if there exist constants c1,c, cm, not all zero, such that

(3) c1x11t2 + g + cmxm1t2 = 0

for all t in I. If the vectors are not linearly dependent, they are said to be linearly  
independent on I.

Example 1 Show that the vector functions x11t2 = col1et, 0, et2, x21t2 = col13et, 0, 3et2, and  
x31t2 =  col1t, 1, 02 are linearly dependent on 1- ∞ , ∞ 2.

Solution Notice that x2 is just 3 times x1 and therefore 3x11t2 - x21t2 + 0 # x31t2 = 0 for all t. Hence, 
x1, x2, and x3 are linearly dependent on 1- ∞ , ∞ 2. ◆

Example 2 Show that

x11t2 = c t
� t � d    ,  x21t2 = c � t �

t
d

are linearly independent on 1- ∞ ,  ∞ 2.

†All references to Chapters 11–13 refer to the expanded text, Fundamentals of Differential Equations and Boundary 
Value Problems, 7th ed.
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Solution Note that at every instant t0, the column vector x11t02 is a multiple of x21t02; indeed, 
x11t02 = x21t02 for t0 Ú 0, and x11t02 = -x21t02 for t0 … 0. Nonetheless, the vector functions 
are not dependent, because the c’s in condition (3) are not allowed to change with t; for t 6 0, 
the equation c1x11t2 + c2x21t2 = 0 implies c1 - c2 = 0, but for t 7 0 it implies c1 + c2 = 0. 
Thus c1 = c2 = 0 and the functions are independent. ◆

Example 3 Show that the vector functions x11t2 = col1e2t, 0, e2t2, x21t2 = col1e2t, e2t, -e2t2, and 
x31t2 =  col1et, 2et, et2 are linearly independent on 1- ∞ , ∞ 2.

Solution To prove independence, we assume c1, c2, and c3 are constants for which

c1x11t2 + c2x21t2 + c3x31t2 = 0

holds at every t in 1- ∞ , ∞ 2 and show that this forces c1 = c2 = c3 = 0. In particular, when 
t = 0 we obtain

c1 £
1
0
1
§ + c2 £

1
1

-1
§ + c3 £

1
2
1
§ = 0 ,

which is equivalent to the system of linear equations

(4)

  c1 + c2 + c3 = 0 ,

  c2 + 2c3 = 0 ,

  c1 - c2 + c3 = 0 .

Either by solving (4) or by checking that the determinant of its coefficients is nonzero (recall 
Theorem 1 on page 511), we can verify that (4) has only the trivial solution c1 = c2 = c3 = 0. 
Therefore the vector functions x1, x2, and x3 are linearly independent on 1- ∞ , ∞ 2 (in fact, on 
any interval containing t = 0). ◆

As Example 3 illustrates, if x11t2, x21t2,c, xn1t2 are n vector functions, each having 
n components, we can establish their linear independence on an interval I if we can find one 
point t0 in I where the determinant

det3x11t02cxn1t024
is not zero. Because of the analogy with scalar equations, we call this determinant the  
Wronskian.

Wronskian

Definition 2. The Wronskian of n vector functions x11t2 = col1x1,1,c, xn,12,c, 
xn1t2 = col1x1,n,c, xn,n2 is defined to be the function

W3x1,c, xn41t2 J ∞
x1,11t2 x1,21t2 g x1,n1t2
x2,11t2 x2,21t2 g x2,n1t2
f f f

xn,11t2 xn,21t2 g xn,n1t2
∞  .
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We see that n vector functions are linearly independent on an interval if their Wronskian 
is nonzero at any point in the interval. But now we show that if these functions happen to 
be independent solutions to a homogeneous system x′ = Ax, where A is an n * n matrix of 
continuous functions, then the Wronskian is never zero on I. For suppose to the contrary that 
W1t02 = 0. Then by Theorem 1 the vanishing of the determinant implies that the column 
vectors x11t02, x21t02,c, xn1t02 are linearly dependent. Thus there exist scalars c1,c, cn 
not all zero, such that at t0

c1x11t02 + g + cnxn1t02 = 0 .

However, c1x11t2 + g + cnxn1t2 and the vector function z1t2 K 0 are both solutions to 
x′ = Ax on I, and they agree at the point t0. So these solutions must be identical on I accord-
ing to the existence-uniqueness theorem (Theorem 2, page 516). That is,

c1x11t2 + g + cnxn1t2 = 0

for all t in I. But this contradicts the given information that x1,c, xn are linearly independent on I.  
We have shown that W1t02 ≠ 0, and since t0 is an arbitrary point, it follows that W1t2 ≠ 0 for all t ∈ I.

The preceding argument has two important implications that parallel the scalar case. First, 
the Wronskian of solutions to x′ = Ax is either identically zero or never zero on I (see also 
Problem 33). Second, a set of n solutions x1,c, xn to x′ = Ax on I is linearly independent 
on I if and only if their Wronskian is never zero on I. With these facts in hand, we can imitate 
the proof given for the scalar case in Section 6.1 (Theorem 2, page 322) to obtain the following 
representation theorem for the solutions to x′ = Ax.

Representation of Solutions (Homogeneous Case)

Theorem 3. Let x1,c, xn be n linearly independent solutions to the homogeneous system

(5) x′1t2 = A1t2x1t2
on the interval I, where A1t2 is an n * n matrix function continuous on I. Then every 
solution to (5) on I can be expressed in the form

(6) x1t2 = c1x11t2 + g + cnxn1t2 ,
where c1,c, cn are constants.

A set of solutions 5x1,c, xn6 that are linearly independent on I or, equivalently, whose 
Wronskian does not vanish on I, is called a fundamental solution set for (5) on I. The linear 
combination in (6), written with arbitrary constants, is referred to as a general solution to (5).

If we take the vectors in a fundamental solution set and let them form the columns of a 
matrix X1t2, that is,

X1t2 = 3x11t2  x21t2cxn1t24 = D x1,11t2 x1,21t2 g x1,n1t2
x2,11t2 x2,21t2 g x2,n1t2
f f  f

xn,11t2 xn,21t2 g xn,n1t2
T  ,

then the matrix X1t2 is called a fundamental matrix for (5). We can use it to express the 
general solution (6) as

x1t2 = X1t2c ,

where c = col1c1,c, cn2 is an arbitrary constant vector. Since det X = W3x1,c, xn4 is 
never zero on I, it follows from Theorem 1 on page 511 that X1t2 is invertible for every t in I.
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Example 4 Verify that the set

S = • £
e2t

e2t

e2t

§  , £
-e-t

0
e-t

§  , £
0
e-t

-e-t

§ ¶

is a fundamental solution set for the system

(7) x′1t2 = £
0 1 1
1 0 1
1 1 0

§  x1t2

on the interval 1- ∞ , ∞ 2 and find a fundamental matrix for (7). Also determine a general 
solution for (7).

Solution Substituting the first vector in the set S into the right-hand side of (7) gives

Ax = £
0 1 1
1 0 1
1 1 0

§  £
e2t

e2t

e2t

§ = £
2e2t

2e2t

2e2t

§ = x′1t2 .

Hence this vector satisfies system (7) for all t. Similar computations verify that the remaining 
vectors in S are also solutions to (7) on 1- ∞ , ∞ 2. For us to show that S is a fundamental solu-
tion set, it is enough to observe that the Wronskian

W1t2 = †
e2t -e-t 0
e2t 0 e-t

e2t e-t -e-t

† = e2t ` 0 e-t

e-t -e-t ` + e-t ` e
2t e-t

e2t -e-t ` = -3

is never zero.
A fundamental matrix X1t2 for (7) is just the matrix we used to compute the Wronskian; 

that is,

(8) X1t2 J £
e2t -e-t 0
e2t 0 e-t

e2t e-t -e-t

§  .

A general solution to (7) can now be expressed as

x1t2 = X1t2c = c1 £
e2t

e2t

e2t

§ + c2 £
-e-t

0
e-t

§ + c3 £
0
e-t

-e-t

§  . ◆

It is easy to check that the fundamental matrix in (8) satisfies the equation

X′1t2 = £
0 1 1
1 0 1
1 1 0

§  X1t2 ;

indeed, this is equivalent to showing that x′ = Ax for each column x in S. In general, a funda-
mental matrix for a system x′ = Ax satisfies the corresponding matrix differential equation 
X′ = AX.

Another consequence of the linearity of the operator L defined by L3x4 J x′ - Ax is the 
superposition principle for linear systems. It states that if x1 and x2 are solutions, respectively, 
to the nonhomogeneous systems

L3x4 = g1 and L3x4 = g2 ,
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then c1x1 + c2x2 is a solution to

L3x4 = c1g1 + c2g2 .

Using the superposition principle and the representation theorem for homogeneous systems, we 
can prove the following theorem.

Representation of Solutions (Nonhomogeneous Case)

Theorem 4. If xp is a particular solution to the nonhomogeneous system

(9) x′1t2 = A1t2x1t2 + f1t2
on the interval I and 5x1,c, xn6 is a fundamental solution set on I for the correspond-
ing homogeneous system x1t2 = A1t2x1t2, then every solution to (9) on I can be 
expressed in the form

(10) x1t2 = xp1t2 + c1x11t2 + g + cnxn1t2 ,
where c1,c, cn are constants.

The proof of this theorem is almost identical to the proofs of Theorem 4 in Section 4.5 
(page 182) and Theorem 4 in Section 6.1 (page 325). We leave the proof as an exercise.

The linear combination of xp, x1,c, xn in (10) written with arbitrary constants c1,c, cn 
is called a general solution of (9). This general solution can also be expressed as x = xp + Xc, 
where X is a fundamental matrix for the homogeneous system and c is an arbitrary constant vector.

We now summarize the results of this section as they apply to the problem of finding a 
general solution to a system of n linear first-order differential equations in normal form.

We devote the rest of this chapter to methods for finding fundamental solution sets for 
homogeneous systems and particular solutions for nonhomogeneous systems.

Approach to Solving Normal Systems

1.  To determine a general solution to the n * n homogeneous system x′ = Ax:

(a)  Find a fundamental solution set 5x1,c, xn6 that consists of n linearly indepen-
dent solutions to the homogeneous system.

(b) Form the linear combination

x = Xc = c1x1 + g + cnxn ,

where c = col1c1,c, cn2 is any constant vector and X = 3x1 cxn4 is the 
fundamental matrix, to obtain a general solution.

2.  To determine a general solution to the nonhomogeneous system x′ = Ax + f:

(a)  Find a particular solution xp to the nonhomogeneous system.
(b)  Form the sum of the particular solution and the general solution Xc =

c1x1 + g + cnxn to the corresponding homogeneous system in part 1,

x = xp + Xc = xp + c1x1 + g + cnxn ,

to obtain a general solution to the given system.
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In Problems 1–4, write the given system in the matrix form 
x′ = Ax + f.
1. x′1t2 = 3x1t2 - y1t2 + t2 ,

y′1t2 = -x1t2 + 2y1t2 + et

2. r′1t2 = 2r1t2 + sin t ,

u′1t2 = r1t2 - u1t2 + 1

19. £
1
0
1
§  , £

t
0
t
§  , £

t2

0
t2

§

20. Let

x1 = £
cos t
0
0
§  , x2 = £

sin t
cos t
cos t
§  , x3 = £

cos t
sin t
cos t
§ .

  (a) Compute the Wronskian.
  (b)  Are these vector functions linearly independent on 

(- ∞ , ∞ )?
(c)  Is there a first-order homogeneous linear system for 

which these functions are solutions?

In Problems 21–24, the given vector functions are solutions 
to a system x′1t2 = Ax1t2. Determine whether they form 
a fundamental solution set. If they do, find a fundamental 
matrix for the system and give a general solution.

21. x1 = e2t c 1
-2
d  ,  x2 = e2t c -2

4
d

22. x1 = e-t c 3
2
d  ,  x2 = e4t c 1

-1
d

23. x1 = £
e-t

2e-t

e-t

§  ,  x2 = £
et

0
et

§  ,  x3 = £
e3t

-e3t

2e3t

§

24. x1 = £
et

et

et

§  ,  x2 = £
sin t
cos t

-sin t
§  ,  x3 = £

-cos t
sin t
cos t
§

25. Verify that the vector functions

x1 = c e
t

et d  and x2 = c e-t

3e-t d

are solutions to the homogeneous system

x′ = Ax = c 2 -1
3 -2

d  x ,

on 1- ∞ , ∞ 2, and that

xp =
3
2

  c te
t

tet d -
1
4

 c et

3et d + c t
2t
d - c 0

1
d

is a particular solution to the nonhomogeneous system 
x′ = Ax + f1t2, where f1t2 = col1et, t2. Find a general 
solution to x′ = Ax + f1t2.

26. Verify that the vector functions

x1 = £
e3t

0
e3t

§  ,   x2 = £
-e3t

e3t

0  
§  , x3 = £

-e-3t

-e-3t

e-3t

§

9.4 EXERCISES

3.
dx
dt

= t2x - y - z + t ,

dy

dt
= etz + 5 ,

dz
dt

= tx - y + 3z - et

4.
dx
dt

= x + y + z ,

dy

dt
= 2x - y + 3z ,

dz
dt

= x + 5z

In Problems 5–8, rewrite the given scalar equation as a first-
order system in normal form. Express the system in the matrix 
form x′ = Ax + f.
5. y″1t2 - 3y′1t2 - 10y1t2 = sin t

6. x″1t2 + x1t2 = t2 7.
d4w

dt4 + w = t2

8.
d3y

dt3 -
dy

dt
+ y = cos t

In Problems 9–12, write the given system as a set of scalar 
equations.

9. x′ = c 5 0
-2 4

d  x + e-2t c 2
-3
d

10. x′ = c 2 1
-1 3

d  x + et c t
1
d

11. x′ = £
1 0 1

-1 2 5
0 5 1

§  x + et £
1
0
0
§ + t £

0
1
0
§

12. x′ = £
0 1 0
0 0 1

-1 1 2
§  x + t £

1
-1

2
§ + £

3
1
0
§

In Problems 13–19, determine whether the given vector func-
tions are linearly dependent 1LD2 or linearly independent 
1LI2 on the interval 1- ∞ , ∞ 2.

13. c t
3
d  , c 4

1
d 14. c te

-t

e-t d  , c
e-t

e-t d

15. et c 1
5
d  , et c -3

-15
d 16. c sin t

cos t
d  , c sin 2t

cos 2t
d

17. e2t £
1
0
5
§  , e2t £

1
1

-1
§  , e3t £

0
1
0
§

18. c sin t
cos t
d  , c sin t

sin t
d  , c cos t

cos t
d
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are solutions to the homogeneous system

x′ = Ax = £
1 -2 2

-2 1 2
2 2 1

§  x

on 1- ∞ , ∞ 2, and that

xp = £
5t + 1

2t
4t + 2

§

is a particular solution to x′ = Ax + f1t2, where 
f1t2 =  col1-9t, 0, -18t2. Find a general solution to 
x′ = Ax + f1t2.

27. Prove that the operator defined by L3x4 J x′ - Ax, 
where A is an n * n matrix function and x is an n * 1 
differentiable vector function, is a linear operator.

28. Let X1t2 be a fundamental matrix for the system 
x′ = Ax. Show that x1t2 = X1t2X-11t02x0 is the solu-
tion to the initial value problem x′ = Ax, x1t02 = x0.

In Problems 29–30, verify that X1t2 is a fundamental matrix  
for the given system and compute X-11t2. Use the result of 
Problem 28 to find the solution to the given initial value problem.

29. x′ = £
0 6 0
1 0 1
1 1 0

§  x ,  x102 = £
-1

0
1
§  ;

X1t2 = £
6e-t -3e-2t 2e3t

-e-t e-2t e3t

-5e-t e-2t e3t

§

30. x′ = c 2 3
3 2

d  x ,  x102 = c 3
-1
d  ;

X1t2 = c e-t e5t

-e-t e5t d

31. Show that

` t
2 t � t �

2t 2 � t �
` K 0

on 1- ∞ , ∞ 2, but that the two vector functions

c t
2

2t
d  ,  c t � t �

2 � t �
d

are linearly independent on 1- ∞ , ∞ 2.
32. Abel’s Formula. If x1,c, xn are any n solutions 

to the n * n system x′1t2 = A1t2x1t2, then Abel’s 
formula gives a representation for the Wronskian 
W1t2 J W3x1,c, xn41t2. Namely,

W1t2 = W1t02expaL
t

t0

5a111s2 + P + ann1s26  dsb ,

where a111s2,c, ann1s2 are the main diagonal ele-
ments of A1s2. Prove this formula in the special case 
when n = 3. [Hint: Follow the outline in Problem 30 of 
Exercises 6.1, page 327.]

33. Using Abel’s formula (Problem 32), confirm that the 
Wronskian of n solutions to x′ = Ax on the interval I is 
either identically zero on I or never zero on I.

34. Prove that a fundamental solution set for the homoge-
neous system x′1t2 = A1t2x1t2 always exists on an 
interval I, provided A1t2 is continuous on I. 3Hint: Use 
the existence and uniqueness theorem (Theorem 2) and 
make judicious choices for x0.4

35. Prove Theorem 3 on the representation of solutions of 
the homogeneous system.

36. Prove Theorem 4 on the representation of solutions of 
the nonhomogeneous system.

37. To illustrate the connection between a higher-order equation 
and the equivalent first-order system, consider the equation

(11) y‴1t2 − 6y″1t2 + 11y′1t2 − 6y1t2 = 0 .

  (a)  Show that {et, e2t, e3t} is a fundamental solution set 
for (11).

  (b)  Using the definition in Section 6.1, compute the 
Wronskian of {et, e2t, e3t}.

  (c)  Setting x1 = y, x2 = y′, x3 = y″, show that equa-
tion (11) is equivalent to the first-order system

(12) x′ = Ax ,

where

A J £
0 1 0
0 0 1
6 -11 6

§  .

  (d)  The substitution used in part (c) suggests that

S J • £
et

et

et

§ , £
e2t

2e2t

4e2t

§  , £
e3t

3e3t

9e3t

§ ¶

is a fundamental solution set for system (12). Verify 
that this is the case.

  (e)  Compute the Wronskian of S. How does it compare 
with the Wronskian computed in part (b)?

38. Define x 11t2, x 21t2, and x 31t2, for - ∞ 6 t 6 ∞ , by

x11t2 = £
sin t
sin t
0
§  , x21t2 = £

sin t
0
sin t
§  , x31t2 = £

0
sin t
sin t
§ .

  (a)  Show that for the three scalar functions in each indi-
vidual row there are nontrivial linear combinations 
that sum to zero for all t.

  (b)  Show that, nonetheless, the three vector functions 
are linearly independent. (No single nontrivial com-
bination works for each row, for all t.)

  (c)  Calculate the Wronskian W3x1, x2, x341t2.
  (d)  Is there a linear third-order homogeneous differen-

tial equation system having x11t2,  x21t2,   and  x31t2 
as solutions?
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In this section we discuss a procedure for obtaining a general solution for the homogeneous 
system

(1) x′1t2 = Ax1t2 ,
where A is a (real) constant n * n matrix. The general solution we seek will be defined for all 
t because the elements of A are just constant functions, which are continuous on 1- ∞ , ∞ 2 
(recall Theorem 2, page 516). In Section 9.4 we showed that a general solution to (1) can be 
constructed from a fundamental solution set consisting of n linearly independent solutions to 
(1). Thus our goal is to find n such vector solutions.

In Chapter 4 we were successful in solving homogeneous linear equations with constant 
coefficients by guessing that the equation had a solution of the form ert. Because any scalar 
linear equation can be expressed as a system, it is reasonable to expect system (1) to have solu-
tions of the form

x1t2 = ertu ,

where r is a constant and u is a constant vector, both of which must be determined. Substituting 
ertu for x1t2 in (1) gives

rertu = Aertu = ertAu .

Canceling the factor ert and rearranging terms, we find that

(2) 1A - rI2u = 0 ,

where rI denotes the diagonal matrix with r’s along its main diagonal.
The preceding calculation shows that x1t2 = ertu is a solution to (1) if and only if r and u 

satisfy equation (2). Since the trivial case, u = 0, is of no help in finding linearly independent 
solutions to (1), we require that u ≠ 0. Such vectors are given a special name, as follows.

9.5  Homogeneous Linear Systems with  
Constant Coefficients

Eigenvalues and Eigenvectors

Definition 3. Let A = 3aij4 be an n * n constant matrix. The eigenvalues of A are 
those (real or complex) numbers r for which 1A - rI2u = 0 has at least one nontrivial 
(real or complex) solution u. The corresponding nontrivial solutions u are called the 
eigenvectors of A associated with r.

As stated in Theorem 1 of Section 9.3, a linear homogeneous system of n algebraic equa-
tions in n unknowns has a nontrivial solution if and only if the determinant of its coefficients 
is zero. Hence, a necessary and sufficient condition for (2) to have a nontrivial solution is that

(3) 0A − rI 0 = 0 .

Expanding the determinant of A - rI in terms of its cofactors, we find that it is an  
nth-degree polynomial in r; that is,

(4) 0A − rI 0 = p1r2 .
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Therefore, finding the eigenvalues of a matrix A is equivalent to finding the zeros of the 
polynomial p1r2. Equation (3) is called the characteristic equation of A, and p1r2 in (4) 
is the characteristic polynomial of A. The characteristic equation plays a role for systems  
similar to the role played by the auxiliary equation for scalar equations.

Many commercially available software packages can be used to compute the eigenvalues 
and eigenvectors for a given matrix. Three such packages are MATLAB®, available from The 
MathWorks, Inc.; MATHEMATICA®, available from Wolfram Research; and MAPLESOFT®, 
available from Waterloo Maple Inc. Although you are encouraged to make use of such pack-
ages, the examples and most exercises in this text can be easily carried out without them. Those 
exercises for which a computer package is desirable are flagged with the icon    . 

Example 1 Find the eigenvalues and eigenvectors of the matrix

A J c2 -3
1 -2

d  .

Solution The characteristic equation for A is

0A - rI 0 = ` 2 - r -3
1 -2 - r

` = 12 - r21-2 - r2 + 3 = r2 - 1 = 0 .

Hence the eigenvalues of A are r1 = 1, r2 = -1. To find the eigenvectors corresponding to 
r1 = 1, we must solve 1A - r1I2u = 0. Substituting for A and r1 gives

(5) c1 -3
1 -3

d  cu1

u2
d = c0

0
d  .

Notice that this matrix equation is equivalent to the single scalar equation u1 - 3u2 = 0. 
Therefore, the solutions to (5) are obtained by assigning an arbitrary value for u2 (say, u2 = s)  
and setting u1 = 3u2 = 3s. Consequently, the eigenvectors associated with r1 = 1 can be 
expressed as

(6) u1 = s c3
1
d  .

For r2 = -1, the equation 1A - r2I2u = 0 becomes

c3 -3
1 -1

d cu1

u2
d = c0

0
d  .

Solving, we obtain u1 = s and u2 = s, with s arbitrary. Therefore, the eigenvectors associated 
with the eigenvalue r2 = -1 are

(7) u2 = s c1
1
d  . ◆

We remark that in the above example the collection (6) of all eigenvectors associated with 
r1 = 1 forms a one-dimensional subspace when the zero vector is adjoined. The same is true 
for r2 = -1. These subspaces are called eigenspaces.
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Example 2 Find the eigenvalues and eigenvectors of the matrix

A J £
1 2 -1
1 0 1
4 -4 5

§  .

Solution The characteristic equation for A is

0A - rI 0 = †
1 - r 2 -1

1 -r 1
4 -4 5 - r

† = 0 ,

which simplifies to 1r - 121r - 221r - 32 = 0. Hence, the eigenvalues of A are 
r1 = 1, r2 = 2, and r3 = 3. To find the eigenvectors corresponding to r1 = 1, we set r = 1 in 
1A - rI2u = 0. This gives

(8) £
0 2 -1
1 -1 1
4 -4 4

§  £
u1

u2

u3

§ = £
0
0
0
§  .

Using elementary row operations (Gaussian elimination), we see that (8) is equivalent to 
the two equations

 u1 - u2 + u3 = 0 ,

 2u2 - u3 = 0 .

Thus, we can obtain the solutions to (8) by assigning an arbitrary value to u2 (say, u2 = s), 
solving 2u2 - u3 = 0 for u3 to get u3 = 2s, and then solving u1 - u2 + u3 = 0 for u1 to get 
u1 = -s. Hence, the eigenvectors associated with r1 = 1 are

(9) u1 = s £
-1

1
2
§  .

For r2 = 2, we solve

£
-1 2 -1

1 -2 1
4 -4 3

§ £
u1

u2

u3

§ = £
0
0
0
§

in a similar fashion to obtain the eigenvectors

(10) u2 = s £
-2

1
4
§  .

Finally, for r3 = 3, we solve

£
-2 2 -1

1 -3 1
4 -4 2

§ £
u1

u2

u3

§ = £
0
0
0
§

and get the eigenvectors

(11) u3 = s £
-1

1
4
§  . ◆
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Let’s return to the problem of finding a general solution to a homogeneous system of  
differential equations. We have already shown that ertu is a solution to (1) if r is an eigenvalue 
and u a corresponding eigenvector. The question is: Can we obtain n linearly independent  
solutions to the homogeneous system by finding all the eigenvalues and eigenvectors of A? The 
answer is yes, if A has n linearly independent eigenvectors.

n Linearly Independent Eigenvectors

Theorem 5. Suppose the n * n constant matrix A has n linearly independent  
eigenvectors u1, u2,c, un. Let ri be the eigenvalue† corresponding to ui. Then

(12) {er1tu1, e
r2tu2,c, erntun}

is a fundamental solution set (and X1t2 = 3er1tu1   er2tu2   g   erntun4 is a fundamental 
matrix) on 1- ∞ , ∞ 2 for the homogeneous system x′ = Ax. Consequently, a general 
solution of x′ = Ax is

(13) x1t2 = c1e
r1tu1 + c2e

r2tu2 + g + cne
rntun ,

where c1,c, cn are arbitrary constants.

Proof. As we have seen, the vector functions listed in (12) are solutions to the homoge-
neous system. Moreover, their Wronskian is

W1t2 = det3er1tu1,c, erntun4 = e1r1 +g+ rn2t det3u1,c, un4 .
Since the eigenvectors are assumed to be linearly independent, it follows from Theorem 1 in 
Section 9.3 that det3u1,c, un4 is not zero. Hence the Wronskian W1t2 is never zero. This 
shows that (12) is a fundamental solution set, and consequently a general solution is given  
by (13). ◆

An application of Theorem 5 is given in the next example.

Example 3 Find a general solution of

(14) x′1t2 = Ax1t2 , where A = c2 -3
1 -2

d  .

†The eigenvalues r1,c, rn may be real or complex and need not be distinct. In this section the cases we discuss have 
real eigenvalues. We consider complex eigenvalues in Section 9.6.

Solution In Example 1 we showed that the matrix A has eigenvalues r1 = 1 and r2 = -1. Taking, say, 
s = 1 in equations (6) and (7), we get the corresponding eigenvectors

u1 = c3
1
d  and u2 = c1

1
d  .

Because u1 and u2 are linearly independent, it follows from Theorem 5 that a general 
solution to (14) is

(15) x1t2 = c1e
t c3

1
d + c2e

-t c1
1
d  . ◆
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If we sum the vectors on the right-hand side of equation (15) and then write out the expres-
sions for the components of x1t2 =  col1x11t2, x21t2 2 , we get

x11t2 = 3c1e
t + c2e

-t ,

x21t2 = c1e
t + c2e

-t .

This is the familiar form of a general solution for a system, as discussed in Section 5.2.
Example 3 nicely illustrates the geometric role played by the eigenvectors u1 and u2. If 

the initial vector x102 is a scalar multiple of u11i.e., x102 = c1u12, then the vector solution 
to the system, x1t2 = c1e

tu1, will always have the same or opposite direction as u1. That is, it 
will lie along the straight line determined by u1 (see Figure 9.1). Furthermore, the trajectory of 
this solution, as t increases, will tend to infinity, since the corresponding eigenvalue r1 = 1 is 
positive (observe the et term). A similar assertion holds if the initial vector is a scalar multiple 
of u2, except that since r2 = -1 is negative, the trajectory x1t2 = c2e

-tu2 will approach the 
origin as t increases (because of e-t). For an initial vector that involves both u1 and u2, such as 
x102 = 1

21u1 + u22, the resulting trajectory is a blend of the above motions, with the contribu-
tion due to the larger eigenvalue r1 = 1 dominating as t increases; see Figure 9.1.

The straight-line trajectories in the x1x2-plane (the phase plane), then, point along the 
directions of the eigenvectors of the matrix A. (See Section 5.4, Figure 5.11, page 266, for 
example.)

A useful property of eigenvectors that concerns their linear independence is stated in the 
next theorem.

x2

x1

u1
u2

2

1.5

1

0.5

0 1 2 3 4 5

x(0) = (u1 + u2)1
2

Figure 9.1 Trajectories of solutions for Example 3

Linear Independence of Eigenvectors

Theorem 6. If r1,c, rm are distinct eigenvalues for the matrix A and ui is an  
eigenvector associated with ri, then u1,c, um are linearly independent.

Proof. Let’s first treat the case m = 2. Suppose, to the contrary, that u1 and u2 are 
linearly dependent so that

(16) u1 = cu2
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for some constant c. Multiplying both sides of (16) by A and using the fact that u1 and u2 are 
eigenvectors with corresponding eigenvalues r1 and r2, we obtain

(17) r1u1 = cr2u2 .

Next we multiply (16) by r2 and then subtract from (17) to get

1r1 - r22u1 = 0 .

Since u1 is not the zero vector, we must have r1 = r2. But this violates the assumption that the 
eigenvalues are distinct! Hence u1 and u2 are linearly independent.

The cases m 7 2 follow by induction. The details of the proof are left as Problem 48. ◆

Combining Theorems 5 and 6, we get the following corollary.

n Distinct Eigenvalues

Corollary 1. If the n * n constant matrix A has n distinct eigenvalues r1,c, rn and  
ui is an eigenvector associated with ri, then

{er1tu1,c, erntun}

is a fundamental solution set for the homogeneous system x′ = Ax.

Example 4 Solve the initial value problem

(18) x′1t2 = £
1 2 -1
1 0 1
4 -4 5

§  x1t2 ,  x102 = £
-1

0
0
§  .

Solution In Example 2 we showed that the 3 * 3 coefficient matrix A has the three distinct eigenvalues 
r1 = 1, r2 = 2, and r3 = 3. If we set s = 1 in equations (9), (10), and (11), we obtain the cor-
responding eigenvectors

u1 = £
-1

1
2
§  ,  u2 = £

-2
1
4
§  ,  u3 = £

-1
1
4
§  ,

whose linear independence is guaranteed by Theorem 6. Hence, a general solution to (18) is

(19)  x1t2 = c1e
t £

-1
1
2
§ + c2e

2t £
-2

1
4
§ + c3e

3t £
-1

1
4
§

  = £
-et -2e2t -e3t

et e2t e3t

2et 4e2t 4e3t

§ £
c1

c2

c3

§  .

To satisfy the initial condition in (18), we solve

x102 = £
-1 -2 -1

1 1 1
2 4 4

§ £
c1

c2

c3

§ = £
-1

0
0
§

and find that c1 = 0, c2 = 1, and c3 = -1. Inserting these values into (19) gives the desired 
solution. ◆
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There is a special class of n * n matrices that always have n linearly independent 
eigenvectors. These are the real symmetric matrices.

Real Symmetric Matrices

Definition 4. A real symmetric matrix A is a matrix with real entries that satisfies 
AT = A.

Taking the transpose of a matrix interchanges its rows and columns. Doing this is equiva-
lent to “flipping” the matrix about its main diagonal. Consequently, AT = A if and only if A is 
symmetric about its main diagonal.

If A is an n * n real symmetric matrix, it is known† that all its eigenvalues are real and that 
there always exist n linearly independent eigenvectors. In such a case, Theorem 5 applies and a 
general solution to x′ = Ax is given by (13).

†See Fundamentals of Matrix Analysis with Applications, by Edward Barry Saff and Arthur David Snider (John Wiley 
& Sons, Hoboken, New Jersey, 2016).

Example 5 Find a general solution of

(20) x′1t2 = Ax1t2 , where A = £
1 -2 2

-2 1 2
2 2 1

§  .

Solution A is symmetric, so we are assured that A has three linearly independent eigenvectors. To find 
them, we first compute the characteristic equation for A:

0A - rI 0 = †
1 - r -2 2
-2 1 - r 2
2 2 1 - r

† = - 1r - 3221r + 32 = 0 .

Thus the eigenvalues of A are r1 = r2 = 3 and r3 = -3.
Notice that the eigenvalue r = 3 has multiplicity 2 when considered as a root of the 

characteristic equation. Therefore, we must find two linearly independent eigenvectors 
associated with r = 3. Substituting r = 3 in 1A - rI2u = 0 gives

£
-2 -2 2
-2 -2 2

2 2 -2
§ £

u1

u2

u3

§ = £
0
0
0
§  .

This system is equivalent to the single equation -u1 - u2 + u3 = 0, so we can obtain its solu-
tions by assigning an arbitrary value to u2, say u2 = y, and an arbitrary value to u3, say u3 = s. 
Solving for u1, we find u1 = u3 - u2 = s - y. Therefore, the eigenvectors associated with 
r1 = r2 = 3 can be expressed as

u = £
s - y
y

s
§ = s £

1
0
1
§ + y£

-1
1
0
§  .
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By first taking s = 1, y = 0 and then taking s = 0, y = 1, we get the two linearly indepen-
dent eigenvectors

(21) u1 = £
1
0
1
§  ,  u2 = £

-1
1
0
§  .

For r3 = -3, we solve

1A + 3I2u = £
4 -2 2

-2 4 2
2 2 4

§ £
u1

u2

u3

§ = £
0
0
0
§

to obtain the eigenvectors col1-s, -s, s2. Taking s = 1 gives

u3 = £
-1
-1

1
§  .

Since the eigenvectors u1, u2, and u3 are linearly independent, a general solution to (20) is

x1t2 = c1e
3t £

1
0
1
§ + c2e

3t £
-1

1
0
§ + c3e

-3t £
-1
-1

1
§  . ◆

If a matrix A is not symmetric, it is possible for A to have a repeated eigenvalue but not to 
have two linearly independent corresponding eigenvectors. In particular, the matrix

(22) A = c1 -1
4 -3

d

has the repeated eigenvalue r1 = r2 = -1, but Problem 35 shows that all the eigenvectors 
associated with r = -1 are of the form u = s col11, 22. Consequently, no two eigenvectors 
are linearly independent.

A procedure for finding a general solution in such a case is illustrated in Problems 35–40, 
but the underlying theory is deferred to Section 9.8, where we discuss the matrix exponential.

A final note. If an n * n matrix A has n linearly independent eigenvectors ui with eigen-
values ri, a little inspection reveals that property (2) is expressed columnwise by the equation

(23) ≥
   

A  
   

¥  ≥
f f g f
u1 u2 g un

f
f f g f

¥  = ≥
f f g f
u1 u2 g un

f
f f g f

¥  ≥
r1 0 g 0
0 r2 g 0

f
0 0 g rn

¥

or AU = UD, where U is the matrix whose column vectors are eigenvectors and D is a diago-
nal matrix whose diagonal entries are the eigenvalues. Since U’s columns are independent, U is 
invertible and we can write

(24) A = UDU-1 or D =  U-1AU ,

and we say that A is diagonalizable. [In this context equation (24) expresses a similarity trans-
formation.] Because the argument that leads from (2) to (23) to (24) can be reversed, we have 
a new characterization: An n * n matrix has n linearly independent eigenvectors if, and only if, 
it is diagonalizable.
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In Problems 1–8, find the eigenvalues and eigenvectors of the 
given matrix.

 (a)  Show that the matrix A has eigenvalues r1 = -1 
and r2 = -3 with corresponding eigenvectors 
u1 = col11, 12 and u2 = col11, -12.

 (b)  Sketch the trajectory of the solution having  initial 
vector x102 = u1.

 (c)  Sketch the trajectory of the solution having  initial 
vector x102 = -u2.

 (d)  Sketch the trajectory of the solution having  initial 
vector x102 = u1 - u2.

In Problems 19–24, find a fundamental matrix for the system 
x′1t2 = Ax1t2 for the given matrix A.

9.5 EXERCISES

1. c -4 2
2 -1

d 2. c 6 -3
2 1

d

3. c 1 -1
2 4

d 4. c 1 5
1 -3

d

5. £
1 0 0
0 0 2
0 2 0

§ 6. £
0 1 1
1 0 1
1 1 0

§

7. £
1 0 0
2 3 1
0 2 4

§ 8. £
-3 1 0

0 -3 1
4 -8 2

§

11. A = £
-1 3

4

-5 3
§

13. A = £
1 2 2
2 0 3
2 3 0

§ 14. A = £
-1 1 0

1 2 1
0 3 -1

§

15. A = £
1 2 3
0 1 0
2 1 2

§ 16. A = £
-7 0 6

0 5 0
6 0 2

§

29. A = D0 1 0 0
0 0 1 0
0 0 0 1
2 -6 3 3

T27. A = £
0 1.1 0
0 0 1.3

0.9 1.1 -6.9
§ 28. A = £

2 1 1
-1 1 0

3 3 3
§

21. A = £
0 1 0
0 0 1
8 -14 7

§ 22. A = £
3 1 -1
1 3 -1
3 3 -1

§

19. A = c -1 1
8 1

d 20. A = c 5 4
-1 0

d

9. c 0 -1
1 0

d

In Problems 9 and 10, some of the eigenvalues of the given 
matrix are complex. Find all the eigenvalues and eigenvectors.

10. £
1 2 -1
0 1 1
0 -1 1

§

In Problems 11–16, find a general solution of the system 
x′1t2 = Ax1t2 for the given matrix A.

12. A = c 1 3
12 1

d

17. Consider the system x′1t2 = Ax1t2, t Ú 0, with

A = C 1 2323 -1
S  .

  (a)  Show that the matrix A has eigenvalues r1 = 2  
and r2 = -2 with corresponding eigenvectors 
u1 = col113, 12 and u2 = col11, -132.

 (b)  Sketch the trajectory of the solution having  initial 
vector x102 = -u1.

 (c)  Sketch the trajectory of the solution having  initial 
vector x102 = u2.

 (d)  Sketch the trajectory of the solution having  initial 
vector x102 = u2 - u1.

18. Consider the system x′1t2 = Ax1t2, t Ú 0, with

A = c -2 1
1 -2

d  .

23. A = D2 1 1 -1
0 -1 0 1
0 0 3 1
0 0 0 7

T
24. A = D4 -1 0 0

0 0 0 0
0 0 2 -3
0 0 1 -2

T
25. Using matrix algebra techniques, find a general solution 

of the system

x′ = x + 2y - z ,

y′ = x + z ,

z′ = 4x - 4y + 5z .

26. Using matrix algebra techniques, find a general solution 
of the system

x′ = 3x - 4y ,

y′ = 4x - 7y .

In Problems 27–30, use a linear algebra software package 
such as MATLAB®, MAPLESOFT®, or MATHEMATICA® to 
compute the required eigenvalues and eigenvectors and then 
give a fundamental matrix for the system x′1t2 = Ax1t2 for 
the given matrix A.
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30. A = D0 1 0 0
1 -1 0 0
0 0 0 1
0 0 -2 4

T
In Problems 31–34, solve the given initial value problem.

31. x′1t2 = c 1 3
3 1

d  x1t2 ,  x102 = c 3
1
d

32. x′1t2 = c 6 -3
2 1

d  x1t2 ,  x102 = c -10
-6
d

33. x′1t2 = £
1 -2 2

-2 1 -2
2 -2 1

§  x1t2 ,   x102 = £
-2
-3

2
§

34. x′1t2 = £
0 1 1
1 0 1
1 1 0

§  x1t2 ,  x102 = £
-1

4
0
§

35. (a) Show that the matrix

A = c 1 -1
4 -3

d
has the repeated eigenvalue r = -1 and that all the 
eigenvectors are of the form u =  s col11, 22.

 (b)  Use the result of part (a) to obtain a nontrivial solu-
tion x11t2 to the system x′ = Ax.

 (c)  To obtain a second linearly independent solution to 
x′ = Ax, try x21t2 = te-tu1 + e-tu2. 3Hint: Sub-
stitute x2 into the system x′ = Ax and derive the 
relations

1A + I2u1 = 0 ,  1A + I2u2 = u1 .

Since u1 must be an eigenvector, set u1 =  
col11, 22 and solve for u2.4

 (d)  What is 1A + I22 u2? (In Section 9.8, u2 will be 
identified as a generalized eigenvector.)

36. Use the method discussed in Problem 35 to find a general 
solution to the system

x′1t2 = c 5 -3
3 -1

d  x1t2 .

37. (a) Show that the matrix

A = £
2 1 6
0 2 5
0 0 2

§

has the repeated eigenvalue r = 2 with multiplicity 
3 and that all the eigenvectors of A are of the form 
u = s col11, 0, 02.

 (b)  Use the result of part (a) to obtain a solution to the 
system x′ = Ax of the form x11t2 = e2tu1.

 (c)  To obtain a second linearly independent solution to 
x′ = Ax, try x21t2 = te2tu1 + e2tu2. 3Hint: Show 
that u1 and u2 must satisfy

1A - 2I2u1 = 0 ,  1A - 2I2u2 = u1.4
 (d)  To obtain a third linearly independent solution to 

x′ = Ax, try

x31t2 =
t2

2
 e2tu1 + te2tu2 + e2tu3 .

3Hint: Show that u1, u2, and u3 must satisfy

1A - 2I2u1 = 0 ,  1A - 2I2u2 = u1 ,

1A - 2I2u3 = u2.4
 (e)  Show that 1A - 2I22 u2 = 1A - 2I23 u3 = 0.

38. Use the method discussed in Problem 37 to find a general 
solution to the system

x′1t2 = £
3 -2 1
2 -1 1

-4 4 1
§  x1t2.

39. (a) Show that the matrix

A = £
2 1 1
1 2 1

-2 -2 -1
§

has the repeated eigenvalue r = 1 of multiplicity 3 
and that all the eigenvectors of A are of the form 
u = s col1-1, 1, 02 + y col1-1, 0, 12.

 (b)  Use the result of part (a) to obtain two linearly inde-
pendent solutions to the system x′ = Ax of the 
form
x11t2 = etu1  and  x21t2 = etu2.

 (c)  To obtain a third linearly independent solution to 
x′ = Ax, try x31t2 = tetu3 + etu4. 3Hint: Show 
that u3 and u4 must satisfy

1A - I2u3 = 0 ,  1A - I2u4 = u3 .

Choose u3, an eigenvector of A, so that you can 
solve for u4.4

 (d)  What is 1A - I22 u4?

40. Use the method discussed in Problem 39 to find a general 
solution to the system

x′1t2 = £
1 3 -2
0 7 -4
0 9 -5

§  x1t2 .

41. Use the substitution x1 = y, x2 = y′ to convert the lin-
ear equation ay″ + by′ + cy = 0, where a, b, and c are 
constants, into a normal system. Show that the character-
istic equation for this system is the same as the auxiliary 
equation for the original equation.
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42. (a)  Show that the Cauchy–Euler equation 
at2y″ + bty′ + cy = 0 can be written as a  
Cauchy–Euler system

(25) t x′ = Ax

with a constant coefficient matrix A, by setting  
x1 = y>t and x2 = y′.

  (b)  Show that for t 7 0 any system of the form (25) with 
A an n * n constant matrix has nontrivial solutions 
of the form x1t2 = tru if and only if r is an eigen-
value of A and u is a corresponding eigenvector.

In Problems 43 and 44, use the result of Problem 42 to find a 
general solution of the given system.

43. tx′1t2 = c 1 3
-1 5

d  x1t2 , t 7 0

44. tx′1t2 = c -4 2
2 -1

d  x1t2 , t 7 0

45. Mixing Between Interconnected Tanks. Two tanks, 
each holding 50 L of liquid, are interconnected by 
pipes with liquid flowing from tank A into tank B at a 
rate of 4 L/min and from tank B into tank A at 1 L/min 
(see Figure 9.2). The liquid inside each tank is kept 
well stirred. Pure water flows into tank A at a rate of  
3 L/min, and the solution flows out of tank B at 3 L/min. 
If, initially, tank A contains 2.5 kg of salt and tank B 
contains no salt (only water), determine the mass of 
salt in each tank at time t Ú 0. Graph on the same axes 
the two quantities x11t2  and x21t2, where x11t2  is the 
mass of salt in tank A and x21t2  is the mass in tank B.

3 L/min 

Pure water
x 1 (t)

50 L 

x 1 (0) = 2.5 kg

A 
4 L/min 

x 2 (t)

50 L 

x 2 (0) = 0 kg

B 

3 L/min 

1 L/min 

Figure 9.2  Mixing problem for interconnected tanks

46. Mixing with a Common Drain. Two tanks, each 
holding 1 L of liquid, are connected by a pipe through 
which liquid flows from tank A into tank B at a rate of 
3 - a L/min 10 6 a 6 32. The liquid inside each tank is 
kept well stirred. Pure water flows into tank A at a rate of 3 
L/min. Solution flows out of tank A at a L/min and out of 
tank B at 3 - a L/min. If, initially, tank B contains no salt 
(only water) and tank A contains 0.1 kg of salt, determine 
the mass of salt in each tank at time t Ú 0. How does the 
mass of salt in tank A depend on the choice of a? What 
is the maximum mass of salt in tank B? (See Figure 9.3.)

3 L/min 

Pure water
x 1 (t)

1 L 

x 1 (0) = 0.1 kg

A 
L/min 

x 2 (t)

1 L 

x 2 (0) = 0 kg

B 

3 L/min 

L/min ) L/min 

Figure 9.3 Mixing problem for a common drain, 0 6 a 6 3

47. To find a general solution to the system

x′ = Ax = £
1 3 -1
3 0 1

-1 1 2
§  x ,

proceed as follows:

  (a)  Use a numerical root-finding procedure to approxi-
mate the eigenvalues.

 (b)  If r is an eigenvalue, then let u =  col 1u1, u2, u32 
be an eigenvector associated with r. To solve for u, 
assume u1 = 1. (If not u1, then either u2 or u3 may 
be chosen to be 1. Why?) Now solve the system

1A - rI2 £
1
u2

u3

§ = £
0
0
0
§

for u2 and u3. Use this procedure to find approxima-
tions for three linearly independent eigenvectors for A.

 (c)  Use these approximations to give a general solution 
to the system.

48. To complete the proof of Theorem 6, page 527, assume the 
induction hypothesis that u1, . . . , uk,  2 … k, are  linearly  
independent.

  (a)  Show that if

c1u1 + g + ckuk + ck + 1uk + 1 = 0 ,

then

c11r1 - rk + 12u1 + g + ck1rk - rk + 12uk = 0 .

  (b)  Use the result of part (a) and the induction hypoth-
esis to conclude that u1,c, uk + 1 are linearly inde-
pendent. The theorem follows by induction.

49. Stability. A homogeneous system x′ = Ax with con-
stant coefficients is stable if it has a fundamental matrix 
whose entries all remain bounded as t S + ∞ . (It will fol-
low from Theorem 9 in Section 9.8 that if one fundamen-
tal matrix of the system has this property, then all funda-
mental matrices for the system do.) Otherwise, the system 
is unstable. A stable system is asymptotically stable if 
all solutions approach the zero solution as t S + ∞ . Sta-
bility is discussed in more detail in Chapter 12.†

†All references to Chapters 11–13 refer to the expanded text, Fundamentals of Differential Equations and Boundary 
Value Problems, 7th ed.
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  (a)  Show that if A has all distinct real eigenvalues, then 
x′1t2 = Ax1t2 is stable if and only if all eigenval-
ues are nonpositive.

  (b)  Show that if A has all distinct real eigenvalues, then 
x′1t2 = Ax1t2 is asymptotically stable if and only 
if all eigenvalues are negative.

  (c)  Argue that in parts (a) and (b), we can replace “has 
distinct real eigenvalues” by “is symmetric” and the 
statements are still true.

50. In an ice tray, the water level in any particular ice cube 
cell will change at a rate proportional to the difference 
between that cell’s water level and the level in the adja-
cent cells.

  (a)  Argue that a reasonable differentiable equation 
model for the water levels x, y, and z in the simpli-
fied three-cell tray depicted in Figure 9.4 is given by

x′ = y - x , y′ = x + z - 2y , z′ = y - z .

  (b)  Use eigenvectors to solve this system for the initial 
conditions x102 = 3, y102 = z102 = 0.

In the previous section, we showed that the homogeneous system

(1) x′1t2 = Ax1t2 ,
where A is a constant n * n matrix, has a solution of the form x1t2 = ertu if and only if r is an 
eigenvalue of A and u is a corresponding eigenvector. In this section we show how to obtain 
two real vector solutions to system (1) when A is real and has a pair† of complex conjugate 
eigenvalues a + ib and a - ib.

Suppose r1 = a + ib1a and b real numbers) is an eigenvalue of A with corresponding 
eigenvector z = a + ib, where a and b are real constant vectors. We first observe that the 
complex conjugate of z, namely z J a - ib, is an eigenvector associated with the eigenvalue 
r2 = a - ib. To see this, note that taking the complex conjugate of 1A - r1I2z = 0 yields 
1A - r1I2z = 0 because the conjugate of the product is the product of the conjugates and A 
and I have real entries 1A = A, I = I2. Since r2 = r1, we see that z is an eigenvector associ-
ated with r2. Therefore, two linearly independent complex vector solutions to (1) are

(2) w11t2 = er1t z = e1a+ ib2t1a + ib2 ,
(3) w21t2 = er2t  z = e1a-ib2t1a - ib2 .

As in Section 4.3, where we handled complex roots to the auxiliary equation, let’s use one 
of these complex solutions and Euler’s formula to obtain two real vector solutions. With the aid 
of Euler’s formula, we rewrite w11t2 as

 w11t2 = eat1cos bt + i sin bt21a + ib2
 = eat51cos bt  a - sin bt  b2 + i1sin bt  a + cos bt  b26 .

We have thereby expressed w11t2 in the form w11t2 = x11t2 + ix21t2, where x11t2 and x21t2 
are the two real vector functions

(4) x11t2 J eat cos bt  a - eat sin bt  b ,

(5) x21t2 J eat sin bt  a + eat cos bt  b .

9.6 Complex Eigenvalues

†Recall that the complex roots of a polynomial equation with real coefficients must occur in complex conjugate pairs.

x y z

Figure 9.4  Ice tray
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Since w11t2 is a solution to 112, then

 w=
11t2 = Aw11t2 ,

 x=1 + ix=2 = Ax1 + iAx2 .

Equating the real and imaginary parts yields

x=11t2 = Ax11t2  and  x=21t2 = Ax21t2 .
Hence, x11t2 and x21t2 are real vector solutions to (1) associated with the complex conjugate 
eigenvalues a { ib. Because a and b are not both the zero vector, it can be shown that x11t2 
and x21t2 are linearly independent vector functions on 1- ∞ , ∞ 2 (see Problem 15).

Let’s summarize our findings.

Complex Eigenvalues

If the real matrix A has complex conjugate eigenvalues a { ib with corresponding eigen-
vectors a { ib, then two linearly independent real vector solutions to x′1t2 = Ax1t2 are

(6) eat cos bt  a - eat sin bt  b ,

(7) eat sin bt  a + eat cos bt  b .

Example 1 Find a general solution of

(8) x′1t2 = c -1 2
-1 -3

d  x1t2 .

Solution The characteristic equation for A is

0A - rI 0 = ` -1 - r 2
-1 -3 - r

` = r2 + 4r + 5 = 0 .

Hence, A has eigenvalues r = -2 { i.
To find a general solution, we need only find an eigenvector associated with the eigenvalue 

r = -2 + i. Substituting r = -2 + i into 1A - rI2z = 0 gives

c1 - i 2
-1 -1 - i

d c z1

z2
d = c0

0
d  .

The solutions can be expressed as z1 = 2s and z2 = 1-1 + i2s, with s arbitrary. Hence, the eigen-
vectors associated with r = -2 + i are z = s col12, -1 + i2. Taking s = 1 gives the eigenvector

z = c 2
-1 + i

d = c 2
-1
d + i c0

1
d  .

We have found that a = -2, b = 1, and z = a + ib with a = col12, -12, and  
b = col10, 12, so a general solution to (8) is

  x1t2 = c1 e e-2t cos t c 2
-1
d - e-2t sin t c0

1
d f

  = + c2 e e-2t sin t c 2
-1
d + e-2t cos t c0

1
d f

(9) x1t2 = c1 c 2e-2t cos t
-e-2t1cos t + sin t2 d + c2 c 2e-2t sin t

e-2t1cos t - sin t2 d  . ◆
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Complex eigenvalues occur in modeling coupled mass–spring systems. For example, the 
motion of the mass–spring system illustrated in Figure 9.5 is governed by the  second-order 
 system

(10)
 m1x

>
1 = -k1x1 + k21x2 - x12 ,

 m2x
>
2 = -k21x2 - x12 - k3x2 ,

where x1 and x2 represent the displacements of the masses m1 and m2 to the right of their equi-
librium positions and k1, k2, k3 are the spring constants of the three springs (see the discussion 
in Section 5.6). If we introduce the new variables y1 J x1, y2 J x=1, y3 J x2, y4 J x=2, then 
we can rewrite the system in the normal form

(11) y′1t2 = Ay1t2 = D 0 1 0 0
- 1k1 + k22 >m1 0 k2>m1 0

0 0 0 1
k2>m2 0 - 1k2 + k32 >m2 0

T  y1t2 .

For such a system, it turns out that A has only imaginary eigenvalues and they occur in  complex 
conjugate pairs: { ib1, { ib2. Hence, any solution will consist of sums of sine and cosine func-
tions. The frequencies of these functions

f1 J
b1

2p
  and  f2 J

b2

2p

are called the normal or natural frequencies of the system (b1 and b2 are the angular 
 frequencies of the system).

In some engineering applications, the only information that is required about a particular 
device is a knowledge of its normal frequencies; one must ensure that they are far from the 
frequencies that occur naturally in the device’s operating environment (so that no resonances 
will be excited).

k 1 

x 1 > 0

x 1 = 0

k 2 

x 2 > 0

x 2 = 0

k 3 

m 1 m 2

Figure 9.5  Coupled mass–spring system with fixed ends

Example 2 Determine the normal frequencies for the coupled mass–spring system governed by system 
(11) when m1 = m2 = 1 kg, k1 = 1 N/m, k2 = 2 N/m, and k3 = 3 N/m.

Solution To find the eigenvalues of A, we must solve the characteristic equation

0A - rI 0 = ∞
-r 1 0 0
-3 -r 2 0

0 0 -r 1
2 0 -5 -r

∞ = r4 + 8r2 + 11 = 0 .

M09_NAGL7069_09_SE_C09_496-559.indd   536 21/09/16   4:34 PM



Section 9.6  Complex Eigenvalues     537

From the quadratic formula we find r2 = -4 { 15, so the four eigenvalues of A are 
{ i24 - 15 and { i24 + 15. Hence, the two normal frequencies for this system are24 - 15

2p
≈ 0.211  and  

24 + 15
2p

≈ 0.397 cycles per second. ◆

In Problems 1– 4, find a general solution of the system 
x′1t2 = Ax1t2 for the given matrix A.

12. A = E1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 -29 -4

U
In Problems 13 and 14, find the solution to the given system 
that satisfies the given initial condition.

13. x′1t2 = c -3 -1
2 -1

d  x1t2 ,

  (a) x102 = c -1
0
d  (b) x1p2 = c 1

-1
d

  (c) x1-2p2 = c 2
1
d  (d) x1p>22 = c 0

1
d

14. x′1t2 = £
1 0 -1
0 2 0
1 0 1

§  x1t2 ,

  (a) x102 = £
-2

2
-1
§  (b) x1-p2 = £

0
1
1
§

15. Show that x11t2 and x21t2 given by equations (4) and (5) 
are linearly independent on 1- ∞ , ∞ 2, provided b ≠ 0 
and a and b are not both the zero vector.

16. Show that x11t2  and x21t2  given by equations (4) and 
(5) can be obtained as linear combinations of w11t2 
and w21t2  given by equations (2) and (3). [Hint: Show 
that

x11t2 =
w11t2 + w21t2

2
 ,  x21t2 =

w11t2 - w21t2
2i

. d

In Problems 17 and 18, use the results of Problem 42 in 
Exercises 9.5 to find a general solution to the given Cauchy–
Euler system for t 7 0.

17. tx′1t2 = £
-1 -1 0

2 -1 1
0 1 -1

§  x1t2

18. tx′1t2 = c -1 -1
9 -1

d  x1t2

9.6 EXERCISES

1. A = c 2 -4
2 -2

d 2. A = c -2 -5
1 2

d

3. A = £
1 2 -1
0 1 1
0 -1 1

§

4. A = £
5 -5 -5

-1 4 2
3 -5 -3

§

In Problems 5–9, find a fundamental matrix for the system 
x′1t2 = Ax1t2 for the given matrix A.

5. A = c -1 -2
8 -1

d 6. A = c -2 -2
4 2

d

7. A = £
0 0 1
0 0 -1
0 1 0

§

8. A = D0 1 0 0
1 0 0 0
0 0 0 1
0 0 -13 4

T
9. A = D 0 1 0 0

-1 0 0 0
0 0 0 1
0 0 -1 0

T
In Problems 10–12, use a linear algebra software package 
to compute the required eigenvalues and eigenvectors for  
the given matrix A and then give a fundamental matrix for the 
system x′1t2 = Ax1t2.

10. A = D 0 1 0 0
0 0 1 0
0 0 0 1

13 -4 -12 4

T
11. A = D 0 1 0 0

0 0 1 0
0 0 0 1

-2 2 -3 2

T
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538     Chapter 9  Matrix Methods for Linear Systems

19. For the coupled mass–spring system governed by system 
(10), assume m1 = m2 = 1 kg, k1 = k2 = 2 N/m, and 
k3 = 3 N/m. Determine the normal frequencies for this 
coupled mass–spring system.

20. For the coupled mass–spring system governed by system 
(10), assume m1 = m2 = 1 kg, k1 = k2 = k3 = 1 N/m, 
and assume initially that x1102 = 0 m, x=1102 = 0 m/sec, 
x2102 = 2 m, and x=2102 = 0 m/sec. Using matrix alge-
bra techniques, solve this initial value problem.

21. RLC Network. The currents in the RLC network given 
by the schematic diagram in Figure 9.6 are governed by 
the following equations:

4I =21t2 + 52q11t2 = 10 ,

13I31t2 + 52q11t2 = 10 ,

I11t2 = I21t2 + I31t2 ,

10 volts 

I 1 

I 1 

I 1 

I 2 

farads 

4 henries 13 ohms 

I 3 

1 
—– 
52

Figure 9.6  RLC network for Problem 21

where q11t2 is the charge on the capacitor, I11t2 = q=11t2, 
and initially q1102 = 0 coulombs and I1102 = 0 amps. 
Solve for the currents I1, I2, and I3. 3Hint: Differentiate 
the first two equations, eliminate I1, and form a normal 
system with x1 = I2, x2 = I =2, and x3 = I3.4

22. RLC Network. The currents in the RLC network given 
by the schematic diagram in Figure 9.7 are governed by 
the following equations:

50I =11t2 + 80I21t2 = 160 ,

50I =11t2 + 800q31t2 = 160 ,

I11t2 = I21t2 + I31t2 ,

     
800 160 volts 

I 1 

I 1 

I 2 

1    

I 3 

50 henries

80 ohms farads 

Figure 9.7  RLC network for Problem 22

where q31t2 is the charge on the capacitor, 
I31t2 = q′

31t2, and initially q3102 = 0.5 coulombs and 
I3102 = 0 amps. Solve for the currents I1, I2, and I3.  
3Hint: Differentiate the first two equations, use the third 
equation to eliminate I3, and form a normal system with 
x1 = I1, x2 = I ′

1, and x3 = I2.4
23. Stability. In Problem 49 of Exercises 9.5, (page 542), 

we  discussed the notion of stability and asymptotic sta-
bility for a linear system of the form x′1t2 = Ax1t2. 
Assume that A has all distinct eigenvalues (real or complex).

  (a)  Show that the system is stable if and only if all the 
eigenvalues of A have nonpositive real part.

  (b)  Show that the system is asymptotically stable if and 
only if all the eigenvalues of A have negative real 
part.

24. (a) For Example 1, page 535, verify that

x1t2 = c1 c -e-2t cos  t + e-2t sin  t
e-2t cos  t

d

+ c2 c -e-2t sin  t - e-2t cos  t
e-2t sin  t

d
is another general solution to equation (8).

  (b)  How can the general solution of part (a) be directly 
obtained from the general solution derived in  
(9) on page 535?

The techniques discussed in Chapters 4 and 6 for finding a particular solution to the nonhomo-
geneous equation y″ + p1x2y′ + q1x2y = g1x2 have natural extensions to nonhomogeneous 
linear  systems.

Undetermined Coefficients
The method of undetermined coefficients can be used to find a particular solution to the 
 nonhomogeneous linear system

x′1t2 = Ax1t2 + f1t2

9.7 Nonhomogeneous Linear Systems
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when A is an n * n constant matrix and the entries of f1t2 are polynomials, exponential func-
tions, sines and cosines, or finite sums and products of these functions. We can use the proce-
dure box in Section 4.5 (page 184) and reproduced at the back of the book as a guide in choos-
ing the form of a particular solution xp1t2. Some exceptions are discussed in the exercises (see 
 Problems 25–28).

Example 1 Find a general solution of

(1) x′1t2 = Ax1t2 + tg ,  where  A = £
1 -2 2

-2 1 2
2 2 1

§   and  g = £
-9

0
-18
§  .

Solution In Example 5 in Section 9.5, page 529, we found that a general solution to the corresponding 
homogeneous system x′ = Ax is

(2) xh1t2 = c1e
3t £

1
0
1
§ + c2e

3t £
-1

1
0
§ + c3e

-3t £
-1
-1

1
§  .

Since the entries in f1t2 J tg are just linear functions of t, we are inclined to seek a  
particular solution of the form

xp1t2 = ta + b = t £
a1

a2

a3

§ + £
b1

b2

b3

§  ,

where the constant vectors a and b are to be determined. Substituting this expression for xp1t2 
into system (1) yields

a = A1ta + b2 + tg ,

which can be written as

t1Aa + g2 + 1Ab - a2 = 0 .

Setting the “coefficients” of this vector polynomial equal to zero yields the two systems

(3) Aa = -g ,

(4) Ab = a .

By Gaussian elimination or by using a linear algebra software package, we can solve (3)  
for a and we find a = col15, 2, 42. Next we substitute for a in (4) and solve for b to obtain 
b = col11, 0, 22. Hence a particular solution for (1) is

(5) xp1t2 = ta + b = t £
5
2
4
§ + £

1
0
2
§ = £

5t + 1
2t

4t + 2
§  .

A general solution for (1) is x1t2 = xh1t2 + xp1t2, where xh1t2 is given in (2) and xp1t2 
in (5). ◆

In the preceding example, the nonhomogeneous term f1t2 was a vector polynomial. If, 
instead, f1t2 has the form

f1t2 = col11, t, sin t2 ,
then, using the superposition principle, we would seek a particular solution of the form

xp1t2 = ta + b + 1sin t2c + 1cos t2d .
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540     Chapter 9  Matrix Methods for Linear Systems

Similarly, if

f1t2 = col1t, et, t22 ,
we would take

xp1t2 = t2a + tb + c + etd .

Of course, we must modify our guess, should one of the terms be a solution to the corre-
sponding homogeneous system. If this is the case, the annihilator method [equations (15) and 
(16) of Section 6.3, page 337] would appear to suggest that for a nonhomogeneity f1t2 of the 
form erttmg, where r is an eigenvalue of A, m is a nonnegative integer, and g is a constant vector, 
a particular solution of x′ = Ax + f can be found in the form

xp1t2 = ert5tm + sam + s + tm + s - 1am + s - 1 + g + ta1 + a06 ,

for a suitable choice of s. We omit the details.

Variation of Parameters
In Section 4.6 we discussed the method of variation of parameters for a general constant- 
coefficient second-order linear equation. Simply put, the idea is that if a general solution to 
the homogeneous equation has the form xh1t2 = c1x11t2 + c2x21t2, where x11t2 and x21t2 
are linearly independent solutions to the homogeneous equation, then a particular solution to 
the nonhomogeneous equation would have the form xp1t2 = y11t2x11t2 + y21t2x21t2, where 
y11t2 and y21t2 are certain functions of t. A similar idea can be used for systems.

Let X1t2 be a fundamental matrix for the homogeneous system

(6) x′1t2 = A1t2x1t2 ,
where now the entries of A may be any continuous functions of t. Because a general solution to 
(6) is given by X1t2c, where c is a constant n * 1 vector, we seek a particular solution to the 
nonhomogeneous system

(7) x′1t2 = A1t2x1t2 + f1t2
of the form

(8) xp1t2 = X1t2Y1t2 ,
where Y1t2 = col1y11t2,c, yn1t2 2  is a vector function of t to be determined.

To derive a formula for Y1t2, we first differentiate (8) using the matrix version of the 
 product rule to obtain

x=p1t2 = X1t2Y′1t2 + X′1t2Y1t2 .
Substituting the expressions for xp1t2 and x=p1t2 into (7) yields

(9) X1t2Y′1t2 + X′1t2Y1t2 = A1t2X1t2Y1t2 + f1t2 .
Since X1t2 satisfies the matrix equation X′1t2 = A1t2X1t2, equation (9) becomes

XY′ + AXY = AXY + f ,

XY′ = f .

Multiplying both sides of the last equation by X-11t2 [which exists since the columns of X1t2 
are linearly independent] gives

Y′1t2 = X-11t2  f1t2 .
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Integrating, we obtain

Y1t2 = LX-11t2  f1t2dt .

Hence, a particular solution to (7) is

(10) xp1t2 = X1t2Y1t2 = X1t2LX−11t2  f1t2dt .

Combining (10) with the solution X1t2c to the homogeneous system yields the following 
 general solution to (7):

(11) x1t2 = X1t2c + X1t2LX−11t2  f1t2dt .

The elegance of the derivation of the variation of parameters formula (10) for systems 
becomes evident when one compares it with the more lengthy derivations for the scalar case in 
Sections 4.6 and 6.4.

Given an initial value problem of the form

(12) x′1t2 = A1t2x1t2 + f1t2 ,  x1t02 = x0 ,

we can use the initial condition x1t02 = x0 to solve for c in (11). Expressing x1t2 using a 
definite integral, we have

x1t2 = X1t2c + X1t2L
t

t0

X-11s2  f1s2ds .

From the initial condition x1t02 = x0, we find

x0 = x1t02 = X1t02c + X1t02L
t0

t0

X-11s2  f1s2ds = X1t02c .

Solving for c, we have c = X-11t02x0. Thus, the solution to (12) is given by the formula

(13) x1t2 = X1t2X−11t02x0 + X1t2L
t

t0

X−11s2  f1s2  ds .

To apply the variation of parameters formulas, we first must determine a fundamental 
matrix X1t2  for the homogeneous system. In the case when the coefficient matrix A  
is constant, we have discussed methods for finding X1t2. However, if the entries of  
A depend on t, the determination of X1t2  may be extremely difficult (entailing, perhaps, 
a matrix power series!).

Example 2 Find the solution to the initial value problem

(14) x′1t2 = c2 -3
1 -2

d  x1t2 + c e
2t

1
d  ,  x102 = c -1

0
d  .
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In Problems 1–6, use the method of undetermined coef-
ficients to find a general solution to the system x′1t2 =  
Ax1t2 + f1t2, where A and f1t2 are given.

1. A = c 6 1
4 3

d  ,  f1t2 = c -11
-5
d

2. A = c 1 1
4 1

d  ,  f1t2 = c - t - 1
-4t - 2

d

3. A = £
1 -2 2

-2 1 2
2 2 1

§  ,  f1t2 = £
2et

4et

-2et

§

4. A = c 2 2
2 2

d  ,  f1t2 = c -4 cos t
-sin t

d

9.7 EXERCISES

Solution In Example 3 in Section 9.5, we found two linearly independent solutions to the corresponding 
homogeneous system; namely,

x11t2 = c3et

et d   and  x21t2 = c e
-t

e-t d  .
Hence a fundamental matrix for the homogeneous system is

X1t2 = c3et e-t

et e-t d  .

Although the solution to (14) can be found via the method of undetermined coefficients, 
we shall find it directly from formula (13). For this purpose, we need X-11t2. By formula (3) 
of Section 9.3 (page 510):

X-11t2 = C -  
1
2 e-t -  12 e-t

-  12 et -  32 et
S  .

Substituting into formula (13), we obtain the solution

 x1t2 = c 3et e-t

et e-t d £
1
2 -  12

-  12
3
2

§ c -1
0
d

+ c 3et e-t

et e-t d #
t

0

 £
1
2 e

-s -  12 e
-s

-  12 e
s 3

2 e
s
§ c e

2s

1
d ds

= £
-3

2 e
t + 1

2 e
-t

-1
2 e

t + 1
2 e

-t
§ + c 3et e-t

et e-t d #
t

0

 £
1
2 e

s - 1
2 e

-s

-1
2 e

3s + 3
2 e

s
§  ds

= £
-3

2 e
t + 1

2 e
-t

-1
2 e

t + 1
2 e

-t
§ + c3et e-t

et e-t d £
1
2 e

t + 1
2 e

-t - 1

3
2 e

t - 1
6 e

3t - 4
3

§

 = £
-9

2 et - 5
6 e-t + 4

3 e2t + 3

-  32 et - 5
6 e-t + 1

3 e2t + 2
§  . ◆
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5. A = £
0 -1 0

-1 0 0
0 0 1

§  ,  f1t2 = £
e2t

sin t
t
§

6. A = c 1 1
0 2

d  ,  f1t2 = e-2t c t
3
d

In Problems 7–10, use the method of undetermined coefficients 
to determine only the form of a particular solution for the sys-
tem x′1t2 = Ax1t2 + f1t2, where A and f1t2 are given.

7. A = c 0 1
2 0

d  ,  f1t2 = c sin 3t
t
d

8. A = c -1 0
2 2

d  ,  f1t2 = c t2

t + 1
d

9. A = £
0 -1 0

-1 0 1
0 0 1

§  ,  f1t2 = £
e2t

sin t
t
§

10. A = c 2 -1
1 5

d  ,  f1t2 = c te-t

3e-t d

In Problems 11–16, use the variation of parameters 
formula (11) to find a general solution of the system 
x′1t2 = Ax1t2 + f1t2, where A and f1t2 are given.

11. A = c 0 1
-1 0

d  ,  f1t2 = c 1
0
d

12. A = c 1 2
3 2

d  ,  f1t2 = c 1
-1
d

13. A = c 8 -4
4 -2

d  ,  f1t2 = c t
-2>2

t-2 d

14. A = c 0 -1
1 0

d  ,  f1t2 = c t
2

1
d

15. A = c -4 2
2 -1

d  ,  f1t2 = c t-1

4 + 2t-1 d

16. A = c 0 1
-1 0

d  ,  f1t2 = c 8 sin t
0
d

In Problems 17–20, use the variation of parameters for-
mulas (11) and possibly a linear algebra software pack-
age to find a general solution of the system x′1t2 =  
Ax1t2 + f1t2, where A and f1t2 are given.

17. A = £
0 1 1
1 0 1
1 1 0

§  ,  f1t2 = £
3et

-et

-et

§

18. A = £
1 -1 1
0 0 1
0 -1 2

§  ,  f1t2 = £
0
et

et

§

19. A = D 0 1 0 0
-1 0 0 0

0 0 0 1
0 0 1 0

T  ,  f1t2 = D t
0

e-t

t

T

20. A = D0 1 0 0
0 0 1 0
0 0 0 1
8 -4 -2 -1

T  ,  f1t2 = D et

0
1
0

T
In Problems 21 and 22, find the solution to the given system 
that satisfies the given initial condition.

21. x′1t2 = c 0 2
-1 3

d  x1t2 + c et

-et d  ,

  (a) x102 = c 5
4
d  (b) x112 = c 0

1
d

  (c) x152 = c 1
0
d  (d) x1-12 = c -4

5
d

22. x′1t2 = c 0 2
4 -2

d  x1t2 + c 4t
-4t - 2

d  ,

  (a) x102 = c 4
-5
d  (b) x122 = c 1

1
d

23. Using matrix algebra techniques and the method of 
undetermined coefficients, find a general solution for

x″1t2 + y′1t2 - x1t2 + y1t2 = -1 ,

x′1t2 + y′1t2 - x1t2 = t2 .

Compare your solution with the solution in Example 4 
in Section 5.2, page 247.

24. Using matrix algebra techniques and the method of unde-
termined coefficients, solve the initial value problem

x′1t2 - 2y1t2 = 4t ,  x102 = 4 ;

y′1t2 + 2y1t2 - 4x1t2 = -4t - 2 ,  y102 = -5 .

Compare your solution with the solution in Example 1 
in Section 7.10, page 412.

25. To find a general solution to the system

x′1t2 = c 0 1
−2 3

d  x1t2 + f1t2 ,  where f1t2 = c e
t

0
d  ,

proceed as follows:

  (a)  Find a fundamental solution set for the corre-
sponding homogeneous system.

  (b)  The obvious choice for a particular solution would 
be a vector function of the form xp1t2 = eta; how-
ever, the homogeneous system has a solution of 
this form. The next choice would be xp1t2 = teta. 
Show that this choice does not work.

  (c)  For systems, multiplying by t is not always 
 sufficient. The proper guess is

xp1t2 = teta + etb .

    Use this guess to find a particular solution of the 
given system.

  (d)  Use the results of parts (a) and (c) to find a  general 
solution of the given system.
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26. For the system of Problem 25, we found that a proper 
guess for a particular solution is xp1t2 = teta + etb. In 
some cases a or b may be zero.

  (a)  Find a particular solution for the system of  Problem 25 
if f1t2 = col13et, 6et2.

  (b)  Find a particular solution for the system of  Problem 25 
if f1t2 = col1et, et2.

27. Find a general solution of the system

x′1t2 = £
0 1 1
1 0 1
1 1 0

§  x1t2 + £
-1

-1 - e-t

-2e-t

§  .

3Hint: Try xp1t2 = e-ta + te-tb + c.4
28. Find a particular solution for the system

x′1t2 = c 1 -1
-1 1

d  x1t2 + c -3
1
d  .

3Hint: Try xp1t2 = ta + b.4
In Problems 29 and 30, find a general solution to the 
given Cauchy–Euler system for t 7 0. (See Problem 42 in  
Exercises 9.5, page 533.) Remember to express the system in 
the form x′1t2 = A1t2x1t2 + f1t2 before using the varia-
tion of parameters formula.

29. tx′1t2 = c 2 -1
3 -2

d  x1t2 + c t
-1

1
d

30. tx′1t2 = c 4 -3
8 -6

d  x1t2 + c t
2t
d

31. Use the variation of parameters formula (10) to derive a 
formula for a particular solution yp to the scalar equation 
y″ + p1t2y′ + q1t2y = g1t2 in terms of two linearly 
independent solutions y11t2, y21t2 of the corresponding 
homogeneous equation. Show that your answer agrees 
with the formulas derived in Section 4.6. [Hint: First 
write the scalar equation in system form.]

32. Conventional Combat Model. A simplistic model of a 
pair of conventional forces in combat yields the follow-
ing system:

x′ = c -a -b
-c -d

d  x + c p
q
d  ,

where x = col1x1, x22. The variables x11t2 and x21t2 
represent the strengths of opposing forces at time t. The 
terms -ax1 and -dx2 represent the operational loss rates, 
and the terms -bx2 and -cx1 represent the combat loss 
rates for the troops x1 and x2, respectively. The constants 
p and q represent the respective rates of reinforcement. 
Let a = 1, b = 4, c = 3, d = 2, and p = q = 5. By 
solving the appropriate initial value problem, determine 
which forces will win if

  (a) x1102 = 20 ,  x2102 = 20 .
 (b) x1102 = 21 ,  x2102 = 20 .
 (c) x1102 = 20 ,  x2102 = 21 .

33. RL Network. The currents in the RL network given by 
the schematic diagram in Figure 9.8 are governed by the 
following equations:

2I =11t2 + 90I21t2 = 9 ,

I =31t2 + 30I41t2 - 90I21t2 = 0 ,

60I51t2 - 30I41t2 = 0 ,

I11t2 = I21t2 + I31t2 ,
I31t2 = I41t2 + I51t2 .

9 volts 

I 1 

I 1 

I 4 I 5 

2 henries 

90 ohms 

I 2 

I 2 

I 3 
1 henry I 3 

I 3 

30 ohms 60 ohms 

Figure 9.8  RL network for Problem 33

Assume the currents are initially zero. Solve for the 
five currents I1, . . . , I5. 3Hint: Eliminate all unknowns 
except I2 and I5, and form a normal system with x1 = I2 
and x2 = I5.4

34. Mixing Problem. Two tanks A and B, each holding  
50 L of liquid, are interconnected by pipes. The liquid 
flows from tank A into tank B at a rate of 4 L/min and 
from B into A at a rate of 1 L/min (see Figure 9.9). The 
liquid inside each tank is kept well stirred. A brine solu-
tion that has a concentration of 0.2 kg/L of salt flows 
into tank A at a rate of 4 L/min. A brine solution that 
has a concentration of 0.1 kg/L of salt flows into tank B 
at a rate of 1 L/min. The solutions flow out of the sys-
tem from both tanks—from tank A at 1 L/min and from 
tank B at 4 L/min. If, initially, tank A contains pure water 
and tank B contains 0.5 kg of salt, determine the mass of 
salt in each tank at time t Ú 0. After several minutes have 
elapsed, which tank has the higher concentration of salt? 
What is its limiting concentration?

4 L/min  
0.2 kg/L 

1 L/min  
0.1 kg/L x 1 (t)

50 L 

x 1 (0) = 0 kg

A 
4 L/min 

x 2 (t)

50 L 

x 2 (0) = 0.5 kg

B 

4 L/min 

1 L/min 

1 L/min 

Figure 9.9  Mixing problem for interconnected tanks
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