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rocks and are measured by geophones attached to
mile-long cables behind the ship.

� Linear programming.Many important management
decisions today are made on the basis of linear
programming models that use hundreds of
variables. The airline industry, for instance, employs
linear programs that schedule flight crews, monitor
the locations of aircraft, or plan the varied schedules
of support services such as maintenance and
terminal operations.

� Electrical networks. Engineers use simulation
software to design electrical circuits and microchips
involving millions of transistors. Such software

relies on linear algebra techniques and systems of
linear equations.

� Artificial intelligence. Linear algebra plays a key
role in everything from scrubbing data to facial
recognition.

� Signals and signal processing. From a digital
photograph to the daily price of a stock, important
information is recorded as a signal and processed
using linear transformations.

� Machine learning. Machines (specifically comput-
ers) use linear algebra to learn about anything from
online shopping preferences to speech recognition.

Systems of linear equations lie at the heart of linear algebra, and this chapter uses them
to introduce some of the central concepts of linear algebra in a simple and concrete
setting. Sections 1.1 and 1.2 present a systematic method for solving systems of linear
equations. This algorithmwill be used for computations throughout the text. Sections 1.3
and 1.4 show how a system of linear equations is equivalent to a vector equation and to
amatrix equation. This equivalence will reduce problems involving linear combinations
of vectors to questions about systems of linear equations. The fundamental concepts of
spanning, linear independence, and linear transformations, studied in the second half of
the chapter, will play an essential role throughout the text as we explore the beauty and
power of linear algebra.

1.1 Systems of Linear Equations
A linear equation in the variables x1; : : : ; xn is an equation that can be written in the
form

a1x1 C a2x2 C � � � C anxn D b (1)

where b and the coefficients a1; : : : ; an are real or complex numbers, usually known
in advance. The subscript n may be any positive integer. In textbook examples and
exercises, n is normally between 2 and 5. In real-life problems, n might be 50 or 5000,
or even larger.

The equations

4x1 � 5x2 C 2 D x1 and x2 D 2
�p

6 � x1

�
C x3

are both linear because they can be rearranged algebraically as in equation (1):

3x1 � 5x2 D �2 and 2x1 C x2 � x3 D 2
p

6

The equations

4x1 � 5x2 D x1x2 and x2 D 2
p

x1 � 6

are not linear because of the presence of x1x2 in the first equation and
p

x1 in the second.
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A system of linear equations (or a linear system) is a collection of one or more
linear equations involving the same variables—say, x1; : : : ; xn. An example is

2x1 � x2 C 1:5x3 D 8

x1 � 4x3 D �7
(2)

A solution of the system is a list .s1; s2; : : : ; sn/ of numbers that makes each equation a
true statement when the values s1; : : : ; sn are substituted for x1; : : : ; xn, respectively. For
instance, .5; 6:5; 3/ is a solution of system (2) because, when these values are substituted
in (2) for x1; x2; x3, respectively, the equations simplify to 8 D 8 and �7 D �7.

The set of all possible solutions is called the solution set of the linear system. Two
linear systems are called equivalent if they have the same solution set. That is, each
solution of the first system is a solution of the second system, and each solution of the
second system is a solution of the first.

Finding the solution set of a system of two linear equations in two variables is easy
because it amounts to finding the intersection of two lines. A typical problem is

x1 � 2x2 D �1

�x1 C 3x2 D 3

The graphs of these equations are lines, which we denote by `1 and `2. A pair of numbers
.x1; x2/ satisfies both equations in the system if and only if the point .x1; x2/ lies on both
`1 and `2. In the system above, the solution is the single point .3; 2/, as you can easily
verify. See Figure 1.
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FIGURE 1 Exactly one solution.

Of course, two lines need not intersect in a single point—they could be parallel, or
they could coincide and hence “intersect” at every point on the line. Figure 2 shows the
graphs that correspond to the following systems:

(a) x1 � 2x2 D �1

�x1 C 2x2 D 3

(b) x1 � 2x2 D �1

�x1 C 2x2 D 1

Figures 1 and 2 illustrate the following general fact about linear systems, to be
verified in Section 1.2.
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FIGURE 2 (a) No solution. (b) Infinitely many solutions.
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A system of linear equations has

1. no solution, or

2. exactly one solution, or

3. infinitely many solutions.

A system of linear equations is said to be consistent if it has either one solution or
infinitely many solutions; a system is inconsistent if it has no solution.

Matrix Notation
The essential information of a linear system can be recorded compactly in a rectangular
array called a matrix. Given the system

x1 � 2x2 C x3 D 0

2x2 � 8x3 D 8

5x1 � 5x3 D 10

(3)

with the coefficients of each variable aligned in columns, the matrix24 1 �2 1

0 2 �8

5 0 �5

35
is called the coefficient matrix (or matrix of coefficients) of the system (3), and the
matrix 24 1 �2 1 0

0 2 �8 8

5 0 �5 10

35 (4)

is called the augmented matrix of the system. (The second row here contains a zero
because the second equation could be written as 0 � x1 C 2x2 � 8x3 D 8.) An augmented
matrix of a system consists of the coefficient matrix with an added column containing
the constants from the respective right sides of the equations.

The size of a matrix tells howmany rows and columns it has. The augmented matrix
(4) above has 3 rows and 4 columns and is called a 3 � 4 (read “3 by 4”) matrix. Ifm and
n are positive integers, an m � n matrix is a rectangular array of numbers with m rows
and n columns. (The number of rows always comes first.) Matrix notation will simplify
the calculations in the examples that follow.

Solving a Linear System
This section and the next describe an algorithm, or a systematic procedure, for solving
linear systems. The basic strategy is to replace one system with an equivalent system
(that is one with the same solution set) that is easier to solve.

Roughly speaking, use the x1 term in the first equation of a system to eliminate the
x1 terms in the other equations. Then use the x2 term in the second equation to eliminate
the x2 terms in the other equations, and so on, until you finally obtain a very simple
equivalent system of equations.
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Three basic operations are used to simplify a linear system: Replace one equation
by the sum of itself and a multiple of another equation, interchange two equations, and
multiply all the terms in an equation by a nonzero constant. After the first example, you
will see why these three operations do not change the solution set of the system.

EXAMPLE 1 Solve system (3).

SOLUTION The elimination procedure is shown here with and without matrix nota-
tion, and the results are placed side by side for comparison:

x1 � 2x2 C x3 D 0

2x2 � 8x3 D 8

5x1 � 5x3 D 10

24 1 �2 1 0

0 2 �8 8

5 0 �5 10

35
Keep x1 in the first equation and eliminate it from the other equations. To do so, add �5

times equation 1 to equation 3. After some practice, this type of calculation is usually
performed mentally:

�5 � Œequation 1�

C Œequation 3�

Œnew equation 3�

�5x1 C 10x2 � 5x3 D 0

5x1 � 5x3 D 10

10x2 � 10x3 D 10

The result of this calculation is written in place of the original third equation:

x1 � 2x2 C x3 D 0

2x2 � 8x3 D 8

10x2 � 10x3 D 10

24 1 �2 1 0

0 2 �8 8

0 10 �10 10

35
Now, multiply equation 2 by 1

2
in order to obtain 1 as the coefficient for x2. (This

calculation will simplify the arithmetic in the next step.)

x1 � 2x2 C x3 D 0

x2 � 4x3 D 4

10x2 � 10x3 D 10

24 1 �2 1 0

0 1 �4 4

0 10 �10 10

35
Use the x2 in equation 2 to eliminate the 10x2 in equation 3. The “mental’’ computation
is

�10 � Œequation 2�

C Œequation 3�

Œnew equation 3�

�10x2 C 40x3 D �40

10x2 � 10x3 D 10

30x3 D �30

The result of this calculation is written in place of the previous third equation (row):

x1 � 2x2 C x3 D 0

x2 � 4x3 D 4

30x3 D �30

24 1 �2 1 0

0 1 �4 4

0 0 30 �30

35
Now, multiply equation 3 by 1

30
in order to obtain 1 as the coefficient for x3. (This

calculation will simplify the arithmetic in the next step.)

x1 � 2x2 C x3 D 0

x2 � 4x3 D 4

x3 D �1

24 1 �2 1 0

0 1 �4 4

0 0 1 �1

35
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The new system has a triangular form (the intuitive term triangular will be replaced by
a precise term in the next section):

x1 � 2x2 C x3 D 0

x2 � 4x3 D 4

x3 D �1

24 1 �2 1 0

0 1 �4 4

0 0 1 �1

35
Eventually, you want to eliminate the �2x2 term from equation 1, but it is more efficient
to use the x3 in equation 3 first, to eliminate the �4x3 and Cx3 terms in equations 2
and 1. The two “mental” calculations are

4 � Œequation 3�

C Œequation 2�

Œnew equation 2�

4x3 D �4

x2 � 4x3 D 4

x2 D 0

�1 � Œequation 3�

C Œequation 1�

Œnew equation 1�

� x3 D 1

x1 � 2x2 C x3 D 0

x1 � 2x2 D 1

It is convenient to combine the results of these two operations:

x1 � 2x2 D 1

x2 D 0

x3 D �1

24 1 �2 0 1

0 1 0 0

0 0 1 �1

35
Now, having cleaned out the column above the x3 in equation 3, move back to the x2 in
equation 2 and use it to eliminate the �2x2 above it. Because of the previous work with
x3, there is now no arithmetic involving x3 terms. Add 2 times equation 2 to equation 1
and obtain the system:

x1 D 1

x2 D 0

x3 D �1

24 1 0 0 1

0 1 0 0

0 0 1 �1

35
The work is essentially done. It shows that the only solution of the original system is

x2

x3

(1, 0, 21)

x1

Each of the original equations
determines a plane in
three-dimensional space. The point
.1; 0;�1/ lies in all three planes.

.1; 0;�1/. However, since there are so many calculations involved, it is a good practice
to check the work. To verify that .1; 0;�1/ is a solution, substitute these values into the
left side of the original system, and compute:

1.1/ � 2.0/ C 1.�1/ D 1 � 0 � 1 D 0

2.0/ � 8.�1/ D 0 C 8 D 8

5.1/ � 5.�1/ D 5 C 5 D 10

The results agree with the right side of the original system, so .1; 0;�1/ is a solution of
the system.

Example 1 illustrates how operations on equations in a linear system correspond to
operations on the appropriate rows of the augmented matrix. The three basic operations
listed earlier correspond to the following operations on the augmented matrix.

ELEMENTARY ROW OPERATIONS

1. (Replacement) Replace one row by the sum of itself and a multiple of another
row.1

2. (Interchange) Interchange two rows.

3. (Scaling) Multiply all entries in a row by a nonzero constant.

1A common paraphrase of row replacement is “Add to one row a multiple of another row.”
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Row operations can be applied to any matrix, not merely to one that arises as the
augmented matrix of a linear system. Two matrices are called row equivalent if there is
a sequence of elementary row operations that transforms one matrix into the other.

It is important to note that row operations are reversible. If two rows are inter-
changed, they can be returned to their original positions by another interchange. If a
row is scaled by a nonzero constant c, then multiplying the new row by 1=c produces
the original row. Finally, consider a replacement operation involving two rows—say,
rows 1 and 2—and suppose that c times row 1 is added to row 2 to produce a new row 2.
To “reverse” this operation, add �c times row 1 to (new) row 2 and obtain the original
row 2. See Exercises 39–42 at the end of this section.

At the moment, we are interested in row operations on the augmented matrix of a
system of linear equations. Suppose a system is changed to a new one via row operations.
By considering each type of row operation, you can see that any solution of the original
system remains a solution of the new system. Conversely, since the original system can
be produced via row operations on the new system, each solution of the new system is
also a solution of the original system. This discussion justifies the following statement.

If the augmented matrices of two linear systems are row equivalent, then the two
systems have the same solution set.

Though Example 1 is lengthy, you will find that after some practice, the calculations
go quickly. Row operations in the text and exercises will usually be extremely easy
to perform, allowing you to focus on the underlying concepts. Still, you must learn to
perform row operations accurately because they will be used throughout the text.

The rest of this section shows how to use row operations to determine the size of a
solution set, without completely solving the linear system.

Existence and Uniqueness Questions
Section 1.2 will show why a solution set for a linear system contains either no solutions,
one solution, or infinitely many solutions. Answers to the following two questions will
determine the nature of the solution set for a linear system.

To determine which possibility is true for a particular system, we ask two questions.

TWO FUNDAMENTAL QUESTIONS ABOUT A LINEAR SYSTEM

1. Is the system consistent; that is, does at least one solution exist?

2. If a solution exists, is it the only one; that is, is the solution unique?

These two questions will appear throughout the text, in many different guises. This
section and the next will show how to answer these questions via row operations on
the augmented matrix.

EXAMPLE 2 Determine if the following system is consistent:

x1 � 2x2 C x3 D 0

2x2 � 8x3 D 8

5x1 � 5x3 D 10
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SOLUTION This is the system from Example 1. Suppose that we have performed the
row operations necessary to obtain the triangular form

x1 � 2x2 C x3 D 0

x2 � 4x3 D 4

x3 D �1

24 1 �2 1 0

0 1 �4 4

0 0 1 �1

35
At this point, we know x3. Were we to substitute the value of x3 into equation 2, we
could compute x2 and hence could determine x1 from equation 1. So a solution exists;
the system is consistent. (In fact, x2 is uniquely determined by equation 2 since x3 has
only one possible value, and x1 is therefore uniquely determined by equation 1. So the
solution is unique.)

EXAMPLE 3 Determine if the following system is consistent:

x2 � 4x3 D 8

2x1 � 3x2 C 2x3 D 1

4x1 � 8x2 C 12x3 D 1

(5)

SOLUTION The augmented matrix is24 0 1 �4 8

2 �3 2 1

4 �8 12 1

35
To obtain an x1 in the first equation, interchange rows 1 and 2:24 2 �3 2 1

0 1 �4 8

4 �8 12 1

35
To eliminate the 4x1 term in the third equation, add �2 times row 1 to row 3:24 2 �3 2 1

0 1 �4 8

0 �2 8 �1

35 (6)

Next, use the x2 term in the second equation to eliminate the �2x2 term from the third
equation. Add 2 times row 2 to row 3:24 2 �3 2 1

0 1 �4 8

0 0 0 15

35 (7)

The augmented matrix is now in triangular form. To interpret it correctly, go back to
equation notation:

2x1 � 3x2 C 2x3 D 1

x2 � 4x3 D 8

0 D 15

(8)

The equation 0 D 15 is a short form of 0x1 C 0x2 C 0x3 D 15. This system in trian-
gular form obviously has a built-in contradiction. There are no values of x1; x2; x3 that
satisfy (8) because the equation 0 D 15 is never true. Since (8) and (5) have the same
solution set, the original system is inconsistent (it has no solution).

x2
x1

x3

The system is inconsistent because
there is no point that lies on all
three planes.

Pay close attention to the augmented matrix in (7). Its last row is typical of an
inconsistent system in triangular form.
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Reasonable Answers

Once you have one or more solutions to a system of equations, remember to check
your answer by substituting the solution you found back into the original equation.
For example, if you found .2; 1;�1/ was a solution to the system of equations

x1 � 2x2 C x3 D 2

x1 � 2x3 D �2

x2 C x3 D 3

you could substitute your solution into the original equations to get

2 � 2.1/ C .�1/ D �1 ¤ 2

2 � 2.�1/ D 4 ¤ �2

1 C .�1/ D 0 ¤ 3

It is now clear that there must have been an error in your original calculations. If
upon rechecking your arithmetic, you find the answer .2; 1; 2/, you can see that

2 � 2.1/ C .2/ D 2 D 2

2 � 2.2/ D �2 D �2

1 C 2 D 3 D 3

and you can now be confident you have a correct solution to the given system of
equations.

Numerical Note

In real-world problems, systems of linear equations are solved by a computer.
For a square coefficient matrix, computer programs nearly always use the elim-
ination algorithm given here and in Section 1.2, modified slightly for improved
accuracy.

The vast majority of linear algebra problems in business and industry are
solved with programs that use floating point arithmetic. Numbers are represented
as decimals˙:d1 � � � dp � 10r , where r is an integer and the number p of digits to
the right of the decimal point is usually between 8 and 16. Arithmetic with such
numbers typically is inexact, because the result must be rounded (or truncated) to
the number of digits stored. “Roundoff error” is also introduced when a number
such as 1=3 is entered into the computer, since its decimal representation must
be approximated by a finite number of digits. Fortunately, inaccuracies in floating
point arithmetic seldom cause problems. The numerical notes in this book will
occasionally warn of issues that you may need to consider later in your career.

Practice Problems

Throughout the text, practice problems should be attempted before working the exer-
cises. Solutions appear after each exercise set.

1. State in words the next elementary row operation that should be performed on the
system in order to solve it. [More than one answer is possible in (a).]
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Practice Problems (Continued)

a. x1 C 4x2 � 2x3 C 8x4 D 12

x2 � 7x3 C 2x4 D �4

5x3 � x4 D 7

x3 C 3x4 D �5

b. x1 � 3x2 C 5x3 � 2x4 D 0

x2 C 8x3 D �4

2x3 D 3

x4 D 1

2. The augmented matrix of a linear system has been transformed by row operations
into the form below. Determine if the system is consistent.24 1 5 2 �6

0 4 �7 2

0 0 5 0

35
3. Is .3; 4;�2/ a solution of the following system?

5x1 � x2 C 2x3 D 7

�2x1 C 6x2 C 9x3 D 0

�7x1 C 5x2 � 3x3 D �7

4. For what values of h and k is the following system consistent?

2x1 � x2 D h

�6x1 C 3x2 D k

1.1 Exercises
Solve each system in Exercises 1–4 by using elementary row
operations on the equations or on the augmented matrix. Follow
the systematic elimination procedure described in this section.

1. x1 C 5x2 D 7

�2x1 � 7x2 D �5

2. 2x1 C 4x2 D �4

5x1 C 7x2 D 11

3. Find the point .x1; x2/ that lies on the line x1 C 5x2 D 7 and
on the line x1 � 2x2 D �2. See the figure.

x2

x1

x1 1 5x2 5 7
x1 2 2x2 5 22

4. Find the point of intersection of the lines x1 � 5x2 D 1 and
3x1 � 7x2 D 5.

Consider eachmatrix in Exercises 5 and 6 as the augmentedmatrix
of a linear system. State in words the next two elementary row
operations that should be performed in the process of solving the
system.

5.

2664
1 3 �4 0 9

1 1 5 0 �8

0 0 1 0 7

0 0 0 1 �6

3775

6.

2664
1 �6 4 0 �1

0 2 �7 0 4

0 0 1 2 �3

0 0 3 1 6

3775
In Exercises 7–10, the augmented matrix of a linear system has
been reduced by row operations to the form shown. In each case,
continue the appropriate row operations and describe the solution
set of the original system.

7.

2664
1 7 3 �4

0 1 �1 3

0 0 0 1

0 0 1 �2

3775 8.

24 1 1 5 0

0 1 9 0

0 0 7 �7

35

9.

2664
1 �1 0 0 �4

0 1 �3 0 �7

0 0 1 �3 �1

0 0 0 0 4

3775
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10.

2664
1 �2 0 3 0

0 1 0 �4 0

0 0 1 0 0

0 0 0 1 0

3775
Solve the systems in Exercises 11–14.

11. x2 C 4x3 D �4

x1 C 3x2 C 3x3 D �2

3x1 C 7x2 C 5x3 D 6

12. x1 � 3x2 C 4x3 D �4

3x1 � 7x2 C 7x3 D �8

�4x1 C 6x2 C 2x3 D 4

13. x1 � 3x3 D 8

2x1 C 2x2 C 9x3 D 7

x2 C 5x3 D �2

14. x1 � 3x2 D 5

�x1 C x2 C 5x3 D 2

x2 C x3 D 0

15. Verify that the solution you found to Exercise 11 is correct
by substituting the values you obtained back into the original
equations.

16. Verify that the solution you found to Exercise 12 is correct
by substituting the values you obtained back into the original
equations.

17. Verify that the solution you found to Exercise 13 is correct
by substituting the values you obtained back into the original
equations.

18. Verify that the solution you found to Exercise 14 is correct
by substituting the values you obtained back into the original
equations.

Determine if the systems in Exercises 19 and 20 are consistent. Do
not completely solve the systems.

19. x1 C 3x3 D 2

x2 � 3x4 D 3

� 2x2 C 3x3 C 2x4 D 1

3x1 C 7x4 D �5

20. x1 � 2x4 D �3

2x2 C 2x3 D 0

x3 C 3x4 D 1

�2x1 C 3x2 C 2x3 C x4 D 5

21. Do the three lines x1 � 4x2 D 1, 2x1 � x2 D �3, and
�x1 � 3x2 D 4 have a common point of intersection?
Explain.

22. Do the three planes x1 C 2x2 C x3 D 4, x2 � x3 D 1, and
x1 C 3x2 D 0 have at least one common point of intersec-
tion? Explain.

In Exercises 23–26, determine the value(s) of h such that the
matrix is the augmented matrix of a consistent linear system.

23.
�

1 h 4

3 6 8

�
24.

�
1 h �3

�2 4 6

�
25.

�
1 3 �2

�4 h 8

�
26.

�
3 �4 h

�6 8 9

�
In Exercises 27–34, key statements from this section are either
quoted directly, restated slightly (but still true), or altered in some
way that makes them false in some cases. Mark each statement
True or False, and justify your answer. (If true, give the approx-
imate location where a similar statement appears, or refer to a
definition or theorem. If false, give the location of a statement that
has been quoted or used incorrectly, or cite an example that shows
the statement is not true in all cases.) Similar true/false questions
will appear in many sections of the text and will be flagged with a
(T/F) at the beginning of the question.

27. (T/F) Every elementary row operation is reversible.

28. (T/F) Elementary row operations on an augmented matrix
never change the solution set of the associated linear system.

29. (T/F) A 5 � 6 matrix has six rows.

30. (T/F) Two matrices are row equivalent if they have the same
number of rows.

31. (T/F) The solution set of a linear system involving variables
x1; : : : ; xn is a list of numbers .s1; : : : ; sn/ that makes each
equation in the system a true statement when the values
s1; : : : ; sn are substituted for x1; : : : ; xn, respectively.

32. (T/F) An inconsistent system has more than one solution.

33. (T/F) Two fundamental questions about a linear system in-
volve existence and uniqueness.

34. (T/F) Two linear systems are equivalent if they have the same
solution set.

35. Find an equation involving g, h, and k that makes this aug-
mented matrix correspond to a consistent system:24 1 �3 5 g

0 2 �3 h

�3 5 �9 k

35
36. Construct three different augmented matrices for linear sys-

tems whose solution set is x1 D �2, x2 D 1, x3 D 0.

37. Suppose the system below is consistent for all possible values
of f and g. What can you say about the coefficients c and d?
Justify your answer.

x1 C 5x2 D f

cx1 C dx2 D g
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38. Suppose a, b, c, and d are constants such that a is not zero
and the system below is consistent for all possible values of
f and g. What can you say about the numbers a, b, c, and d?
Justify your answer.

ax1 C bx2 D f

cx1 C dx2 D g

In Exercises 39–42, find the elementary row operation that trans-
forms the first matrix into the second, and then find the reverse
row operation that transforms the second matrix into the first.

39.

24 0 �2 5

1 4 �7

3 �1 6

35 ;

24 1 4 �7

0 �2 5

3 �1 6

35
40.

24 1 3 �4

0 �2 6

0 �5 9

35 ;

24 1 3 �4

0 1 �3

0 �5 9

35
41.

24 1 �3 2 0

0 4 �5 6

5 �7 8 �9

35 ;

24 1 �3 2 0

0 4 �5 6

0 8 �2 �9

35
42.

24 1 2 �5 0

0 1 �3 �2

0 �3 9 5

35 ;

24 1 2 �5 0

0 1 �3 �2

0 0 0 �1

35
An important concern in the study of heat transfer is to determine
the steady-state temperature distribution of a thin plate when the

temperature around the boundary is known. Assume the plate
shown in the figure represents a cross section of ametal beam, with
negligible heat flow in the direction perpendicular to the plate. Let
T1; : : : ; T4 denote the temperatures at the four interior nodes of
the mesh in the figure. The temperature at a node is approximately
equal to the average of the four nearest nodes—to the left, above,
to the right, and below.2 For instance,

T1 D .10C 20C T2 C T4/=4; or 4T1 � T2 � T4 D 30

108

108

408

408

208 208

308 308

1 2

4 3

43. Write a system of four equations whose solution gives esti-
mates for the temperatures T1; : : : ; T4.

44. Solve the system of equations from Exercise 43. [Hint: To
speed up the calculations, interchange rows 1 and 4 before
starting “replace” operations.]

2 See Frank M. White, Heat and Mass Transfer (Reading, MA:
Addison-Wesley Publishing, 1991), pp. 145–149.

Solutions to Practice Problems

1. a. For “hand computation,” the best choice is to interchange equations 3 and 4.
Another possibility is to multiply equation 3 by 1=5. Or, replace equation 4 by
its sum with �1=5 times row 3. (In any case, do not use the x2 in equation 2 to
eliminate the 4x2 in equation 1. Wait until a triangular form has been reached
and the x3 terms and x4 terms have been eliminated from the first two equations.)

b. The system is in triangular form. Further simplification begins with the x4 in the
fourth equation. Use the x4 to eliminate all x4 terms above it. The appropriate
step now is to add 2 times equation 4 to equation 1. (After that, move to equation
3, multiply it by 1=2, and then use the equation to eliminate the x3 terms
above it.)

2. The system corresponding to the augmented matrix is

x1 C 5x2 C 2x3 D �6

4x2 � 7x3 D 2

5x3 D 0

The third equation makes x3 D 0, which is certainly an allowable value for x3. After
eliminating the x3 terms in equations 1 and 2, you could go on to solve for unique
values for x2 and x1. Hence a solution exists, and it is unique. Contrast this situation
with that in Example 3.



1.2 Row Reduction and Echelon Forms 37

3. It is easy to check if a specific list of numbers is a solution. Set x1 D 3, x2 D 4, and
x3 D �2, and find that

5.3/ � .4/ C 2.�2/ D 15 � 4 � 4 D 7

�2.3/ C 6.4/ C 9.�2/ D �6 C 24 � 18 D 0

�7.3/ C 5.4/ � 3.�2/ D �21 C 20 C 6 D 5

Although the first two equations are satisfied, the third is not, so .3; 4;�2/ is not a
solution of the system. Notice the use of parentheses whenmaking the substitutions.
They are strongly recommended as a guard against arithmetic errors.

x3

x2

x1

(3, 4, 22)

Since .3; 4;�2/ satisfies the first
two equations, it is on the line of
the intersection of the first two
planes. Since .3; 4;�2/ does not
satisfy all three equations, it does
not lie on all three planes.

4. When the second equation is replaced by its sum with 3 times the first equation, the
system becomes

2x1 � x2 D h

0 D k C 3h

If k C 3h is nonzero, the system has no solution. The system is consistent for any
values of h and k that make k C 3h D 0.

1.2 Row Reduction and Echelon Forms
This section refines the method of Section 1.1 into a row reduction algorithm that will
enable us to analyze any system of linear equations.1 By using only the first part of the
algorithm, wewill be able to answer the fundamental existence and uniqueness questions
posed in Section 1.1.

The algorithm applies to any matrix, whether or not the matrix is viewed as an aug-
mented matrix for a linear system. So the first part of this section concerns an arbitrary
rectangular matrix and begins by introducing two important classes of matrices that
include the “triangular” matrices of Section 1.1. In the definitions that follow, a nonzero
row or column in a matrix means a row or column that contains at least one nonzero
entry; a leading entry of a row refers to the leftmost nonzero entry (in a nonzero row).

DEFINITION A rectangular matrix is in echelon form (or row echelon form) if it has the
following three properties:

1. All nonzero rows are above any rows of all zeros.

2. Each leading entry of a row is in a column to the right of the leading entry of
the row above it.

3. All entries in a column below a leading entry are zeros.

If a matrix in echelon form satisfies the following additional conditions, then it is
in reduced echelon form (or reduced row echelon form):

4. The leading entry in each nonzero row is 1.

5. Each leading 1 is the only nonzero entry in its column.

1 The algorithm here is a variant of what is commonly called Gaussian elimination. A similar elimination
method for linear systems was used by Chinese mathematicians in about 250 B.C. The process was unknown
in Western culture until the nineteenth century, when a famous German mathematician, Carl Friedrich Gauss,
discovered it. A German engineer, Wilhelm Jordan, popularized the algorithm in an 1888 text on geodesy.
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An echelonmatrix (respectively, reduced echelonmatrix) is one that is in echelon
form (respectively, reduced echelon form). Property 2 says that the leading entries form
an echelon (“steplike”) pattern that moves down and to the right through the matrix.
Property 3 is a simple consequence of property 2, but we include it for emphasis.

The “triangular” matrices of Section 1.1, such as24 2 �3 2 1

0 1 �4 8

0 0 0 5=2

35 and

24 1 0 0 29

0 1 0 16

0 0 1 3

35
are in echelon form. In fact, the second matrix is in reduced echelon form. Here are
additional examples.

EXAMPLE 1 The following matrices are in echelon form. The leading entries ( )
may have any nonzero value; the starred entries (�) may have any value (including zero).

2664
� � �

0 � �

0 0 0 0

0 0 0 0

3775;

266664
0 � � � � � � � �

0 0 0 � � � � � �

0 0 0 0 � � � � �

0 0 0 0 0 � � � �

0 0 0 0 0 0 0 0 �

377775
The following matrices are in reduced echelon form because the leading entries are 1’s,
and there are 0’s below and above each leading 1.2664

1 0 � �

0 1 � �

0 0 0 0

0 0 0 0

3775;

266664
0 1 � 0 0 0 � � 0 �

0 0 0 1 0 0 � � 0 �

0 0 0 0 1 0 � � 0 �

0 0 0 0 0 1 � � 0 �

0 0 0 0 0 0 0 0 1 �

377775

Any nonzero matrix may be row reduced (that is, transformed by elementary row
operations) into more than one matrix in echelon form, using different sequences of row
operations. However, the reduced echelon form one obtains from a matrix is unique. The
following theorem is proved in Appendix A at the end of the text.

THEOREM 1 Uniqueness of the Reduced Echelon Form

Each matrix is row equivalent to one and only one reduced echelon matrix.

If a matrix A is row equivalent to an echelon matrix U , we call U an echelon form
(or row echelon form) of A; if U is in reduced echelon form, we call U the reduced
echelon form of A. [Most matrix programs and calculators with matrix capabilities use
the abbreviation RREF for reduced (row) echelon form. Some use REF for (row) echelon
form.]

Pivot Positions
When row operations on a matrix produce an echelon form, further row operations to
obtain the reduced echelon form do not change the positions of the leading entries. Since
the reduced echelon form is unique, the leading entries are always in the same positions
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in any echelon form obtained from a given matrix. These leading entries correspond to
leading 1’s in the reduced echelon form.

DEFINITION A pivot position in a matrix A is a location in A that corresponds to a leading 1 in
the reduced echelon form of A. A pivot column is a column of A that contains a
pivot position.

In Example 1, the squares ( ) identify the pivot positions. Many fundamental con-
cepts in the first four chapters will be connected in one way or another with pivot posi-
tions in a matrix.

EXAMPLE 2 Row reduce the matrix A below to echelon form, and locate the pivot
columns of A.

A D

2664
0 �3 �6 4 9

�1 �2 �1 3 1

�2 �3 0 3 �1

1 4 5 �9 �7

3775
SOLUTION Use the same basic strategy as in Section 1.1. The top of the leftmost
nonzero column is the first pivot position. A nonzero entry, or pivot, must be placed in this
position. A good choice is to interchange rows 1 and 4 (because the mental computations
in the next step will not involve fractions).

2664
1 �

Pivot

4 5 �9 �7

�1 �2 �1 3 1

�2 �3 0 3 �1

0

6 Pivot column

�3 �6 4 9

3775

Create zeros below the pivot, 1, by adding multiples of the first row to the rows below,
and obtain matrix (1) below. The pivot position in the second row must be as far left as
possible—namely in the second column. Choose the 2 in this position as the next pivot.2664

1 4 5 �9 �7

0 2 �

Pivot

4 �6 �6

0 5 10 �15 �15

0 �3

6 Next pivot column

�6 4 9

3775 (1)

Add �5=2 times row 2 to row 3, and add 3=2 times row 2 to row 4.2664
1 4 5 �9 �7

0 2 4 �6 �6

0 0 0 0 0

0 0 0 �5 0

3775 (2)

The matrix in (2) is different from any encountered in Section 1.1. There is no way to
create a leading entry in column 3! (We can’t use row 1 or 2 because doing so would
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destroy the echelon arrangement of the leading entries already produced.) However, if
we interchange rows 3 and 4, we can produce a leading entry in column 4.

2664
1 4 5 �9 �7

0 2 4 �6 �6

0 0 0 �5�

Pivot

0

0

6 6 6 Pivot columns

0 0 0 0

3775 General form:

2664
� � � �

0 � � �

0 0 0 �

0 0 0 0 0

3775

The matrix is in echelon form and thus reveals that columns 1, 2, and 4 of A are pivot
columns.

A D

2664
0�

�
�

Pivot positions

�3 �6 4 9

�1 �2 �1 3 1

�2 �3 0 3 �1

1

6 6 6 Pivot columns

4 5 �9 �7

3775 (3)

A pivot, as illustrated in Example 2, is a nonzero number in a pivot position that is
used as needed to create zeros via row operations. The pivots in Example 2 were 1, 2,
and �5. Notice that these numbers are not the same as the actual elements of A in the
highlighted pivot positions shown in (3).

With Example 2 as a guide, we are ready to describe an efficient procedure for
transforming a matrix into an echelon or reduced echelon matrix. Careful study and
mastery of this procedure now will pay rich dividends later in the course.

The Row Reduction Algorithm
The algorithm that follows consists of four steps, and it produces a matrix in echelon
form. A fifth step produces a matrix in reduced echelon form.We illustrate the algorithm
by an example.

EXAMPLE 3 Apply elementary row operations to transform the following matrix
first into echelon form and then into reduced echelon form:24 0 3 �6 6 4 �5

3 �7 8 �5 8 9

3 �9 12 �9 6 15

35
SOLUTION

Step 1

Begin with the leftmost nonzero column. This is a pivot column. The pivot
position is at the top.

24 0 3 �6 6 4 �5

3 �7 8 �5 8 9

3

6 Pivot column

�9 12 �9 6 15

35
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Step 2

Select a nonzero entry in the pivot column as a pivot. If necessary, interchange
rows to move this entry into the pivot position.

Interchange rows 1 and 3. (We could have interchanged rows 1 and 2 instead.)

24 3�
Pivot

�9 12 �9 6 15

3 �7 8 �5 8 9

0 3 �6 6 4 �5

35

Step 3

Use row replacement operations to create zeros in all positions below the pivot.

As a preliminary step, we could divide the top row by the pivot, 3. But with two 3’s in
column 1, it is just as easy to add �1 times row 1 to row 2.

24 3�
Pivot

�9 12 �9 6 15

0 2 �4 4 2 �6

0 3 �6 6 4 �5

35

Step 4

Cover (or ignore) the row containing the pivot position and cover all rows, if any,
above it. Apply steps 1–3 to the submatrix that remains. Repeat the process until
there are no more nonzero rows to modify.

With row 1 covered, step 1 shows that column 2 is the next pivot column; for step 2,
select as a pivot the “top” entry in that column.

24 3 �9 12 �9 6 15

0 2 �

Pivot

�4 4 2 �6

0 3

6 New pivot column

�6 6 4 �5

35

For step 3, we could insert an optional step of dividing the “top” row of the submatrix by
the pivot, 2. Instead, we add �3=2 times the “top” row to the row below. This produces

24 3 �9 12 �9 6 15

0 2 �4 4 2 �6

0 0 0 0 1 4

35
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When we cover the row containing the second pivot position for step 4, we are left with
a new submatrix having only one row:24 3 �9 12 �9 6 15

0 2 �4 4 2 �6

0 0 0 0 1 �

Pivot

4

35
Steps 1–3 require no work for this submatrix, and we have reached an echelon form of
the full matrix. If we want the reduced echelon form, we perform one more step.

Step 5

Beginning with the rightmost pivot and working upward and to the left, create
zeros above each pivot. If a pivot is not 1, make it 1 by a scaling operation.

The rightmost pivot is in row 3. Create zeros above it, adding suitable multiples of row
3 to rows 2 and 1.24 3 �9 12 �9 0 �9

0 2 �4 4 0 �14

0 0 0 0 1 4

35 � Row 1C .�6/ � row 3
� Row 2C .�2/ � row 3

The next pivot is in row 2. Scale this row, dividing by the pivot.24 3 �9 12 �9 0 �9

0 1 �2 2 0 �7

0 0 0 0 1 4

35 � Row scaled by 1
2

Create a zero in column 2 by adding 9 times row 2 to row 1.24 3 0 �6 9 0 �72

0 1 �2 2 0 �7

0 0 0 0 1 4

35 � Row 1C .9/ � row 2

Finally, scale row 1, dividing by the pivot, 3.24 1 0 �2 3 0 �24

0 1 �2 2 0 �7

0 0 0 0 1 4

35 � Row scaled by 1
3

This is the reduced echelon form of the original matrix.

The combination of steps 1–4 is called the forward phase of the row reduction algo-
rithm. Step 5, which produces the unique reduced echelon form, is called the backward
phase.

Numerical Note

In step 2 on page 41, a computer program usually selects as a pivot the entry in a
column having the largest absolute value. This strategy, called partial pivoting,
is used because it reduces roundoff errors in the calculations.
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Solutions of Linear Systems
The row reduction algorithm leads directly to an explicit description of the solution set
of a linear system when the algorithm is applied to the augmented matrix of the system.

Suppose, for example, that the augmented matrix of a linear system has been
changed into the equivalent reduced echelon form24 1 0 �5 1

0 1 1 4

0 0 0 0

35
There are three variables because the augmented matrix has four columns. The

associated system of equations is

x1 � 5x3 D 1

x2 C x3 D 4

0 D 0

(4)

The variables x1 and x2 corresponding to pivot columns in the matrix are called basic
variables.2 The other variable, x3, is called a free variable.

Whenever a system is consistent, as in (4), the solution set can be described
explicitly by solving the reduced system of equations for the basic variables in terms
of the free variables. This operation is possible because the reduced echelon form places
each basic variable in one and only one equation. In (4), solve the first equation for x1

and the second for x2. (Ignore the third equation; it offers no restriction on the variables.)8̂<̂
:

x1 D 1C 5x3

x2 D 4 � x3

x3 is free

(5)

The statement “x3 is free” means that you are free to choose any value for x3. Once
that is done, the formulas in (5) determine the values for x1 and x2. For instance, when
x3 D 0, the solution is .1; 4; 0/; when x3 D 1, the solution is .6; 3; 1/. Each different
choice of x3 determines a (different) solution of the system, and every solution of the
system is determined by a choice of x3.

EXAMPLE 4 Find the general solution of the linear systemwhose augmentedmatrix
has been reduced to 24 1 6 2 �5 �2 �4

0 0 2 �8 �1 3

0 0 0 0 1 7

35
SOLUTION The matrix is in echelon form, but we want the reduced echelon form
before solving for the basic variables. The row reduction is completed next. The symbol
� before a matrix indicates that the matrix is row equivalent to the preceding matrix.24 1 6 2 �5 �2 �4

0 0 2 �8 �1 3

0 0 0 0 1 7

35 � 24 1 6 2 �5 0 10

0 0 2 �8 0 10

0 0 0 0 1 7

35
�

24 1 6 2 �5 0 10

0 0 1 �4 0 5

0 0 0 0 1 7

35 � 24 1 6 0 3 0 0

0 0 1 �4 0 5

0 0 0 0 1 7

35
2 Some texts use the term leading variables because they correspond to the columns containing leading
entries.
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There are five variables because the augmented matrix has six columns. The associated
system now is

x1 C 6x2 C 3x4 D 0

x3 � 4x4 D 5

x5 D 7

(6)

The pivot columns of the matrix are 1, 3, and 5, so the basic variables are x1, x3, and x5.
The remaining variables, x2 and x4, must be free. Solve for the basic variables to obtain
the general solution: 8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

x1 D �6x2 � 3x4

x2 is free

x3 D 5C 4x4

x4 is free

x5 D 7

(7)

Note that the value of x5 is already fixed by the third equation in system (6).

Parametric Descriptions of Solution Sets
The descriptions in (5) and (7) are parametric descriptions of solution sets in which
the free variables act as parameters. Solving a system amounts to finding a parametric
description of the solution set or determining that the solution set is empty.

Whenever a system is consistent and has free variables, the solution set has many
parametric descriptions. For instance, in system (4), we may add 5 times equation 2 to
equation 1 and obtain the equivalent system

x1 C 5x2 D 21

x2 C x3 D 4

We could treat x2 as a parameter and solve for x1 and x3 in terms of x2, and we would
have an accurate description of the solution set. However, to be consistent, we make the
(arbitrary) convention of always using the free variables as the parameters for describing
a solution set. (The answer section at the end of the text also reflects this convention.)

Whenever a system is inconsistent, the solution set is empty, even when the system
has free variables. In this case, the solution set has no parametric representation.

Back-Substitution
Consider the following system, whose augmented matrix is in echelon form but is not
in reduced echelon form:

x1 � 7x2 C 2x3 � 5x4 C 8x5 D 10

x2 � 3x3 C 3x4 C x5 D �5

x4 � x5 D 4

A computer program would solve this system by back-substitution, rather than by com-
puting the reduced echelon form. That is, the program would solve equation 3 for x4 in
terms of x5 and substitute the expression for x4 into equation 2, solve equation 2 for x2,
and then substitute the expressions for x2 and x4 into equation 1 and solve for x1.

Our matrix format for the backward phase of row reduction, which produces the re-
duced echelon form, has the same number of arithmetic operations as back-substitution.
But the discipline of the matrix format substantially reduces the likelihood of errors
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during hand computations. The best strategy is to use only the reduced echelon form
to solve a system! The Study Guide that accompanies this text offers several helpful
suggestions for performing row operations accurately and rapidly.

Numerical Note

In general, the forward phase of row reduction takes much longer than the
backward phase. An algorithm for solving a system is usually measured in flops
(or floating point operations). A flop is one arithmetic operation (C;�;�; = )
on two real floating point numbers.3 For an n � .nC 1/ matrix, the reduction
to echelon form can take 2n3=3C n2=2 � 7n=6 flops (which is approximately
2n3=3 flops when n is moderately large—say, n � 30/. In contrast, further
reduction to reduced echelon form needs at most n2 flops.

Existence and Uniqueness Questions
Although a nonreduced echelon form is a poor tool for solving a system, this form is
just the right device for answering two fundamental questions posed in Section 1.1.

EXAMPLE 5 Determine the existence and uniqueness of the solutions to the system

3x2 � 6x3 C 6x4 C 4x5 D �5

3x1 � 7x2 C 8x3 � 5x4 C 8x5 D 9

3x1 � 9x2 C 12x3 � 9x4 C 6x5 D 15

SOLUTION The augmented matrix of this system was row reduced in Example 3 to24 3 �9 12 �9 6 15

0 2 �4 4 2 �6

0 0 0 0 1 4

35 (8)

The basic variables are x1, x2, and x5; the free variables are x3 and x4. There is no
equation such as 0 D 1 that would indicate an inconsistent system, so we could use back-
substitution to find a solution. But the existence of a solution is already clear in (8). Also,
the solution is not unique because there are free variables. Each different choice of x3

and x4 determines a different solution. Thus the system has infinitely many solutions.

When a system is in echelon form and contains no equation of the form 0 D b, with
b nonzero, every nonzero equation contains a basic variable with a nonzero coefficient.
Either the basic variables are completely determined (with no free variables) or at least
one of the basic variables may be expressed in terms of one or more free variables. In
the former case, there is a unique solution; in the latter case, there are infinitely many
solutions (one for each choice of values for the free variables).

These remarks justify the following theorem.

3 Traditionally, a flop was only a multiplication or division because addition and subtraction took much less
time and could be ignored. The definition of flop given here is preferred now, as a result of advances in
computer architecture. See Golub and Van Loan, Matrix Computations, 2nd ed. (Baltimore: The Johns
Hopkins Press, 1989), pp. 19–20.
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THEOREM 2 Existence and Uniqueness Theorem

A linear system is consistent if and only if the rightmost column of the augmented
matrix is not a pivot column—that is, if and only if an echelon form of the
augmented matrix has no row of the form

Œ 0 � � � 0 b � with b nonzero

If a linear system is consistent, then the solution set contains either (i) a unique
solution, when there are no free variables, or (ii) infinitely many solutions, when
there is at least one free variable.

The following procedure outlines how to find and describe all solutions of a linear
system.

USING ROW REDUCTION TO SOLVE A LINEAR SYSTEM

1. Write the augmented matrix of the system.

2. Use the row reduction algorithm to obtain an equivalent augmented matrix in
echelon form. Decide whether the system is consistent. If there is no solution,
stop; otherwise, go to the next step.

3. Continue row reduction to obtain the reduced echelon form.

4. Write the system of equations corresponding to the matrix obtained in step 3.

5. Rewrite each nonzero equation from step 4 so that its one basic variable is
expressed in terms of any free variables appearing in the equation.

Reasonable Answers

Remember that each augmented matrix corresponds to a system of equations. If

you row reduce the augmented matrix

24 1 �2 1 2

1 �1 2 5

0 1 1 3

35 to get the matrix24 1 0 3 8

0 1 1 3

0 0 0 0

35, the solution set is
8̂<̂
:

x1 D 8 � 3x3

x2 D 3 � x3

x3 is free

The system of equations corresponding to the original augmented matrix is

x1 � 2x2 C x3 D 2

x1 � x2 C 2x3 D 5

x2 C x3 D 3

You can now check whether your solution is correct by substituting it into the
original equations. Notice that you can just leave the free variables in the solution.
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.8 � 3x3/ � 2.3 � x3/ C .x3/ D 8 � 3x3 � 6C 2x3 C x3 D 2

.8 � 3x3/ � .3 � x3/ C 2.x3/ D 8 � 3x3 � 3C x3 C 2x3 D 5

.3 � x3/ C .x3/ D 3 � x3 C x3 D 3

You can now be confident you have a correct solution to the system of equations
represented by the augmented matrix.

Practice Problems

1. Find the general solution of the linear system whose augmented matrix is�
1 �3 �5 0

0 1 �1 �1

�
2. Find the general solution of the system

x1 � 2x2 � x3 C 3x4 D 0

�2x1 C 4x2 C 5x3 � 5x4 D 3

3x1 � 6x2 � 6x3 C 8x4 D 2

3. Suppose a 4 � 7 coefficient matrix for a system of equations has 4 pivots. Is the
system consistent? If the system is consistent, how many solutions are there?

1.2 Exercises
In Exercises 1 and 2, determine which matrices are in reduced
echelon form and which others are only in echelon form.

1. a.

24 1 0 0 0

0 1 0 0

0 0 1 1

35 b.

24 1 0 1 0

0 0 1 0

0 0 0 1

35

c.

2664
1 0 0 0

0 1 1 0

0 0 0 0

0 0 0 0

3775 d.

2664
1 1 0 1 1

0 2 0 2 2

0 0 0 3 3

0 0 0 0 4

3775

2. a.

24 1 1 0 1

0 0 1 1

0 0 0 0

35 b.

24 1 0 0 0

0 1 0 0

0 0 1 1

35

c.

2664
1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 1

3775 d.

2664
0 1 1 1 1

0 0 2 2 2

0 0 0 0 3

0 0 0 0 0

3775
Row reduce the matrices in Exercises 3 and 4 to reduced echelon
form. Circle the pivot positions in the final matrix and in the
original matrix, and list the pivot columns.

3.

24 1 2 3 4

4 5 6 7

6 7 8 9

35 4.

24 1 3 5 7

3 5 7 9

5 7 9 1

35
5. Describe the possible echelon forms of a nonzero 2 � 2

matrix. Use the symbols , �, and 0, as in the first part of
Example 1.

6. Repeat Exercise 5 for a nonzero 3 � 2 matrix.

Find the general solutions of the systems whose augmented ma-
trices are given in Exercises 7–14.

7.
�

1 2 3 4

4 8 9 4

�
8.

�
1 4 0 7

2 7 0 11

�
9.

�
0 1 �6 5

1 �2 7 �4

�
10.

�
1 �2 �1 3

3 �6 �2 2

�

11.

24 3 �4 2 0

�9 12 �6 0

�6 8 �4 0

35 12.

24 1 �7 0 6 5

0 0 1 �2 �3

�1 7 �4 2 7

35

13.

2664
1 �3 0 �1 0 �2

0 1 0 0 �4 1

0 0 0 1 9 �4

0 0 0 0 0 0

3775
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14.

2664
1 2 �5 �4 0 �5

0 1 �6 �4 0 2

0 0 0 0 1 0

0 0 0 0 0 0

3775
You may find it helpful to review the information in the Reason-
able Answers box from this section before answering Exercises
15–18.

15. Write down the equations corresponding to the augmented
matrix in Exercise 9 and verify your answer to Exercise 9 is
correct by substituting the solutions you obtained back into
the original equations.

16. Write down the equations corresponding to the augmented
matrix in Exercise 10 and verify your answer to Exercise 10
is correct by substituting the solutions you obtained back into
the original equations.

17. Write down the equations corresponding to the augmented
matrix in Exercise 11 and verify your answer to Exercise 11
is correct by substituting the solutions you obtained back into
the original equations.

18. Write down the equations corresponding to the augmented
matrix in Exercise 12 and verify your answer to Exercise 12
is correct by substituting the solutions you obtained back into
the original equations.

Exercises 19 and 20 use the notation of Example 1 for matrices
in echelon form. Suppose each matrix represents the augmented
matrix for a system of linear equations. In each case, determine if
the system is consistent. If the system is consistent, determine if
the solution is unique.

19. a.

24 � � �

0 � �

0 0 0

35
b.

24 0 � � �

0 0 � �

0 0 0 0

35
20. a.

24 � �

0 �

0 0 0

35
b.

24 � � � �

0 0 � �

0 0 0 �

35
In Exercises 21 and 22, determine the value(s) of h such that the
matrix is the augmented matrix of a consistent linear system.

21.
�

2 3 h

4 6 7

�
22.

�
1 �4 �3

6 h �9

�
In Exercises 23 and 24, choose h and k such that the system has
(a) no solution, (b) a unique solution, and (c) many solutions. Give
separate answers for each part.

23. x1 C hx2 D 2

4x1 C 8x2 D k

24. x1 C 4x2 D 5

2x1 C hx2 D k

In Exercises 25–34, mark each statement True or False (T/F).
Justify each answer.4

25. (T/F) In some cases, a matrix may be row reduced to more
than one matrix in reduced echelon form, using different
sequences of row operations.

26. (T/F) The echelon form of a matrix is unique.

27. (T/F)The row reduction algorithm applies only to augmented
matrices for a linear system.

28. (T/F) The pivot positions in a matrix depend on whether row
interchanges are used in the row reduction process.

29. (T/F) A basic variable in a linear system is a variable that
corresponds to a pivot column in the coefficient matrix.

30. (T/F)Reducing amatrix to echelon form is called the forward
phase of the row reduction process.

31. (T/F) Finding a parametric description of the solution set of
a linear system is the same as solving the system.

32. (T/F)Whenever a system has free variables, the solution set
contains a unique solution.

33. (T/F) If one row in an echelon form of an augmented matrix
is Œ0 0 0 0 5�, then the associated linear system is
inconsistent.

34. (T/F)A general solution of a system is an explicit description
of all solutions of the system.

35. Suppose a 3 � 5 coefficientmatrix for a system has three pivot
columns. Is the system consistent? Why or why not?

36. Suppose a system of linear equations has a 3 � 5 augmented
matrix whose fifth column is a pivot column. Is the system
consistent? Why (or why not)?

37. Suppose the coefficient matrix of a system of linear equations
has a pivot position in every row. Explain why the system is
consistent.

38. Suppose the coefficient matrix of a linear system of three
equations in three variables has a pivot in each column.
Explain why the system has a unique solution.

39. Restate the last sentence in Theorem 2 using the concept
of pivot columns: “If a linear system is consistent, then the
solution is unique if and only if .”

40. What would you have to know about the pivot columns in an
augmented matrix in order to know that the linear system is
consistent and has a unique solution?

41. A system of linear equations with fewer equations than un-
knowns is sometimes called an underdetermined system.

4 True/false questions of this type will appear in many sections. Methods
for justifying your answers were described before the True or False
exercises in Section 1.1.



1.2 Row Reduction and Echelon Forms 49

Suppose that such a system happens to be consistent. Explain
why there must be an infinite number of solutions.

42. Give an example of an inconsistent underdetermined system
of two equations in three unknowns.

43. A system of linear equations with more equations than un-
knowns is sometimes called an overdetermined system. Can
such a system be consistent? Illustrate your answer with a
specific system of three equations in two unknowns.

44. Suppose an n � .nC 1/ matrix is row reduced to reduced
echelon form. Approximately what fraction of the total num-
ber of operations (flops) is involved in the backward phase of
the reduction when n D 30? when n D 300?

Suppose experimental data are represented by a set of points
in the plane. An interpolating polynomial for the data is a
polynomial whose graph passes through every point. In scientific
work, such a polynomial can be used, for example, to estimate
values between the known data points. Another use is to create
curves for graphical images on a computer screen. One method for
finding an interpolating polynomial is to solve a system of linear
equations.

45. Find the interpolating polynomial p.t/ D a0 C a1t C a2t2

for the data .1; 11/, .2; 16/, .3; 19/. That is, find a0, a1, and
a2 such that

a0 C a1.1/ C a2.1/2 D 11

a0 C a1.2/ C a2.2/2 D 16

a0 C a1.3/ C a2.3/2 D 19

T 46. In a wind tunnel experiment, the force on a projectile due to
air resistance was measured at different velocities:

Velocity (100 ft/sec) 0 2 4 6 8 10
Force (100 lb) 0 2.90 14.8 39.6 74.3 119

Find an interpolating polynomial for these data and estimate
the force on the projectile when the projectile is travel-
ing at 750 ft/sec. Usep.t/ D a0 C a1t C a2t2 C a3t3 C a4t4

C a5t5.What happens if you try to use a polynomial of degree
less than 5? (Try a cubic polynomial, for instance.)5

5 Exercises marked with the symbol T are designed to be worked
with the aid of a “ Matrix program” (a computer program, such as
MATLAB, Maple, Mathematica, MathCad, Octave, or Derive, or a
programmable calculator with matrix capabilities, such as those
manufactured by Texas Instruments or Hewlett-Packard).

Solutions to Practice Problems

1. The reduced echelon form of the augmented matrix and the corresponding system
x3

x1
x2

The general solution of the system
of equations is the line of
intersection of the two planes.

are �
1 0 �8 �3

0 1 �1 �1

�
and

x1 � 8x3 D �3

x2 � x3 D �1

The basic variables are x1 and x2, and the general solution is8̂<̂
:

x1 D �3C 8x3

x2 D �1C x3

x3 is free

Note: It is essential that the general solution describe each variable, with any pa-
rameters clearly identified. The following statement does not describe the solution:8̂<̂

:
x1 D �3C 8x3

x2 D �1C x3

x3 D 1C x2 Incorrect solution

This description implies that x2 and x3 are both free, which certainly is not the case.

2. Row reduce the system’s augmented matrix:24 1 �2 �1 3 0

�2 4 5 �5 3

3 �6 �6 8 2

35 � 24 1 �2 �1 3 0

0 0 3 1 3

0 0 �3 �1 2

35
�

24 1 �2 �1 3 0

0 0 3 1 3

0 0 0 0 5

35
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Solutions to Practice Problems (Continued)

This echelon matrix shows that the system is inconsistent, because its rightmost
column is a pivot column; the third row corresponds to the equation 0 = 5. There
is no need to perform any more row operations. Note that the presence of the free
variables in this problem is irrelevant because the system is inconsistent.

3. Since the coefficient matrix has four pivots, there is a pivot in every row of the
coefficient matrix. This means that when the coefficient matrix is row reduced, it
will not have a row of zeros, thus the corresponding row reduced augmented matrix
can never have a row of the form [0 0 � � � 0 b], where b is a nonzero number. By
Theorem 2, the system is consistent. Moreover, since there are seven columns in
the coefficient matrix and only four pivot columns, there will be three free variables
resulting in infinitely many solutions.

1.3 Vector Equations
Important properties of linear systems can be described with the concept and notation
of vectors. This section connects equations involving vectors to ordinary systems of
equations. The term vector appears in a variety of mathematical and physical contexts,
which we will discuss in Chapter 4, “Vector Spaces.” Until then, vector will mean an
ordered list of numbers. This simple idea enables us to get to interesting and important
applications as quickly as possible.

Vectors in R2

Amatrix with only one column is called a column vector or simply a vector. Examples
of vectors with two entries are

u D
�

3

�1

�
; v D

�
:2

:3

�
; w D

�
w1

w2

�
where w1 and w2 are any real numbers. The set of all vectors with two entries is denoted
by R2 (read “r-two”). The R stands for the real numbers that appear as entries in the
vectors, and the exponent 2 indicates that each vector contains two entries.1

Two vectors inR2 are equal if and only if their corresponding entries are equal. Thus�
4

7

�
and

�
7

4

�
are not equal, because vectors in R2 are ordered pairs of real numbers.

Given two vectors u and v in R2, their sum is the vector uC v obtained by adding
corresponding entries of u and v. For example,�

1

�2

�
C

�
2

5

�
D

�
1C 2

�2C 5

�
D

�
3

3

�
Given a vector u and a real number c, the scalar multiple of u by c is the vector cu
obtained by multiplying each entry in u by c. For instance,

if u D
�

3

�1

�
and c D 5; then cu D 5

�
3

�1

�
D

�
15

�5

�
1Most of the text concerns vectors and matrices that have only real entries. However, all definitions and
theorems in Chapters 1–5, and in most of the rest of the text, remain valid if the entries are complex numbers.
Complex vectors and matrices arise naturally, for example, in electrical engineering and physics.
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The number c in cu is called a scalar; it is written in lightface type to distinguish it from
the boldface vector u.

The operations of scalar multiplication and vector addition can be combined, as in
the following example.

EXAMPLE 1 Given u D
�

1

�2

�
and v D

�
2

�5

�
, find 4u, .�3/v, and 4uC .�3/v.

SOLUTION

4u D
�

4

�8

�
; .�3/v D

�
�6

15

�
and

4uC .�3/v D
�

4

�8

�
C

�
�6

15

�
D

�
�2

7

�
Sometimes, for convenience (and also to save space), this text may write a column

vector such as
�

3

�1

�
in the form .3;�1/. In this case, the parentheses and the comma

distinguish the vector .3;�1/ from the 1 � 2 row matrix
�

3 �1
�
, written with brackets

and no comma. Thus �
3

�1

�
¤
�

3 �1
�

because the matrices have different shapes, even though they have the same entries.

Geometric Descriptions of R2

Consider a rectangular coordinate system in the plane. Because each point in the plane
is determined by an ordered pair of numbers, we can identify a geometric point .a; b/

with the column vector
�

a

b

�
. So we may regard R2 as the set of all points in the plane.

See Figure 1.

x2

x1

(2, 2)

(3, 21)(22, 21)

FIGURE 1 Vectors as points.

x2

x1

(2, 2)

(3, 21)(22, 21)

FIGURE 2 Vectors with arrows.

The geometric visualization of a vector such as
�

3

�1

�
is often aided by including an

arrow (directed line segment) from the origin .0; 0/ to the point .3;�1/, as in Figure 2.
In this case, the individual points along the arrow itself have no special significance.2

The sum of two vectors has a useful geometric representation. The following rule
can be verified by analytic geometry.

2 In physics, arrows can represent forces and usually are free to move about in space. This interpretation of
vectors will be discussed in Section 4.1.
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Parallelogram Rule for Addition

If u and v in R2 are represented as points in the plane, then uC v corresponds to
the fourth vertex of the parallelogram whose other vertices are u, 0, and v. See
Figure 3.

x2

x1

u

v

u 1 v

0

FIGURE 3 The parallelogram rule.

EXAMPLE 2 The vectors u D
�

2

2

�
, v D

�
�6

1

�
, and uC v D

�
�4

3

�
are displayed

in Figure 4.
x2

x1

u

v

u 1 v

226

3

FIGURE 4

The next example illustrates the fact that the set of all scalar multiples of one fixed
nonzero vector is a line through the origin, .0; 0/.

EXAMPLE 3 Let u D
�

3

�1

�
. Display the vectors u, 2u, and � 2

3
u on a graph.

SOLUTION See Figure 5, where u, 2u D
�

6

�2

�
, and � 2

3
u D

�
�2

2=3

�
are displayed.

The arrow for 2u is twice as long as the arrow for u, and the arrows point in the same
direction. The arrow for � 2

3
u is two-thirds the length of the arrow for u, and the arrows

point in opposite directions. In general, the length of the arrow for cu is jcj times the
length of the arrow for u. [Recall that the length of the line segment from .0; 0/ to .a; b/

is
p

a2 C b2.

x2

x1

u

x2

x1

u

0u

2u

u

The set of all multiples of uTypical multiples of u

2
3
–2

FIGURE 5
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Vectors in R3

Vectors inR3 are 3 � 1 columnmatrices with three entries. They are represented geomet-
rically by points in a three-dimensional coordinate space, with arrows from the origin

2a

a

x2x1

x3

FIGURE 6

Scalar multiples.

sometimes included for visual clarity. The vectors a D

24 2

3

4

35 and 2a are displayed in

Figure 6.

Vectors in Rn

If n is a positive integer, Rn (read “r-n”) denotes the collection of all lists (or ordered
n-tuples) of n real numbers, usually written as n � 1 column matrices, such as

u D

26664
u1

u2

:::

un

37775
The vector whose entries are all zero is called the zero vector and is denoted by 0.

(The number of entries in 0 will be clear from the context.)
Equality of vectors in Rn and the operations of scalar multiplication and vector

addition in Rn are defined entry by entry just as in R2. These operations on vectors
have the following properties, which can be verified directly from the corresponding
properties for real numbers. See Practice Problem 1 and Exercises 41 and 42 at the end
of this section.

Algebraic Properties of Rn

For all u; v;w in Rn and all scalars c and d :

(i) uC v D vC u (v) c.uC v/ D cuC cv

(ii) .uC v/C w D uC .vC w/ (vi) .c C d/u D cuC du

(iii) uC 0 D 0C u D u (vii) c.du/ D .cd/u

(iv) uC .�u/ D �uC u D 0, (viii) 1u D u
where �u denotes .�1/u

For simplicity of notation, a vector such as uC .�1/v is often written as u � v.
Figure 7 shows u � v as the sum of u and �v.

x1

x2

v

u

v

u    v

2

2

FIGURE 7

Vector subtraction.

Linear Combinations
Given vectors v1; v2; : : : ; vp in Rn and given scalars c1; c2; : : : ; cp , the vector y defined
by

y D c1v1 C � � � C cpvp

is called a linear combination of v1; : : : ; vp with weights c1; : : : ; cp . Algebraic Prop-
erty (ii) above permits us to omit parentheses when forming such a linear combination.
The weights in a linear combination can be any real numbers, including zero. For exam-
ple, some linear combinations of vectors v1 and v2 are

p
3 v1 C v2; 1

2
v1 .D 1

2
v1 C 0v2/; and 0 .D 0v1 C 0v2/
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EXAMPLE 4 Figure 8 identifies selected linear combinations of v1 D

�
�1

1

�
and

v2 D

�
2

1

�
. (Note that sets of parallel grid lines are drawn through integer multiples

of v1 and v2.) Estimate the linear combinations of v1 and v2 that generate the vectors u
and w.

2v22v1

22v122v2

v1 2 v2 22v1 1 v2

3v1

v1

2v12v2

w
u

v2

v1 1 v2 3v2

3
2
–

0

FIGURE 8 Linear combinations of v1 and v2.

SOLUTION The parallelogram rule shows that u is the sum of 3v1 and �2v2; that is,

u D 3v1 � 2v2

This expression for u can be interpreted as instructions for traveling from the origin to u
along two straight paths. First, travel 3 units in the v1 direction to 3v1, and then travel�2
units in the v2 direction (parallel to the line through v2 and 0). Next, although the vector
w is not on a grid line, w appears to be about halfway between two pairs of grid lines,
at the vertex of a parallelogram determined by .5=2/v1 and .�1=2/v2. (See Figure 9.)
Thus a reasonable estimate for w is

v1

w

2v2

2v1

3v1

0

FIGURE 9 w D 5
2
v1 �

1
2
v2

The next example connects a problem about linear combinations to the fundamental
existence question studied in Sections 1.1 and 1.2.

EXAMPLE 5 Let a1 D

24 1

�2

�5

35, a2 D

24 2

5

6

35, and b D 24 7

4

�3

35. Determine whether
b can be generated (or written) as a linear combination of a1 and a2. That is, determine
whether weights x1 and x2 exist such that

x1a1 C x2a2 D b (1)

If vector equation (1) has a solution, find it.

SOLUTION Use the definitions of scalar multiplication and vector addition to rewrite
the vector equation

x1

24 1

�2

�5

35
6
a1

C x2

24 2

5

6

35
6
a2

D

24 7

4

�3

35
6
b
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which is the same as 24 x1

�2x1

�5x1

35C 24 2x2

5x2

6x2

35 D 24 7

4

�3

35
and 24 x1 C 2x2

�2x1 C 5x2

�5x1 C 6x2

35 D 24 7

4

�3

35 (2)

The vectors on the left and right sides of (2) are equal if and only if their corresponding
entries are both equal. That is, x1 and x2 make the vector equation (1) true if and only if
x1 and x2 satisfy the system

x1 C 2x2 D 7

�2x1 C 5x2 D 4

�5x1 C 6x2 D �3

(3)

To solve this system, row reduce the augmented matrix of the system as follows:324 1 2 7

�2 5 4

�5 6 �3

35 � 24 1 2 7

0 9 18

0 16 32

35 � 24 1 2 7

0 1 2

0 16 32

35 � 24 1 0 3

0 1 2

0 0 0

35
The solution of (3) is x1 D 3 and x2 D 2. Hence b is a linear combination of a1 and a2,
with weights x1 D 3 and x2 D 2. That is,

3

24 1

�2

�5

35C 2

24 2

5

6

35 D 24 7

4

�3

35
Observe in Example 5 that the original vectors a1, a2, and b are the columns of the

augmented matrix that we row reduced:24 1 2 7

�2 5 4

�5

6 6 6
a1 a2 b

6 �3

35

For brevity, write this matrix in a way that identifies its columns—namely

Œ a1 a2 b � (4)

It is clear how to write this augmented matrix immediately from vector equation (1),
without going through the intermediate steps of Example 5. Take the vectors in the order
in which they appear in (1) and put them into the columns of a matrix as in (4).

The discussion above is easily modified to establish the following fundamental fact.

3 The symbol� between matrices denotes row equivalence (Section 1.2).
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A vector equation
x1a1 C x2a2 C � � � C xnan D b

has the same solution set as the linear system whose augmented matrix is�
a1 a2 � � � an b

�
(5)

In particular, b can be generated by a linear combination of a1; : : : ; an if and only
if there exists a solution to the linear system corresponding to the matrix (5).

One of the key ideas in linear algebra is to study the set of all vectors that can be
generated or written as a linear combination of a fixed set fv1; : : : ; vpg of vectors.

DEFINITION If v1; : : : ; vp are in Rn, then the set of all linear combinations of v1; : : : ; vp is de-
noted by Span fv1; : : : ; vpg and is called the subset of Rn spanned (or generated)
by v1; : : : ; vp . That is, Span fv1; : : : ; vpg is the collection of all vectors that can be
written in the form

c1v1 C c2v2 C � � � C cpvp

with c1; : : : ; cp scalars.

Asking whether a vector b is in Span fv1; : : : ; vpg amounts to asking whether the
vector equation

x1v1 C x2v2 C � � � C xpvp D b

has a solution, or, equivalently, asking whether the linear system with augmented matrix
Œ v1 � � � vp b � has a solution.

Note that Span fv1; : : : ; vpg contains every scalar multiple of v1 (for exam-
ple), since cv1 D cv1 C 0v2 C � � � C 0vp . In particular, the zero vector must be in
Span fv1; : : : ; vpg.

A Geometric Description of Spanfvg and Spanfu, vg
Let v be a nonzero vector in R3. Then Span fvg is the set of all scalar multiples of v,
which is the set of points on the line in R3 through v and 0. See Figure 10.

If u and v are nonzero vectors in R3, with v not a multiple of u, then Span fu; vg is
the plane in R3 that contains u, v, and 0. In particular, Span fu; vg contains the line in
R3 through u and 0 and the line through v and 0. See Figure 11.

Span{v}

x3

x2

x1

v

FIGURE 10 Span fvg as a
line through the origin.

Span{u, v}

v

u

u 1 v

x2

x3

x1

FIGURE 11 Span fu; vg as a
plane through the origin.
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EXAMPLE 6 Let a1 D

24 1

�2

3

35, a2 D

24 5

�13

�3

35, and b D

24�3

8

1

35. Then

Span fa1; a2g is a plane through the origin in R3. Is b in that plane?

SOLUTION Does the equation x1a1 C x2a2 D b have a solution? To answer this, row
reduce the augmented matrix Œ a1 a2 b �:24 1 5 �3

�2 �13 8

3 �3 1

35 � 24 1 5 �3

0 �3 2

0 �18 10

35 � 24 1 5 �3

0 �3 2

0 0 �2

35
The third equation is 0 D �2, which shows that the system has no solution. The vector
equation x1a1 C x2a2 D b has no solution, and so b is not in Span fa1; a2g.

Linear Combinations in Applications
The final example shows how scalar multiples and linear combinations can arise when
a quantity such as “cost” is broken down into several categories. The basic principle for
the example concerns the cost of producing several units of an item when the cost per
unit is known: �

number
of units

�
�

�
cost

per unit

�
D

�
total
cost

�
EXAMPLE 7 A company manufactures two products. For $1.00 worth of product B,
the company spends $.45 on materials, $.25 on labor, and $.15 on overhead. For $1.00
worth of product C, the company spends $.40 on materials, $.30 on labor, and $.15 on
overhead. Let

b D

24 :45

:25

:15

35 and c D

24 :40

:30

:15

35
Then b and c represent the “costs per dollar of income” for the two products.

a. What economic interpretation can be given to the vector 100b?

b. Suppose the company wishes to manufacture x1 dollars worth of product B and x2

dollars worth of product C. Give a vector that describes the various costs the company
will have (for materials, labor, and overhead).

SOLUTION

a. Compute

100b D 100

24 :45

:25

:15

35 D 24 45

25

15

35
The vector 100b lists the various costs for producing $100 worth of product
B—namely $45 for materials, $25 for labor, and $15 for overhead.

b. The costs of manufacturing x1 dollars worth of B are given by the vector x1b, and
the costs of manufacturing x2 dollars worth of C are given by x2c. Hence the total
costs for both products are given by the vector x1bC x2c.
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Practice Problems

1. Prove that uC v D vC u for any u and v in Rn.

2. For what value(s) of h will y be in Spanfv1; v2; v3g if

v1 D

24 1

�1

�2

35; v2 D

24 5

�4

�7

35; v3 D

24�3

1

0

35; and y D

24�4

3

h

35
3. Let w1, w2, w3, u, and v be vectors in Rn. Suppose the vectors u and v are in Span
fw1, w2, w3g. Show that uC v is also in Span fw1, w2, w3g. [Hint: The solution
requires the use of the definition of the span of a set of vectors. It is useful to review
this definition before starting this exercise.]

1.3 Exercises
In Exercises 1 and 2, compute uC v and u � 2v.

1. u D
�
�1

2

�
; v D

�
�3

3

�
2. u D

�
3

2

�
; v D

�
2

3

�
In Exercises 3 and 4, display the following vectors using arrows
on an xy-graph: u, v, �v, �2v, uC v, u � v, and u � 2v. Notice
that u � v is the vertex of a parallelogram whose other vertices are
u, 0, and �v.

3. u and v as in Exercise 1 4. u and v as in Exercise 2

In Exercises 5 and 6, write a system of equations that is equivalent
to the given vector equation.

5. x1

24 4

�3

2

35C x2

24 �8

7

0

35 D 24 9

�6

�5

35
6. x1

�
�2

3

�
C x2

�
8

5

�
C x3

�
1

�6

�
D

�
0

0

�
Use the accompanying figure to write each vector listed in Exer-
cises 7 and 8 as a linear combination of u and v. Is every vector in
R2 a linear combination of u and v?

w

x

v

u

a
c

d

2v
b

z

y
22v

2u

2v
0

7. Vectors a, b, c, and d

8. Vectors w, x, y, and z

In Exercises 9 and 10, write a vector equation that is equivalent to
the given system of equations.

9. x2 C 5x3 D 0

4x1 C 6x2 � x3 D 0

�x1 C 3x2 � 8x3 D 0

10. 4x1 C x2 C 3x3 D 9

x1 � 7x2 � 2x3 D 2

8x1 C 6x2 � 5x3 D 15

In Exercises 11 and 12, determine if b is a linear combination of
a1, a2, and a3.

11. a1 D

24 1

�2

0

35 ; a2 D

24 0

1

2

35 ; a3 D

24 5

�6

8

35 ; b D

24 2

�1

6

35

12. a1 D

24 1

�2

2

35 ; a2 D

24 0

5

5

35 ; a3 D

24 2

0

8

35 ; b D

24 �5

11

�7

35
In Exercises 13 and 14, determine if b is a linear combination of
the vectors formed from the columns of the matrix A.

13. A D

24 1 �4 2

0 3 5

�2 8 �4

35 ; b D

24 3

�7

�3

35

14. A D

24 1 �2 �6

0 3 7

1 �2 5

35 ; b D

24 11

�5

9

35
In Exercises 15 and 16, list five vectors in Span fv1; v2g. For each
vector, show the weights on v1 and v2 used to generate the vector
and list the three entries of the vector. Do not make a sketch.

15. v1 D

24 7

1

�6

35 ; v2 D

24 �5

3

0

35

16. v1 D

24 3

0

2

35 ; v2 D

24 �2

0

3

35
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17. Let a1 D

24 1

4

�2

35, a2 D

24 �2

�3

7

35, and b D 24 4

1

h

35. For what
value(s) of h is b in the plane spanned by a1 and a2?

18. Let v1 D

24 1

0

�4

35, v2 D

24 �5

1

7

35, and y D 24 h

�1

�5

35. For what
value(s) of h is y in the plane generated by v1 and v2?

19. Give a geometric description of Span fv1; v2g for the vectors

v1 D

24 8

2

�6

35 and v2 D

24 12

3

�9

35.
20. Give a geometric description of Span fv1; v2g for the vectors

in Exercise 16.

21. Let u D
�

2

�1

�
and v D

�
2

1

�
. Show that

�
h

k

�
is in

Span fu; vg for all h and k.

22. Construct a 3 � 3matrixA, with nonzero entries, and a vector
b in R3 such that b is not in the set spanned by the columns
of A.

In Exercises 23–32, mark each statement True or False (T/F).
Justify each answer.

23. (T/F) Another notation for the vector
�
�4

3

�
is Œ�4 3�.

24. (T/F) Any list of five real numbers is a vector in R5.

25. (T/F) The points in the plane corresponding to
�
�2

5

�
and�

�5

2

�
lie on a line through the origin.

26. (T/F) The vector u results when a vector u � v is added to the
vector v.

27. (T/F) An example of a linear combination of vectors v1 and
v2 is the vector 1

2
v1.

28. (T/F) The weights c1; : : : ; cp in a linear combination c1v1 C

� � � C cpvp cannot all be zero.

29. (T/F) The solution set of the linear system whose augmented
matrix is Œ a1 a2 a3 b � is the same as the solution set of
the equation x1a1 C x2a2 C x3a3 D b.

30. (T/F)When u and v are nonzero vectors, Span fu; vg contains
the line through u and the origin.

31. (T/F) The set Span fu; vg is always visualized as a plane
through the origin.

32. (T/F) Asking whether the linear system corresponding to an
augmented matrix Œ a1 a2 a3 b � has a solution amounts to
asking whether b is in Span fa1; a2; a3g.

33. Let A D

24 1 0 �4

0 3 �2

�2 6 3

35 and b D

24 4

1

�4

35. Denote the

columns of A by a1, a2, a3, and let W D Span fa1; a2; a3g.

a. Is b in fa1; a2; a3g? How many vectors are in fa1; a2; a3g?

b. Is b in W ? How many vectors are in W ?

c. Show that a1 is in W . [Hint: Row operations are unneces-
sary.]

34. Let A D

24 2 0 6

�1 8 5

1 �2 1

35, let b D 24 10

3

3

35, and let W be

the set of all linear combinations of the columns of A.

a. Is b in W ?

b. Show that the third column of A is in W.

35. A mining company has two mines. One day’s operation at
mine 1 produces ore that contains 20 metric tons of copper
and 550 kilograms of silver, while one day’s operation at mine
2 produces ore that contains 30 metric tons of copper and

500 kilograms of silver. Let v1 D

�
20

550

�
and v2 D

�
30

500

�
.

Then v1 and v2 represent the “output per day” of mine 1 and
mine 2, respectively.

a. What physical interpretation can be given to the vector
5v1?

b. Suppose the company operates mine 1 for x1 days and
mine 2 for x2 days.Write a vector equationwhose solution
gives the number of days each mine should operate in
order to produce 150 tons of copper and 2825 kilograms
of silver. Do not solve the equation.

T c. Solve the equation in (b).

36. A steam plant burns two types of coal: anthracite (A) and
bituminous (B). For each ton of A burned, the plant produces
27.6 million Btu of heat, 3100 grams (g) of sulfur dioxide,
and 250 g of particulate matter (solid-particle pollutants). For
each ton of B burned, the plant produces 30.2 million Btu,
6400 g of sulfur dioxide, and 360 g of particulate matter.

a. How much heat does the steam plant produce when it
burns x1 tons of A and x2 tons of B?

b. Suppose the output of the steam plant is described by
a vector that lists the amounts of heat, sulfur dioxide,
and particulate matter. Express this output as a linear
combination of two vectors, assuming that the plant burns
x1 tons of A and x2 tons of B.

T c. Over a certain time period, the steam plant produced 162
million Btu of heat, 23,610 g of sulfur dioxide, and 1623
g of particulate matter. Determine how many tons of each
type of coal the steam plant must have burned. Include a
vector equation as part of your solution.
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37. Let v1; : : : ; vk be points in R3 and suppose that for
j D 1; : : : ; k an object with mass mj is located at point vj .
Physicists call such objects point masses. The total mass of
the system of point masses is

m D m1 C � � � Cmk

The center of mass (or center of gravity) of the system is

v D
1

m
Œm1v1 C � � � Cmkvk �

Compute the center of gravity of the system consisting of the
following point masses (see the figure):

Point Mass

v1 D .5;�4; 3/ 2 g
v2 D .4; 3;�2/ 5 g
v3 D .�4;�3;�1/ 2 g
v4 D .�9; 8; 6/ 1 g

x3
v4

x2

v2

v3x1

v1

38. Let v be the center ofmass of a system of point masses located
at v1; : : : ; vk as in Exercise 37. Is v in Span fv1; : : : ; vkg?
Explain.

39. A thin triangular plate of uniform density and thickness has
vertices at v1 D .0; 1/, v2 D .8; 1/, and v3 D .2; 4/, as in the
figure below, and the mass of the plate is 3 g.

v2

v3

v1

x1

4

8

x2

a. Find the .x; y/-coordinates of the center of mass of the
plate. This “balance point” of the plate coincides with
the center of mass of a system consisting of three 1-gram
point masses located at the vertices of the plate.

b. Determine how to distribute an additional mass of 6 g
at the three vertices of the plate to move the balance
point of the plate to .2; 2/. [Hint: Let w1, w2, and w3

denote the masses added at the three vertices, so that
w1 C w2 C w3 D 6.]

40. Consider the vectors v1, v2, v3, and b in R2, shown in the
figure. Does the equation x1v1 C x2v2 C x3v3 D b have a
solution? Is the solution unique? Use the figure to explain
your answers.

0
v1

v2

v3

b

41. Use the vectors u D .u1; : : : ; un/, v D .v1; : : : ; vn/, and
w D .w1; : : : ; wn/ to verify the following algebraic proper-
ties of Rn.

a. .uC v/C w D uC .vC w/

b. c.uC v/ D cuC cv for each scalar c

42. Use the vector u D .u1; : : : ; un/ to verify the following alge-
braic properties of Rn.

a. uC .�u/ D .�u/C u D 0

b. c.du/ D .cd/u for all scalars c and d

Solutions to Practice Problems

1. Take arbitrary vectors u D .u1; : : : ; un/ and v D .v1; : : : ; vn/ in Rn, and compute

h 5 1

h 5 5
v3

v1

v2

The points

intersects the plane when h 5 5.

24
3
h

lie on a line that

h 5 9

Span {v1, v2, v3}

uC v D .u1 C v1; : : : ; un C vn/ Definition of vector addition

D .v1 C u1; : : : ; vn C un/ Commutativity of addition in R

D vC u Definition of vector addition

2. The vector y belongs to Span fv1; v2; v3g if and only if there exist scalars x1; x2; x3

such that

x1

24 1

�1

�2

35C x2

24 5

�4

�7

35C x3

24�3

1

0

35 D 24�4

3

h

35
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This vector equation is equivalent to a system of three linear equations in three
unknowns. If you row reduce the augmented matrix for this system, you find that24 1 5 �3 �4

�1 �4 1 3

�2 �7 0 h

35 � 24 1 5 �3 �4

0 1 �2 �1

0 3 �6 h � 8

35 � 24 1 5 �3 �4

0 1 �2 �1

0 0 0 h � 5

35
The system is consistent if and only if there is no pivot in the fourth column. That
is, h � 5 must be 0. So y is in Span fv1; v2; v3g if and only if h D 5.

Remember: The presence of a free variable in a system does not guarantee that
the system is consistent.

3. Since the vectors u and v are in Span fw1;w2;w3g, there exist scalars c1, c2, c3 and
d1, d2, d3 such that

u D c1 w1 C c2 w2 C c3 w3 and v D d1 w1 C d2 w2 C d3 w3:

Notice
uC v D c1w1 C c2w2 C c3w3 C d1w1 C d2w2 C d3w3

D .c1 C d1/w1 C .c2 C d2/w2 C .c3 C d3/w3

Since c1 C d1; c2 C d2, and c3 C d3 are also scalars, the vector uC v is in Span
fw1;w2;w3g.

1.4 The Matrix Equation Ax=b
A fundamental idea in linear algebra is to view a linear combination of vectors as the
product of a matrix and a vector. The following definition permits us to rephrase some
of the concepts of Section 1.3 in new ways.

DEFINITION IfA is anm � nmatrix, with columns a1; : : : ; an, and if x is inRn, then the product
of A and x, denoted by Ax, is the linear combination of the columns of A using
the corresponding entries in x as weights; that is,

Ax D
�
a1 a2 � � � an

�264 x1

:::

xn

375 D x1a1 C x2a2 C � � � C xnan

Note that Ax is defined only if the number of columns of A equals the number of entries
in x.

EXAMPLE 1

a.
�

1 2 �1

0 �5 3

�24 4

3

7

35 D 4

�
1

0

�
C 3

�
2

�5

�
C 7

�
�1

3

�
D

�
4

0

�
C

�
6

�15

�
C

�
�7

21

�
D

�
3

6

�

b.

24 2 �3

8 0

�5 2

35� 4

7

�
D 4

24 2

8

�5

35C 7

24�3

0

2

35 D 24 8

32

�20

35C 24�21

0

14

35 D 24�13

32

�6

35
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EXAMPLE 2 For v1; v2; v3 in Rm, write the linear combination 3v1 � 5v2 C 7v3 as
a matrix times a vector.

SOLUTION Place v1; v2; v3 into the columns of a matrix A and place the weights 3,
�5, and 7 into a vector x. That is,

3v1 � 5v2 C 7v3 D
�
v1 v2 v3

�24 3

�5

7

35 D Ax

Section 1.3 showed how to write a system of linear equations as a vector equation
involving a linear combination of vectors. For example, the system

x1 C 2x2 � x3 D 4

�5x2 C 3x3 D 1
(1)

is equivalent to

x1

�
1

0

�
C x2

�
2

�5

�
C x3

�
�1

3

�
D

�
4

1

�
(2)

As in Example 2, the linear combination on the left side is a matrix times a vector, so
that (2) becomes �

1 2 �1

0 �5 3

�24 x1

x2

x3

35 D � 4

1

�
(3)

Equation (3) has the form Ax D b. Such an equation is called a matrix equation,
to distinguish it from a vector equation such as is shown in (2).

Notice how the matrix in (3) is just the matrix of coefficients of the system (1).
Similar calculations show that any system of linear equations, or any vector equation
such as (2), can be written as an equivalent matrix equation in the form Ax D b. This
simple observation will be used repeatedly throughout the text.

Here is the formal result.

THEOREM 3 If A is an m � n matrix, with columns a1; : : : ; an, and if b is in Rm, the matrix
equation

Ax D b (4)

has the same solution set as the vector equation

x1a1 C x2a2 C � � � C xnan D b (5)

which, in turn, has the same solution set as the system of linear equations whose
augmented matrix is �

a1 a2 � � � an b
�

(6)

Theorem 3 provides a powerful tool for gaining insight into problems in linear
algebra, because a system of linear equations may now be viewed in three different but
equivalent ways: as a matrix equation, as a vector equation, or as a system of linear
equations. Whenever you construct a mathematical model of a problem in real life, you
are free to choose whichever viewpoint is most natural. Then you may switch from one
formulation of a problem to another whenever it is convenient. In any case, the matrix
equation (4), the vector equation (5), and the system of equations are all solved in the
same way—by row reducing the augmented matrix (6). Other methods of solution will
be discussed later.
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Existence of Solutions
The definition of Ax leads directly to the following useful fact.

The equation Ax D b has a solution if and only if b is a linear combination of the
columns of A.

Section 1.3 considered the existence question, “Is b in Span fa1; : : : ; ang?” Equiva-
lently, “Is Ax D b consistent?” A harder existence problem is to determine whether the
equation Ax D b is consistent for all possible b.

EXAMPLE 3 Let A D

24 1 3 4

�4 2 �6

�3 �2 �7

35 and b D

24 b1

b2

b3

35. Is the equation Ax D b

consistent for all possible b1; b2; b3?

SOLUTION Row reduce the augmented matrix for Ax D b:24 1 3 4 b1

�4 2 �6 b2

�3 �2 �7 b3

35 � 24 1 3 4 b1

0 14 10 b2 C 4b1

0 7 5 b3 C 3b1

35
�

24 1 3 4 b1

0 14 10 b2 C 4b1

0 0 0 b3 C 3b1 �
1
2
.b2 C 4b1/

35
The third entry in column 4 equals b1 �

1
2
b2 C b3. The equationAx D b is not consistent

for every b because some choices of b can make b1 �
1
2
b2 C b3 nonzero.

The reduced matrix in Example 3 provides a description of all b for which the
equation Ax D b is consistent: The entries in b must satisfy

b1 �
1
2
b2 C b3 D 0

This is the equation of a plane through the origin in R3. The plane is the set of all linear
combinations of the three columns of A. See Figure 1.

The equation Ax D b in Example 3 fails to be consistent for all b because the
echelon form of A has a row of zeros. If A had a pivot in all three rows, we would
not care about the calculations in the augmented column because in this case an echelon
form of the augmented matrix could not have a row such as Œ 0 0 0 1 �.

In the next theorem, the sentence “The columns of A span Rm” means that every

Span{a1, a2, a3}

x2

x1

x3

FIGURE 1

The columns of
A D Œ a1 a2 a3 � span a plane
through 0.

b in Rm is a linear combination of the columns of A. In general, a set of vectors
fv1; : : : ; vpg inRm spans (or generates)Rm if every vector inRm is a linear combination
of v1; : : : ; vp—that is, if Span fv1; : : : ; vpg D Rm.

THEOREM 4 Let A be an m � n matrix. Then the following statements are logically equivalent.
That is, for a particular A, either they are all true statements or they are all false.

a. For each b in Rm, the equation Ax D b has a solution.

b. Each b in Rm is a linear combination of the columns of A.

c. The columns of A span Rm.

d. A has a pivot position in every row.
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Theorem 4 is one of themost useful theorems in this chapter. Statements (a), (b), and
(c) are equivalent because of the definition of Ax and what it means for a set of vectors
to span Rm. The discussion after Example 3 suggests why (a) and (d) are equivalent;
a proof is given at the end of the section. The exercises will provide examples of how
Theorem 4 is used.

Warning: Theorem 4 is about a coefficient matrix, not an augmented matrix. If an
augmented matrix Œ A b � has a pivot position in every row, then the equation Ax D b
may or may not be consistent.

Computation of Ax
The calculations in Example 1 were based on the definition of the product of a matrix A

and a vector x. The following simple example will lead to a more efficient method for
calculating the entries in Ax when working problems by hand.

EXAMPLE 4 Compute Ax, where A D

24 2 3 4

�1 5 �3

6 �2 8

35 and x D

24 x1

x2

x3

35.
SOLUTION From the definition,24 2 3 4

�1 5 �3

6 �2 8

3524 x1

x2

x3

35 D x1

24 2

�1

6

35C x2

24 3

5

�2

35C x3

24 4

�3

8

35
D

24 2x1

�x1

6x1

35C 24 3x2

5x2

�2x2

35C 24 4x3

�3x3

8x3

35 (7)

D

24 2x1 C 3x2 C 4x3

�x1 C 5x2 � 3x3

6x1 � 2x2 C 8x3

35
The first entry in the product Ax is a sum of products (sometimes called a dot product),
using the first row of A and the entries in x. That is,24 2 3 4

3524 x1

x2

x3

35 D 24 2x1 C 3x2 C 4x3

35
This matrix shows how to compute the first entry in Ax directly, without writing down
all the calculations shown in (7). Similarly, the second entry in Ax can be calculated at
once by multiplying the entries in the second row of A by the corresponding entries in
x and then summing the resulting products:24�1 5 �3

3524 x1

x2

x3

35 D 24�x1 C 5x2 � 3x3

35
Likewise, the third entry in Ax can be calculated from the third row of A and the entries
in x.

Row–Vector Rule for Computing Ax
If the product Ax is defined, then the i th entry in Ax is the sum of the products of
corresponding entries from row i of A and from the vector x.
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EXAMPLE 5

a.
�

1 2 �1

0 �5 3

�24 4

3

7

35 D � 1 � 4C 2 � 3C .�1/ � 7

0 � 4C .�5/ � 3C 3 � 7

�
D

�
3

6

�

b.

24 2 �3

8 0

�5 2

35� 4

7

�
D

24 2 � 4C .�3/ � 7

8 � 4C 0 � 7

.�5/ � 4C 2 � 7

35 D 24�13

32

�6

35
c.

24 1 0 0

0 1 0

0 0 1

3524 r

s

t

35 D 24 1 � r C 0 � s C 0 � t

0 � r C 1 � s C 0 � t

0 � r C 0 � s C 1 � t

35 D 24 r

s

t

35
By definition, the matrix in Example 5(c) with 1’s on the diagonal and 0’s elsewhere

is called an identity matrix and is denoted by I . The calculation in part (c) shows that
Ix D x for every x inR3. There is an analogous n � n identitymatrix, sometimes written
as In. As in part (c), Inx D x for every x in Rn.

Properties of the Matrix–Vector Product Ax
The facts in the next theorem are important and will be used throughout the text. The
proof relies on the definition of Ax and the algebraic properties of Rn.

THEOREM 5 If A is an m � n matrix, u and v are vectors in Rn, and c is a scalar, then:

a. A.uC v/ D AuC Av;

b. A.cu/ D c.Au/.

PROOF For simplicity, take n D 3, A D Œ a1 a2 a3 �, and u, v in R3. (The proof of
the general case is similar.) For i D 1; 2; 3, let ui and vi be the i th entries in u and v,
respectively. To prove statement (a), compute A.uC v/ as a linear combination of the
columns of A using the entries in uC v as weights.

A.uC v/ D Œ a1 a2 a3 �

24 u1 C v1

u2 C v2

u3 C v3

35
# # #

Entries in uC v

D .u1 C v1/a1 C .u2 C v2/a2 C .u3 C v3/a3

" " " Columns of A

D .u1a1 C u2a2 C u3a3/C .v1a1 C v2a2 C v3a3/

D AuC Av

To prove statement (b), compute A.cu/ as a linear combination of the columns of A

using the entries in cu as weights.

A.cu/ D Œ a1 a2 a3 �

24 cu1

cu2

cu3

35 D .cu1/a1 C .cu2/a2 C .cu3/a3

D c.u1a1/C c.u2a2/C c.u3a3/

D c.u1a1 C u2a2 C u3a3/

D c.Au/
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Numerical Note

To optimize a computer algorithm to compute Ax, the sequence of calculations
should involve data stored in contiguous memory locations. The most widely
used professional algorithms for matrix computations are written in Fortran, a
language that stores a matrix as a set of columns. Such algorithms compute Ax as
a linear combination of the columns of A. In contrast, if a program is written in
the popular language C, which stores matrices by rows, Ax should be computed
via the alternative rule that uses the rows of A.

PROOF OF THEOREM 4 As was pointed out after Theorem 4, statements (a), (b), and
(c) are logically equivalent. So, it suffices to show (for an arbitrary matrix A) that (a)
and (d) are either both true or both false. This will tie all four statements together.

Let U be an echelon form of A. Given b in Rm, we can row reduce the augmented
matrix Œ A b � to an augmented matrix Œ U d � for some d in Rm:

Œ A b � � � � � � Œ U d �

If statement (d) is true, then each row of U contains a pivot position and there can be no
pivot in the augmented column. SoAx D b has a solution for any b, and (a) is true. If (d)
is false, the last row of U is all zeros. Let d be any vector with a 1 in its last entry. Then
Œ U d � represents an inconsistent system. Since row operations are reversible, Œ U d �

can be transformed into the form Œ A b �. The new system Ax D b is also inconsistent,
and (a) is false.

Practice Problems

1. Let A D

24 1 5 �2 0

�3 1 9 �5

4 �8 �1 7

35, p D
2664

3

�2

0

�4

3775, and b D
24�7

9

0

35. It can be shown
that p is a solution of Ax D b. Use this fact to exhibit b as a specific linear
combination of the columns of A.

2. Let A D

�
2 5

3 1

�
, u D

�
4

�1

�
, and v D

�
�3

5

�
. Verify Theorem 5(a) in this case

by computing A.uC v/ and AuC Av.

3. Construct a 3 � 3 matrix A and vectors b and c in R3 so that Ax D b has a solution,
but Ax D c does not.

1.4 Exercises
Compute the products in Exercises 1–4 using (a) the definition, as
in Example 1, and (b) the row–vector rule for computing Ax. If a
product is undefined, explain why.

1.

24�4 2

1 6

0 1

3524 3

1

7

35 2.

24 2

6

�1

35� 1

�1

�

3.

24 6 5

�4 �3

7 6

35� 1

�3

�
4.

�
8 3 1

5 1 2

�24 1

1

1

35

In Exercises 5–8, use the definition of Ax to write the matrix
equation as a vector equation, or vice versa.

5.
�

7 2 �9 3

�4 �5 7 �2

�2664
6

�9

1

�8

3775 D � �9

44

�

6.

2664
7 �3

2 1

9 �6

�3 2

3775� �2

�5

�
D

2664
1

�9

12

�4

3775
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7. x1

2664
4

�1

7

�4

3775C x2

2664
�5

3

�5

1

3775C x3

2664
7

�8

0

2

3775 D
2664

6

�8

0

�7

3775
8. ´1

�
4

�2

�
C ´2

�
�4

5

�
C ´3

�
�5

4

�
C ´4

�
3

0

�
D

�
4

13

�
In Exercises 9 and 10, write the system first as a vector equation
and then as a matrix equation.

9. 4x1 C x2 � 7x3 D 8

x2 C 6x3 D 0

10. 8x1 � x2 D 4

5x1 C 4x2 D 1

x1 � 3x2 D 2

Given A and b in Exercises 11 and 12, write the augmented
matrix for the linear system that corresponds to thematrix equation
Ax D b. Then solve the system and write the solution as a vector.

11. A D

24 1 2 4

0 1 5

�2 �4 �3

35, b D 24 �2

2

9

35
12. A D

24 1 2 1

�3 �1 2

0 5 3

35, b D 24 0

1

�1

35

13. Let u D

24 0

4

4

35 andA D

24 3 �5

�2 6

1 1

35. Is u in the plane inR3

spanned by the columns of A? (See the figure.) Why or why
not?

u?

u?

Plane spanned by
the columns of A

Where are u?

14. Let u D

24 2

�3

2

35 andA D

24 5 8 7

0 1 �1

1 3 0

35. Is u in the subset
of R3 spanned by the columns of A? Why or why not?

15. LetA D
�

3 �4

�6 8

�
and b D

�
b1

b2

�
. Show that the equation

Ax D b does not have a solution for all possible b, and
describe the set of all b for which Ax D b does have a
solution.

16. Repeat Exercise 15: A D

24 1 �3 �4

�3 2 6

5 �1 �8

35, b D 24 b1

b2

b3

35.
Exercises 17–20 refer to the matrices A and B below. Make
appropriate calculations that justify your answers and mention an
appropriate theorem.

A D

2664
1 3 0 3

�1 �1 �1 1

0 �4 2 �8

2 0 3 �1

3775 B D

2664
1 3 �2 2

0 1 1 �5

1 2 �3 7

�2 �8 2 �1

3775
17. How many rows of A contain a pivot position? Does the

equation Ax D b have a solution for each b in R4?

18. Do the columns of B span R4? Does the equation Bx D y
have a solution for each y in R4?

19. Can each vector in R4 be written as a linear combination of
the columns of the matrix A above? Do the columns of A

span R4?

20. Can every vector in R4 be written as a linear combination of
the columns of the matrix B above? Do the columns of B

span R3?

21. Let v1 D

2664
1

0

�1

0

3775, v2 D

2664
0

�1

0

1

3775, v3 D

2664
1

0

0

�1

3775.
Does fv1; v2; v3g span R4? Why or why not?

22. Let v1 D

24 0

0

�2

35, v2 D

24 0

�3

8

35, v3 D

24 4

�1

�5

35.
Does fv1; v2; v3g span R3? Why or why not?

In Exercises 23–34, mark each statement True or False (T/F).
Justify each answer.

23. (T/F) The equation Ax D b is referred to as a vector
equation.

24. (T/F) Every matrix equation Ax D b corresponds to a vector
equation with the same solution set.

25. (T/F) If the equation Ax D b is inconsistent, then b is not in
the set spanned by the columns of A.

26. (T/F) A vector b is a linear combination of the columns of a
matrix A if and only if the equation Ax D b has at least one
solution.

27. (T/F) The equation Ax D b is consistent if the augmented
matrix Œ A b � has a pivot position in every row.

28. (T/F) IfA is anm � nmatrix whose columns do not spanRm,
then the equation Ax D b is inconsistent for some b in Rm.

29. (T/F) The first entry in the product Ax is a sum of products.

30. (T/F) Any linear combination vectors can always be written
in the form Ax for a suitable matrix A and vector x.

31. (T/F) If the columns of an m � n matrix A span Rm, then the
equation Ax D b is consistent for each b in Rm.

32. (T/F) The solution set of a linear system whose augmented
matrix is Œ a1 a2 a3 b � is the same as the solution set of
Ax D b, if A D Œ a1 a2 a3 �.
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33. (T/F) If A is an m � n matrix and if the equation Ax D b is
inconsistent for some b in Rm, then A cannot have a pivot
position in every row.

34. (T/F) If the augmented matrix Œ A b � has a pivot position
in every row, then the equation Ax D b is inconsistent.

35. Note that

24 3 �4 2

6 �3 4

�8 9 �5

3524 �4

�1

3

35 D 24 �2

�9

8

35. Use this fact
(and no row operations) to find scalars c1, c2, c3 such that24 �2

�9

8

35 D c1

24 3

6

�8

35C c2

24 �4

�3

9

35C c3

24 2

4

�5

35.
36. Let u D

24 7

2

5

35, v D 24 3

1

3

35, and w D 24 6

1

0

35.
It can be shown that 3u � 5v � w D 0. Use this fact (and
no row operations) to find x1 and x2 that satisfy the equation24 7 3

2 1

5 3

35� x1

x2

�
D

24 6

1

0

35.
37. Let q1, q2, q3, and v represent vectors in R5, and let x1, x2,

and x3 denote scalars. Write the following vector equation as
a matrix equation. Identify any symbols you choose to use.

x1q1 C x2q2 C x3q3 D v

38. Rewrite the (numerical) matrix equation below in symbolic
form as a vector equation, using symbols v1; v2; : : : for the
vectors and c1; c2; : : : for scalars. Define what each symbol
represents, using the data given in the matrix equation.

�
�3 5 �4 9 7

5 8 1 �2 �4

�266664
�3

2

4

�1

2

377775 D
�

8

�1

�

39. Construct a 3 � 3matrix, not in echelon form, whose columns
span R3. Show that the matrix you construct has the desired
property.

40. Construct a 3 � 3matrix, not in echelon form, whose columns
do not span R3. Show that the matrix you construct has the
desired property.

41. Let A be a 3 � 2 matrix. Explain why the equation Ax D b
cannot be consistent for all b inR3. Generalize your argument
to the case of an arbitrary A with more rows than columns.

42. Could a set of three vectors in R4 span all of R4? Explain.
What about n vectors in Rm when n is less than m?

43. Suppose A is a 4 � 3 matrix and b is a vector in R4 with the
property thatAx D b has a unique solution.What can you say
about the reduced echelon form of A? Justify your answer.

44. Suppose A is a 3 � 3 matrix and b is a vector in R3 with the
property that Ax D b has a unique solution. Explain why the
columns of A must span R3.

45. Let A be a 3 � 4 matrix, let y1 and y2 be vectors in R3, and
let w D y1 C y2. Suppose y1 D Ax1 and y2 D Ax2 for some
vectors x1 and x2 in R4. What fact allows you to conclude
that the systemAx D w is consistent? (Note: x1 and x2 denote
vectors, not scalar entries in vectors.)

46. Let A be a 5 � 3 matrix, let y be a vector in R3, and let z
be a vector in R5. Suppose Ay D z. What fact allows you to
conclude that the system Ax D 4z is consistent?

T In Exercises 47–50, determine if the columns of the matrix
span R4.

47.

2664
7 2 �5 8

�5 �3 4 �9

6 10 �2 7

�7 9 2 15

3775 48.

2664
5 �7 �4 9

6 �8 �7 5

4 �4 �9 �9

�9 11 16 7

3775

49.

2664
12 �7 11 �9 5

�9 4 �8 7 �3

�6 11 �7 3 �9

4 �6 10 �5 12

3775

50.

2664
8 11 �6 �7 13

�7 �8 5 6 �9

11 7 �7 �9 �6

�3 4 1 8 7

3775
T 51. Find a column of the matrix in Exercise 49 that can be deleted

and yet have the remaining matrix columns still span R4.

T 52. Find a column of the matrix in Exercise 50 that can be deleted
and yet have the remaining matrix columns still spanR4. Can
you delete more than one column?

STUDY GUIDE offers additional
resources for mastering the
concept of span.

Solutions to Practice Problems

1. The matrix equation24 1 5 �2 0

�3 1 9 �5

4 �8 �1 7

35
2664

3

�2

0

�4

3775 D
24�7

9

0

35
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is equivalent to the vector equation

3

24 1

�3

4

35 � 2

24 5

1

�8

35C 0

24�2

9

�1

35 � 4

24 0

�5

7

35 D 24�7

9

0

35;

which expresses b as a linear combination of the columns of A.

2. uC v D
�

4

�1

�
C

�
�3

5

�
D

�
1

4

�
A.uC v/ D

�
2 5

3 1

��
1

4

�
D

�
2C 20

3C 4

�
D

�
22

7

�
AuC Av D

�
2 5

3 1

��
4

�1

�
C

�
2 5

3 1

��
�3

5

�
D

�
3

11

�
C

�
19

�4

�
D

�
22

7

�
Remark: There are, in fact, infinitely many correct solutions to Practice Problem 3.
When creating matrices to satisfy specified criteria, it is often useful to create
matrices that are straightforward, such as those already in reduced echelon form.
Here is one possible solution:

3. Let

A D

241 0 1

0 1 1

0 0 0

35 ; b D

243

2

0

35 ; and c D

243

2

1

35 :

Notice the reduced echelon form of the augmented matrix corresponding toAx D b
is 241 0 1 3

0 1 1 2

0 0 0 0

35 ;

which corresponds to a consistent system, and hence Ax D b has solutions. The
reduced echelon form of the augmented matrix corresponding to Ax D c is241 0 1 3

0 1 1 2

0 0 0 1

35 ;

which corresponds to an inconsistent system, and hence Ax D c does not have any
solutions.

1.5 Solution Sets of Linear Systems
Solution sets of linear systems are important objects of study in linear algebra. They
will appear later in several different contexts. This section uses vector notation to give
explicit and geometric descriptions of such solution sets.
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Homogeneous Linear Systems
A system of linear equations is said to be homogeneous if it can be written in the form
Ax D 0, where A is an m � n matrix and 0 is the zero vector in Rm. Such a system
Ax D 0 always has at least one solution, namely x D 0 (the zero vector inRn/. This zero
solution is usually called the trivial solution. For a given equationAx D 0; the important
question is whether there exists a nontrivial solution, that is, a nonzero vector x that
satisfies Ax D 0: The Existence and Uniqueness Theorem in Section 1.2 (Theorem 2)
leads immediately to the following fact.

The homogeneous equation Ax D 0 has a nontrivial solution if and only if the
equation has at least one free variable.

EXAMPLE 1 Determine if the following homogeneous system has a nontrivial
solution. Then describe the solution set.

3x1 C 5x2 � 4x3 D 0

�3x1 � 2x2 C 4x3 D 0

6x1 C x2 � 8x3 D 0

SOLUTION Let A be the matrix of coefficients of the system and row reduce the
augmented matrix Œ A 0 � to echelon form:24 3 5 �4 0

�3 �2 4 0

6 1 �8 0

35 � 24 3 5 �4 0

0 3 0 0

0 �9 0 0

35 � 24 3 5 �4 0

0 3 0 0

0 0 0 0

35
Since x3 is a free variable, Ax D 0 has nontrivial solutions (one for each nonzero choice
of x3). To describe the solution set, continue the row reduction of Œ A 0 � to reduced
echelon form: 24 1 0 � 4

3
0

0 1 0 0

0 0 0 0

35 x1 �
4
3
x3 D 0

x2 D 0

0 D 0

Solve for the basic variables x1 and x2 and obtain x1 D
4
3
x3, x2 D 0, with x3 free. As a

vector, the general solution of Ax D 0 has the form

x D

264 x1

x2

x3

375 D
264 4

3
x3

0

x3

375 D x3

264 4
3

0

1

375 D x3v; where v D

264 4
3

0

1

375
Here x3 is factored out of the expression for the general solution vector. This shows that
every solution of Ax D 0 in this case is a scalar multiple of v. The trivial solution is
obtained by choosing x3 D 0: Geometrically, the solution set is a line through 0 in R3.
See Figure 1.

0

v

x3

x1

Span{v}

x2

FIGURE 1

Notice that a nontrivial solution x can have some zero entries so long as not all of
its entries are zero.

EXAMPLE 2 A single linear equation can be treated as a very simple system of
equations. Describe all solutions of the homogeneous “system”

10x1 � 3x2 � 2x3 D 0 (1)
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SOLUTION There is no need for matrix notation. Solve for the basic variable x1 in
terms of the free variables. The general solution is x1 D :3x2 C :2x3, with x2 and x3

free. As a vector, the general solution is

x D

24 x1

x2

x3

35 D 24 :3x2 C :2x3

x2

x3

35 D 24 :3x2

x2

0

35C 24 :2x3

0

x3

35
D x2

24 :3

1

0

35
6
u

C x3

24 :2

0

1

35
6
v

(with x2, x3 free) (2)

This calculation shows that every solution of (1) is a linear combination of the vectors u
and v, shown in (2). That is, the solution set is Span fu; vg. Since neither u nor v is a scalar
multiple of the other, the solution set is a plane through the origin. See Figure 2.

u

v

x1
x3

x2

FIGURE 2

Examples 1 and 2, alongwith the exercises, illustrate the fact that the solution set of a
homogeneous equation Ax D 0 can always be expressed explicitly as Span fv1; : : : ; vpg

for suitable vectors v1; : : : ; vp . If the only solution is the zero vector, then the solution
set is Span f0g. If the equation Ax D 0 has only one free variable, the solution set is
a line through the origin, as in Figure 1. A plane through the origin, as in Figure 2,
provides a good mental image for the solution set ofAx D 0when there are two or more
free variables. Note, however, that a similar figure can be used to visualize Span fu; vg
even when u and v do not arise as solutions of Ax D 0: See Figure 11 in Section 1.3.

Parametric Vector Form
The original equation (1) for the plane in Example 2 is an implicit description of the
plane. Solving this equation amounts to finding an explicit description of the plane as
the set spanned by u and v. Equation (2) is called a parametric vector equation of the
plane. Sometimes such an equation is written as

x D suC tv .s; t in R/

to emphasize that the parameters vary over all real numbers. In Example 1, the equation
x D x3v (with x3 free), or x D tv (with t in R), is a parametric vector equation of a line.
Whenever a solution set is described explicitly with vectors as in Examples 1 and 2, we
say that the solution is in parametric vector form.

Solutions of Nonhomogeneous Systems
When a nonhomogeneous linear system has many solutions, the general solution can be
written in parametric vector form as one vector plus an arbitrary linear combination of
vectors that satisfy the corresponding homogeneous system.

EXAMPLE 3 Describe all solutions of Ax D b, where

A D

24 3 5 �4

�3 �2 4

6 1 �8

35 and b D

24 7

�1

�4

35
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SOLUTION Here A is the matrix of coefficients from Example 1. Row operations on
Œ A b � produce24 3 5 �4 7

�3 �2 4 �1

6 1 �8 �4

35 � 24 1 0 � 4
3
�1

0 1 0 2

0 0 0 0

35;
x1 �

4
3
x3 D �1

x2 D 2

0 D 0

Thus x1 D �1C 4
3
x3, x2 D 2, and x3 is free. As a vector, the general solution ofAx D b

has the form

x D

264 x1

x2

x3

375 D
264�1C 4

3
x3

2

x3

375 D
264�1

2

0

375C
264 4

3
x3

0

x3

375 D
264�1

2

0

375
6
p

C x3

264 4
3

0

1

375
6
v

The equation x D pC x3v, or, writing t as a general parameter,

x D pC tv (t in R) (3)

describes the solution set of Ax D b in parametric vector form. Recall from Example 1
that the solution set of Ax D 0 has the parametric vector equation

x D tv (t in R) (4)

[with the same v that appears in (3)]. Thus the solutions of Ax D b are obtained by
adding the vector p to the solutions of Ax D 0. The vector p itself is just one particular
solution of Ax D b [corresponding to t D 0 in (3)].

p

v

v 1 p

FIGURE 3

Adding p to v translates v to vC p.

To describe the solution set ofAx D b geometrically, we can think of vector addition
as a translation. Given v and p in R2 or R3, the effect of adding p to v is to move v in a
direction parallel to the line through p and 0. We say that v is translated by p to vC p.L 1 p

L

FIGURE 4

Translated line.

See Figure 3. If each point on a line L in R2 or R3 is translated by a vector p, the result
is a line parallel to L. See Figure 4.

Suppose L is the line through 0 and v, described by equation (4). Adding p to each
point on L produces the translated line described by equation (3). Note that p is on the
line in equation (3). We call (3) the equation of the line through p parallel to v. Thus
the solution set of Ax D b is a line through p parallel to the solution set of Ax D 0.
Figure 5 illustrates this case.

p

v tv

p 1 tv

Ax 5 b

Ax 5 0

FIGURE 5 Parallel solution sets of Ax D b and
Ax D 0.

The relation between the solution sets of Ax D b and Ax D 0 shown in Figure 5
generalizes to any consistent equation Ax D b, although the solution set will be larger
than a line when there are several free variables. The following theorem gives the precise
statement. See Exercise 37 at the end of this section for a proof.
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THEOREM 6 Suppose the equation Ax D b is consistent for some given b, and let p be a
solution. Then the solution set of Ax D b is the set of all vectors of the form
w D pC vh, where vh is any solution of the homogeneous equation Ax D 0.

Theorem 6 says that if Ax D b has a solution, then the solution set is obtained by
translating the solution set of Ax D 0, using any particular solution p of Ax D b for the
translation. Figure 6 illustrates the case in which there are two free variables. Even when
n > 3, our mental image of the solution set of a consistent system Ax D b (with b ¤ 0)
is either a single nonzero point or a line or plane not passing through the origin.

p

x3

x2x1

Ax 5 b

Ax 5 0

FIGURE 6 Parallel solution sets of
Ax D b and Ax D 0.

Warning: Theorem 6 and Figure 6 apply only to an equation Ax D b that has at least
one nonzero solution p. When Ax D b has no solution, the solution set is empty.

The following algorithm outlines the calculations shown in Examples 1, 2, and 3.

WRITING A SOLUTION SET (OF A CONSISTENT SYSTEM)
IN PARAMETRIC VECTOR FORM

1. Row reduce the augmented matrix to reduced echelon form.

2. Express each basic variable in terms of any free variables appearing in an
equation.

3. Write a typical solution x as a vector whose entries depend on the free
variables, if any.

4. Decompose x into a linear combination of vectors (with numeric entries) using
the free variables as parameters.

Reasonable Answers

To verify that the solutions you found are indeed solutions to the homogeneous
equation Ax D 0, simply multiply the matrix by each vector in your
solution and check that the result is the zero vector. For example, if

A D

24 1 �2 1 2

1 �1 2 5

0 1 1 3

35, and you found the homogeneous solutions to
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Reasonable Answers (Continued)

be x3

2664
�3

�1

1

0

3775C x4

2664
�8

�3

0

1

3775, check
24 1 �2 1 2

1 �1 2 5

0 1 1 3

35
2664
�3

�1

1

0

3775 D
24 0

0

0

35 and

24 1 �2 1 2

1 �1 2 5

0 1 1 3

35
2664
�8

�3

0

1

3775 D
24 0

0

0

35. Then A

0BB@x3

2664
�3

�1

1

0

3775C x4

2664
�8

�3

0

1

3775
1CCA

D x3A

2664
�3

�1

1

0

3775C x4A

2664
�8

�3

0

1

3775, which is equal to x3

24 0

0

0

35C x4

24 0

0

0

35 D 24 0

0

0

35,
as desired.

If you are solving Ax D b, then you can again verify that you have correct
solutions by multiplying the matrix by each vector in your solutions. The product
of A with the first vector (the one that is not part of the solution to the homo-
geneous equation) should be b. The product of A with the remaining vectors
(the ones that are part of the solution to the homogeneous equation) should of
course be 0.

For example, to verify that

2664
2

1

1

2

3775C x3

2664
�3

�1

1

0

3775C x4

2664
�8

�3

0

1

3775 are solutions to

Ax D

24 5

13

8

35, check 24 1 �2 1 2

1 �1 2 5

0 1 1 3

35
2664

2

1

1

2

3775 D
24 5

13

8

35, and use the

calculations from above. Notice A

0BB@
2664

2

1

1

2

3775C x3

2664
�3

�1

1

0

3775C x4

2664
�8

�3

0

1

3775
1CCA

D A

2664
2

1

1

2

3775C x3A

2664
�3

�1

1

0

3775C x4A

2664
�8

�3

0

1

3775, which is equal to
24 5

13

8

35C x3

24 0

0

0

35

Cx4

24 0

0

0

35 D 24 5

13

8

35, as desired.
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Practice Problems

1. Each of the following equations determines a plane in R3. Do the two planes
intersect? If so, describe their intersection.

x1 C 4x2 � 5x3 D 0

2x1 � x2 C 8x3 D 9

2. Write the general solution of 10x1 � 3x2 � 2x3 D 7 in parametric vector form, and
relate the solution set to the one found in Example 2.

3. Prove the first part of Theorem 6: Suppose that p is a solution of Ax D b, so that
Ap D b. Let vh be any solution to the homogeneous equation Ax D 0, and let
w D pC vh. Show that w is a solution to Ax D b.

1.5 Exercises
In Exercises 1–4, determine if the system has a nontrivial solution.
Try to use as few row operations as possible.

1. 2x1 � 5x2 C 8x3 D 0

�2x1 � 7x2 C x3 D 0

4x1 C 2x2 C 7x3 D 0

2. x1 � 3x2 C 7x3 D 0

�2x1 C x2 � 4x3 D 0

x1 C 2x2 C 9x3 D 0

3. �3x1 C 5x2 � 7x3 D 0

�6x1 C 7x2 C x3 D 0

4. �5x1 C 7x2 C 9x3 D 0

x1 � 2x2 C 6x3 D 0

In Exercises 5 and 6, follow the method of Examples 1 and 2
to write the solution set of the given homogeneous system in
parametric vector form.

5. x1 C 3x2 C x3 D 0

�4x1 � 9x2 C 2x3 D 0

� 3x2 � 6x3 D 0

6. x1 C 3x2 � 5x3 D 0

x1 C 4x2 � 8x3 D 0

�3x1 � 7x2 C 9x3 D 0

In Exercises 7–12, describe all solutions of Ax D 0 in parametric
vector form, where A is row equivalent to the given matrix.

7.
�

1 3 �3 7

0 1 �4 5

�
8.

�
1 �2 �9 5

0 1 2 �6

�
9.

�
2 �8 6

�1 4 �3

�
10.

�
1 3 0 �4

2 6 0 �8

�

11.

2664
1 �4 �2 0 3 �5

0 0 1 0 0 �1

0 0 0 0 1 �4

0 0 0 0 0 0

3775

12.

2664
1 5 2 �6 9 0

0 0 1 �7 4 �8

0 0 0 0 0 1

0 0 0 0 0 0

3775
You may find it helpful to review the information in the Reason-
able Answers box from this section before answering Exercises
13–16.

13. Verify that the solutions you found to Exercise 9 are indeed
homogeneous solutions.

14. Verify that the solutions you found to Exercise 10 are indeed
homogeneous solutions.

15. Verify that the solutions you found to Exercise 11 are indeed
homogeneous solutions.

16. Verify that the solutions you found to Exercise 12 are indeed
homogeneous solutions.

17. Suppose the solution set of a certain system of linear equa-
tions can be described as x1 D 5C 4x3, x2 D �2 � 7x3,
with x3 free. Use vectors to describe this set as a line in R3.

18. Suppose the solution set of a certain system of linear
equations can be described as x1 D 3x4, x2 D 8C x4,
x3 D 2 � 5x4, with x4 free. Use vectors to describe this set
as a line in R4.

19. Follow the method of Example 3 to describe the solutions of
the following system in parametric vector form. Also, give
a geometric description of the solution set and compare it to
that in Exercise 5.

x1 C 3x2 C x3 D 1

�4x1 � 9x2 C 2x3 D �1

� 3x2 � 6x3 D �3

20. As in Exercise 19, describe the solutions of the following
system in parametric vector form, and provide a geometric
comparison with the solution set in Exercise 6.

x1 C 3x2 � 5x3 D 4

x1 C 4x2 � 8x3 D 7

�3x1 � 7x2 C 9x3 D�6

21. Describe and compare the solution sets of x1 C 9x2 � 4x3 D 0

and x1 C 9x2 � 4x3 D �2.

22. Describe and compare the solution sets of x1 � 3x2 C 5x3 D 0

and x1 � 3x2 C 5x3 D 4.
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In Exercises 23 and 24, find the parametric equation of the line
through a parallel to b.

23. a D
�
�2

0

�
, b D

�
�5

3

�
24. a D

�
5

�2

�
, b D

�
�4

9

�
In Exercises 25 and 26, find a parametric equation of the line M

through p and q. [Hint: M is parallel to the vector q � p. See the
figure below.]

25. p D
�

2

�5

�
, q D

�
�3

1

�
26. p D

�
�6

3

�
, q D

�
0

�4

�

x1

x2

M
q    p

pq

p

The line through p and q.

2
2

In Exercises 27–36, mark each statement True or False (T/F).
Justify each answer.

27. (T/F) A homogeneous equation is always consistent.

28. (T/F) If x is a nontrivial solution of Ax D 0, then every entry
in x is nonzero.

29. (T/F) The equation Ax D 0 gives an explicit description of
its solution set.

30. (T/F) The equation x D x2uC x3v, with x2 and x3 free (and
neither u nor v a multiple of the other), describes a plane
through the origin.

31. (T/F) The homogeneous equation Ax D 0 has the trivial so-
lution if and only if the equation has at least one free variable.

32. (T/F)The equationAx D b is homogeneous if the zero vector
is a solution.

33. (T/F) The equation x D pC tv describes a line through v
parallel to p.

34. (T/F) The effect of adding p to a vector is to move the vector
in a direction parallel to p.

35. (T/F) The solution set of Ax D b is the set of all vectors of
the formw D pC vh, where vh is any solution of the equation
Ax D 0.

36. (T/F) The solution set of Ax D b is obtained by translating
the solution set of Ax D 0.

37. Prove the second part of Theorem 6: Let w be any solution of
Ax D b, and define vh D w � p. Show that vh is a solution
of Ax D 0. This shows that every solution of Ax D b has the
formw D pC vh, with p a particular solution ofAx D b and
vh a solution of Ax D 0.

38. Suppose Ax D b has a solution. Explain why the solution is
unique precisely when Ax D 0 has only the trivial solution.

39. Suppose A is the 3 � 3 zero matrix (with all zero entries).
Describe the solution set of the equation Ax D 0.

40. If b ¤ 0, can the solution set of Ax D b be a plane through
the origin? Explain.

In Exercises 41–44, (a) does the equationAx D 0 have a nontrivial
solution and (b) does the equation Ax D b have at least one
solution for every possible b?

41. A is a 3 � 3 matrix with three pivot positions.

42. A is a 3 � 3 matrix with two pivot positions.

43. A is a 3 � 2 matrix with two pivot positions.

44. A is a 2 � 4 matrix with two pivot positions.

45. Given A D

24 �2 �6

7 21

�3 �9

35, find one nontrivial solution of

Ax D 0 by inspection. [Hint: Think of the equation Ax D 0
written as a vector equation.]

46. Given A D

24 4 �6

�8 12

6 �9

35, find one nontrivial solution of

Ax D 0 by inspection.

47. Construct a 3 � 3 nonzeromatrixA such that the vector

24 1

1

1

35
is a solution of Ax D 0.

48. Construct a 3 � 3 nonzero matrix A such that the vector24 1

�2

1

35 is a solution of Ax D 0.

49. Construct a 2 � 2 matrix A such that the solution set of the
equation Ax D 0 is the line in R2 through .4; 1/ and the
origin. Then, find a vector b in R2 such that the solution set
of Ax D b is not a line in R2 parallel to the solution set of
Ax D 0. Why does this not contradict Theorem 6?

50. Suppose A is a 3 � 3 matrix and y is a vector in R3 such that
the equation Ax D y does not have a solution. Does there
exist a vector z in R3 such that the equation Ax D z has a
unique solution? Discuss.

51. LetA be anm � nmatrix and let u be a vector inRn that satis-
fies the equation Ax D 0. Show that for any scalar c, the vec-
tor cu also satisfies Ax D 0. [That is, show that A.cu/ D 0.]

52. Let A be an m � n matrix, and let u and v be vectors in Rn

with the property that Au D 0 and Av D 0. Explain why
A.uC v/ must be the zero vector. Then explain why
A.cuC dv/ D 0 for each pair of scalars c and d .
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Solutions to Practice Problems

1. Row reduce the augmented matrix:�
1 4 �5 0

2 �1 8 9

�
�

�
1 4 �5 0

0 �9 18 9

�
�

�
1 0 3 4

0 1 �2 �1

�
x1 C 3x3 D 4

x2 � 2x3 D �1

Thus x1 D 4 � 3x3; x2 D �1C 2x3, with x3 free. The general solution in paramet-
ric vector form is24 x1

x2

x3

35 D 24 4 � 3x3

�1C 2x3

x3

35 D 24 4

�1

0

35
6
p

C x3

24�3

2

1

35
6
v

The intersection of the two planes is the line through p in the direction of v.
2. The augmented matrix

�
10 �3 �2 7

�
is row equivalent to�

1 �:3 �:2 :7
�
, and the general solution is x1 D :7C :3x2 C :2x3, with

x2 and x3 free. That is,

x D

24 x1

x2

x3

35 D 24 :7C :3x2 C :2x3

x2

x3

35 D 24 :7

0

0

35 C x2

24 :3

1

0

35 C x3

24 :2

0

1

35
D p C x2u C x3v

The solution set of the nonhomogeneous equation Ax D b is the translated plane
pC Span fu; vg, which passes through p and is parallel to the solution set of the
homogeneous equation in Example 2.

3. Using Theorem 5 from Section 1.4, notice

A.pC vh/ D ApC Avh D bC 0 D b;

hence pC vh is a solution to Ax D b.

1.6 Applications of Linear Systems
You might expect that a real-life problem involving linear algebra would have only one
solution, or perhaps no solution. The purpose of this section is to show how linear
systems with many solutions can arise naturally. The applications here come from
economics, chemistry, and network flow.

A Homogeneous System in Economics
The system of 500 equations in 500 variables, mentioned in this chapter’s introduction,
is now known as a Leontief “input–output” (or “production”) model.1 Section 2.6 will
examine this model in more detail, when more theory and better notation are available.
For now, we look at a simpler “exchange model,” also due to Leontief.

1 See Wassily W. Leontief, “Input–Output Economics,” Scientific American, October 1951, pp. 15–21.
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Suppose a nation’s economy is divided into many sectors, such as various manufac-
turing, communication, entertainment, and service industries. Suppose that for each sec-
tor we know its total output for one year and we know exactly how this output is divided
or “exchanged” among the other sectors of the economy. Let the total dollar value of a
sector’s output be called the price of that output. Leontief proved the following result.

There exist equilibrium prices that can be assigned to the total outputs of the
various sectors in such a way that the income of each sector exactly balances its
expenses.

The following example shows how to find the equilibrium prices.

EXAMPLE 1 Suppose an economy consists of the Coal, Electric (power), and Steel
sectors, and the output of each sector is distributed among the various sectors as shown
in Table 1, where the entries in a column represent the fractional parts of a sector’s total
output.

The second column of Table 1, for instance, says that the total output of the Electric
sector is divided as follows: 40% to Coal, 50% to Steel, and the remaining 10% to
Electric. (Electric treats this 10% as an expense it incurs in order to operate its business.)
Since all output must be taken into account, the decimal fractions in each column must
sum to 1.

Denote the prices (in dollar values) of the total annual outputs of the Coal, Electric,
and Steel sectors by pC, pE, and pS, respectively. If possible, find equilibrium prices
that make each sector’s income match its expenditures.

.1

.2

.2 .5

.4

.4

.6

.6

Steel

Coal

Electric

TABLE 1 A Simple Economy

Distribution of Output from

Coal Electric Steel Purchased by

.0 .4 .6 Coal

.6 .1 .2 Electric

.4 .5 .2 Steel

SOLUTION A sector looks down a column to see where its output goes, and it looks
across a row to see what it needs as inputs. For instance, the first row of Table 1 says
that Coal receives (and pays for) 40% of the Electric output and 60% of the Steel
output. Since the respective values of the total outputs are pE and pS, Coal must spend
:4pE dollars for its share of Electric’s output and :6pS for its share of Steel’s output.
Thus Coal’s total expenses are :4pE C :6pS. To make Coal’s income, pC, equal to its
expenses, we want

pC D :4pE C :6pS (1)

The second row of the exchange table shows that the Electric sector spends :6pC

for coal, :1pE for electricity, and :2pS for steel. Hence the income/expense requirement
for Electric is

pE D :6pC C :1pE C :2pS (2)
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Finally, the third row of the exchange table leads to the final requirement:

pS D :4pC C :5pE C :2pS (3)

To solve the system of equations (1), (2), and (3), move all the unknowns to the left
sides of the equations and combine like terms. [For instance, on the left side of (2),
write pE � :1pE as :9pE.]

pC � :4pE � :6pS D 0

�:6pC C :9pE � :2pS D 0

�:4pC � :5pE C :8pS D 0

Row reduction is next. For simplicity here, decimals are rounded to two places.24 1 �:4 �:6 0

�:6 :9 �:2 0

�:4 �:5 :8 0

35 � 24 1 �:4 �:6 0

0 :66 �:56 0

0 �:66 :56 0

35 � 24 1 �:4 �:6 0

0 :66 �:56 0

0 0 0 0

35
�

24 1 �:4 �:6 0

0 1 �:85 0

0 0 0 0

35 � 24 1 0 �:94 0

0 1 �:85 0

0 0 0 0

35
The general solution is pC D :94pS, pE D :85pS, and pS is free. The equilibrium price
vector for the economy has the form

p D

24pC

pE

pS

35 D 24 :94pS

:85pS

pS

35 D pS

24 :94

:85

1

35
Any (nonnegative) choice for pS results in a choice of equilibrium prices. For instance,
if we take pS to be 100 (or $100 million), then pC D 94 and pE D 85. The incomes and
expenditures of each sector will be equal if the output of Coal is priced at $94 million,
that of Electric at $85 million, and that of Steel at $100 million.

Balancing Chemical Equations
Chemical equations describe the quantities of substances consumed and produced by
chemical reactions. For instance, when propane gas burns, the propane (C3H8) combines
with oxygen (O2) to form carbon dioxide (CO2) and water (H2O), according to an
equation of the form

.x1/C3H8 C .x2/O2 ! .x3/CO2 C .x4/H2O (4)

To “balance” this equation, a chemist must find whole numbers x1; : : : ; x4 such that the
total numbers of carbon (C), hydrogen (H), and oxygen (O) atoms on the left match the
corresponding numbers of atoms on the right (because atoms are neither destroyed nor
created in the reaction).

A systematic method for balancing chemical equations is to set up a vector equation
that describes the numbers of atoms of each type present in a reaction. Since equation
(4) involves three types of atoms (carbon, hydrogen, and oxygen), construct a vector in
R3 for each reactant and product in (4) that lists the numbers of “atoms per molecule,”
as follows:

C3H8W

24 3

8

0

35; O2W

24 0

0

2

35; CO2W

24 1

0

2

35; H2OW

24 0

2

1

35� Carbon
� Hydrogen
� Oxygen
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To balance equation (4), the coefficients x1; : : : ; x4 must satisfy

x1

24 3

8

0

35C x2

24 0

0

2

35 D x3

24 1

0

2

35C x4

24 0

2

1

35
To solve, move all the terms to the left (changing the signs in the third and fourth
vectors):

x1

24 3

8

0

35C x2

24 0

0

2

35C x3

24�1

0

�2

35C x4

24 0

�2

�1

35 D 24 0

0

0

35
Row reduction of the augmented matrix for this equation leads to the general solution

x1 D
1
4
x4; x2 D

5
4
x4; x3 D

3
4
x4; with x4 free

Since the coefficients in a chemical equation must be integers, take x4 D 4, in which
case x1 D 1, x2 D 5, and x3 D 3. The balanced equation is

C3H8 C 5O2 ! 3CO2 C 4H2O

The equation would also be balanced if, for example, each coefficient were doubled. For
most purposes, however, chemists prefer to use a balanced equation whose coefficients
are the smallest possible whole numbers.

Network Flow
Systems of linear equations arise naturally when scientists, engineers, or economists
study the flow of some quantity through a network. For instance, urban planners and
traffic engineers monitor the pattern of traffic flow in a grid of city streets. Electrical
engineers calculate current flow through electrical circuits. Economists analyze the dis-
tribution of products frommanufacturers to consumers through a network of wholesalers
and retailers. For many networks, the systems of equations involve hundreds or even
thousands of variables and equations.

A network consists of a set of points called junctions, or nodes, with lines or arcs
called branches connecting some or all of the junctions. The direction of flow in each
branch is indicated, and the flow amount (or rate) is either shown or is denoted by a
variable.

The basic assumption of network flow is that the total flow into the network equals
the total flow out of the network and that the total flow into a junction equals the
total flow out of the junction. For example, Figure 1 shows 30 units flowing into a
junction through one branch, with x1 and x2 denoting the flows out of the junction
through other branches. Since the flow is “conserved” at each junction, we must
have x1 C x2 D 30. In a similar fashion, the flow at each junction is described by
a linear equation. The problem of network analysis is to determine the flow in each
branch when partial information (such as the flow into and out of the network) is

30

x1

x2

FIGURE 1

A junction or node.
known.

EXAMPLE 2 The network in Figure 2 shows the traffic flow (in vehicles per hour)
over several one-way streets in downtown Baltimore during a typical early afternoon.
Determine the general flow pattern for the network.
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300

300

400

600

500

Inner Harbor

A

B

D

C

x1

x4

x2 x5

x3 100

Calvert St. South St.

Lombard St.

Pratt St.

N

FIGURE 2 Baltimore streets.

SOLUTION Write equations that describe the flow, and then find the general solution
of the system. Label the street intersections (junctions) and the unknown flows in the
branches, as shown in Figure 2. At each intersection, set the flow in equal to the flow out.

Intersection Flow in Flow out

A 300C 500 D x1 C x2

B x2 C x4 D 300C x3

C 100C 400 D x4 C x5

D x1 C x5 D 600

Also, the total flow into the network .500C 300C 100C 400/ equals the total flow
out of the network .300C x3 C 600/, which simplifies to x3 D 400. Combine this
equation with a rearrangement of the first four equations to obtain the following system
of equations:

x1 C x2 D 800

x2 � x3 C x4 D 300

x4 C x5 D 500

x1 C x5 D 600

x3 D 400

Row reduction of the associated augmented matrix leads to

x1 C x5 D 600

x2 � x5 D 200

x3 D 400

x4 C x5 D 500

The general flow pattern for the network is described by8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

x1 D 600 � x5

x2 D 200C x5

x3 D 400

x4 D 500 � x5

x5 is free
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A negative flow in a network branch corresponds to flow in the direction opposite
to that shown on the model. Since the streets in this problem are one way, none of the
variables here can be negative. This fact leads to certain limitations on the possible
values of the variables. For instance, x5 � 500 because x4 cannot be negative. Other
constraints on the variables are considered in Practice Problem 2.

Practice Problems

1. Suppose an economy has three sectors: Agriculture, Mining, and Manufacturing.
Agriculture sells 5% of its output to Mining and 30% to Manufacturing, and retains
the rest. Mining sells 20% of its output to Agriculture and 70% to Manufacturing,
and retains the rest. Manufacturing sells 20% of its output to Agriculture and 30% to
Mining, and retains the rest. Determine the exchange table for this economy, where
the columns describe how the output of each sector is exchanged among the three
sectors.

2. Consider the network flow studied in Example 2. Determine the possible range of
values of x1 and x2. [Hint: The example showed that x5 � 500. What does this
imply about x1 and x2? Also, use the fact that x5 � 0.]

1.6 Exercises
1. Suppose an economy has only two sectors, Goods and Ser-

vices. Each year, Goods sells 80% of its output to Services
and keeps the rest, while Services sells 70% of its output to
Goods and retains the rest. Find equilibrium prices for the
annual outputs of the Goods and Services sectors that make
each sector’s income match its expenditures.

.7

.8

.2 .3

Goods Services

2. Find another set of equilibrium prices for the economy in
Example 1. Suppose the same economy used Japanese yen
instead of dollars to measure the value of the various sec-
tors’ outputs. Would this change the problem in any way?
Discuss.

3. Consider an economy with three sectors, Chemicals & Met-
als, Fuels & Power, and Machinery. Chemicals sells 30% of
its output to Fuels and 50% to Machinery and retains the
rest. Fuels sells 80% of its output to Chemicals and 10%
to Machinery and retains the rest. Machinery sells 40% to
Chemicals and 40% to Fuels and retains the rest.

a. Construct the exchange table for this economy.

b. Develop a system of equations that leads to prices at which
each sector’s income matches its expenses. Then write the
augmented matrix that can be row reduced to find these
prices.

T c. Find a set of equilibrium prices when the price for the
Machinery output is 100 units.

4. Suppose an economy has four sectors, Agriculture (A), En-
ergy (E), Manufacturing (M), and Transportation (T). Sector
A sells 10% of its output to E and 25% to M and retains the
rest. Sector E sells 30% of its output to A, 35% toM, and 25%
to T and retains the rest. Sector M sells 30% of its output to
A, 15% to E, and 40% to T and retains the rest. Sector T sells
20% of its output to A, 10% to E, and 30% to M and retains
the rest.

a. Construct the exchange table for this economy.

T b. Find a set of equilibrium prices for the economy.

Balance the chemical equations in Exercises 5–10 using the vector
equation approach discussed in this section.

5. Boron sulfide reacts violently with water to form boric acid
and hydrogen sulfide gas (the smell of rotten eggs). The
unbalanced equation is

B2S3 C H2O! H3BO3 C H2S

[For each compound, construct a vector that lists the numbers
of atoms of boron, sulfur, hydrogen, and oxygen.]

6. When solutions of sodium phosphate and barium nitrate are
mixed, the result is barium phosphate (as a precipitate) and
sodium nitrate. The unbalanced equation is

Na3PO4 C Ba(NO3/2 ! Ba3.PO4/2 C NaNO3

[For each compound, construct a vector that lists the num-
bers of atoms of sodium (Na), phosphorus, oxygen, barium,
and nitrogen. For instance, barium nitrate corresponds to
.0; 0; 6; 1; 2/.]
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7. Alka-Seltzer contains sodium bicarbonate (NaHCO3) and
citric acid (H3C6H5O7). When a tablet is dissolved in water,
the following reaction produces sodium citrate, water, and
carbon dioxide (gas):

NaHCO3 C H3C6H5O7 ! Na3C6H5O7 C H2OC CO2

8. The following reaction between potassium permanganate
(KMnO4) and manganese sulfate in water produces man-
ganese dioxide, potassium sulfate, and sulfuric acid:

KMnO4 CMnSO4 C H2O! MnO2 C K2SO4 C H2SO4

[For each compound, construct a vector that lists the numbers
of atoms of potassium (K), manganese, oxygen, sulfur, and
hydrogen.]

T 9. If possible, use exact arithmetic or rational format for calcu-
lations in balancing the following chemical reaction:

PbN6 C CrMn2O8 ! Pb3O4 C Cr2O3 CMnO2 C NO

T 10. The chemical reaction below can be used in some industrial
processes, such as the production of arsene (AsH3). Use exact
arithmetic or rational format for calculations to balance this
equation.

MnSC As2Cr10O35 C H2SO4

! HMnO4 C AsH3 C CrS3O12 C H2O

11. Find the general flow pattern of the network shown in the
figure. Assuming that the flows are all nonnegative, what is
the largest possible value for x3?

20

80

x1

x2

x3

x4

A

C

B

12. a. Find the general traffic pattern in the freeway network
shown in the figure. (Flow rates are in cars/minute.)

b. Describe the general traffic pattern when the road whose
flow is x4 is closed.

c. When x4 D 0, what is the minimum value of x1?

40

x1 x2

x3

200

100

60

x4 x5

A

B

C

D

13. a. Find the general flow pattern in the network shown in the
figure.

b. Assuming that the flowmust be in the directions indicated,
find the minimum flows in the branches denoted by x2, x3,
x4, and x5.

60

80

90

100
x1 x6

x2

x3

x5

x4

20 40

30 40

A

E

C

D

B

14. Intersections in England are often constructed as one-way
“roundabouts,” such as the one shown in the figure. Assume
that traffic must travel in the directions shown. Find the gen-
eral solution of the network flow. Find the smallest possible
value for x6.

100

50

x3

80

100

120 150

x2

x1

x6

x5
x4

A

B E

F

C D

Solutions to Practice Problems

1. Write the percentages as decimals. Since all output must be taken into account, each
column must sum to 1. This fact helps to fill in any missing entries.

Distribution of Output from

Agriculture Mining Manufacturing Purchased by

.65 .20 .20 Agriculture

.05 .10 .30 Mining

.30 .70 .50 Manufacturing
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Solutions to Practice Problems (Continued)

2. Since x5 � 500, the equations D and A for x1 and x2 imply that x1 � 100

and x2 � 700. The fact that x5 � 0 implies that x1 � 600 and x2 � 200. So,
100 � x1 � 600, and 200 � x2 � 700.

1.7 Linear Independence
The homogeneous equations in Section 1.5 can be studied from a different perspective
by writing them as vector equations. In this way, the focus shifts from the unknown
solutions of Ax D 0 to the vectors that appear in the vector equations.

For instance, consider the equation

x1

24 1

2

3

35C x2

24 4

5

6

35C x3

24 2

1

0

35 D 24 0

0

0

35 (1)

This equation has a trivial solution, of course, where x1 D x2 D x3 D 0. As in Sec-
tion 1.5, the main issue is whether the trivial solution is the only one.

DEFINITION An indexed set of vectors fv1; : : : ; vpg in Rn is said to be linearly independent if
the vector equation

x1v1 C x2v2 C � � � C xpvp D 0

has only the trivial solution. The set fv1; : : : ; vpg is said to be linearly dependent
if there exist weights c1; : : : ; cp , not all zero, such that

c1v1 C c2v2 C � � � C cpvp D 0 (2)

Equation (2) is called a linear dependence relation among v1; : : : ; vp when the
weights are not all zero. An indexed set is linearly dependent if and only if it is not linearly
independent. For brevity, we may say that v1; : : : ; vp are linearly dependent when we
mean that fv1; : : : ; vpg is a linearly dependent set. We use analogous terminology for
linearly independent sets.

EXAMPLE 1 Let v1 D

24 1

2

3

35, v2 D

24 4

5

6

35, and v3 D

24 2

1

0

35.
a. Determine if the set fv1; v2; v3g is linearly independent.

b. If possible, find a linear dependence relation among v1, v2, and v3.

SOLUTION

a. We must determine if there is a nontrivial solution of equation (1) above. Row oper-
ations on the associated augmented matrix show that24 1 4 2 0

2 5 1 0

3 6 0 0

35 � 24 1 4 2 0

0 �3 �3 0

0 0 0 0

35
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Clearly, x1 and x2 are basic variables, and x3 is free. Each nonzero value of x3

determines a nontrivial solution of (1). Hence v1; v2; v3 are linearly dependent (and
not linearly independent).

b. To find a linear dependence relation among v1, v2, and v3, completely row reduce the
augmented matrix and write the new system:24 1 0 �2 0

0 1 1 0

0 0 0 0

35 x1 � 2x3 D 0

x2 C x3 D 0

0 D 0

Thus x1 D 2x3, x2 D �x3, and x3 is free. Choose any nonzero value for x3—say,
x3 D 5. Then x1 D 10 and x2 D �5. Substitute these values into equation (1) and
obtain

10v1 � 5v2 C 5v3 D 0

This is one (out of infinitely many) possible linear dependence relations among v1,
v2, and v3.

Linear Independence of Matrix Columns
Suppose that we begin with a matrix A D Œ a1 � � � an � instead of a set of vectors. The
matrix equation Ax D 0 can be written as

x1a1 C x2a2 C � � � C xnan D 0

Each linear dependence relation among the columns of A corresponds to a nontrivial
solution of Ax D 0. Thus we have the following important fact.

The columns of a matrix A are linearly independent if and only if the equation
Ax D 0 has only the trivial solution. (3)

EXAMPLE 2 Determine if the columns of the matrix A D

24 0 1 4

1 2 �1

5 8 0

35 are

linearly independent.

SOLUTION To study Ax D 0, row reduce the augmented matrix:24 0 1 4 0

1 2 �1 0

5 8 0 0

35 � 24 1 2 �1 0

0 1 4 0

0 �2 5 0

35 � 24 1 2 �1 0

0 1 4 0

0 0 13 0

35
At this point, it is clear that there are three basic variables and no free variables. So
the equation Ax D 0 has only the trivial solution, and the columns of A are linearly
independent.

Sets of One or Two Vectors
A set containing only one vector—say, v—is linearly independent if and only if v is not
the zero vector. This is because the vector equation x1v D 0 has only the trivial solution
when v ¤ 0. The zero vector is linearly dependent because x10 D 0 has many nontrivial
solutions.

The next example will explain the nature of a linearly dependent set of two vectors.
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EXAMPLE 3 Determine if the following sets of vectors are linearly independent.

a. v1 D

�
3

1

�
, v2 D

�
6

2

�
b. v1 D

�
3

2

�
, v2 D

�
6

2

�
SOLUTION

a. Notice that v2 is a multiple of v1, namely v2 D 2v1. Hence �2v1 C v2 D 0, which
shows that fv1; v2g is linearly dependent.

b. The vectors v1 and v2 are certainly not multiples of one another. Could they be
linearly dependent? Suppose c and d satisfy

cv1 C dv2 D 0

If c ¤ 0, then we can solve for v1 in terms of v2, namely v1 D .�d=c/v2. This result
is impossible because v1 is not a multiple of v2. So c must be zero. Similarly, d must
also be zero. Thus fv1; v2g is a linearly independent set.

The arguments in Example 3 show that you can always decide by inspectionwhen a

x1

x2

Linearly dependent

(3, 1)

(6, 2)

x1

x2

Linearly independent

(3, 2) (6, 2)

FIGURE 1

set of two vectors is linearly dependent. Row operations are unnecessary. Simply check
whether at least one of the vectors is a scalar times the other. (The test applies only to
sets of two vectors.)

A set of two vectors fv1; v2g is linearly dependent if at least one of the vectors is
a multiple of the other. The set is linearly independent if and only if neither of the
vectors is a multiple of the other.

In geometric terms, two vectors are linearly dependent if and only if they lie on the
same line through the origin. Figure 1 shows the vectors from Example 3.

Sets of Two or More Vectors
The proof of the next theorem is similar to the solution of Example 3. Details are given
at the end of this section.

THEOREM 7 Characterization of Linearly Dependent Sets

An indexed set S D fv1; : : : ; vpg of two or more vectors is linearly dependent if
and only if at least one of the vectors in S is a linear combination of the others. In
fact, if S is linearly dependent and v1 ¤ 0, then some vj (with j > 1) is a linear
combination of the preceding vectors, v1; : : : ; vj�1.

Warning: Theorem 7 does not say that every vector in a linearly dependent set is a
linear combination of the preceding vectors. A vector in a linearly dependent set may
fail to be a linear combination of the other vectors. See Practice Problem 1(c).

EXAMPLE 4 Let u D

24 3

1

0

35 and v D

24 1

6

0

35. Describe the set spanned by u and v,

and explain why a vectorw is in Span fu; vg if and only if fu; v;wg is linearly dependent.
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SOLUTION The vectors u and v are linearly independent because neither vector is
a multiple of the other, and so they span a plane in R3. (See Section 1.3.) In fact,
Span fu; vg is the x1x2-plane (with x3 D 0/. If w is a linear combination of u and v,
then fu; v;wg is linearly dependent, by Theorem 7. Conversely, suppose that fu; v;wg
is linearly dependent. By Theorem 7, some vector in fu; v;wg is a linear combination of
the preceding vectors (since u ¤ 0/. That vector must be w, since v is not a multiple of
u. So w is in Span fu; vg. See Figure 2.

v
wu

Linearly dependent,
w in Span{u, v}

Linearly independent,
w not in Span{u, v}

w

x3

x2

x1

vu

x3

x2

x1

FIGURE 2 Linear dependence in R3.

Example 4 generalizes to any set fu; v;wg in R3 with u and v linearly independent.
The set fu; v;wg will be linearly dependent if and only if w is in the plane spanned by u
and v.

The next two theorems describe special cases in which the linear dependence of a
set is automatic. Moreover, Theorem 8 will be a key result for work in later chapters.

THEOREM 8 If a set contains more vectors than there are entries in each vector, then the set
is linearly dependent. That is, any set fv1; : : : ; vpg in Rn is linearly dependent if
p > n.

PROOF Let A D Œ v1 � � � vp �. Then A is n � p, and the equation Ax D 0 corre-
sponds to a system of n equations in p unknowns. If p > n, there are more variables
than equations, so there must be a free variable. Hence Ax D 0 has a nontrivial solution,

*
*
*

*
*
*

*
p

n *
*

*
*
*

*
*
*

FIGURE 3

If p > n, the columns are linearly
dependent.

and the columns of A are linearly dependent. See Figure 3 for a matrix version of this
theorem.

Warning: Theorem 8 says nothing about the case in which the number of vectors in
the set does not exceed the number of entries in each vector.

EXAMPLE 5 The vectors
�

2

1

�
,
�

4

�1

�
,
�
�2

2

�
are linearly dependent by Theorem

8, because there are three vectors in the set and there are only two entries in each vector.
Notice, however, that none of the vectors is a multiple of one of the other vectors. See
Figure 4.

x1

x2

(2, 1)

(4, 21)

( 2, 2)2

FIGURE 4

A linearly dependent set in R2.

THEOREM 9 If a set S D fv1; : : : ; vpg in Rn contains the zero vector, then the set is linearly
dependent.
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PROOF By renumbering the vectors, we may suppose v1 D 0. Then the equation
1v1 C 0v2 C � � � C 0vp D 0 shows that S is linearly dependent.

EXAMPLE 6 Determine by inspection if the given set is linearly dependent.

a.

24 1

7

6

35, 24 2

0

9

35, 24 3

1

5

35, 24 4

1

8

35 b.

24 2

3

5

35, 24 0

0

0

35, 24 1

1

8

35 c.

2664
�2

4

6

10

3775,
2664

3

�6

�9

15

3775
SOLUTION

a. The set contains four vectors, each of which has only three entries. So the set is
linearly dependent by Theorem 8.

b. Theorem 8 does not apply here because the number of vectors does not exceed the
number of entries in each vector. Since the zero vector is in the set, the set is linearly
dependent by Theorem 9.

c. Compare the corresponding entries of the two vectors. The second vector seems to
be �3=2 times the first vector. This relation holds for the first three pairs of entries,
but fails for the fourth pair. Thus neither of the vectors is a multiple of the other, and
hence they are linearly independent.

In general, you should read a section thoroughly several times to absorb an impor-
tant concept such as linear independence. The notes in the Study Guide for this section
will help you learn to form mental images of key ideas in linear algebra. For instance,
the following proof is worth reading carefully because it shows how the definition of
linear independence can be used.

PROOF OF THEOREM 7 (Characterization of Linearly Dependent Sets)
If some vj in S equals a linear combination of the other vectors, then vj can be
subtracted from both sides of the equation, producing a linear dependence relation with
a nonzero weight .�1/ on vj . [For instance, if v1 D c2v2 C c3v3, then 0 D .�1/v1 C

c2v2 C c3v3 C 0v4 C � � � C 0vp .] Thus S is linearly dependent.
Conversely, suppose S is linearly dependent. If v1 is zero, then it is a (trivial)

linear combination of the other vectors in S . Otherwise, v1 ¤ 0, and there exist weights
c1; : : : ; cp , not all zero, such that

c1v1 C c2v2 C � � � C cpvp D 0

Let j be the largest subscript for which cj ¤ 0. If j D 1, then c1v1 D 0, which is
impossible because v1 ¤ 0. So j > 1, and

c1v1 C � � � C cj vj C 0vjC1 C � � � C 0vp D 0

cj vj D �c1v1 � � � � � cj�1vj�1

vj D

�
�

c1

cj

�
v1 C � � � C

�
�

cj�1

cj

�
vj�1

Practice Problems

1. Let u D

24 3

2

�4

35, v D 24�6

1

7

35, w D 24 0

�5

2

35, and z D 24 3

7

�5

35.
a. Are the sets fu; vg; fu;wg; fu; zg; fv;wg; fv; zg, and fw; zg each linearly inde-

pendent? Why or why not?
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b. Does the answer to Part (a) imply that fu; v;w; zg is linearly independent?

c. To determine if fu; v;w; zg is linearly dependent, is it wise to check if, say, w is
a linear combination of u, v, and z?

d. Is fu; v;w; zg linearly dependent?

2. Suppose that fv1; v2; v3g is a linearly dependent set of vectors in Rn and v4 is a
vector in Rn. Show that fv1; v2; v3; v4g is also a linearly dependent set.

1.7 Exercises
In Exercises 1–4, determine if the vectors are linearly independent.
Justify each answer.

1.

24 5

1

0

35, 24 7

2

�6

35, 24�2

�1

6

35 2.

24 0

0

2

35, 24 0

5

�8

35, 24�3

4

1

35
3.

�
1

�3

�
,
�
�3

6

�
4.

�
�1

4

�
,
�
�2

8

�
In Exercises 5–8, determine if the columns of the matrix form a
linearly independent set. Justify each answer.

5.

2664
0 �8 5

3 �7 4

�1 5 �4

1 �3 2

3775 6.

2664
�4 �3 0

0 �1 4

1 0 3

5 4 6

3775

7.

24 1 4 �3 0

�2 �7 5 1

�4 �5 7 5

35 8.

24 1 �3 3 �2

�3 7 �1 2

0 1 �4 3

35
In Exercises 9 and 10, (a) for what values of h is v3 in
Span fv1; v2g, and (b) for what values of h is fv1; v2; v3g linearly
dependent? Justify each answer.

9. v1 D

24 1

�3

2

35, v2 D

24 �3

10

�6

35, v3 D

24 2

�7

h

35

10. v1 D

24 1

�5

�3

35, v2 D

24 �2

10

6

35, v3 D

24 2

�10

h

35
In Exercises 11–14, find the value(s) of h for which the vectors are
linearly dependent. Justify each answer.

11.

24 1

�1

4

35, 24 3

�5

7

35, 24�1

5

h

35 12.

24 2

�4

1

35, 24�6

7

�3

35, 24 8

h

4

35

13.

24 1

5

�3

35, 24�2

�9

6

35, 24 3

h

�9

35 14.

24 1

�3

4

35, 24�6

8

7

35, 24 4

�2

h

35
Determine by inspection whether the vectors in Exercises 15–20
are linearly independent. Justify each answer.

15.
�

5

1

�
,
�

2

8

�
,
�

1

3

�
,
�
�1

7

�
16.

24 4

�2

6

35, 24 6

�3

9

35
17.

24 3

5

�1

35, 24 0

0

0

35, 24�6

5

4

35 18.
�

4

4

�
,
�
�1

3

�
,
�

2

5

�
,
�

8

1

�

19.

24�8

12

�4

35, 24 2

�3

�1

35 20.

24 1

4

�7

35, 24�2

5

3

35, 24 0

0

0

35
In Exercises 21–28, mark each statement True or False (T/F).
Justify each answer on the basis of a careful reading of the text.

21. (T/F) The columns of a matrix A are linearly independent if
the equation Ax = 0 has the trivial solution.

22. (T/F) Two vectors are linearly dependent if and only if they
lie on a line through the origin.

23. (T/F) If S is a linearly dependent set, then each vector is a
linear combination of the other vectors in S .

24. (T/F) If a set contains fewer vectors than there are entries in
the vectors, then the set is linearly independent.

25. (T/F) The columns of any 4 � 5 matrix are linearly
dependent.

26. (T/F) If x and y are linearly independent, and if z is in Span
fx; yg, then fx; y; zg is linearly dependent.

27. (T/F) If x and y are linearly independent, and if fx; y; zg is
linearly dependent, then z is in Span fx; yg.

28. (T/F) If a set inRn is linearly dependent, then the set contains
more vectors than there are entries in each vector.

In Exercises 29–32, describe the possible echelon forms of the
matrix. Use the notation of Example 1 in Section 1.2.

29. A is a 3 � 3 matrix with linearly independent columns.

30. A is a 2 � 2 matrix with linearly dependent columns.

31. A is a 4 � 2 matrix, A D Œa1 a2�, and a2 is not a multiple
of a1.

32. A is a 4 � 3 matrix, A D Œa1 a2 a3�, such that fa1; a2g is
linearly independent and a3 is not in Span fa1; a2g.
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33. How many pivot columns must a 7 � 5 matrix have if its
columns are linearly independent? Why?

34. How many pivot columns must a 5 � 7 matrix have if its
columns span R5? Why?

35. Construct 3 � 2 matrices A and B such that Ax D 0 has only
the trivial solution and Bx D 0 has a nontrivial solution.

36. a. Fill in the blank in the following statement: “If A is
an m � n matrix, then the columns of A are linearly
independent if and only if A has pivot columns.”

b. Explain why the statement in (a) is true.

Exercises 37 and 38 should be solved without performing row
operations. [Hint:Write Ax D 0 as a vector equation.]

37. GivenA D

2664
2 3 5

�5 1 �4

�3 �1 �4

1 0 1

3775, observe that the third column
is the sum of the first two columns. Find a nontrivial solution
of Ax D 0.

38. Given A D

24 5 1 8

�9 5 6

6 �5 �9

35, observe that the first col-
umn plus three times the second column equals the third
column. Find a nontrivial solution of Ax D 0.

Each statement in Exercises 39–44 is either true (in all cases)
or false (for at least one example). If false, construct a specific
example to show that the statement is not always true. Such an
example is called a counterexample to the statement. If a statement
is true, give a justification. (One specific example cannot explain
why a statement is always true. You will have to do more work
here than in Exercises 21–28.)

39. (T/F-C) If v1; : : : ; v4 are in R4 and v3 D 2v1 C v2, then
fv1; v2; v3; v4g is linearly dependent.

40. (T/F-C) If v1; : : : ; v4 are in R4 and v3 D 0, then
fv1; v2; v3; v4g is linearly dependent.

41. (T/F-C) If v1 and v2 are in R4 and v2 is not a scalar multiple
of v1, then fv1; v2g is linearly independent.

42. (T/F-C) If v1; : : : ; v4 are inR4 and v3 is not a linear combina-
tion of v1; v2; v4, then fv1; v2; v3; v4g is linearly independent.

43. (T/F-C) If v1; : : : ; v4 are in R4 and fv1; v2; v3g is linearly
dependent, then fv1; v2; v3; v4g is also linearly dependent.

44. (T/F-C) If v1; : : : ; v4 are linearly independent vectors in R4,
then fv1; v2; v3g is also linearly independent. [Hint: Think
about x1v1 C x2v2 C x3v3 C 0 � v4 D 0.]

45. Suppose A is an m � n matrix with the property that for all b
in Rm the equation Ax D b has at most one solution. Use the
definition of linear independence to explain why the columns
of A must be linearly independent.

46. Suppose an m � n matrix A has n pivot columns. Explain
why for each b in Rm the equation Ax D b has at most one
solution. [Hint: Explain why Ax D b cannot have infinitely
many solutions.]

T In Exercises 47 and 48, use as many columns ofA as possible to
construct a matrix B with the property that the equation Bx D 0
has only the trivial solution. Solve Bx D 0 to verify your work.

47. A D

2664
8 �3 0 �7 2

�9 4 5 11 �7

6 �2 2 �4 4

5 �1 7 0 10

3775

48. A D

266664
12 10 �6 �3 7 10

�7 �6 4 7 �9 5

9 9 �9 �5 5 �1

�4 �3 1 6 �8 9

8 7 �5 �9 11 �8

377775
T 49. With A and B as in Exercise 47 select a column v of A that

was not used in the construction of B and determine if v
is in the set spanned by the columns of B . (Describe your
calculations.)

T 50. Repeat Exercise 49 with the matrices A and B from Exercise
48. Then give an explanation for what you discover, assuming
that B was constructed as specified.

STUDY GUIDE offers additional
resources for mastering the
concept of linear independence. Solutions to Practice Problems

1. a. Yes. In each case, neither vector is amultiple of the other. Thus each set is linearly
independent.

b. No. The observation in Part (a), by itself, says nothing about the linear indepen-
dence of fu; v;w; zg.

c. No. When testing for linear independence, it is usually a poor idea to check if
one selected vector is a linear combination of the others. It may happen that
the selected vector is not a linear combination of the others and yet the whole
set of vectors is linearly dependent. In this practice problem, w is not a linear
combination of u, v, and z.Span{u, v, z}

w

x3

x2

x1
d. Yes, by Theorem 8. There are more vectors (four) than entries (three) in them.
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2. Applying the definition of linearly dependent to fv1; v2; v3g implies that there exist
scalars c1; c2, and c3, not all zero, such that

c1v1 C c2v2 C c3v3 D 0:

Adding 0 v4 D 0 to both sides of this equation results in

c1v1 C c2v2 C c3v3 C 0 v4 D 0:

Since c1; c2; c3 and 0 are not all zero, the set fv1; v2; v3; v4g satisfies the definition
of a linearly dependent set.

1.8 Introduction to Linear Transformations
The difference between a matrix equation Ax D b and the associated vector equation
x1a1 C � � � C xnan D b is merely a matter of notation. However, a matrix equation
Ax D b can arise in linear algebra (and in applications such as computer graphics and
signal processing) in a way that is not directly connected with linear combinations of
vectors. This happens when we think of the matrix A as an object that “acts” on a vector
x by multiplication to produce a new vector called Ax.

For instance, the equations

�
4 �3 1 3

2 0 5 1

�2664
1

1

1

1

3775 D � 5

8

�
and

�
4 �3 1 3

2 0 5 1

�2664
1

4

�1

3

3775 D � 0

0

�
6 6 6 6 6 6

A x b A u 0

say that multiplication by A transforms x into b and transforms u into the zero vector.
See Figure 1.

multiplication

by Ax

0

u 0

b

4 2

multiplication

by A

FIGURE 1 Transforming vectors via matrix
multiplication.

From this new point of view, solving the equation Ax D b amounts to finding
all vectors x in R4 that are transformed into the vector b in R2 under the “action” of
multiplication by A.

The correspondence from x to Ax is a function from one set of vectors to another.
This concept generalizes the common notion of a function as a rule that transforms one
real number into another.

A transformation (or function ormapping) T fromRn toRm is a rule that assigns
to each vector x inRn a vector T .x/ inRm. The setRn is called the domain of T , andRm
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is called the codomain of T . The notation T W Rn ! Rm indicates that the domain of T

isRn and the codomain isRm. For x inRn, the vector T .x/ inRm is called the image of x
(under the action of T ). The set of all images T .x/ is called the range of T . See Figure 2.

m

Range

T(x)

CodomainDomain

x

T

n

FIGURE 2 Domain, codomain, and range of
T W Rn ! Rm.

The new terminology in this section is important because a dynamic view of
matrix–vector multiplication is the key to understanding several ideas in linear algebra
and to building mathematical models of physical systems that evolve over time. Such
dynamical systems will be discussed in Sections 1.10, 4.8, and throughout Chapter 5.

Matrix Transformations
The rest of this section focuses on mappings associated with matrix multiplication. For
each x in Rn, T .x/ is computed as Ax, where A is an m � n matrix. For simplicity, we
sometimes denote such a matrix transformation by x 7!Ax. Observe that the domain of
T is Rn when A has n columns and the codomain of T is Rm when each column of A

has m entries. The range of T is the set of all linear combinations of the columns of A,
because each image T .x/ is of the form Ax.

EXAMPLE 1 Let A D

24 1 �3

3 5

�1 7

35, u D � 2

�1

�
, b D

24 3

2

�5

35, c D 24 3

2

5

35, and
define a transformation T W R2 ! R3 by T .x/ D Ax, so that

T .x/ D Ax D

24 1 �3

3 5

�1 7

35� x1

x2

�
D

24 x1 � 3x2

3x1 C 5x2

�x1 C 7x2

35
a. Find T .u/, the image of u under the transformation T .

b. Find an x in R2 whose image under T is b.

c. Is there more than one x whose image under T is b?

d. Determine if c is in the range of the transformation T .

SOLUTION

a. Compute

T .u/ D Au D

24 1 �3

3 5

�1 7

35� 2

�1

�
D

24 5

1

�9

35

T

x2

u 5 2
21

5
1T(u) 5

29

x1

x3

x1

x2

b. Solve T .x/ D b for x. That is, solve Ax D b, or24 1 �3

3 5

�1 7

35� x1

x2

�
D

24 3

2

�5

35 (1)
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Using the method discussed in Section 1.4, row reduce the augmented matrix:24 1 �3 3

3 5 2

�1 7 �5

35 � 24 1 �3 3

0 14 �7

0 4 �2

35 � 24 1 �3 3

0 1 �:5

0 0 0

35 � 24 1 0 1:5

0 1 �:5

0 0 0

35 (2)

Hence x1 D 1:5, x2 D �:5, and x D
�

1:5

�:5

�
. The image of this x under T is the given

vector b.

c. Any x whose image under T is b must satisfy equation (1). From (2), it is clear that
equation (1) has a unique solution. So there is exactly one x whose image is b.

d. The vector c is in the range of T if c is the image of some x in R2, that is, if c D T .x/

for some x. This is just another way of asking if the system Ax D c is consistent. To
find the answer, row reduce the augmented matrix:24 1 �3 3

3 5 2

�1 7 5

35 � 24 1 �3 3

0 14 �7

0 4 8

35 � 24 1 �3 3

0 1 2

0 14 �7

35 � 24 1 �3 3

0 1 2

0 0 �35

35
The third equation, 0 D �35, shows that the system is inconsistent. So c is not in the
range of T .

The question in Example 1(c) is a uniqueness problem for a system of linear
equations, translated here into the language of matrix transformations: Is b the image
of a unique x in Rn? Similarly, Example 1(d) is an existence problem: Does there exist
an x whose image is c?

The next two matrix transformations can be viewed geometrically. They reinforce
the dynamic view of a matrix as something that transforms vectors into other vectors.
Section 2.7 contains other interesting examples connected with computer graphics.

EXAMPLE 2 If A D

24 1 0 0

0 1 0

0 0 0

35, then the transformation x 7!Ax projects

points in R3 onto the x1x2-plane because24 x1

x2

x3

35 7! 24 1 0 0

0 1 0

0 0 0

3524 x1

x2

x3

35 D 24 x1

x2

0

35
See Figure 3.

x3

0

x1

x2

FIGURE 3

A projection transformation.

EXAMPLE 3 Let A D

�
1 2

0 1

�
. The transformation T W R2 ! R2 defined by

T .x/ D Ax is called a shear transformation. It can be shown that if T acts on each
point in the 2 � 2 square shown in Figure 4, then the set of images forms the sheared
parallelogram. The key idea is to show that T maps line segments onto line segments
(as shown in Exercise 35) and then to check that the corners of the square map onto

the vertices of the parallelogram. For instance, the image of the point u D
�

0

2

�
is

sheep

sheared sheep

T .u/ D

�
1 2

0 1

��
0

2

�
D

�
4

2

�
, and the image of

�
2

2

�
is
�

1 2

0 1

��
2

2

�
D

�
6

2

�
. T

deforms the square as if the top of the square were pushed to the right while the base is
held fixed. Shear transformations appear in physics, geology, and crystallography.
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T

2

x2

x1
2

2

x2

6
x1

2

FIGURE 4 A shear transformation.

Linear Transformations
Theorem 5 in Section 1.4 shows that if A is m � n, then the transformation x 7! Ax has
the properties

A.uC v/ D AuC Av and A.cu/ D cAu

for all u; v inRn and all scalars c. These properties, written in function notation, identify
the most important class of transformations in linear algebra.

DEFINITION A transformation (or mapping) T is linear if

(i) T .uC v/ D T .u/C T .v/ for all u; v in the domain of T ;

(ii) T .cu/ D cT .u/ for all scalars c and all u in the domain of T .

Everymatrix transformation is a linear transformation. Important examples of linear
transformations that are not matrix transformations will be discussed in Chapters 4 and 5.

Linear transformations preserve the operations of vector addition and scalar mul-
tiplication. Property (i) says that the result T .uC v/ of first adding u and v in Rn and
then applying T is the same as first applying T to u and to v and then adding T .u/ and
T .v/ in Rm. These two properties lead easily to the following useful facts.

If T is a linear transformation, then

T .0/ D 0 (3)

and
T .cuC dv/ D cT .u/C dT .v/ (4)

for all vectors u, v in the domain of T and all scalars c; d .

Property (3) follows from condition (ii) in the definition, because T .0/ D T .0u/ D

0T .u/ D 0. Property (4) requires both (i) and (ii):

T .cuC dv/ D T .cu/C T .dv/ D cT .u/C dT .v/

Observe that if a transformation satisfies (4) for all u, v and c; d, it must be linear.
(Set c D d D 1 for preservation of addition, and set d D 0 for preservation of scalar
multiplication.) Repeated application of (4) produces a useful generalization:

T .c1v1 C � � � C cpvp/ D c1T .v1/C � � � C cpT .vp/ (5)
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In engineering and physics, (5) is referred to as a superposition principle. Think of
v1; : : : ; vp as signals that go into a system and T .v1/; : : : ; T .vp/ as the responses of that
system to the signals. The system satisfies the superposition principle if whenever an
input is expressed as a linear combination of such signals, the system’s response is the
same linear combination of the responses to the individual signals. We will return to this
idea in Chapter 4.

EXAMPLE 4 Given a scalar r , define T W R2 ! R2 by T .x/ D rx. T is called a
contraction when 0 � r � 1 and a dilation when r > 1. Let r D 3, and show that T is
a linear transformation.

SOLUTION Let u, v be in R2 and let c; d be scalars. Then

T .cuC dv/ D 3.cuC dv/ Definition of T

D 3cuC 3dv

D c.3u/C d.3v/

)
Vector arithmetic

D cT .u/C dT .v/

Thus T is a linear transformation because it satisfies (4). See Figure 5.

T(u)

x1

x2

x1

T

u

x2

FIGURE 5 A dilation transformation.

EXAMPLE 5 Define a linear transformation T W R2 ! R2 by

T .x/ D

�
0 �1

1 0

��
x1

x2

�
D

�
�x2

x1

�
Find the images under T of u D

�
4

1

�
, v D

�
2

3

�
, and uC v D

�
6

4

�
.

SOLUTION

T .u/ D

�
0 �1

1 0

��
4

1

�
D

�
�1

4

�
; T .v/ D

�
0 �1

1 0

��
2

3

�
D

�
�3

2

�
;

T .uC v/ D

�
0 �1

1 0

��
6

4

�
D

�
�4

6

�
Note that T .uC v/ is obviously equal to T .u/C T .v/. It appears from Figure 6 that
T rotates u, v, and uC v counterclockwise about the origin through 90ı. In fact, T

transforms the entire parallelogram determined by u and v into the one determined by
T .u/ and T .v/. (See Exercise 36.)
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T

x1

x2

v

u

T(u 1 v)

T(u)

T(v)

u 1 v

FIGURE 6 A rotation transformation.

The final example is not geometrical; instead, it shows how a linear mapping can
transform one type of data into another.

EXAMPLE 6 A company manufactures two products, B and C. Using data from
Example 7 in Section 1.3, we construct a “unit cost” matrix, U D Œ b c �, whose
columns describe the “costs per dollar of output” for the products:

U D

Product
B C24 :45 :40

:25 :30

:15 :15

35 Materials
Labor
Overhead

Let x D .x1; x2/ be a “production” vector, corresponding to x1 dollars of product B and
x2 dollars of product C, and define T W R2 ! R3 by

T .x/ D U x D x1

24 :45

:25

:15

35C x2

24 :40

:30

:15

35 D 24 Total cost of materials
Total cost of labor
Total cost of overhead

35
The mapping T transforms a list of production quantities (measured in dollars) into a
list of total costs. The linearity of this mapping is reflected in two ways:

1. If production is increased by a factor of, say, 4, from x to 4x, then the costs will
increase by the same factor, from T .x/ to 4T .x/.

2. If x and y are production vectors, then the total cost vector associated with the
combined production xC y is precisely the sum of the cost vectors T .x/ and
T .y/.

Practice Problems

1. Suppose T W R5 ! R2 and T .x/ D Ax for some matrix A and for each x in R5.
How many rows and columns does A have?

2. Let A D

�
1 0

0 �1

�
. Give a geometric description of the transformation x 7! Ax.

3. The line segment from 0 to a vector u is the set of points of the form tu, where
0 � t � 1. Show that a linear transformation T maps this segment into the segment
between 0 and T .u/.



1.8 Introduction to Linear Transformations 97

1.8 Exercises

1. LetA D
�

2 0

0 2

�
, and defineT W R2 ! R2 byT .x/ D Ax.

Find the images under T of u D
�

1

�3

�
and v D

�
a

b

�
.

2. Let A D

24 :5 0 0

0 :5 0

0 0 :5

35, u D 24 1

0

�4

35, and v D

24 a

b

c

35.
Define T W R3 ! R3 by T .x/ D Ax. Find T .u/ and T .v/.

In Exercises 3–6, with T defined by T .x/ D Ax, find a vector x
whose image under T is b, and determine whether x is unique.

3. A D

24 1 0 �2

�2 1 6

3 �2 �5

35, bD 24 �1

7

�3

35
4. A D

24 1 �3 2

0 1 �4

3 �5 �9

35, bD 24 6

�7

�9

35
5. A D

�
1 �5 �7

�3 7 5

�
, bD

�
�2

�2

�

6. A D

2664
1 �2 1

3 �4 5

0 1 1

�3 5 �4

3775, b D
2664

1

9

3

�6

3775
7. Let A be a 4 � 6 matrix. What must a and b be in order to

define T W Ra ! Rb by T .x/ D Ax?

8. How many rows and columns must a matrix A have in order
to define a mapping from R3 into R6 by the rule T .x/ D Ax?

For Exercises 9 and 10, find all x in R4 that are mapped into the
zero vector by the transformation x 7!Ax for the given matrix A.

9. A D

24 1 �4 7 �5

0 1 �4 3

2 �6 6 �4

35

10. A D

2664
1 3 9 2

1 0 3 �4

0 1 2 3

�2 3 0 5

3775
11. Let b D

24 �1

1

0

35, and letA be the matrix in Exercise 9. Is b in

the range of the linear transformation x 7!Ax? Why or why
not?

12. Let b D

2664
�1

3

�1

4

3775, and let A be the matrix in Exercise 10. Is

b in the range of the linear transformation x 7!Ax? Why or
why not?

In Exercises 13–16, use a rectangular coordinate system to plot

u D
�

5

2

�
, v D

�
�2

4

�
, and their images under the given transfor-

mation T . (Make a separate and reasonably large sketch for each
exercise.) Describe geometrically what T does to each vector x
in R2.

13. T .x/ D

�
�1 0

0 �1

� �
x1

x2

�

14. T .x/ D

�
:5 0

0 :5

� �
x1

x2

�

15. T .x/ D

�
0 0

0 1

� �
x1

x2

�

16. T .x/ D

�
0 1

1 0

� �
x1

x2

�
17. Let T W R2 ! R2 be a linear transformation that maps

u D
�

2

1

�
into

�
3

4

�
and maps v D

�
1

2

�
into

�
1

�5

�
. Use the

fact that T is linear to find the images under T of 5u, 4v, and
5uC 4v.

18. The figure shows vectors u, v, and w, along with the images
T .u/ and T .v/ under the action of a linear transformation
T W R2 ! R2. Copy this figure carefully, and draw the image
T .w/ as accurately as possible. [Hint: First, writew as a linear
combination of u and v.]

uw

v

T(v)

T(u)

x2 x2

x1x1

19. Let e1 D

�
1

0

�
, e2 D

�
0

1

�
, y1 D

�
2

5

�
, and y2 D

�
�1

6

�
, and

let T W R2 ! R2 be a linear transformation that maps e1

into y1 and maps e2 into y2. Find the images of
�

5

�3

�
and�

x1

x2

�
.

20. Let x D
�

x1

x2

�
, v1 D

�
�3

5

�
, and v1 D

�
2

�9

�
, and let

T W R2 ! R2 be a linear transformation that maps x into
x1v1 C x2v2. Find a matrix A such that T .x/ is Ax for
each x.
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In Exercises 21–30, mark each statement True or False (T/F).
Justify each answer.

21. (T/F) A linear transformation is a special type of function.

22. (T/F) Every matrix transformation is a linear transformation.

23. (T/F) If A is a 3 � 5 matrix and T is a transformation defined
by T .x/ D Ax, then the domain of T is R3.

24. (T/F) The codomain of the transformation x 7! Ax is the set
of all linear combinations of the columns of A.

25. (T/F) If A is an m � n matrix, then the range of the transfor-
mation x 7! Ax is Rm.

26. (T/F) If T W Rn ! Rm is a linear transformation and if c is in
Rm, then a uniqueness question is “Is c in the range of T ?”

27. (T/F) Every linear transformation is a matrix transformation.

28. (T/F) A linear transformation preserves the operations of
vector addition and scalar multiplication.

29. (T/F) A transformation T is linear if and only if T .c1v1 C

c2v2/ D c1T .v1/C c2T .v2/ for all v1 and v2 in the domain
of T and for all scalars c1 and c2.

30. (T/F) The superposition principle is a physical description of
a linear transformation.

31. Let T W R2 ! R2 be the linear transformation that reflects
each point through the x1-axis. (See Practice Problem 2.)
Make two sketches similar to Figure 6 that illustrate prop-
erties (i) and (ii) of a linear transformation.

32. Suppose vectors v1; : : : ; vp spanRn, and let T W Rn ! Rn be
a linear transformation. Suppose T .vi / D 0 for i D 1; : : : ; p.
Show that T is the zero transformation. That is, show that if
x is any vector in Rn, then T .x/ D 0.

33. Given v ¤ 0 and p inRn, the line through p in the direction of
v has the parametric equation x D pC tv. Show that a linear
transformation T W Rn ! Rn maps this line onto another line
or onto a single point (a degenerate line).

34. Let u and v be linearly independent vectors in R3, and let P

be the plane through u, v, and 0. The parametric equation
of P is x D suC tv (with s; t in R). Show that a linear
transformation T W R3 ! R3 maps P onto a plane through
0, or onto a line through 0, or onto just the origin in R3. What
must be true about T .u/ and T .v/ in order for the image of
the plane P to be a plane?

35. a. Show that the line through vectors p and q in Rn may be
written in the parametric form x D .1 � t /pC tq. (Refer
to the figure with Exercises 25 and 26 in Section 1.5.)

b. The line segment from p to q is the set of points of the
form .1 � t/pC tq for 0 � t � 1 (as shown in the figure

below). Show that a linear transformation T maps this line
segment onto a line segment or onto a single point.

(t 5 1)  q (12 t)p 1 tq
x

(t 5 0) p

36. Let u and v be vectors inRn. It can be shown that the setP of
all points in the parallelogram determined by u and v has the
form auC bv, for 0 � a � 1, 0 � b � 1. Let T W Rn ! Rm

be a linear transformation. Explain why the image of a point
in P under the transformation T lies in the parallelogram
determined by T .u/ and T .v/.

37. Define f W R! R by f .x/ D mx C b.

a. Show that f is a linear transformation when b D 0.

b. Find a property of a linear transformation that is violated
when b ¤ 0.

c. Why is f called a linear function?

38. An affine transformation T W Rn ! Rm has the form
T .x/ DAxC b, withA anm � nmatrix and b inRm. Show
that T is not a linear transformation when b ¤ 0. (Affine
transformations are important in computer graphics.)

39. Let T W Rn ! Rm be a linear transformation, and let
fv1; v2; v3g be a linearly dependent set in Rn. Explain why
the set fT .v1/; T .v2/; T .v3/g is linearly dependent.

In Exercises 40–44, column vectors are written as rows, such as
x D .x1; x2/, and T .x/ is written as T .x1; x2/.

40. Show that the transformation T defined by T .x1; x2/ D

.4x1 � 2x2; 3jx2j/ is not linear.

41. Show that the transformation T defined by T .x1; x2/ D

.2x1 � 3x2; x1 C 4; 5x2/ is not linear.

42. Let T W Rn ! Rm be a linear transformation. Show that if
T maps two linearly independent vectors onto a linearly
dependent set, then the equation T .x/ D 0 has a nontrivial
solution. [Hint: Suppose u and v in Rn are linearly inde-
pendent and yet T .u/ and T .v/ are linearly dependent. Then
c1T .u/C c2T .v/ D 0 for some weights c1 and c2, not both
zero. Use this equation.]

43. LetT W R3 ! R3 be the transformation that reflects each vec-
tor x D .x1; x2; x3/ through the plane x3 D 0 onto T .x/ D

.x1; x2;�x3/. Show that T is a linear transformation. [See
Example 4 for ideas.]

44. Let T W R3 ! R3 be the transformation that projects each
vector x D .x1; x2; x3/ onto the plane x2 D 0, so T .x/ D

.x1; 0; x3/. Show that T is a linear transformation.
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T In Exercises 45 and 46, the given matrix determines a linear
transformation T . Find all x such that T .x/ D 0.

45.

2664
4 �2 5 �5

�9 7 �8 0

�6 4 5 3

5 �3 8 �4

3775 46.

2664
�9 �4 �9 4

5 �8 �7 6

7 11 16 �9

9 �7 �4 5

3775

T 47. Let b D

2664
7

5

9

7

3775 and let A be the matrix in Exercise 45. Is b

in the range of the transformation x 7!Ax? If so, find an x
whose image under the transformation is b.

T 48. Let b D

2664
�7

�7

13

�5

3775 and let A be the matrix in Exercise 46. Is b

in the range of the transformation x 7!Ax? If so, find an x
whose image under the transformation is b.

STUDY GUIDE offers additional
resources for mastering linear
transformations.

Solutions to Practice Problems

1. A must have five columns for Ax to be defined. A must have two rows for the

Au

u

x2

x1

A

The transformation x      Ax.

v

v

Ax

x

codomain of T to be R2.

2. Plot some random points (vectors) on graph paper to see what happens. A point such
as .4; 1/ maps into .4;�1/. The transformation x 7!Ax reflects points through the
x-axis (or x1-axis).

3. Let x D tu for some t such that 0 � t � 1. Since T is linear, T .tu/ D t T .u/, which
is a point on the line segment between 0 and T .u/.

1.9 The Matrix of a Linear Transformation
Whenever a linear transformation T arises geometrically or is described in words, we
usually want a “formula” for T .x/. The discussion that follows shows that every linear
transformation from Rn to Rm is actually a matrix transformation x 7!Ax and that
important properties of T are intimately related to familiar properties of A. The key to
finding A is to observe that T is completely determined by what it does to the columns
of the n � n identity matrix In.

EXAMPLE 1 The columns of I2 D

�
1 0

0 1

�
are e1 D

�
1

0

�
and e2 D

�
0

1

�
.

Suppose T is a linear transformation from R2 into R3 such that

T .e1/ D

24 5

�7

2

35 and T .e2/ D

24�3

8

0

35
With no additional information, find a formula for the image of an arbitrary x in R2.

x1

x2

e2 5

5

0
1

e1
1
0

SOLUTION Write

x D
�

x1

x2

�
D x1

�
1

0

�
C x2

�
0

1

�
D x1e1 C x2e2 (1)

Since T is a linear transformation,

T .x/ D x1T .e1/C x2T .e2/ (2)

D x1

24 5

�7

2

35C x2

24�3

8

0

35 D 24 5x1 � 3x2

�7x1 C 8x2

2x1 C 0

35
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The step from equation (1) to equation (2) explains why knowledge of T .e1/ and
T .e2/ is sufficient to determine T .x/ for any x. Moreover, since (2) expresses T .x/ as a
linear combination of vectors, we can put these vectors into the columns of a matrix A

and write (2) as

T .x/ D
�

T .e1/ T .e2/
� � x1

x2

�
D Ax

THEOREM 10 Let T W Rn ! Rm be a linear transformation. Then there exists a unique matrix A

such that
T .x/ D Ax for all x in Rn

In fact, A is the m � n matrix whose j th column is the vector T .ej /, where ej is
the j th column of the identity matrix in Rn:

A D
�

T .e1/ � � � T .en/
�

(3)

PROOF Write x D Inx D Œ e1 � � � en �x D x1e1 C � � � C xnen, and use the linearity
of T to compute

T .x/ D T .x1e1 C � � � C xnen/ D x1T .e1/C � � � C xnT .en/

D
�

T .e1/ � � � T .en/
�264 x1

:::

xn

375 D Ax

The uniqueness of A is treated in Exercise 41.

The matrix A in (3) is called the standard matrix for the linear transforma-
tion T .

We know now that every linear transformation from Rn to Rm can be viewed as
a matrix transformation, and vice versa. The term linear transformation focuses on a
property of a mapping, while matrix transformation describes how such a mapping is
implemented, as Examples 2 and 3 illustrate.

EXAMPLE 2 Find the standard matrix A for the dilation transformation T .x/ D 3x,
for x in R2.

SOLUTION Write

T .e1/ D 3e1 D

�
3

0

�
and T .e2/ D 3e2 D

�
0

3

�
? ?

A D

�
3 0

0 3

�
EXAMPLE 3 Let T W R2 ! R2 be the transformation that rotates each point in R2

about the origin through an angle ', with counterclockwise rotation for a positive angle.
We could show geometrically that such a transformation is linear. (See Figure 6 in
Section 1.8.) Find the standard matrix A of this transformation.
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SOLUTION
�

1

0

�
rotates into

�
cos'

sin'

�
, and

�
0

1

�
rotates into

�
� sin'

cos'

�
. See Figure 1.

By Theorem 10,

A D

�
cos' � sin'

sin' cos'

�
Example 5 in Section 1.8 is a special case of this transformation, with ' D �=2.

(2sin w, cos w) 

(cos w, sin w)

(1, 0)

(0, 1)

w

w x1

x2

FIGURE 1 A rotation transformation.

Geometric Linear Transformations of R2

Examples 2 and 3 illustrate linear transformations that are described geometrically.
Tables 1–4 illustrate other common geometric linear transformations of the plane.
Because the transformations are linear, they are determined completely by what they
do to the columns of I2. Instead of showing only the images of e1 and e2, the tables
show what a transformation does to the unit square (Figure 2).

Other transformations can be constructed from those listed in Tables 1–4 by
applying one transformation after another. For instance, a horizontal shear could be
followed by a reflection in the x2-axis. Section 2.1 will show that such a composition of
linear transformations is linear. (Also, see Exercise 44.)

x1

x2

1
0

0
1

FIGURE 2

The unit square.

Existence and Uniqueness Questions
The concept of a linear transformation provides a new way to understand the existence
and uniqueness questions asked earlier. The next two definitions give the appropriate
terminology for transformations.

DEFINITION A mapping T W Rn ! Rm is said to be onto Rm if each b in Rm is the image of at
least one x in Rn.

Equivalently, T is onto Rm when the range of T is all of the codomain Rm. That is,
T maps Rn onto Rm if, for each b in the codomain Rm, there exists at least one solution
of T .x/ D b. “Does T map Rn onto Rm?” is an existence question. The mapping T is
not onto when there is some b in Rm for which the equation T .x/ D b has no solution.
See Figure 3.

m

T is onto m

n

Domain Range

T is not onto m

T

n

Domain Range

m

T

FIGURE 3 Is the range of T all of Rm?
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TABLE 1 Reflections

Transformation Image of the Unit Square Standard Matrix

Reflection through
the x1-axis 

01
210

210
021

021
10

021
210

10
01

Reflection through
the x2-axis

Reflection through
the line x2 5 x1

x2 5 2x1

Reflection through
the line x2 5 2x1

21
0

21
0

0
21

0
21

x1

x2

Reflection through
the origin

x1

x2

x1

x2

1
0

0
21

x1

x2

0
1

21
0

x1

x2

1
0

0
1

x2 5 x1
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TABLE 2 Contractions and Expansions

Transformation Image of the Unit Square Standard Matrix

Horizontal
contraction
and expansion

Vertical
contraction
and expansion

0k
10

01
k0

0 , k , 1

0 , k , 1 k . 1

k . 1

0
1

1
0

1
0

0
k

0
1

0
k

k
0

k
0

x1

x2

x2

x1

x2

x1

x2

x1

TABLE 3 Shears

Transformation Image of the Unit Square Standard Matrix

Horizontal shear k1
10

01
1k

k , 0 k . 0

0
1

0
1

1
0

k
1

k
1

1
k

1
k

Vertical shear

k , 0 k . 0

x2

k k 1
0

k

k

x2

x1

x2

x1

x2

x1x1
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TABLE 4 Projections

Transformation Image of the Unit Square Standard Matrix

01
00

00
10

1
0

0
0

0
1

Projection onto
the x1-axis

Projection onto
the x2-axis

x1

x2

0
0

x1

x2

DEFINITION A mapping T W Rn ! Rm is said to be one-to-one if each b in Rm is the image of
at most one x in Rn.

Equivalently,T is one-to-one if, for each b inRm, the equationT .x/ D b has either a
unique solution or none at all. “Is T one-to-one?” is a uniqueness question. The mapping
T is not one-to-one when some b in Rm is the image of more than one vector in Rn. If
there is no such b, then T is one-to-one. See Figure 4.

m

T is not one-to-one T is one-to-one

TT

m
n n

0 000

RangeRangeDomain Domain

FIGURE 4 Is every b the image of at most one vector?

The projection transformations shown in Table 4 are not one-to-one and do notmap
R2 onto R2. The transformations in Tables 1, 2, and 3 are one-to-one and do map R2

onto R2. Other possibilities are shown in the two examples below.
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Example 4 and the theorems that follow show how the function properties of being
one-to-one and mapping onto are related to important concepts studied earlier in this
chapter.

EXAMPLE 4 Let T be the linear transformation whose standard matrix is

A D

24 1 �4 8 1

0 2 �1 3

0 0 0 5

35
Does T map R4 onto R3? Is T a one-to-one mapping?

SOLUTION Since A happens to be in echelon form, we can see at once that A has a
pivot position in each row. By Theorem 4 in Section 1.4, for each b in R3, the equation
Ax D b is consistent. In other words, the linear transformation T maps R4 (its domain)
onto R3. However, since the equation Ax D b has a free variable (because there are four
variables and only three basic variables), each b is the image of more than one x. That
is, T is not one-to-one.

THEOREM 11 Let T W Rn ! Rm be a linear transformation. Then T is one-to-one if and only if
the equation T .x/ D 0 has only the trivial solution.

Remark: To prove a theorem that says “statement P is true if and only if statement Q is
true,” one must establish two things: (1) If P is true, then Q is true and (2) If Q is true,
then P is true. The second requirement can also be established by showing (2a): If P is
false, then Q is false. (This is called contrapositive reasoning.) This proof uses (1) and
(2a) to show that P and Q are either both true or both false.

PROOF Since T is linear, T .0/ D 0. If T is one-to-one, then the equation T .x/ D 0
has at most one solution and hence only the trivial solution. If T is not one-to-one, then
there is a b that is the image of at least two different vectors in Rn—say, u and v. That
is, T .u/ D b and T .v/ D b. But then, since T is linear,

T .u � v/ D T .u/ � T .v/ D b � b D 0

The vector u � v is not zero, since u ¤ v. Hence the equation T .x/ D 0 has more than
one solution. So, either the two conditions in the theorem are both true or they are both
false.

THEOREM 12 Let T W Rn ! Rm be a linear transformation, and let A be the standard matrix for
T . Then:

a. T maps Rn onto Rm if and only if the columns of A span Rm;

b. T is one-to-one if and only if the columns of A are linearly independent.

Remark: “If and only if” statements can be linked together. For example if “P if and
only if Q” is known and “Q if and only if R” is known, then one can conclude “P if
and only if R.” This strategy is used repeatedly in this proof.
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PROOF

a. By Theorem 4 in Section 1.4, the columns of A span Rm if and only if for each b in
Rm the equation Ax D b is consistent—in other words, if and only if for every b, the
equation T .x/ D b has at least one solution. This is true if and only if T maps Rn

onto Rm.

b. The equations T .x/ D 0 and Ax D 0 are the same except for notation. So, by
Theorem 11, T is one-to-one if and only if Ax D 0 has only the trivial solution.
This happens if and only if the columns ofA are linearly independent, as was already
noted in the boxed statement (3) in Section 1.7.

Statement (a) in Theorem 12 is equivalent to the statement “T maps Rn onto Rm if
and only if every vector inRm is a linear combination of the columns ofA.” See Theorem
4 in Section 1.4.

In the next example and in some exercises that follow, column vectors are written in
rows, such as x D .x1; x2/, and T .x/ is written as T .x1; x2/ instead of the more formal
T ..x1; x2//.

EXAMPLE 5 Let T .x1; x2/ D .3x1 C x2, 5x1 C 7x2, x1 C 3x2/. Show that T is a
one-to-one linear transformation. Does T map R2 onto R3?

SOLUTION When x and T .x/ are written as column vectors, you can determine the
standard matrix of T by inspection, visualizing the row–vector computation of each
entry in Ax.

T .x/ D

24 3x1 C x2

5x1 C 7x2

x1 C 3x2

35 D 24 ? ?
? ?
? ?

35� x1

x2

�
D

24 3 1

5 7

1 3

35� x1

x2

�
(4)

A

So T is indeed a linear transformation, with its standard matrix A shown in (4). The
columns ofA are linearly independent because they are notmultiples. By Theorem 12(b),
T is one-to-one. To decide if T is onto R3, examine the span of the columns of A. Since
A is 3 � 2, the columns of A span R3 if and only if A has 3 pivot positions, by Theorem
4. This is impossible, since A has only 2 columns. So the columns of A do not span R3,
and the associated linear transformation is not onto R3.

x2

The transformation T is not
onto     .3

e2

e1
x1

x2

T

T

x3

x1

Span{a1, a2}

a1

a2

Practice Problems

1. Let T W R2 ! R2 be the transformation that first performs a horizontal shear that
maps e2 into e2 � :5e1 (but leaves e1 unchanged) and then reflects the result through
the x2-axis. Assuming that T is linear, find its standard matrix. [Hint:Determine the
final location of the images of e1 and e2.]

2. SupposeA is a 7 � 5matrix with 5 pivots. Let T .x/ D Ax be a linear transformation
from R5 into R7. Is T a one-to-one linear transformation? Is T onto R7?

1.9 Exercises
In Exercises 1–10, assume that T is a linear transformation. Find
the standard matrix of T .

1. T W R2 ! R4,T .e1/ D .2; 1; 2; 1/ andT .e2/ D .�5; 2; 0; 0/,
where e1 D .1; 0/ and e2 D .0; 1/.

2. T W R3 ! R2, T .e1/ D .1; 3/, T .e2/ D .4; 2/, and T .e3/ D

.�5; 4/, where e1, e2, e3 are the columns of the 3 � 3 identity
matrix.

3. T W R2 ! R2 rotates points (about the origin) through 3�=2

radians (in the counterclockwise direction).
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4. T W R2 ! R2 rotates points (about the origin) through ��=4

radians (since the number is negative, the actual rotation is
clockwise). [Hint: T .e1/ D .1=

p
2;�1=

p
2/.]

5. T W R2 ! R2 is a vertical shear transformation that maps e1

into e1 � 2e2 but leaves the vector e2 unchanged.

6. T W R2 ! R2 is a horizontal shear transformation that leaves
e1 unchanged and maps e2 into e2 C 5e1.

7. T W R2 ! R2 first rotates points through �3�=4 radians
(since the number is negative, the actual rotation is clockwise)
and then reflects points through the horizontal x1-axis. [Hint:
T .e1/ D .�1=

p
2; 1=
p

2/.]

8. T W R2 ! R2 first reflects points through the vertical x2-axis
and then reflects points through the line x2 D x1.

9. T W R2 ! R2 first performs a horizontal shear that trans-
forms e2 into e2 � 3e1 (leaving e1 unchanged) and then re-
flects points through the line x2 D �x1.

10. T W R2 ! R2 first reflects points through the vertical x2-axis
and then rotates points 3�=2 radians.

11. A linear transformation T W R2 ! R2 first reflects points
through the x1-axis and then reflects points through the x2-
axis. Show that T can also be described as a linear transfor-
mation that rotates points about the origin. What is the angle
of that rotation?

12. Show that the transformation in Exercise 8 is merely a rota-
tion about the origin. What is the angle of the rotation?

13. LetT W R2 ! R2 be the linear transformation such thatT .e1/

and T .e2/ are the vectors shown in the figure. Using the
figure, sketch the vector T .2; 1/.

T(e1) T(e2)

x1

x2

14. Let T W R2 ! R2 be a linear transformation with standard
matrix A D Œa1 a2�, where a1 and a2 are shown in the

figure. Using the figure, draw the image of
�
�1

3

�
under the

transformation T .

x1

x2

a2

a1

In Exercises 15 and 16, fill in the missing entries of the matrix,
assuming that the equation holds for all values of the variables.

15.

24 ‹ ‹ ‹

‹ ‹ ‹

‹ ‹ ‹

3524 x1

x2

x3

35 D 24 2x1 � 3x3

4x1

x1 � x2 C x3

35
16.

24 ‹ ‹

‹ ‹

‹ ‹

35� x1

x2

�
D

24 x1 � 3x2

�2x1 C x2

x1

35
In Exercises 17–20, show that T is a linear transformation by
finding a matrix that implements the mapping. Note that x1; x2; : : :

are not vectors but are entries in vectors.

17. T .x1; x2; x3; x4/ D .0; x1 C x2; x2 C x3; x3 C x4/

18. T .x1; x2/ D .2x2 � 3x1; x1 � 4x2; 0; x2/

19. T .x1; x2; x3/ D .x1 � 5x2 C 4x3; x2 � 6x3/

20. T .x1; x2; x3; x4/ D 2x1 C 3x3 � 4x4 .T W R4 ! R/

21. Let T W R2 ! R2 be a linear transformation such that
T .x1; x2/ D .x1 C x2; 4x1 C 5x2/. Find x such that T .x/ D

.3; 8/.

22. Let T W R2 ! R3 be a linear transformation such that
T .x1; x2/ D .x1 � 2x2;�x1 C 3x2; 3x1 � 2x2/. Find x such
that T .x/ D .�1; 4; 9/.

In Exercises 23–32, mark each statement True or False (T/F).
Justify each answer.

23. (T/F) A linear transformation T W Rn ! Rm is completely
determined by its effect on the columns of the n � n identity
matrix.

24. (T/F) A mapping T W Rn ! Rm is one-to-one if each vector
in Rn maps onto a unique vector in Rm.

25. (T/F) If T W R2 ! R2 rotates vectors about the origin
through an angle �, then T is a linear transformation.

26. (T/F) The columns of the standard matrix for a linear trans-
formation from Rn to Rm are the images of the columns of
the n � n identity matrix.

27. (T/F) When two linear transformations are performed one
after another, the combined effect may not always be a linear
transformation.

28. (T/F) Not every linear transformation from Rn to Rm is a
matrix transformation.

29. (T/F) A mapping T W Rn ! Rm is onto Rm if every vector x
in Rn maps onto some vector in Rm.

30. (T/F) The standard matrix of a linear transformation from
R2 to R2 that reflects points through the horizontal axis, the

vertical axis, or the origin has the form
�

a 0

0 d

�
, where a

and d are˙1.
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31. (T/F) A is a 3 � 2 matrix, then the transformation x 7! Ax
cannot be one-to-one.

32. (T/F) A is a 3 � 2 matrix, then the transformation x 7! Ax
cannot map R2 onto R3.

In Exercises 33–36, determine if the specified linear transforma-
tion is (a) one-to-one and (b) onto. Justify each answer.

33. The transformation in Exercise 17

34. The transformation in Exercise 2

35. The transformation in Exercise 19

36. The transformation in Exercise 14

In Exercises 37 and 38, describe the possible echelon forms of the
standard matrix for a linear transformation T . Use the notation of
Example 1 in Section 1.2.

37. T W R3 ! R4 is one-to-one.

38. T W R4 ! R3 is onto.

39. Let T W Rn ! Rm be a linear transformation, with A its
standard matrix. Complete the following statement to make
it true: “T is one-to-one if and only if A has pivot
columns.” Explain why the statement is true. [Hint: Look in
the exercises for Section 1.7.]

40. Let T W Rn ! Rm be a linear transformation, with A its
standard matrix. Complete the following statement to make
it true: “T maps Rn onto Rm if and only if A has pivot
columns.” Find some theorems that explainwhy the statement
is true.

41. Verify the uniqueness ofA in Theorem 10. Let T W Rn ! Rm

be a linear transformation such that T .x/ D Bx for some

m � n matrix B . Show that if A is the standard matrix for
T , then A D B . [Hint: Show that A and B have the same
columns.]

42. Why is the question “Is the linear transformation T onto?”
an existence question?

43. If a linear transformation T W Rn ! Rm maps Rn onto Rm,
can you give a relation between m and n? If T is one-to-one,
what can you say about m and n?

44. Let S W Rp ! Rn and T W Rn ! Rm be linear transforma-
tions. Show that the mapping x 7! T .S.x// is a linear trans-
formation (fromRp toRm). [Hint: Compute T .S.cuC dv//

for u; v in Rp and scalars c and d . Justify each step of the
computation, and explain why this computation gives the
desired conclusion.]

T In Exercises 45–48, let T be the linear transformation whose
standard matrix is given. In Exercises 45 and 46, decide if T is a
one-to-one mapping. In Exercises 47 and 48, decide if T maps R5

onto R5. Justify your answers.

45.

2664
�5 10 �5 4

8 3 �4 7

4 �9 5 �3

�3 �2 5 4

3775 46.

2664
7 5 4 �9

10 6 16 �4

12 8 12 7

�8 �6 �2 5

3775

47.

266664
4 �7 3 7 5

6 �8 5 12 �8

�7 10 �8 �9 14

3 �5 4 2 �6

�5 6 �6 �7 3

377775

48.

266664
9 13 5 6 �1

14 15 �7 �6 4

�8 �9 12 �5 �9

�5 �6 �8 9 8

13 14 15 2 11

377775
STUDY GUIDE offers additional
resources for mastering existence
and uniqueness.

Solution to Practice Problems

1. Follow what happens to e1 and e2. See Figure 5. First, e1 is unaffected by the shear
and then is reflected into �e1. So T .e1/ D �e1. Second, e2 goes to e2 � :5e1 by the
shear transformation. Since reflection through the x2-axis changes e1 into �e1 and
leaves e2 unchanged, the vector e2 � :5e1 goes to e2 C :5e1. So T .e2/ D e2 C :5e1.

1
0

1
0 0

21

Shear transformation Reflection through the x2-axis

x2

0
1

2.5
1

.5
1

x1

x2 x2

x1 x1

FIGURE 5 The composition of two transformations.
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Thus the standard matrix of T is�
T .e1/ T .e2/

�
D
�
�e1 e2 C :5e1

�
D

�
�1 :5

0 1

�
2. The standard matrix representation of T is the matrixA. SinceA has 5 columns and

5 pivots, there is a pivot in every column so the columns are linearly independent.
By Theorem 12, T is one-to-one. Since A has 7 rows and only 5 pivots, there is not
a pivot in every row hence the columns of A do not span R7. By Theorem 12, and
T is not onto.

1.10 Linear Models in Business, Science, and Engineering
The mathematical models in this section are all linear; that is, each describes a
problem by means of a linear equation, usually in vector or matrix form. The first
model concerns nutrition but actually is representative of a general technique in linear
programming problems. The second model comes from electrical engineering. The third
model introduces the concept of a linear difference equation, a powerful mathematical
tool for studying dynamic processes in a wide variety of fields such as engineering,
ecology, economics, telecommunications, and the management sciences. Linear models
are important because natural phenomena are often linear or nearly linear when the
variables involved are held within reasonable bounds. Also, linear models are more
easily adapted for computer calculation than are complex nonlinear models.

As you read about each model, pay attention to how its linearity reflects some
property of the system being modeled.

Constructing a Nutritious Weight-Loss Diet
The formula for the Cambridge Diet, a popular diet in the 1980s, was based on years
of research. A team of scientists headed by Dr. Alan H. Howard developed this diet at
Cambridge University after more than eight years of clinical work with obese patients.1

The very low-calorie powdered formula diet combines a precise balance of carbohydrate,
high-quality protein, and fat, together with vitamins, minerals, trace elements, and
electrolytes. Millions of persons have used the diet to achieve rapid and substantial
weight loss.

To achieve the desired amounts and proportions of nutrients, Dr. Howard had to
incorporate a large variety of foodstuffs in the diet. Each foodstuff supplied several of
the required ingredients, but not in the correct proportions. For instance, nonfat milk was
a major source of protein but contained too much calcium. So soy flour was used for
part of the protein because soy flour contains little calcium. However, soy flour contains
proportionally too much fat, so whey was added since it supplies less fat in relation to
calcium. Unfortunately, whey contains too much carbohydrate: : : :

The following example illustrates the problem on a small scale. Listed in Table 1
are three of the ingredients in the diet, together with the amounts of certain nutrients
supplied by 100 grams (g) of each ingredient.2

1 The first announcement of this rapid weight-loss regimen was given in the International Journal of Obesity
(1978) 2, 321–332.
2 Ingredients in the diet as of 1984; nutrient data for ingredients adapted from USDA Agricultural
Handbooks No. 8-1 and 8-6, 1976.
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TABLE 1 The Cambridge Diet

Amounts (g) Supplied per 100 g of Ingredient

Nutrient Nonfat milk Soy flour Whey
Amounts (g) Supplied by

Cambridge Diet in One Day

Protein 36 51 13 33

Carbohydrate 52 34 74 45

Fat 0 7 1.1 3

EXAMPLE 1 If possible, find some combination of nonfat milk, soy flour, and whey
to provide the exact amounts of protein, carbohydrate, and fat supplied by the diet in one
day (Table 1).

SOLUTION Let x1, x2, and x3, respectively, denote the number of units (100 g) of
these foodstuffs. One approach to the problem is to derive equations for each nutrient
separately. For instance, the product�

x1 units of
nonfat milk

�
�

�
protein per unit
of nonfat milk

�
gives the amount of protein supplied by x1 units of nonfat milk. To this amount, we
would then add similar products for soy flour and whey and set the resulting sum equal
to the amount of protein we need. Analogous calculations would have to be made for
each nutrient.

A more efficient method, and one that is conceptually simpler, is to consider a
“nutrient vector” for each foodstuff and build just one vector equation. The amount of
nutrients supplied by x1 units of nonfat milk is the scalar multiple

Scalar Vector�
x1 units of
nonfat milk

�
�

�
nutrients per unit
of nonfat milk

�
D x1a1 (1)

where a1 is the first column in Table 1. Let a2 and a3 be the corresponding vectors for soy
flour and whey, respectively, and let b be the vector that lists the total nutrients required
(the last column of the table). Then x2a2 and x3a3 give the nutrients supplied by x2 units
of soy flour and x3 units of whey, respectively. So the relevant equation is

x1a1 C x2a2 C x3a3 D b (2)

Row reduction of the augmentedmatrix for the corresponding system of equations shows
that 24 36 51 13 33

52 34 74 45

0 7 1.1 3

35 � � � � � 24 1 0 0 :277

0 1 0 :392

0 0 1 :233

35
To three significant digits, the diet requires .277 units of nonfat milk, .392 units of
soy flour, and .233 units of whey in order to provide the desired amounts of protein,
carbohydrate, and fat.

It is important that the values of x1, x2, and x3 found above are nonnegative. This is
necessary for the solution to be physically feasible. (How could you use �:233 units of
whey, for instance?) With a large number of nutrient requirements, it may be necessary
to use a larger number of foodstuffs in order to produce a system of equations with a
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“nonnegative” solution. Thusmany, many different combinations of foodstuffsmay need
to be examined in order to find a system of equations with such a solution. In fact, the
manufacturer of the Cambridge Diet was able to supply 31 nutrients in precise amounts
using only 33 ingredients.

The diet construction problem leads to the linear equation (2) because the amount
of nutrients supplied by each foodstuff can be written as a scalar multiple of a vector, as
in (1). That is, the nutrients supplied by a foodstuff are proportional to the amount of
the foodstuff added to the diet mixture. Also, each nutrient in the mixture is the sum of
the amounts from the various foodstuffs.

Problems of formulating specialized diets for humans and livestock occur fre-
quently. Usually they are treated by linear programming techniques. Our method of
constructing vector equations often simplifies the task of formulating such problems.

Linear Equations and Electrical Networks
Current flow in a simple electrical network can be described by a system of linear
equations. A voltage source such as a battery forces a current of electrons to flow through
the network. When the current passes through a resistor (such as a lightbulb or motor),
some of the voltage is “used up”; by Ohm’s law, this “voltage drop” across a resistor is
given by

V D RI

where the voltage V is measured in volts, the resistance R in ohms (denoted by �), and
the current flow I in amperes (amps, for short).

The network in Figure 1 contains three closed loops. The currents flowing in loops
1, 2, and 3 are denoted by I1; I2, and I3, respectively. The designated directions of such
loop currents are arbitrary. If a current turns out to be negative, then the actual direction
of current flow is opposite to that chosen in the figure. If the current direction shown is
away from the positive (longer) side of a battery ( ) around to the negative (shorter)
side, the voltage is positive; otherwise, the voltage is negative.

Current flow in a loop is governed by the following rule.

KIRCHHOFF’S VOLTAGE LAW

The algebraic sum of the RI voltage drops in one direction around a loop equals
the algebraic sum of the voltage sources in the same direction around the loop.

EXAMPLE 2 Determine the loop currents in the network in Figure 1.

1 V1 V

1 V1 V

4 V4 V

DC

BA

1 V

3 V

5 volts

20 volts

30 volts

I2

I1

I3

FIGURE 1

SOLUTION For loop 1, the current I1 flows through three resistors, and the sum of the
RI voltage drops is

4I1 C 4I1 C 3I1 D .4C 4C 3/I1 D 11I1

Current from loop 2 also flows in part of loop 1, through the short branch between A

and B . The associated RI drop there is 3I2 volts. However, the current direction for the
branch AB in loop 1 is opposite to that chosen for the flow in loop 2, so the algebraic
sum of all RI drops for loop 1 is 11I1 � 3I2. Since the voltage in loop 1 is C30 volts,
Kirchhoff’s voltage law implies that

11I1 � 3I2 D 30
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The equation for loop 2 is

�3I1 C 6I2 � I3 D 5

The term �3I1 comes from the flow of the loop 1 current through the branch AB (with
a negative voltage drop because the current flow there is opposite to the flow in loop 2).
The term 6I2 is the sum of all resistances in loop 2, multiplied by the loop current. The
term �I3 D �1 � I3 comes from the loop 3 current flowing through the 1-ohm resistor
in branch CD, in the direction opposite to the flow in loop 2. The loop 3 equation is

�I2 C 3I3 D �25

Note that the 5-volt battery in branch CD is counted as part of both loop 2 and loop 3,
but it is�5 volts for loop 3 because of the direction chosen for the current in loop 3. The
20-volt battery is negative for the same reason.

The loop currents are found by solving the system

11I1 � 3I2 D 30

�3I1 C 6I2 � I3 D 5

� I2 C 3I3 D �25

(3)

Row operations on the augmentedmatrix lead to the solution: I1 D 3 amps, I2 D 1 amp,
and I3 D �8 amps. The negative value of I3 indicates that the actual current in loop 3
flows in the direction opposite to that shown in Figure 1.

It is instructive to look at system (3) as a vector equation:

I1

24 11

�3

0

35
6
r1

C I2

24�3

6

�1

35
6
r2

C I3

24 0

�1

3

35
6
r3

D

24 30

5

�25

35
6
v

(4)

The first entry of each vector concerns the first loop, and similarly for the second and
third entries. The first resistor vector r1 lists the resistance in the various loops through
which current I1 flows. A resistance is written negatively when I1 flows against the flow
direction in another loop. Examine Figure 1 and see how to compute the entries in r1;
then do the same for r2 and r3. The matrix form of equation (4),

Ri D v; where R D Œ r1 r2 r3 � and i D

24 I1

I2

I3

35
provides a matrix version of Ohm’s law. If all loop currents are chosen in the same direc-
tion (say, counterclockwise), then all entries off the main diagonal of R will be negative.

The matrix equation Ri D v makes the linearity of this model easy to see at a
glance. For instance, if the voltage vector is doubled, then the current vector must
double. Also, a superposition principle holds. That is, the solution of equation (4) is the
sum of the solutions of the equations

Ri D

24 30

0

0

35; Ri D

24 0

5

0

35; and Ri D

24 0

0

�25

35
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Each equation here corresponds to the circuit with only one voltage source (the other
sources being replaced by wires that close each loop). The model for current flow is
linear precisely because Ohm’s law and Kirchhoff’s law are linear: The voltage drop
across a resistor is proportional to the current flowing through it (Ohm), and the sum of
the voltage drops in a loop equals the sum of the voltage sources in the loop (Kirchhoff).

Loop currents in a network can be used to determine the current in any branch of
the network. If only one loop current passes through a branch, such as from B to D

in Figure 1, the branch current equals the loop current. If more than one loop current
passes through a branch, such as from A to B , the branch current is the algebraic sum
of the loop currents in the branch (Kirchhoff’s current law). For instance, the current in
branch AB is I1 � I2 D 3 � 1 D 2 amps, in the direction of I1. The current in branch
CD is I2 � I3 D 9 amps.

Difference Equations
In many fields, such as ecology, economics, and engineering, a need arises to model
mathematically a dynamic system that changes over time. Several features of the system
are each measured at discrete time intervals, producing a sequence of vectors x0, x1,
x2; : : : : The entries in xk provide information about the state of the system at the time
of the kth measurement.

If there is a matrix A such that x1 D Ax0, x2 D Ax1, and, in general,

xkC1 D Axk for k D 0; 1; 2; : : : (5)

then (5) is called a linear difference equation (or recurrence relation). Given such
an equation, one can compute x1, x2, and so on, provided x0 is known. Sections 4.8
and several sections in Chapter 5 will develop formulas for xk and describe what can
happen to xk as k increases indefinitely. The discussion below illustrates how a difference
equation might arise.

A subject of interest to demographers is the movement of populations or groups of
people from one region to another. The simple model here considers the changes in the
population of a certain city and its surrounding suburbs over a period of years.

Fix an initial year—say, 2020—and denote the populations of the city and suburbs
that year by r0 and s0, respectively. Let x0 be the population vector

x0 D

�
r0

s0

�
City population, 2020
Suburban population, 2020

For 2021 and subsequent years, denote the populations of the city and suburbs by the
vectors

x1 D

�
r1

s1

�
; x2 D

�
r2

s2

�
; x3 D

�
r3

s3

�
; : : :

Our goal is to describe mathematically how these vectors might be related.
Suppose demographic studies show that each year about 5% of the city’s population

moves to the suburbs (and 95% remains in the city), while 3% of the suburban population
moves to the city (and 97% remains in the suburbs). See Figure 2.

After 1 year, the original r0 persons in the city are now distributed between city and
suburbs as �

:95r0

:05r0

�
D r0

�
:95

:05

�
Remain in city
Move to suburbs

(6)

The s0 persons in the suburbs in 2020 are distributed 1 year later as

s0

�
:03

:97

�
Move to city
Remain in suburbs

(7)
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.03

.05

.95 .97

City Suburbs

FIGURE 2 Annual percentage migration between city and suburbs.

The vectors in (6) and (7) account for all of the population in 2021.3 Thus�
r1

s1

�
D r0

�
:95

:05

�
C s0

�
:03

:97

�
D

�
:95 :03

:05 :97

��
r0

s0

�
That is,

x1 DMx0 (8)

where M is the migration matrix determined by the following table:

From:
City Suburbs To:�
:95

:05

:03

:97

�
City
Suburbs

Equation (8) describes how the population changes from 2020 to 2021. If the migration
percentages remain constant, then the change from 2021 to 2022 is given by

x2 DMx1

and similarly for 2022 to 2023 and subsequent years. In general,

xkC1 DMxk for k D 0; 1; 2; : : : (9)

The sequence of vectors fx0; x1; x2; : : :g describes the population of the city/suburban
region over a period of years.

EXAMPLE 3 Compute the population of the region just described for the years 2021
and 2022, given that the population in 2020 was 600,000 in the city and 400,000 in the
suburbs.

SOLUTION The initial population in 2020 is x0 D

�
600;000

400;000

�
. For 2021,

x1 D

�
:95 :03

:05 :97

��
600;000

400;000

�
D

�
582;000

418;000

�
For 2022,

x2 DMx1 D

�
:95 :03

:05 :97

��
582;000

418;000

�
D

�
565;440

434;560

�
3 For simplicity, we ignore other influences on the population such as births, deaths, and migration into and
out of the city/suburban region.
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The model for population movement in (9) is linear because the correspondence
xk 7! xkC1 is a linear transformation. The linearity depends on two facts: the number
of people who chose to move from one area to another is proportional to the number of
people in that area, as shown in (6) and (7), and the cumulative effect of these choices is
found by adding the movement of people from the different areas.

Practice Problem

Find a matrix A and vectors x and b such that the problem in Example 1 amounts to
solving the equation Ax D b.

1.10 Exercises
1. The container of a breakfast cereal usually lists the number

of calories and the amounts of protein, carbohydrate, and
fat contained in one serving of the cereal. The amounts for
two common cereals are given below. Suppose a mixture of
these two cereals is to be prepared that contains exactly 295
calories, 9 g of protein, 48 g of carbohydrate, and 8 g of fat.

a. Set up a vector equation for this problem. Include a state-
ment of what the variables in your equation represent.

b. Write an equivalent matrix equation, and then determine
if the desired mixture of the two cereals can be prepared.

Nutrition Information per Serving

General Mills Quaker®
Nutrient Cheerios® 100% Natural Cereal

Calories 110 130
Protein (g) 4 3
Carbohydrate (g) 20 18
Fat (g) 2 5

2. One serving of Post Shredded Wheat® supplies 160 calories,
5 g of protein, 6 g of fiber, and 1 g of fat. One serving of
Crispix® supplies 110 calories, 2 g of protein, .1 g of fiber,
and .4 g of fat.

a. Set up a matrix B and a vector u such that Bu gives the
amounts of calories, protein, fiber, and fat contained in
a mixture of three servings of Shredded Wheat and two
servings of Crispix.

T b. Suppose that you want a cereal with more fiber than
Crispix but fewer calories than Shredded Wheat. Is it
possible for a mixture of the two cereals to supply 130
calories, 3.20 g of protein, 2.46 g of fiber, and .64 g of
fat? If so, what is the mixture?

3. After taking a nutrition class, a big Annie’s®Mac and Cheese
fan decides to improve the levels of protein and fiber in her
favorite lunch by adding broccoli and canned chicken. The
nutritional information for the foods referred to in this are
given in the table.

Nutrition Information per Serving

Nutrient Mac and Cheese Broccoli Chicken Shells

Calories 270 51 70 260
Protein (g) 10 5.4 15 9
Fiber (g) 2 5.2 0 5

T a. If she wants to limit her lunch to 400 calories but get 30 g
of protein and 10 g of fiber, what proportions of servings
of Mac and Cheese, broccoli, and chicken should she use?

T b. She found that there was too much broccoli in the propor-
tions from part (a), so she decided to switch from classical
Mac and Cheese to Annie’s® Whole Wheat Shells and
White Cheddar. What proportions of servings of each
food should she use to meet the same goals as in part (a)?

4. The Cambridge Diet supplies .8 g of calcium per day, in
addition to the nutrients listed in Table 1 for Example 1.
The amounts of calcium per unit (100 g) supplied by the
three ingredients in the Cambridge Diet are as follows: 1.26 g
from nonfat milk, .19 g from soy flour, and .8 g from whey.
Another ingredient in the diet mixture is isolated soy protein,
which provides the following nutrients in each unit: 80 g
of protein, 0 g of carbohydrate, 3.4 g of fat, and .18 g of
calcium.

a. Set up a matrix equation whose solution determines the
amounts of nonfat milk, soy flour, whey, and isolated
soy protein necessary to supply the precise amounts
of protein, carbohydrate, fat, and calcium in the Cam-
bridge Diet. State what the variables in the equation
represent.

T b. Solve the equation in (a) and discuss your answer.

T In Exercises 5–8, write a matrix equation that determines the
loop currents. If MATLAB or another matrix program is available,
solve the system for the loop currents.
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5.

I1
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I3

I4
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20 V
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20 V

10 V

1 V 
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1 V 

2 V 

4 V 

6.

I1

I2

I3

I4

4 V 

1 V 

2 V 

2 V 

20 V

40 V

10 V

30 V

3 V 

1 V 

4 V 

2 V 

3 V 

7.

10 VI4I1

I3I2
3 V

5 V

1 V

7 V

6 V

2 V 20 V

40 V

30 V

4 V

4 V

8.

I1 I4

I2 I3

I5

2 V 

1 V 

2 V 

1 V 

1 V 

3 V 

50 V 40 V

20 V30 V

1 V 3 V 

4 V 

3 V 

2 V 

3 V 

9. In a certain region, about 7% of a city’s population moves
to the surrounding suburbs each year, and about 5% of the
suburban population moves into the city. In 2020, there were
800,000 residents in the city and 500,000 in the suburbs.
Set up a difference equation that describes this situation,
where x0 is the initial population in 2020. Then estimate

the populations in the city and in the suburbs two years
later, in 2022. (Ignore other factors that might influence the
population sizes.)

10. In a certain region, about 6% of a city’s population moves
to the surrounding suburbs each year, and about 4% of the
suburban population moves into the city. In 2020, there were
10,000,000 residents in the city and 800,000 in the suburbs.
Set up a difference equation that describes this situation,
where x0 is the initial population in 2020. Then estimate the
populations in the city and in the suburbs two years later, in
2022.

T 11. College Moving Truck Rental has a fleet of 20, 100, and 200
trucks in Pullman, Spokane, and Seattle, respectively. A truck
rented at one location may be returned to any of the three
locations. The various fractions of trucks returned to the three
locations each month are shown in the matrix below. What
will be the approximate distribution of the trucks after three
months?

Trucks Rented From:
Pullman Spokane Seattle Returned To:24:30

:30

:40

:15

:70

:15

:05

:05

:90

35 Airport
East
West

T 12. Budget® Rent a Car in Wichita, Kansas, has a fleet of about
500 cars, at three locations. A car rented at one location
may be returned to any of the three locations. The various
fractions of cars returned to the three locations are shown in
the matrix below. Suppose that on Monday there are 295 cars
at the airport (or rented from there), 55 cars at the east side
office, and 150 cars at the west side office. What will be the
approximate distribution of cars on Wednesday?

Cars Rented From:
Airport East West Returned To:24:97

:00

:03

:05

:90

:05

:10

:05

:85

35 Airport
East
West

T 13. Let M and x0 be as in Example 3.

a. Compute the population vectors xk for k D 1; : : : ; 20.
Discuss what you find.

b. Repeat part (a) with an initial population of 350,000 in the
city and 650,000 in the suburbs. What do you find?

T 14. Study how changes in boundary temperatures on a steel plate
affect the temperatures at interior points on the plate.

a. Begin by estimating the temperatures T1, T2, T3, T4 at
each of the sets of four points on the steel plate shown in
the figure. In each case, the value of Tk is approximated by
the average of the temperatures at the four closest points.
See Exercises 43 and 44 in Section 1.1, where the values
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(in degrees) turn out to be .20; 27:5; 30; 22:5/. How is this
list of values related to your results for the points in set (a)
and set (b)?

b. Without making any computations, guess the interior tem-
peratures in (a) when the boundary temperatures are all
multiplied by 3. Check your guess.

c. Finally, make a general conjecture about the correspon-
dence from the list of eight boundary temperatures to the
list of four interior temperatures.

08

08

08

08

208 208

208 208

1 2

4 3

(a)

Plate A

108

108

408

408

08 08

108 108

1 2

4 3

(b)

Plate B

Solution to Practice Problem

A D

24 36 51 13

52 34 74

0 7 1:1

35; x D

24 x1

x2

x3

35; b D

24 33

45

3

35

CHAPTER 1 PROJECTS
Chapter 1 projects are available online.

A. Interpolating Polynomials: This project shows how to use a
system of linear equations to fit a polynomial through a set of
points.

B. Splines: This project also shows how to use a system of linear
equations to fit a piecewise polynomial curve through a set of
points.

C. Network Flows: The purpose of this project is to show how
systems of linear equations may be used to model flow
through a network.

D. The Art of Linear Transformations: In this project, it is illus-
trated how to graph a polygon and then use linear transforma-
tions to change its shape and create a design.

E. Loop Currents: The purpose of this project is to provide more
and larger examples of loop currents.

F. Diet: The purpose of this project is to provide examples of
vector equations that result from balancing nutrients in a diet.

CHAPTER 1 SUPPLEMENTARY EXERCISES
Mark each statement True or False (T/ F). Justify each answer. (If
true, cite appropriate facts or theorems. If false, explain why or
give a counterexample that shows why the statement is not true in
every case.

1. (T/F) Every matrix is row equivalent to a unique matrix in
echelon form.

2. (T/F) Any system of n linear equations in n variables has at
most n solutions.

3. (T/F) If a system of linear equations has two different solu-
tions, it must have infinitely many solutions.

4. (T/F) If a system of linear equations has no free variables,
then it has a unique solution.

5. (T/F) If an augmented matrix Œ A b � is transformed into
Œ C d � by elementary row operations, then the equations
Ax D b and Cx D d have exactly the same solution sets.

6. (T/F) If a systemAx D b has more than one solution, then so
does the system Ax D 0.

7. (T/F) If A is an m � n matrix and the equation Ax D b is
consistent for some b, then the columns of A span Rm.

8. (T/F) If an augmented matrix Œ A b � can be transformed by
elementary row operations into reduced echelon form, then
the equation Ax D b is consistent.

9. (T/F) If matrices A and B are row equivalent, they have the
same reduced echelon form.

10. (T/F) The equationAx D 0 has the trivial solution if and only
if there are no free variables.

11. (T/F) If A is an m � n matrix and the equation Ax D b is
consistent for every b in Rm, then A has m pivot columns.
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12. (T/F) If an m � n matrix A has a pivot position in every row,
then the equation Ax D b has a unique solution for each b in
Rm.

13. (T/F) If an n � n matrix A has n pivot positions, then the
reduced echelon form of A is the n � n identity matrix.

14. (T/F) If 3 � 3 matrices A and B each have three pivot posi-
tions, then A can be transformed into B by elementary row
operations.

15. (T/F) If A is an m � n matrix, if the equation Ax D b has
at least two different solutions, and if the equation Ax D c is
consistent, then the equation Ax D c has many solutions.

16. (T/F) If A and B are row equivalent m � n matrices and if
the columns of A span Rm, then so do the columns of B .

17. (T/F) If none of the vectors in the set S D fv1; v2; v3g in R3

is a multiple of one of the other vectors, then S is linearly
independent.

18. (T/F) If fu; v;wg is linearly independent, then u, v, andw are
not in R2.

19. (T/F) In some cases, it is possible for four vectors to spanR5.

20. (T/F) If u and v are in Rm, then �u is in Spanfu; vg.

21. (T/F) If u, v, and w are nonzero vectors in R2, then w is a
linear combination of u and v.

22. (T/F) If w is a linear combination of u and v in Rn, then u is
a linear combination of v and w.

23. (T/F) Suppose that v1, v2, and v3 are inR5, v2 is not amultiple
of v1, and v3 is not a linear combination of v1 and v2. Then
fv1; v2; v3g is linearly independent.

24. (T/F) A linear transformation is a function.

25. (T/F) IfA is a 6 � 5matrix, the linear transformation x 7! Ax
cannot map R5 onto R6.

26. Let a and b represent real numbers. Describe the possible
solution sets of the (linear) equation ax D b. [Hint: The
number of solutions depends upon a and b.]

27. The solutions .x; y; ´/ of a single linear equation

ax C by C c´ D d

form a plane inR3 when a, b, and c are not all zero. Construct
sets of three linear equations whose graphs (a) intersect in
a single line, (b) intersect in a single point, and (c) have

no points in common. Typical graphs are illustrated in the
figure.

Three planes intersecting
in a line

Three planes intersecting
in a point

Three planes with no
intersection

Three planes with no
intersection

(a) (b)

(c) (c')

28. Suppose the coefficient matrix of a linear system of
three equations in three variables has a pivot position
in each column. Explain why the system has a unique
solution.

29. Determine h and k such that the solution set of the system
(i) is empty, (ii) contains a unique solution, and (iii) contains
infinitely many solutions.

a. x1 C 3x2 D k

4x1 C hx2 D 8

b. �2x1 C hx2 D 1

6x1 C kx2 D �2

30. Consider the problem of determining whether the following
system of equations is consistent:

4x1 � 2x2 C 7x3 D �5

8x1 � 3x2 C 10x3 D �3

a. Define appropriate vectors, and restate the problem in
terms of linear combinations. Then solve that problem.

b. Define an appropriate matrix, and restate the problem
using the phrase “columns of A.”

c. Define an appropriate linear transformation T using the
matrix in (b), and restate the problem in terms of T .

31. Consider the problem of determining whether the following
system of equations is consistent for all b1, b2, b3:

2x1 � 4x2 � 2x3 D b1

�5x1 C x2 C x3 D b2

7x1 � 5x2 � 3x3 D b3

a. Define appropriate vectors, and restate the problem in
terms of Span fv1; v2; v3g. Then solve that problem.
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b. Define an appropriate matrix, and restate the problem
using the phrase “columns of A.”

c. Define an appropriate linear transformation T using the
matrix in (b), and restate the problem in terms of T .

32. Describe the possible echelon forms of the matrix A. Use the
notation of Example 1 in Section 1.2.

a. A is a 2 � 3 matrix whose columns span R2.

b. A is a 3 � 3 matrix whose columns span R3.

33. Write the vector
�

5

6

�
as the sum of two vectors,

one on the line f.x; y/ W y D 2xg and one on the line
f.x; y/ W y D x=2g.

34. Let a1; a2, and b be the vectors in R2 shown in the figure, and
letA D Œa1 a2�. Does the equationAx D b have a solution?
If so, is the solution unique? Explain.

a2

a1

b

x1

x2

35. Construct a 2 � 3matrixA, not in echelon form, such that the
solution of Ax D 0 is a line in R3.

36. Construct a 2 � 3matrixA, not in echelon form, such that the
solution of Ax D 0 is a plane in R3.

37. Write the reduced echelon form of a 3 � 3 matrix A such
that the first two columns of A are pivot columns and

A

24 3

�2

1

35 D 24 0

0

0

35.
38. Determine the value(s) of a such that

��
1

a

�
;

�
aC 2

aC 6

��
is

linearly independent.

39. In (a) and (b), suppose the vectors are linearly independent.
What can you say about the numbers a; : : : ; f ? Justify your
answers. [Hint: Use a theorem for (b).]

a.

24 a

0

0

35, 24 b

c

0

35, 24 d

e

f

35 b.

2664
a

1

0

0

3775,
2664

b

c

1

0

3775,
2664

d

e

f

1

3775
40. Use Theorem 7 in Section 1.7 to explain why the columns of

the matrix A are linearly independent.

A D

2664
1 0 0 0

2 5 0 0

3 6 8 0

4 7 9 10

3775

41. Explain why a set fv1; v2; v3; v4g in R5 must be linearly
independent when fv1; v2; v3g is linearly independent and v4

is not in Span fv1; v2; v3g.

42. Suppose fv1; v2g is a linearly independent set in Rn. Show
that fv1 C v2; v1 � v2g is also linearly independent.

43. Suppose v1; v2; v3 are distinct points on one line in R3. The
line need not pass through the origin. Show that fv1; v2; v3g

is linearly dependent.

44. Let T W Rn ! Rm be a linear transformation, and suppose
T .u/ D v. Show that T .�u/ D �v.

45. Let T W R3 ! R3 be the linear transformation that re-
flects each vector through the plane x2 D 0. That is,
T .x1; x2; x3/ D .x1;�x2; x3/. Find the standard matrix of T .

46. Let A be a 3 � 3 matrix with the property that the linear
transformation x 7! Ax maps R3 onto R3. Explain why the
transformation must be one-to-one.

47. A Givens rotation is a linear transformation from Rn to Rn

used in computer programs to create a zero entry in a vector
(usually a column of a matrix). The standard matrix of a
Givens rotation in R2 has the form�

a �b

b a

�
; a2

C b2
D 1

Find a and b such that
�

10

24

�
is rotated into

�
26

0

�
.

x1

x2

(10, 24)

(26, 0)

A Givens rotation in R2.

48. The following equation describes a Givens rotation in R3.
Find a and b.

24 1 0 0

0 a �b

0 b a

3524 2

3

4

35 D 24 2

5

0

35 ; a2
C b2

D 1

49. A large apartment building is to be built using modular
construction techniques. The arrangement of apartments on
any particular floor is to be chosen from one of three ba-
sic floor plans. Plan A has 18 apartments on one floor, in-
cluding 3 three-bedroom units, 7 two-bedroom units, and 8
one-bedroom units. Each floor of plan B includes 4 three-
bedroom units, 4 two-bedroom units, and 8 one-bedroom
units. Each floor of plan C includes 5 three-bedroom units,
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3 two-bedroom units, and 9 one-bedroom units. Suppose the
building contains a total of x1 floors of plan A, x2 floors of
plan B, and x3 floors of plan C.

a. What interpretation can be given to the vector x1

24 3

7

8

35?

b. Write a formal linear combination of vectors that
expresses the total numbers of three-, two-, and one-
bedroom apartments contained in the building.

T c. Is it possible to design the building with exactly 66
three-bedroom units, 74 two-bedroom units, and 136 one-
bedroom units? If so, is there more than one way to do it?
Explain your answer.
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� Matrix factorizations: Even when written with
partitioned matrices, the system of equations is
complicated. To further simplify the computations,
the CFD software at Boeing uses what is called
an LU factorization of the coefficient matrix.
Section 2.5 discusses LU and other useful matrix
factorizations. Further details about factorizations
appear at several points later in the text.

To analyze a solution of an airflow system, engineers
want to visualize the airflow over the surface of the plane.
They use computer graphics, and linear algebra provides
the engine for the graphics. The wire-frame model of the
plane’s surface is stored as data in many matrices. Once the
image has been rendered on a computer screen, engineers
can change its scale, zoom in or out of small regions, and
rotate the image to see parts that may be hidden from view.

TU-Delft and Air France-KLM are investigating a flying V
aircraft design because of its potential for significantly better fuel
economy.

Each of these operations is accomplished by appropriate
matrix multiplications. Section 2.7 explains the basic
ideas.

Our ability to analyze and solve equations will be greatly enhancedwhenwe can perform
algebraic operations with matrices. Furthermore, the definitions and theorems in this
chapter provide some basic tools for handling the many applications of linear algebra
that involve two or more matrices. For n � n matrices, the Invertible Matrix Theorem
in Section 2.3 ties together most of the concepts treated earlier in the text. Sections 2.4
and 2.5 examine partitioned matrices and matrix factorizations, which appear in most
modern uses of linear algebra. Sections 2.6 and 2.7 describe two interesting applications
of matrix algebra: to economics and to computer graphics. Sections 2.8 and 2.9 provide
readers enough information about subspaces to move directly into Chapters 5, 6, and
7, without covering Chapter 4. You may want to omit these two sections if you plan to
cover Chapter 4 before moving to Chapter 5.

2.1 Matrix Operations
If A is an m � n matrix—that is, a matrix with m rows and n columns—then the scalar
entry in the i th row and j th column ofA is denoted by aij and is called the .i; j /-entry of
A. See Figure 1. For instance, the .3; 2/-entry is the number a32 in the third row, second
column. Each column of A is a list of m real numbers, which identifies a vector in Rm.
Often, these columns are denoted by a1; : : : ; an, and the matrix A is written as

A D
�
a1 a2 � � � an

�
Observe that the number aij is the i th entry (from the top) of the j th column vector aj .

The diagonal entries in an m � n matrix A D Œ aij � are a11; a22; a33; : : : ; and they
form the main diagonal of A. A diagonal matrix is a square n � n matrix whose
nondiagonal entries are zero. An example is the n � n identity matrix, In. An m � n

matrix whose entries are all zero is a zero matrix and is written as 0. The size of a zero
matrix is usually clear from the context.
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a11

am1

a1n

amn

ai1 ain

a1 j

Column
j

am j

a1 a na j

ai jRow i 5 A

FIGURE 1 Matrix notation.

Sums and Scalar Multiples
The arithmetic for vectors described earlier has a natural extension to matrices. We say
that two matrices are equal if they have the same size (i.e., the same number of rows
and the same number of columns) and if their corresponding columns are equal, which
amounts to saying that their corresponding entries are equal. If A and B are m � n

matrices, then the sum AC B is the m � n matrix whose columns are the sums of
the corresponding columns in A and B . Since vector addition of the columns is done
entrywise, each entry in AC B is the sum of the corresponding entries in A and B . The
sum AC B is defined only when A and B are the same size.

EXAMPLE 1 Let

A D

�
4 0 5

�1 3 2

�
; B D

�
1 1 1

3 5 7

�
; C D

�
2 �3

0 1

�
Then

AC B D

�
5 1 6

2 8 9

�
but AC C is not defined because A and C have different sizes.

If r is a scalar and A is a matrix, then the scalar multiple rA is the matrix whose
columns are r times the corresponding columns in A. As with vectors, �A stands for
.�1/A, and A � B is the same as AC .�1/B .

EXAMPLE 2 If A and B are the matrices in Example 1, then

2B D 2

�
1 1 1

3 5 7

�
D

�
2 2 2

6 10 14

�
A � 2B D

�
4 0 5

�1 3 2

�
�

�
2 2 2

6 10 14

�
D

�
2 �2 3

�7 �7 �12

�

It was unnecessary in Example 2 to compute A � 2B as AC .�1/2B because the
usual rules of algebra apply to sums and scalar multiples of matrices, as the following
theorem shows.

THEOREM 1 Let A; B , and C be matrices of the same size, and let r and s be scalars.

a. AC B D B C A

b. .AC B/C C D AC .B C C /

c. AC 0 D A

d. r.AC B/ D rAC rB

e. .r C s/A D rAC sA

f. r.sA/ D .rs/A
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Each equality in Theorem 1 is verified by showing that the matrix on the left side has
the same size as the matrix on the right and that corresponding columns are equal. Size
is no problem because A, B , and C are equal in size. The equality of columns follows
immediately from analogous properties of vectors. For instance, if the j th columns of
A, B , and C are aj , bj , and cj , respectively, then the j th columns of .AC B/C C and
AC .B C C / are

.aj C bj /C cj and aj C .bj C cj /

respectively. Since these two vector sums are equal for each j , property (b) is verified.
Because of the associative property of addition, we can simply write AC B C C

for the sum, which can be computed either as .AC B/C C or as AC .B C C /. The
same applies to sums of four or more matrices.

Matrix Multiplication
When a matrix B multiplies a vector x, it transforms x into the vector Bx. If this vector
is then multiplied in turn by a matrix A, the resulting vector is A.Bx/. See Figure 2.

x

Multiplication

by B

Bx

Multiplication

by A

A(Bx)

FIGURE 2 Multiplication by B and then A.

Thus A.Bx/ is produced from x by a composition of mappings—the linear transfor-
mations studied in Section 1.8. Our goal is to represent this composite mapping as
multiplication by a single matrix, denoted by AB, so that

A.Bx/ D .AB/x (1)

See Figure 3.

Multiplication

by AB

Bx

Multiplication

by B
x

Multiplication

by A
A(Bx)

FIGURE 3 Multiplication by AB.

If A is m � n, B is n � p, and x is in Rp , denote the columns of B by b1; : : : ; bp

and the entries in x by x1; : : : ; xp . Then

Bx D x1b1 C � � � C xpbp

By the linearity of multiplication by A,

A.Bx/ D A.x1b1/C � � � C A.xpbp/

D x1Ab1 C � � � C xpAbp
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The vectorA.Bx/ is a linear combination of the vectorsAb1; : : : ; Abp , using the entries
in x as weights. In matrix notation, this linear combination is written as

A.Bx/ D Œ Ab1 Ab2 � � � Abp �x

Thus multiplication by Œ Ab1 Ab2 � � � Abp � transforms x into A.Bx/. We have
found the matrix we sought!

DEFINITION If A is an m � n matrix, and if B is an n � p matrix with columns b1; : : : ; bp , then
the product AB is the m � p matrix whose columns are Ab1; : : : ; Abp . That is,

AB D A
�
b1 b2 � � � bp

�
D
�
Ab1 Ab2 � � � Abp

�
This definition makes equation (1) true for all x in Rp . Equation (1) proves that the

composite mapping in Figure 3 is a linear transformation and that its standard matrix is
AB . Multiplication of matrices corresponds to composition of linear transformations.

EXAMPLE 3 Compute AB , where A D

�
2 3

1 �5

�
and B D

�
4 3 6

1 �2 3

�
.

SOLUTION Write B D Œ b1 b2 b3 �, and compute:

Ab1 D

�
2 3

1 �5

��
4

1

�
; Ab2 D

�
2 3

1 �5

��
3

�2

�
; Ab3 D

�
2 3

1 �5

��
6

3

�
D

�
11

�1

�
D

�
0

13

�
D

�
21

�9

�
? ??Then

AB D AŒ b1 b2 b3 � D

�
11 0 21

�1 13 �9

�
6 6 6

Ab1 Ab2 Ab3

Notice that since the first column of AB is Ab1; this column is a linear combination
of the columns of A using the entries in b1 as weights. A similar statement is true for
each column of AB:

Each column ofAB is a linear combination of the columns ofA using weights from
the corresponding column of B .

Obviously, the number of columns of A must match the number of rows in B in
order for a linear combination such as Ab1 to be defined. Also, the definition of AB

shows that AB has the same number of rows as A and the same number of columns
as B.

EXAMPLE 4 If A is a 3 � 5 matrix and B is a 5 � 2 matrix, what are the sizes of
AB and BA, if they are defined?
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SOLUTION Since A has 5 columns and B has 5 rows, the product AB is defined and
is a 3 � 2 matrix:

A B AB24� � � � �� � � � �

� � � � �

35266664
� �

� �

� �

� �

� �

377775
D

24� �� �
� �

35
3 � 5 5 � 2 3 � 2

6 66 6Match

Size of AB

The product BA is not defined because the 2 columns of B do not match the 3 rows
of A.

The definition of AB is important for theoretical work and applications, but the
following rule provides a more efficient method for calculating the individual entries in
AB when working small problems by hand.

ROW–COLUMN RULE FOR COMPUTING AB
If the product AB is defined, then the entry in row i and column j of AB is the
sum of the products of corresponding entries from row i of A and column j of
B . If .AB/ij denotes the .i; j /-entry in AB , and if A is an m � n matrix, then

.AB/ij D ai1b1j C ai2b2j C � � � C ainbnj

To verify this rule, let B D Œ b1 � � � bp �. Column j of AB is Abj , and we can
compute Abj by the row–vector rule for computing Ax from Section 1.4. The i th entry
in Abj is the sum of the products of corresponding entries from row i of A and the
vector bj , which is precisely the computation described in the rule for computing the
.i; j /-entry of AB .

EXAMPLE 5 Use the row–column rule to compute two of the entries in AB for the
matrices in Example 3. An inspection of the numbers involved will make it clear how
the two methods for calculating AB produce the same matrix.

SOLUTION To find the entry in row 1 and column 3 of AB , consider row 1 of A and
column 3 of B . Multiply corresponding entries and add the results, as shown below:

AB D
-
�

2 3

1 �5

��
4 3

?
6

1 �2 3

�
D

�
� � 2.6/C 3.3/

� � �

�
D

�
� � 21

� � �

�
For the entry in row 2 and column 2 of AB , use row 2 of A and column 2 of B:

-

�
2 3

1 �5

��
4

?
3 6

1 �2 3

�
D

�
� � 21

� 1.3/C�5.�2/ �

�
D

�
� � 21

� 13 �

�
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EXAMPLE 6 Find the entries in the second row of AB , where

A D

2664
2 �5 0

�1 3 �4

6 �8 �7

�3 0 9

3775; B D

24 4 �6

7 1

3 2

35
SOLUTION By the row–column rule, the entries of the second row of AB come from
row 2 of A (and the columns of B):

-

2664
2 �5 0

�1 3 �4

6 �8 �7

�3 0 9

3775
24

?
4

?
� 6

7 1

3 2

35

D

2664
� �

� 4C 21 � 12 6C 3 � 8

� �
� �

3775 D
2664

� �
5 1

� �
� �

3775
Notice that since Example 6 requested only the second row of AB , we could have

written just the second row of A to the left of B and computed

�
�1 3 �4

�24 4 �6

7 1

3 2

35 D � 5 1
�

This observation about rows of AB is true in general and follows from the row–column
rule. Let rowi .A/ denote the i th row of a matrix A. Then

rowi .AB/ D rowi .A/ � B (2)

Properties of Matrix Multiplication
The following theorem lists the standard properties of matrix multiplication. Recall that
Im represents the m �m identity matrix and Imx D x for all x in Rm.

THEOREM 2 Let A be an m � n matrix, and let B and C have sizes for which the indicated
sums and products are defined.

a. A.BC / D .AB/C (associative law of multiplication)

b. A.B C C / D AB C AC (left distributive law)

c. .B C C /A D BAC CA (right distributive law)

d. r.AB/ D .rA/B D A.rB/

for any scalar r

e. ImA D A D AIn (identity for matrix multiplication)

PROOF Properties (b)–(e) are considered in the exercises. Property (a) follows from
the fact that matrix multiplication corresponds to composition of linear transformations
(which are functions), and it is known (or easy to check) that the composition of functions
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is associative. Here is another proof of (a) that rests on the “column definition” of the
product of two matrices. Let

C D Œ c1 � � � cp �

By the definition of matrix multiplication,

BC D Œ Bc1 � � � Bcp �

A.BC / D Œ A.Bc1/ � � � A.Bcp/ �

Recall from equation (1) that the definition of AB makes A.Bx/ D .AB/x for all x, so

A.BC / D Œ .AB/c1 � � � .AB/cp � D .AB/C

The associative and distributive laws in Theorems 1 and 2 say essentially that pairs
of parentheses in matrix expressions can be inserted and deleted in the sameway as in the
algebra of real numbers. In particular, we can write ABC for the product, which can be
computed either as A.BC / or as .AB/C .1 Similarly, a product ABCD of four matrices
can be computed as A.BCD/ or .ABC /D or A.BC /D, and so on. It does not matter
howwe group thematrices when computing the product, so long as the left-to-right order
of the matrices is preserved.

The left-to-right order in products is critical because AB and BA are usually not
the same. This is not surprising, because the columns of AB are linear combinations of
the columns of A, whereas the columns of BA are constructed from the columns of B .
The position of the factors in the product AB is emphasized by saying that A is right-
multiplied by B or that B is left-multiplied by A. If AB D BA, we say that A and B

commute with one another.

EXAMPLE 7 Let A D

�
5 1

3 �2

�
and B D

�
2 0

4 3

�
. Show that these matrices do

not commute. That is, verify that AB ¤ BA.

SOLUTION

AB D

�
5 1

3 �2

��
2 0

4 3

�
D

�
14 3

�2 �6

�
BA D

�
2 0

4 3

��
5 1

3 �2

�
D

�
10 2

29 �2

�
Example 7 illustrates the first of the following list of important differences between

matrix algebra and the ordinary algebra of real numbers. See Exercises 9–12 for exam-
ples of these situations.

Warnings:

1. In general, AB ¤ BA.

2. The cancellation laws do not hold for matrix multiplication. That is, if
AB D AC , then it is not true in general that B D C . (See Exercise 10.)

3. If a product AB is the zero matrix, you cannot conclude in general that either
A D 0 or B D 0. (See Exercise 12.)

1When B is square and C has fewer columns than A has rows, it is more efficient to compute A.BC / than
.AB/C .
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Powers of a Matrix
If A is an n � n matrix and if k is a positive integer, then Ak denotes the product of k

copies of A:

Ak D A � � �A„ƒ‚…
k

If A is nonzero and if x is in Rn; then Akx is the result of left-multiplying x by A

repeatedly k times. If k D 0; then A0x should be x itself. Thus A0 is interpreted as
the identity matrix. Matrix powers are useful in both theory and applications (Sections
2.6, 5.9, and later in the text).

The Transpose of a Matrix
Given anm � nmatrixA, the transpose ofA is the n �mmatrix, denoted byAT , whose
columns are formed from the corresponding rows of A.

EXAMPLE 8 Let

A D

�
a b

c d

�
; B D

24�5 2

1 �3

0 4

35; C D

�
1 1 1 1

�3 5 �2 7

�
Then

AT
D

�
a c

b d

�
; BT

D

�
�5 1 0

2 �3 4

�
; C T

D

2664
1 �3

1 5

1 �2

1 7

3775

THEOREM 3 Let A and B denote matrices whose sizes are appropriate for the following sums
and products.

a. .AT /T D A

b. .AC B/T D AT C BT

c. For any scalar r , .rA/T D rAT

d. .AB/T D BTAT

Proofs of (a)–(c) are straightforward and are omitted. For (d), see Exercise 41.
Usually, .AB/T is not equal to ATBT, even when A and B have sizes such that the
product ATBT is defined.

The generalization of Theorem 3(d) to products of more than two factors can be
stated in words as follows:

The transpose of a product of matrices equals the product of their transposes in the
reverse order.

The exercises contain numerical examples that illustrate properties of transposes.
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Artificial intelligence (AI) involves having a computer learn to recognize important
information about anything that can be presented in a digitized format. One important
area of AI is identifying whether the object in a picture matches a chosen object such as
a number, fingerprint, or face.

In the next example, matrix transposition and matrix multiplication are used to tell
whether or not a 2 � 2 block of colored squares matches the chosen checkerboard pattern
in Figure 4.

EXAMPLE 9 In order to feed a 2 � 2 colored block into the computer, it first gets
converted into a 4 � 1 vector by assigning a 1 to each block that is blue and a 0 to each
block that is white. Then, the computer converts the block of numbers into a vector by
placing the numbers in each column below the numbers in the column to its left.

v 5

1
0
0
1

01

10

FIGURE 4

Let M D

2664
1 0 0 �1

0 1 0 0

0 0 1 0

�1 0 0 1

3775.
Notice that vT Mv D

�
1 0 0 1

�2664
1 0 0 �1

0 1 0 0

0 0 1 0

�1 0 0 1

3775
2664

1

0

0

1

3775 D 0,

and wT Mw D
�

0 0 0 0
�2664

1 0 0 �1

0 1 0 0

0 0 1 0

�1 0 0 1

3775
2664

0

0

0

0

3775 D 0, where w is the

vector generated by a 2 � 2 block of all white squares. It can be verified that for any
other vector x generated from a 2 � 2 block of white and blue squares, if x is not v or
w, then the product xT Mx is nonzero. Thus, if a computer checks the value of xT Mx
and finds it is nonzero, the computer knows that the pattern corresponding to x is not the
checkerboard with a blue square in the top left corner.

x 5

1
1
0
1

xT Mx 5 1 and xT x 5 3

This pattern is not the checkerboard pattern since xT Mx Þ 0.

x 5

1
0
0
1

xT Mx 5 0 and xT x 5 2

This pattern is the checkerboard pattern since xT Mx 5 0, but xT x Þ 0.

FIGURE 5
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However, if the computer finds that xT Mx D 0, then x could be either v or w. To
distinguish between the two, the computer can calculate the product xT x, for xT x is zero
if and only if x is w.2 Thus, to conclude that x is equal to v, the computer must have
xT Mx D 0 and xT x ¤ 0.

Example 5 of Section 6.3 illustrates one way to choose a matrix M so that matrix
multiplication and transposition can be used to identify a particular pattern of colored
squares.

Another important aspect of AI starts even before the data is fed to the machine.
In Section 1.9, it is illustrated how matrix multiplication can be used to move vectors
around in space. In the next example, matrix multiplication is used to scrub data and
prepare it for processing.

EXAMPLE 10 The dates of ground crew accidents for January and February of 2020
are listed in the columns of matrix T for Toronto Pearson Airport and matrix C for
Chicago O’Hare Airport:

Toronto: T D

�
1 12 14 15 21 22 23 1 2 3 12 15 17 19 26

1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

�
Chicago: C D

�
1 1 1 1 1 2 2 2 2 2

1 11 22 23 24 1 2 5 20 21

�
Clearly the data is listed differently in the two matrices. Canada and the United states
have different traditions for whether the month or day comes first when writing a date.
For matrix T , the day is listed in the first row and the month is listed in the second row.
For matrix C , the month is listed in the first row and the day is listed in the second
row. In order to use this data, the first and second rows need to be swapped in one of
the matrices. Reviewing the effects of matrix multiplication in Table 1 of Section 1.9,

notice that the matrix A D

�
0 1

1 0

�
switches the x1 and x2 coordinates of any vector

x D

�
x1

x2

�
it is applied to and indeed

AT D

�
1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

1 12 14 15 21 22 23 1 2 3 12 15 17 19 26

�
has the data listed in the same order as it is listed in matrix C . The matrices AT and C

can now be fed into the same machine.

In Exercises 51 and 52 you will be asked to scrub further data for this project.3

2 To see why xT x is zero if and only if x is w, let xT D Œx1 x2 x3 x4�. Then xT x D x2
1 C x2

2 C x2
3 C x2

4 and
this sum is zero if and only if the coordinates of x are all zero. That is, if and only if x D w.
3Although the data in this example and the corresponding exercises are fictitious, Data Analytics students at
Washington State University identified scrubbing the data they received as an important first step in their
actual analysis of ground crew accidents at three major airports in the United States.
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Numerical Notes

1. The fastest way to obtain AB on a computer depends on the way in which
the computer stores matrices in its memory. The standard high-performance
algorithms, such as in LAPACK, calculateAB by columns, as in our definition
of the product. (A version of LAPACKwritten in C++ calculatesAB by rows.)

2. The definition ofAB lends itself well to parallel processing on a computer. The
columns of B are assigned individually or in groups to different processors,
which independently and hence simultaneously compute the corresponding
columns of AB .

Practice Problems

1. Since vectors in Rn may be regarded as n � 1 matrices, the properties of transposes
in Theorem 3 apply to vectors, too. Let

A D

�
1 �3

�2 4

�
and x D

�
5

3

�
Compute .Ax/T , xTAT , xxT , and xTx. Is ATxT defined?

2. Let A be a 4 � 4 matrix and let x be a vector in R4. What is the fastest way to
compute A2x? Count the multiplications.

3. Suppose A is an m � n matrix, all of whose rows are identical. Suppose B is
an n � p matrix, all of whose columns are identical. What can be said about the
entries in AB?

2.1 Exercises
In Exercises l and 2, compute each matrix sum or product if it is
defined. If an expression is undefined, explain why. Let

A D

�
2 0 �1

4 �3 2

�
; B D

�
7 �5 1

1 �4 �3

�
;

C D

�
1 2

�2 1

�
; D D

�
3 5

�1 4

�
; E D

�
�5

3

�
1. �2A, B � 2A, AC , CD

2. AC 2B , 3C �E, CB , EB

In the rest of this exercise set and in those to follow, you should
assume that each matrix expression is defined. That is, the sizes of
the matrices (and vectors) involved “match” appropriately.

3. Let A D

�
4 �1

5 �2

�
. Compute 3I2 � A and .3I2/A.

4. Compute A � 5I3 and .5I3/A, when

A D

24 9 �1 3

�8 7 �3

�4 1 8

35:

In Exercises 5 and 6, compute the product AB in two ways: (a) by
the definition, where Ab1 and Ab2 are computed separately, and
(b) by the row–column rule for computing AB.

5. A D

24�1 2

5 4

2 �3

35; B D

�
3 �4

�2 1

�

6. A D

24 4 �2

�3 0

3 5

35; B D

�
1 3

4 �1

�
7. If a matrix A is 5 � 3 and the product AB is 5 � 7, what is the

size of B?

8. How many rows does B have if BC is a 3 � 4 matrix?

9. Let A D

�
3 4

�2 1

�
and B D

�
5 �6

3 k

�
: What value(s) of

k, if any, will make AB D BA?

10. Let A D

�
3 �6

�4 8

�
; B D

�
8 6

5 7

�
; C D

�
6 �2

4 3

�
:

Verify that AB D AC and yet B ¤ C:

11. Let A D

24 1 1 1

1 2 3

1 4 5

35 and D D

24 2 0 0

0 3 0

0 0 5

35: Com-

pute AD and DA. Explain how the columns or rows of A
change when A is multiplied by D on the right or on the left.
Find a 3 � 3 matrix B, not the identity matrix or the zero
matrix, such that AB D BA:
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12. Let A D

�
2 �8

�1 4

�
: Construct a 2 � 2 matrix B such that

AB is the zero matrix. Use two different nonzero columns
for B.

13. Let r1; : : : ; rp be vectors inRn, and letQ be anm � nmatrix.
Write the matrix Œ Qr1 � � �Qrp � as a product of two matrices
(neither of which is an identity matrix).

14. Let U be the 3 � 2 cost matrix described in Example 6 of
Section 1.8. The first column of U lists the costs per dollar of
output for manufacturing product B, and the second column
lists the costs per dollar of output for product C. (The costs
are categorized as materials, labor, and overhead.) Let q1be
a vector in R2 that lists the output (measured in dollars) of
products B and C manufactured during the first quarter of
the year, and let q2; q3; and q4 be the analogous vectors
that list the amounts of products B and C manufactured in
the second, third, and fourth quarters, respectively. Give an
economic description of the data in the matrix UQ, where
Q D Œq1 q2 q3 q4�:

Exercises 15–24 concern arbitrary matricesA; B , andC for which
the indicated sums and products are defined. Mark each statement
True or False (T/F). Justify each answer.

15. (T/F) If A and B are 2 � 2 with columns a1; a2, and b1; b2,
respectively, then AB D Œa1b1 a2b2�.

16. (T/F) If A and B are 3 � 3 and B D Œb1 b2 b3�, then
AB D ŒAb1 C Ab2 C Ab3�.

17. (T/F) Each column of AB is a linear combination of the
columns of B using weights from the corresponding column
of A.

18. (T/F) The second row of AB is the second row of A multi-
plied on the right by B .

19. (T/F) AB C AC D A.B C C /

20. (T/F) AT C BT D .AC B/T

21. (T/F) .AB/C D .AC /B

22. (T/F) .AB/T D AT BT

23. (T/F) The transpose of a product of matrices equals the
product of their transposes in the same order.

24. (T/F) The transpose of a sum of matrices equals the sum of
their transposes.

25. IfA D

�
1 �3

�3 8

�
andAB D

�
�1 3 �2

1 �7 3

�
; determine

the first and second columns of B.

26. Suppose the first two columns, b1 and b2, ofB are equal.What
can you say about the columns ofAB (ifAB is defined)?Why?

27. Suppose the third column of B is the sum of the first two
columns. What can you say about the third column of AB?
Why?

28. Suppose the second column of B is all zeros. What can you
say about the second column of AB?

29. Suppose the last column of AB is all zeros, but B itself has
no column of zeros. What can you say about the columns
of A?

30. Show that if the columns of B are linearly dependent, then so
are the columns of AB.

31. Suppose CA D In (the n � n identity matrix). Show that the
equation Ax D 0 has only the trivial solution. Explain why A
cannot have more columns than rows.

32. Suppose AD D Im (the m �m identity matrix). Show that
for any b in Rm, the equation Ax D b has a solution. [Hint:
Think about the equation ADb D b:] Explain why A cannot
have more rows than columns.

33. Suppose A is an m � n matrix and there exist n �m matrices
C andD such thatCA D In andAD D Im: Prove thatm D n

and C D D: [Hint: Think about the product CAD.]

34. Suppose A is a 3 � nmatrix whose columns spanR3. Explain
how to construct an n � 3 matrix D such that AD D I3:

In Exercises 35 and 36, view vectors in Rn as n � 1 matrices. For
u and v in Rn, the matrix product uT v is a 1 � 1 matrix, called the
scalar product, or inner product, of u and v. It is usually written
as a single real number without brackets. The matrix product uvT

is an n � n matrix, called the outer product of u and v. The
products uT v and uvT will appear later in the text.

35. Let u =

24�2

3

�4

35 and v D

24 a

b

c

35: Compute uT v; vT u; uvT ;

and vuT :

36. If u and v are in Rn, how are uT v and vT u related? How are
uvT and vuT related?

37. Prove Theorem 2(b) and 2(c). Use the row–column rule. The
(i, j)-entry in A.B C C / can be written as

ai1.b1j C c1j /C � � � C ain.bnj C cnj / or
nX

kD1

aik.bkj C ckj /

38. Prove Theorem 2(d). [Hint: The (i, j)-entry in (rA)B is
.rai1/b1j C � � � C .rain/bnj :�

39. Show that ImA D A when A is an m � n matrix. You can
assume Imx D x for all x in Rm.

40. Show that AIn D A when A is an m � n matrix. [Hint: Use
the (column) definition of AIn:�

41. Prove Theorem 3(d). [Hint: Consider the jth row of .AB/T :�

42. Give a formula for .ABx/T ; where x is a vector and A and B
are matrices of appropriate sizes.

T 43. Use a web search engine such as Google to find documenta-
tion for your matrix program, and write the commands that
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will produce the following matrices (without keying in each
entry of the matrix).

a. A 5 � 6 matrix of zeros

b. A 3 � 5 matrix of ones

c. The 6 � 6 identity matrix

d. A 5 � 5 diagonal matrix, with diagonal entries 3, 5, 7, 2, 4

A useful way to test new ideas in matrix algebra, or to make
conjectures, is to make calculations with matrices selected at
random. Checking a property for a few matrices does not prove
that the property holds in general, but it makes the property more
believable. Also, if the property is actually false, you may discover
this when you make a few calculations.

T 44. Write the command(s) that will create a 6 � 4 matrix with
random entries. In what range of numbers do the entries lie?
Tell how to create a 3 � 3 matrix with random integer entries
between �9 and 9. [Hint: If x is a random number such that
0 < x < 1; then �9:5 < 19.x � :5/ < 9:5:�

T 45. Construct a random 4 � 4 matrix A and test whether .AC I /

.A � I / D A2 � I: The best way to do this is to compute

.AC I /.A � I / � .A2 � I / and verify that this difference is
the zero matrix. Do this for three random matrices. Then test
.AC B/.A � B/ D A2 � B2 the same way for three pairs of
random 4 � 4 matrices. Report your conclusions.

T 46. Use at least three pairs of random 4 � 4 matrices A and B
to test the equalities .AC B/T D AT C BT and .AB/T D

AT BT : (See Exercise 45.) Report your conclusions. [Note:
Most matrix programs use A0 for AT :�

T 47. Let

S D

266664
0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

377775
Compute Sk for k D 2; : : : ; 6:

T 48. Describe in words what happens when you compute A5,
A10; A20; and A30 for

A D

24 1=6 1=2 1=3

1=2 1=4 1=4

1=3 1=4 5=12

35
T 49. The matrix M can detect a particular 2 � 2 colored pattern

like in Example 9. Create a nonzero 4 � 1 vector x by choos-
ing each entry to be a zero or one. Test to see if x corresponds

to the right pattern by calculating xT Mx. If xT Mx D 0,
then x is the pattern identified by M . If xT Mx ¤ 0, try a
different nonzero vector of zeros and ones. You may want
to be systematic in the way that you choose each x in order to
avoid testing the same vector twice. You are using “guess and
check” to determine which pattern of 2 � 2 colored squares
the matrix M detects.

M D

2664
1 0 �1 0

0 1 0 0

�1 0 1 0

0 0 0 1

3775
T 50. Repeat Exercise 49 with the matrix

M D

2664
1 0 0 �1

0 1 0 �1

0 0 1 0

�1 �1 0 2

3775
T 51. Use the matrix A D

�
0 1

1 0

�
to switch the first and second

rows of the matrix M containing dates of accidents at the
Montreal Trudeau Airport.

Montreal:

M D

"
2 3 16 24 25 26 6 7 19 26

1 1 1 1 1 1 2 2 2 2

#

This data in matrix M has been scrubbed in matrix AM and
can be fed into the same machine as the other data from
Example 10.

T 52. Use the matrix B D

�
1 0 0

0 1 0

�
to remove the last row

from the matrix N containing dates of accidents at the New
York JFK Airport.

New York:

N D

264 1 1 1 1 2 2 2

1 12 21 22 3 20 21

2020 2020 2020 2020 2020 2020 2020

375
The data in matrix N has been scrubbed in matrix BN and
can be fed into the same machine as the other data from
Example 10.

Solutions to Practice Problems

1. Ax D
�

1 �3

�2 4

��
5

3

�
D

�
�4

2

�
. So .Ax/T D

�
�4 2

�
. Also,

xTAT
D
�

5 3
�� 1 �2

�3 4

�
D
�
�4 2

�
:
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The quantities .Ax/T and xTAT are equal, by Theorem 3(d). Next,

xxT
D

�
5

3

��
5 3

�
D

�
25 15

15 9

�
xTx D

�
5 3

�� 5

3

�
D Œ 25C 9 � D 34

A 1 � 1 matrix such as xTx is usually written without the brackets. Finally, ATxT is
not defined, because xT does not have two rows to match the two columns of AT .

2. The fastest way to compute A2x is to compute A.Ax/. The product Ax requires
16 multiplications, 4 for each entry, and A.Ax/ requires 16 more. In contrast, the
productA2 requires 64 multiplications, 4 for each of the 16 entries inA2. After that,
A2x takes 16 more multiplications, for a total of 80.

3. First observe that by the definition of matrix multiplication,

AB D ŒAb1 Ab2 � � � Abn� D ŒAb1 Ab1 � � � Ab1�;

so the columns of AB are identical. Next, recall that rowi .AB/ D rowi .A/ � B:

Since all the rows of A are identical, all the rows of AB are identical. Putting this
information about the rows and columns together, it follows that all the entries in
AB are the same.

2.2 The Inverse of a Matrix
Matrix algebra provides tools for manipulating matrix equations and creating various
useful formulas in ways similar to doing ordinary algebra with real numbers. This section
investigates the matrix analogue of the reciprocal, or multiplicative inverse, of a nonzero
number.

Recall that themultiplicative inverse of a number such as 5 is 1/5 or 5�1. This inverse
satisfies the equations

5�1.5/ D 1 and 5.5�1/ D 1

The matrix generalization requires both equations and avoids the slanted-line notation
(for division) because matrix multiplication is not commutative. Furthermore, a full
generalization is possible only if the matrices involved are square.1

An n � n matrix A is said to be invertible if there is an n � n matrix C such that

CA D I and AC D I

where I D In; the n � n identity matrix. In this case, C is an inverse of A. In fact, C

is uniquely determined by A, because if B were another inverse of A, then B D BI D

B.AC / D .BA/C D IC D C: This unique inverse is denoted by A�1, so that

A�1A D I and AA�1 D I

A matrix that is not invertible is sometimes called a singular matrix, and an invertible
matrix is called a nonsingular matrix.

1One could say that an m� n matrix A is invertible if there exist n�m matrices C and D such that
CA D In and AD D Im: However, these equations imply that A is square and C D D: Thus, A is invertible
as defined above. See Exercises 31–33 in Section 2.1.
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EXAMPLE 1 If A D

�
2 5

�3 �7

�
and C D

�
�7 �5

3 2

�
, then

AC D

�
2 5

�3 �7

��
�7 �5

3 2

�
D

�
1 0

0 1

�
and

CA D

�
�7 �5

3 2

��
2 5

�3 �7

�
D

�
1 0

0 1

�
Thus C D A�1.

Here is a simple formula for the inverse of a 2 � 2 matrix, along with a test to tell if
the inverse exists.

THEOREM 4 Let A D

�
a b

c d

�
. If ad � bc ¤ 0, then A is invertible and

A�1
D

1

ad � bc

�
d �b

�c a

�
If ad � bc D 0, then A is not invertible.

The simple proof of Theorem 4 is outlined in Exercises 35 and 36. The quantity
ad � bc is called the determinant of A, and we write

detA D ad � bc

Theorem 4 says that a 2 � 2 matrix A is invertible if and only if detA ¤ 0.

EXAMPLE 2 Find the inverse of A D

�
3 4

5 6

�
.

SOLUTION Since detA D 3.6/ � 4.5/ D �2 ¤ 0, A is invertible, and

A�1
D

1

�2

�
6 �4

�5 3

�
D

�
6=.�2/ �4=.�2/

�5=.�2/ 3=.�2/

�
D

�
�3 2

5=2 �3=2

�
Invertible matrices are indispensable in linear algebra—mainly for algebraic calcu-

lations and formula derivations, as in the next theorem. There are also occasions when
an inverse matrix provides insight into a mathematical model of a real-life situation, as
in Example 3.

THEOREM 5 If A is an invertible n � n matrix, then for each b in Rn, the equation Ax D b has
the unique solution x D A�1b.

PROOF Take any b in Rn. A solution exists because if A�1b is substituted for x,
then Ax D A.A�1b/ D .AA�1/b D Ib D b. So A�1b is a solution. To prove that the
solution is unique, show that if u is any solution, then u; in fact, must be A�1b. Indeed,
if Au D b, we can multiply both sides by A�1 and obtain

A�1Au D A�1b; Iu D A�1b; and u D A�1b
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EXAMPLE 3 A horizontal elastic beam is supported at each end and is subjected to
forces at points 1, 2, and 3, as shown in Figure 1. Let f in R3 list the forces at these
points, and let y in R3 list the amounts of deflection (that is, movement) of the beam at
the three points. Using Hooke’s law from physics, it can be shown that

y D Df

where D is a flexibility matrix. Its inverse is called the stiffness matrix. Describe the
physical significance of the columns of D and D�1.













#1 # 2 # 3

y1 y2
y3

f3f2
f1

FIGURE 1 Deflection of an elastic beam.

SOLUTION Write I3 D Œ e1 e2 e3 � and observe that

D D DI3 D Œ De1 De2 De3 �

Interpret the vector e1 D .1; 0; 0/ as a unit force applied downward at point 1 on the
beam (with zero force at the other two points). Then De1; the first column of D; lists the
beam deflections due to a unit force at point 1. Similar descriptions apply to the second
and third columns of D:

To study the stiffness matrix D�1, observe that the equation f D D�1y computes a
force vector f when a deflection vector y is given. Write

D�1
D D�1I3 D Œ D�1e1 D�1e2 D�1e3 �

Now interpret e1 as a deflection vector. Then D�1e1 lists the forces that create the
deflection. That is, the first column of D�1 lists the forces that must be applied at the
three points to produce a unit deflection at point 1 and zero deflections at the other points.
Similarly, columns 2 and 3 of D�1 list the forces required to produce unit deflections at
points 2 and 3, respectively. In each column, one or two of the forces must be negative
(point upward) to produce a unit deflection at the desired point and zero deflections at
the other two points. If the flexibility is measured, for example, in inches of deflection
per pound of load, then the stiffness matrix entries are given in pounds of load per inch
of deflection.

The formula in Theorem 5 is seldom used to solve an equation Ax D b numerically
because row reduction of Œ A b � is nearly always faster. (Row reduction is usually
more accurate, too, when computations involve rounding off numbers.) One possible
exception is the 2 � 2 case. In this case, mental computations to solve Ax D b are
sometimes easier using the formula for A�1, as in the next example.

EXAMPLE 4 Use the inverse of the matrix A in Example 2 to solve the system

3x1 C 4x2 D 3

5x1 C 6x2 D 7

SOLUTION This system is equivalent to Ax D b, so

x D A�1b D
�
�3 2

5=2 �3=2

� �
3

7

�
D

�
5

�3

�
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The next theorem provides three useful facts about invertible matrices.

THEOREM 6 a. If A is an invertible matrix, then A�1 is invertible and

.A�1/�1
D A

b. If A and B are n � n invertible matrices, then so is AB , and the inverse of AB

is the product of the inverses of A and B in the reverse order. That is,

.AB/�1
D B�1A�1

c. IfA is an invertible matrix, then so isAT , and the inverse ofAT is the transpose
of A�1. That is,

.AT /�1
D .A�1/T

PROOF To verify statement (a), find a matrix C such that

A�1C D I and CA�1
D I

In fact, these equations are satisfied with A in place of C . Hence A�1 is invertible, and
A is its inverse. Next, to prove statement (b), compute:

.AB/.B�1A�1/ D A.BB�1/A�1
D AIA�1

D AA�1
D I

A similar calculation shows that .B�1A�1/.AB/ D I . For statement (c), use The-
orem 3(d), read from right to left, .A�1/T AT D .AA�1/T D I T D I . Similarly,
AT .A�1/T D I T D I . Hence AT is invertible, and its inverse is .A�1/T .

Remark: Part (b) illustrates the important role that definitions play in proofs. The theorem
claims that B�1A�1 is the inverse of AB . The proof establishes this by showing that
B�1A�1 satisfies the definition of what it means to be the inverse of AB . Now, the
inverse of AB is a matrix that when multiplied on the left (or right) by AB , the product
is the identity matrix I . So the proof consists of showing that B�1A�1 has this property.

The following generalization of Theorem 6(b) is needed later.

The product of n � n invertible matrices is invertible, and the inverse is the product
of their inverses in the reverse order.

There is an important connection between invertible matrices and row operations
that leads to a method for computing inverses. As we shall see, an invertible matrix A is
row equivalent to an identity matrix, and we can findA�1 by watching the row reduction
of A to I.

Elementary Matrices
An elementarymatrix is one that is obtained by performing a single elementary row op-
eration on an identity matrix. The next example illustrates the three kinds of elementary
matrices.
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EXAMPLE 5 Let

E1 D

24 1 0 0

0 1 0

�4 0 1

35; E2 D

24 0 1 0

1 0 0

0 0 1

35; E3 D

24 1 0 0

0 1 0

0 0 5

35;

A D

24 a b c

d e f

g h i

35
Compute E1A, E2A, and E3A, and describe how these products can be obtained by
elementary row operations on A.

SOLUTION Verify that

E1A D

24 a b c

d e f

g � 4a h � 4b i � 4c

35 ; E2A D

24 d e f

a b c

g h i

35;

E3A D

24 a b c

d e f

5g 5h 5i

35 :

Addition of �4 times row 1 of A to row 3 produces E1A. (This is a row replacement
operation.) An interchange of rows 1 and 2 of A produces E2A, and multiplication of
row 3 of A by 5 produces E3A.

Left-multiplication (that is, multiplication on the left) by E1 in Example 5 has the
same effect on any 3 � n matrix. It adds �4 times row 1 to row 3. In particular, since
E1 � I D E1, we see thatE1 itself is produced by this same row operation on the identity.
Thus Example 5 illustrates the following general fact about elementary matrices. See
Exercises 37 and 38.

If an elementary row operation is performed on an m � n matrix A, the resulting
matrix can be written as EA, where the m �m matrix E is created by performing
the same row operation on Im.

Since row operations are reversible, as shown in Section 1.1, elementary matrices
are invertible, for if E is produced by a row operation on I, then there is another row op-
eration of the same type that changesE back into I. Hence there is an elementary matrix
F such that FE D I. Since E and F correspond to reverse operations, EF D I, too.

Each elementary matrix E is invertible. The inverse of E is the elementary matrix
of the same type that transforms E back into I.

EXAMPLE 6 Find the inverse of E1 D

24 1 0 0

0 1 0

�4 0 1

35.
SOLUTION To transform E1 into I, add C4 times row 1 to row 3. The elementary
matrix that does this is

E�1
1 D

24 1 0 0

0 1 0

C4 0 1

35
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The following theorem provides the best way to “visualize” an invertible matrix,
and the theorem leads immediately to a method for finding the inverse of a matrix.

THEOREM 7 An n � n matrix A is invertible if and only if A is row equivalent to In, and in
this case, any sequence of elementary row operations that reduces A to In also
transforms In into A�1.

Remark: The comment on the proof of Theorem 11 in Chapter 1 noted that “P if and
only if Q” is equivalent to two statements: (1) “If P then Q” and (2) “If Q then P .”
The second statement is called the converse of the first and explains the use of the word
conversely in the second paragraph of this proof.

PROOF Suppose that A is invertible. Then, since the equation Ax D b has a solution
for each b (Theorem 5), A has a pivot position in every row (Theorem 4 in Section 1.4).
Because A is square, the n pivot positions must be on the diagonal, which implies that
the reduced echelon form of A is In. That is, A � In.

Now suppose, conversely, that A � In. Then, since each step of the row reduction
of A corresponds to left-multiplication by an elementary matrix, there exist elementary
matrices E1; : : : ; Ep such that

A � E1A � E2.E1A/ � � � � � Ep.Ep�1 � � �E1A/ D In

That is,
Ep � � �E1A D In (1)

Since the product Ep � � �E1 of invertible matrices is invertible, (1) leads to

.Ep � � �E1/�1.Ep � � �E1/A D .Ep � � �E1/�1In

A D .Ep � � �E1/�1

Thus A is invertible, as it is the inverse of an invertible matrix (Theorem 6). Also,

A�1
D Œ .Ep � � �E1/�1 �

�1
D Ep � � �E1

Then A�1 D Ep � � �E1In, which says that A�1 results from applying E1; : : : ; Ep suc-
cessively to In. This is the same sequence in (1) that reduced A to In.

An Algorithm for Finding A –1

If we place A and I side by side to form an augmented matrix Œ A I �, then row
operations on this matrix produce identical operations on A and on I. By Theorem 7,
either there are row operations that transform A to In and In to A�1 or else A is not
invertible.

ALGORITHM FOR FINDING A–1

Row reduce the augmented matrix Œ A I �. If A is row equivalent to I, then
Œ A I � is row equivalent to Œ I A�1 �. Otherwise, A does not have an inverse.
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EXAMPLE 7 Find the inverse of the matrix A D

24 0 1 2

1 0 3

4 �3 8

35, if it exists.
SOLUTION

Œ A I � D

24 0 1 2 1 0 0

1 0 3 0 1 0

4 �3 8 0 0 1

35 � 24 1 0 3 0 1 0

0 1 2 1 0 0

4 �3 8 0 0 1

35
�

24 1 0 3 0 1 0

0 1 2 1 0 0

0 �3 �4 0 �4 1

35 � 24 1 0 3 0 1 0

0 1 2 1 0 0

0 0 2 3 �4 1

35
�

24 1 0 3 0 1 0

0 1 2 1 0 0

0 0 1 3=2 �2 1=2

35
�

24 1 0 0 �9=2 7 �3=2

0 1 0 �2 4 �1

0 0 1 3=2 �2 1=2

35
Theorem 7 shows, since A � I, that A is invertible, and

A�1
D

24�9=2 7 �3=2

�2 4 �1

3=2 �2 1=2

35

Reasonable Answers

Once you have found a candidate for the inverse of a matrix, you can check that
your answer is correct by finding the product ofAwithA�1. For the inverse found
for matrix A in Example 7, notice

AA�1
D

24 0 1 2

1 0 3

4 �3 8

35 24�9=2 7 �3=2

�2 4 �1

3=2 �2 1=2

35 D 24 1 0 0

0 1 0

0 0 1

35
confirming that answer is correct. It is not necessary to check that A�1A D I

since A is invertible.

Another View of Matrix Inversion
Denote the columns of In by e1; : : : ; en. Then row reduction of Œ A I � to Œ I A�1 �

can be viewed as the simultaneous solution of the n systems

Ax D e1; Ax D e2; : : : ; Ax D en (2)

where the “augmented columns” of these systems have all been placed next toA to form
Œ A e1 e2 � � � en � D Œ A I �. The equationAA�1 D I and the definition of matrix
multiplication show that the columns ofA�1 are precisely the solutions of the systems in
(2). This observation is useful because some applied problems may require finding only
one or two columns of A�1. In this case, only the corresponding systems in (2) need to
be solved.
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Numerical Note

In practical work, A�1 is seldom computed, unless the entries of A�1 are needed.
Computing both A�1 and A�1b takes about three times as many arithmetic
operations as solving Ax D b by row reduction, and row reduction may be more
accurate.

Practice Problems

1. Use determinants to determine which of the following matrices are invertible.

a.
�

3 �9

2 6

�
b.
�

4 �9

0 5

�
c.
�

6 �9

�4 6

�
2. Find the inverse of the matrix A D

24 1 �2 �1

�1 5 6

5 �4 5

35, if it exists.
3. If A is an invertible matrix, prove that 5A is an invertible matrix.

2.2 Exercises
Find the inverses of the matrices in Exercises 1–4.

1.
�

8 3

5 2

�
2.

�
5 4

9 7

�
3.

�
8 3

�7 �3

�
4.

�
3 �2

7 �4

�
5. Verify that the inverse you found in Exercise 1 is correct.

6. Verify that the inverse you found in Exercise 2 is correct.

7. Use the inverse found in Exercise 1 to solve the system

8x1 C 3x2 D 2

5x1 C 2x2 D �1

8. Use the inverse found in Exercise 2 to solve the system

5x1 C 4x2 D �3

9x1 C 7x2 D �5

9. Let A D

�
1 2

5 12

�
; b1 D

�
�1

3

�
; b2 D

�
1

�5

�
;

b3 D

�
2

6

�
, and b4 D

�
3

5

�
.

a. Find A�1, and use it to solve the four equations Ax D
b1; Ax D b2; Ax D b3; Ax D b4

b. The four equations in part (a) can be solved by the
same set of row operations, since the coefficient ma-
trix is the same in each case. Solve the four equa-
tions in part (a) by row reducing the augmented matrix�

A b1 b2 b3 b4

�
10. Use matrix algebra to show that if A is invertible and D

satisfies AD D I , then D D A�1.

In Exercises 11–20, mark each statement True or False (T/F).
Justify each answer.

11. (T/F) In order for a matrix B to be the inverse of A, both
equations AB D I and BA D I must be true.

12. (T/F)A product of invertible n � nmatrices is invertible, and
the inverse of the product is the product of their inverses in
the same order.

13. (T/F) If A and B are n � n and invertible, then A�1B�1 is
the inverse of AB .

14. (T/F) If A is invertible, then the inverse of A�1 is A itself.

15. (T/F) If A D

�
a b

c d

�
and ab � cd ¤ 0, then A is

invertible.

16. (T/F) If A D

�
a b

c d

�
and ad D bc, then A is not

invertible.

17. (T/F) If A is an invertible n � n matrix, then the equation
Ax D b is consistent for each b in Rn.

18. (T/F) If A can be row reduced to the identity matrix, then A

must be invertible.

19. (T/F) Each elementary matrix is invertible.

20. (T/F) If A is invertible, then the elementary row operations
that reduce A to the identity In also reduce A�1 to In.

21. Let A be an invertible n � n matrix, and let B be an n � p

matrix. Show that the equation AX D B has a unique solu-
tion A�1B:
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22. Let A be an invertible n � nmatrix, and let B be an n � p ma-
trix. Explain why A�1B can be computed by row reduction:

If ŒA B� � � � � � ŒI X�; then X D A�1B:

If A is larger than 2 � 2, then row reduction of ŒA B� is much
faster than computing both A�1 and A�1B:

23. SupposeAB D AC;where B andC are n � p matrices and A
is invertible. Show that B D C . Is this true, in general, when
A is not invertible?

24. Suppose .B � C /D D 0, where B and C are m � n matrices
and D is invertible. Show that B D C:

25. Suppose A, B, and C are invertible n � n matrices. Show that
ABC is also invertible by producing a matrix D such that
.ABC / D D I and D .ABC / D I:

26. Suppose A and B are n � n; B is invertible, and AB is invert-
ible. Show that A is invertible. [Hint: Let C D AB; and solve
this equation for A.]

27. Solve the equation AB D BC for A, assuming that A, B, and
C are square and B is invertible.

28. Suppose P is invertible and A D PBP�1: Solve for B in
terms of A.

29. If A, B, and C are n � n invertible matrices, does the equation
C�1.ACX/B�1 D In have a solution, X? If so, find it.

30. Suppose A, B, and X are n � n matrices with A, X, and
A � AX invertible, and suppose

.A � AX/�1 D X�1B .3/

a. Explain why B is invertible.

b. Solve (3) for X. If you need to invert a matrix, explain why
that matrix is invertible.

31. Explain why the columns of an n � n matrix A are linearly
independent when A is invertible.

32. Explain why the columns of an n � nmatrix A spanRn when
A is invertible. [Hint: Review Theorem 4 in Section 1.4.]

33. Suppose A is n � n and the equation Ax D 0 has only the
trivial solution. Explain why A has n pivot columns and A is
row equivalent to In: By Theorem 7, this shows that A must
be invertible. (This exercise and Exercise 34 will be cited in
Section 2.3.)

34. Suppose A is n � n and the equation Ax D b has a solution
for each b in Rn. Explain why A must be invertible. [Hint: Is
A row equivalent to In?]

Exercises 35 and 36 prove Theorem 4 for A D

�
a b

c d

�
:

35. Show that if ad � bc D 0; then the equation Ax D 0 has
more than one solution. Why does this imply that A is not
invertible? [Hint: First, consider a D b D 0: Then, if a and b

are not both zero, consider the vector x D
�
�b

a

�
:�

36. Show that if ad � bc ¤ 0; the formula for A�1 works.

Exercises 37 and 38 prove special cases of the facts about elemen-
tary matrices stated in the box following Example 5. Here A is a
3 � 3 matrix and I D I3: (A general proof would require slightly
more notation.)

37. a. Use equation (1) from Section 2.1 to show that
rowi .A/ D rowi .I / � A; for i D 1; 2; 3:

b. Show that if rows l and 2 of A are interchanged, then the
result may be written as EA, where E is an elementary
matrix formed by interchanging rows 1 and 2 of I.

c. Show that if row 3 of A is multiplied by 5, then the result
may be written as EA, where E is formed by multiplying
row 3 of I by 5.

38. Show that if row 3 of A is replaced by row3.A/ � 4row1.A/;

the result is EA, where E is formed from I by replacing
row3.I / by row3.I / � 4row1.I /:

Find the inverses of the matrices in Exercises 39–42, if they exist.
Use the algorithm introduced in this section.

39.
�

1 2

4 7

�
40.

�
9 7

8 6

�

41.

24 1 0 �2

�3 1 4

2 �3 4

35 42.

24 1 �2 1

4 �7 3

�2 6 �4

35
43. Use the algorithm from this section to find the inverses of24 1 0 0

1 1 0

1 1 1

35 and

2664
1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

3775:

Let A be the corresponding n � n matrix, and let B be its
inverse. Guess the form of B , and then prove that AB D I

and BA D I:

44. Repeat the strategy of Exercise 43 to guess the inverse of

A D

2666664
1 0 0 � � � 0

1 2 0 0

1 2 3 0
:::

: : :
:::

1 2 3 � � � n

3777775: Prove that your guess is

correct.

45. Let A D

24�2 �7 �9

2 5 6

1 3 4

35: Find the third column of A�1

without computing the other columns.

T 46. Let A D

24�25 �9 �27

546 180 537

154 50 149

35: Find the second and third

columns of A�1 without computing the first column.
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47. LetA D

24 1 2

1 3

1 5

35:Construct a 2 � 3matrixC (by trial and

error) using only l, �1, and 0 as entries, such that CA D I2:

Compute AC and note that AC ¤ I3:

48. Let A D

�
1 1 1 0

0 1 1 1

�
: Construct a 4 � 2 matrix D

using only 1 and 0 as entries, such thatAD D I2: Is it possible
that CA D I4 for some 4 � 2 matrix C? Why or why not?

49. Let D D

24 :005 :002 :001

:002 :004 :002

:001 :002 :005

35 be a flexibility matrix,

with flexibility measured in inches per pound. Suppose
that forces of 30, 50, and 20 lb are applied at points 1,
2, and 3, respectively, in Figure 1 of Example 3. Find the
corresponding deflections.

T 50. Compute the stiffness matrix D�1 for D in Exercise 49. List
the forces needed to produce a deflection of .04 in. at point
3, with zero deflections at the other points.

T 51. Let D D

2664
:0040 :0030 :0010 :0005

:0030 :0050 :0030 :0010

:0010 :0030 :0050 :0030

:0005 :0010 :0030 :0040

3775 be a

flexibility matrix for an elastic beam with four points at
which force is applied. Units are centimeters per newton
of force. Measurements at the four points show deflections
of .08, .12, .16, and .12 cm. Determine the forces at the four
points.

f3

#1 #2 #3 #4

f1 f2
f4

.08 .12 .16 .12

Deflection of elastic beam in Exercises 51 and 52.

T 52. With D as in Exercise 51, determine the forces that produce
a deflection of .24 cm at the second point on the beam, with
zero deflections at the other three points. How is the answer
related to the entries inD�1‹ [Hint: First answer the question
when the deflection is 1 cm at the second point.]

Solutions to Practice Problems

1. a. det
�

3 �9

2 6

�
D 3 � 6 � .�9/ � 2 D 18C 18 D 36. The determinant is nonzero,

so the matrix is invertible.

b. det
�

4 �9

0 5

�
D 4 � 5 � .�9/ � 0 D 20 ¤ 0. The matrix is invertible.

c. det
�

6 �9

�4 6

�
D 6 � 6 � .�9/.�4/ D 36 � 36 D 0. Thematrix is not invertible.

2. Œ A I � �

24 1 �2 �1 1 0 0

�1 5 6 0 1 0

5 �4 5 0 0 1

35
�

24 1 �2 �1 1 0 0

0 3 5 1 1 0

0 6 10 �5 0 1

35
�

24 1 �2 �1 1 0 0

0 3 5 1 1 0

0 0 0 �7 �2 1

35
So Œ A I � is row equivalent to a matrix of the form Œ B D �, where B is square
and has a row of zeros. Further row operations will not transform B into I, so we
stop. A does not have an inverse.

3. Since A is an invertible matrix, there exists a matrix C such that AC D I D CA.
The goal is to find a matrix D so that (5A)D D I D D(5A). Set D D 1=5 C .
Applying Theorem 2 from Section 2.1 establishes that (5A)(1=5 C )D (5)(1/5)(AC )
D 1 I D I , and (1/5C )(5A) D (1/5)(5)(CA) = 1 I D I . Thus 1/5 C is indeed the
inverse of A, proving that A is invertible.
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2.3 Characterizations of Invertible Matrices
This section provides a review ofmost of the concepts introduced in Chapter 1, in relation
to systems of n linear equations in n unknowns and to square matrices. The main result
is Theorem 8.

THEOREM 8 The Invertible Matrix Theorem

LetA be a square n � nmatrix. Then the following statements are equivalent. That
is, for a given A, the statements are either all true or all false.

a. A is an invertible matrix.

b. A is row equivalent to the n � n identity matrix.

c. A has n pivot positions.

d. The equation Ax D 0 has only the trivial solution.

e. The columns of A form a linearly independent set.

f. The linear transformation x 7! Ax is one-to-one.

g. The equation Ax D b has at least one solution for each b in Rn.

h. The columns of A span Rn.

i. The linear transformation x 7! Ax maps Rn onto Rn.

j. There is an n � n matrix C such that CA D I .

k. There is an n � n matrix D such that AD D I .

l. AT is an invertible matrix.

First, we need some notation. If the truth of statement (a) always implies that state-

(c) (d)

( j)

(a)

(b)

FIGURE 1

ment (j) is true, we say that (a) implies (j) and write (a)) (j). The proof will establish
the “circle” of implications shown in Figure 1. If any one of these five statements is
true, then so are the others. Finally, the proof will link the remaining statements of the
theorem to the statements in this circle.

PROOF If statement (a) is true, then A�1 works for C in (j), so (a)) (j). Next,
(j)) (d) by Exercise 31 in Section 2.1. (Turn back and read the exercise.) Also,
(d)) (c) by Exercise 33 in Section 2.2. If A is square and has n pivot positions, then
the pivots must lie on the main diagonal, in which case the reduced echelon form of A

is In: Thus (c)) (b). Also, (b)) (a) by Theorem 7 in Section 2.2. This completes the
circle in Figure 1.

Next, (a)) (k) because A�1 works for D. Also, (k)) (g) by Exercise 32 in
Section 2.1, and (g)) (a) by Exercise 34 in Section 2.2. So (k) and (g) are linked
to the circle. Further, (g), (h), and (i) are equivalent for any matrix, by Theorem 4 in
Section 1.4 and Theorem 12(a) in Section 1.9. Thus, (h) and (i) are linked through (g) to
the circle.

Since (d) is linked to the circle, so are (e) and (f), because (d), (e), and (f) are
all equivalent for any matrix A. (See Section 1.7 and Theorem 12(b) in Section 1.9.)
Finally, (a)) (l) by Theorem 6(c) in Section 2.2, and (l)) (a) by the same theorem
with A and AT interchanged. This completes the proof.

(g)

(k)

(h)

(a)

(l)(a)

(i)(g)

(e) (f )(d)

Because of Theorem 5 in Section 2.2, statement (g) in Theorem 8 could also be
written as “The equationAx D b has a unique solution for each b inRn.” This statement
certainly implies (b) and hence implies that A is invertible.
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The next fact follows from Theorem 8 and Exercise 10 in Section 2.2.

Let A and B be square matrices. If AB D I , then A and B are both invertible, with
B D A�1 and A D B�1.

The Invertible Matrix Theorem divides the set of all n � nmatrices into two disjoint
classes: the invertible (nonsingular) matrices, and the noninvertible (singular) matrices.
Each statement in the theorem describes a property of every n � n invertible matrix.
The negation of a statement in the theorem describes a property of every n � n singular
matrix. For instance, an n � n singular matrix is not row equivalent to In, does not have
n pivot positions, and has linearly dependent columns. Negations of other statements are
considered in the exercises.

EXAMPLE 1 Use the Invertible Matrix Theorem to decide if A is invertible:

A D

24 1 0 �2

3 1 �2

�5 �1 9

35
SOLUTION

A �

24 1 0 �2

0 1 4

0 �1 �1

35 � 24 1 0 �2

0 1 4

0 0 3

35
SoA has three pivot positions and hence is invertible, by the Invertible Matrix Theorem,
statement (c).

The power of the Invertible Matrix Theorem lies in the connections it providesSTUDY GUIDE offers an expanded
table for the Invertible Matrix
Theorem.

among so many important concepts, such as linear independence of columns of a matrix
A and the existence of solutions to equations of the form Ax D b. It should be empha-
sized, however, that the Invertible Matrix Theorem applies only to square matrices. For
example, if the columns of a 4 � 3 matrix are linearly independent, we cannot use the
Invertible Matrix Theorem to conclude anything about the existence or nonexistence of
solutions to equations of the form Ax D b.

Invertible Linear Transformations
Recall from Section 2.1 that matrix multiplication corresponds to composition of linear
transformations. When a matrix A is invertible, the equation A�1Ax D x can be viewed
as a statement about linear transformations. See Figure 2.

Multiplication

by A

Multiplication

by A21

Axx

FIGURE 2 A�1 transforms Ax back to x.

A linear transformation T W Rn ! Rn is said to be invertible if there exists a func-
tion S W Rn ! Rn such that

S.T .x// D x for all x in Rn (1)

T .S.x// D x for all x in Rn (2)

The next theorem shows that if such an S exists, it is unique and must be a linear
transformation. We call S the inverse of T and write it as T �1.
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THEOREM 9 Let T W Rn ! Rn be a linear transformation and let A be the standard matrix for
T . Then T is invertible if and only if A is an invertible matrix. In that case, the
linear transformation S given by S.x/ D A�1x is the unique function satisfying
equations .1/ and .2/.

Remark: See the comment on the proof of Theorem 7.

PROOF Suppose that T is invertible. Then (2) shows that T is onto Rn, for if b is in
Rn and x D S.b/, then T .x/ D T .S.b// D b, so each b is in the range of T . Thus A is
invertible, by the Invertible Matrix Theorem, statement (i).

Conversely, suppose that A is invertible, and let S.x/ D A�1x. Then, S is a linear
transformation, and S obviously satisfies (1) and (2). For instance,

S.T .x// D S.Ax/ D A�1.Ax/ D x

Thus T is invertible. The proof that S is unique is outlined in Exercise 47.

EXAMPLE 2 What can you say about a one-to-one linear transformation T fromRn

into Rn?

SOLUTION The columns of the standard matrix A of T are linearly independent (by
Theorem 12 in Section 1.9). So A is invertible, by the Invertible Matrix Theorem, and
T maps Rn onto Rn. Also, T is invertible, by Theorem 9.

Numerical Notes

In practical work, you might occasionally encounter a “nearly singular” or ill-
conditioned matrix—an invertible matrix that can become singular if some of
its entries are changed ever so slightly. In this case, row reduction may produce
fewer than n pivot positions, as a result of roundoff error. Also, roundoff error can
sometimes make a singular matrix appear to be invertible.

Somematrix programswill compute a condition number for a squarematrix.
The larger the condition number, the closer the matrix is to being singular.
The condition number of the identity matrix is 1. A singular matrix has an
infinite condition number. In extreme cases, a matrix program may not be able
to distinguish between a singular matrix and an ill-conditioned matrix.

Exercises 49– 53 show thatmatrix computations can produce substantial error
when a condition number is large.

Practice Problems

1. Determine if A D

24 2 3 4

2 3 4

2 3 4

35 is invertible.

2. Suppose that for a certain n � n matrix A, statement (g) of the Invertible Matrix
Theorem is not true. What can you say about equations of the form Ax D b?

3. Suppose thatA andB are n � nmatrices and the equationABx D 0 has a nontrivial
solution. What can you say about the matrix AB?
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2.3 Exercises
Unless otherwise specified, assume that all matrices in these ex-
ercises are n � n. Determine which of the matrices in Exercises
1–10 are invertible. Use as few calculations as possible. Justify
your answers.

1.
�

5 7

�3 �6

�
2.

�
�4 6

6 �9

�

3.

24 5 0 0

�3 �7 0

8 5 �1

35 4.

24�7 0 4

3 0 �1

2 0 9

35
5.

24 0 4 7

1 0 5

�5 8 �2

35 6.

24 1 �5 �4

0 3 4

�3 6 0

35

7.

2664
�1 0 2 1

�5 �3 9 3

3 0 1 �3

0 3 1 2

3775 8.

2664
1 3 7 4

0 5 9 6

0 0 2 8

0 0 0 10

3775

T 9.

2664
4 0 �7 �7

�6 1 11 9

7 �5 10 19

�1 2 3 �1

3775

T 10.

266664
5 3 1 7 9

6 4 2 8 �8

7 5 3 10 9

9 6 4 �9 �5

8 5 2 11 4

377775
In Exercises 11–20, the matrices are all n � n. Each part of
the exercises is an implication of the form “If ‘statement 1’,
then ‘statement 2’.” Mark an implication as True if the truth of
“statement 2” always follows whenever “statement 1” happens to
be true. An implication is False if there is an instance in which
“statement 2” is false but “statement 1” is true. Justify each answer.

11. (T/F) If the equationAx = 0 has only the trivial solution, then
A is row equivalent to the n � n identity matrix.

12. (T/F) If there is an n � n matrix D such that AD D I , then
there is also an n � n matrix C such that CA D I .

13. (T/F) If the columns of A span Rn, then the columns are
linearly independent.

14. (T/F) If the columns of A are linearly independent, then the
columns of A span Rn.

15. (T/F) If A is an n � n matrix, then the equation Ax D b has
at least one solution for each b in Rn.

16. (T/F) If the equationAx D b has at least one solution for each
b in Rn, then the solution is unique for each b.

17. (T/F) If the equation Ax = 0 has a nontrivial solution, then A

has fewer than n pivot positions.

18. (T/F) If the linear transformation x 7! Ax maps Rn into Rn,
then A has n pivot positions.

19. (T/F) If AT is not invertible, then A is not invertible.

20. (T/F) If there is a b in Rn such that the equation Ax D b
is inconsistent, then the transformation x 7! Ax is not one-
to-one.

21. An m � n upper triangular matrix is one whose entries
below the main diagonal are 0’s (as in Exercise 8). When
is a square upper triangular matrix invertible? Justify your
answer.

22. An m � n lower triangular matrix is one whose entries
above the main diagonal are 0’s (as in Exercise 3). When
is a square lower triangular matrix invertible? Justify your
answer.

23. Can a square matrix with two identical columns be invertible?
Why or why not?

24. Is it possible for a 5 � 5 matrix to be invertible when its
columns do not span R5? Why or why not?

25. If A is invertible, then the columns of A�1 are linearly
independent. Explain why.

26. If C is 6 � 6 and the equation Cx D v is consistent for every
v in R6, is it possible that for some v, the equation Cx D v
has more than one solution? Why or why not?

27. If the columns of a 7 � 7 matrix D are linearly independent,
what can you say about solutions of Dx D b? Why?

28. If n � n matrices E and F have the property that EF D I ,
then E and F commute. Explain why.

29. If the equation Gx D y has more than one solution for some
y in Rn, can the columns of G span Rn? Why or why not?

30. If the equationHx D c is inconsistent for some c inRn, what
can you say about the equation Hx D 0? Why?

31. If an n � n matrix K cannot be row reduced to In; what can
you say about the columns of K? Why?

32. If L is n � n and the equation Lx D 0 has the trivial solution,
do the columns of L span Rn? Why?

33. Verify the boxed statement preceding Example 1.

34. Explain why the columns of A2 span Rn whenever the
columns of A are linearly independent.

35. Show that if AB is invertible, so is A. You cannot use Theorem
6(b), because you cannot assume that A and B are invertible.
[Hint: There is a matrix W such that ABW D I: Why?]

36. Show that if AB is invertible, so is B.

37. If A is an n � nmatrix and the equationAx Db has more than
one solution for some b, then the transformation x 7! Ax is
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not one-to-one. What else can you say about this transforma-
tion? Justify your answer.

38. If A is an n � n matrix and the transformation x 7! Ax is
one-to-one, what else can you say about this transformation?
Justify your answer.

39. Suppose A is an n � n matrix with the property that the
equation Ax D b has at least one solution for each b in Rn.
Without using Theorems 5 or 8, explain why each equation
Ax D b has in fact exactly one solution.

40. Suppose A is an n � n matrix with the property that the equa-
tion Ax D 0 has only the trivial solution. Without using the
Invertible Matrix Theorem, explain directly why the equation
Ax D b must have a solution for each b in Rn.

In Exercises 41 and 42, T is a linear transformation from R2 into
R2. Show that T is invertible and find a formula for T�1:

41. T .x1; x2/ D .�9x1 C 7x2; 4x1 � 3x2/

42. T .x1; x2/ D .6x1 � 8x2;�5x1 C 7x2/

43. Let T W Rn ! Rn be an invertible linear transformation. Ex-
plain why T is both one-to-one and onto Rn. Use equations
(1) and (2). Then give a second explanation using one or more
theorems.

44. Let T be a linear transformation that maps Rn onto Rn. Show
that T�1 exists and maps Rn onto Rn. Is T�1 also one-to-
one?

45. Suppose T and U are linear transformations from Rn to Rn

such that T .U x/ D x for all x inRn. Is it true thatU.T x/ D x
for all x in Rn? Why or why not?

46. Suppose a linear transformation T W Rn ! Rn has the prop-
erty that T .u/ D T .v/ for some pair of distinct vectors u and
v in Rn. Can T map Rn onto Rn? Why or why not?

47. Let T W Rn ! Rn be an invertible linear transformation,
and let S and U be functions from Rn into Rn such that
S .T .x// D x and U .T .x// D x for all x in Rn. Show that
U.v/ D S.v/ for all v in Rn. This will show that T has a
unique inverse, as asserted in Theorem 9. [Hint: Given any
v in Rn, we can write v D T .x/ for some x. Why? Compute
S.v/ and U.v/.]

48. Suppose T and S satisfy the invertibility equations (1) and
(2), where T is a linear transformation. Show directly that
S is a linear transformation. [Hint: Given u, v in Rn, let
x D S.u/; y D S(v). Then T .x/ D u; T .y/ D v:Why?Apply
S to both sides of the equation T .x/C T .y/ D T .xC y/:

Also, consider T .cx/ D cT .x/.]

T 49. Suppose an experiment leads to the following system of
equations:

4:5x1 C 3:1x2 D 19:249 .3/

1:6x1 C 1:1x2 D 6:843

a. Solve system (3), and then solve system (4), below, in
which the data on the right have been rounded to two
decimal places. In each case, find the exact solution.

4:5x1 C 3:1x2 D 19:25 .4/

1:6x1 C 1:1x2 D 6:84

b. The entries in (4) differ from those in (3) by less than
:05%. Find the percentage error when using the solution
of (4) as an approximation for the solution of (3).

c. Use yourmatrix program to produce the condition number
of the coefficient matrix in (3).

Exercises 50–52 show how to use the condition number of amatrix
A to estimate the accuracy of a computed solution of Ax D b:

If the entries of A and b are accurate to about r significant digits
and if the condition number of A is approximately 10k (with k a
positive integer), then the computed solution of Ax D b should
usually be accurate to at least r � k significant digits.

T 50. Find the condition number of the matrix A in Exercise 9.
Construct a random vector x in R4 and compute b D Ax.
Then use your matrix program to compute the solution x1 of
Ax D b. To how many digits do x and x1 agree? Find out the
number of digits your matrix program stores accurately, and
report how many digits of accuracy are lost when x1 is used
in place of the exact solution x.

T 51. Repeat Exercise 50 for the matrix in Exercise 10.

T 52. Solve an equation Ax D b for a suitable b to find the last
column of the inverse of the fifth-order Hilbert matrix

A D

266664
1 1=2 1=3 1=4 1=5

1=2 1=3 1=4 1=5 1=6

1=3 1=4 1=5 1=6 1=7

1=4 1=5 1=6 1=7 1=8

1=5 1=6 1=7 1=8 1=9

377775
How many digits in each entry of x do you expect to be
correct? Explain. [Note: The exact solution is .630;�12600;

56700;�88200; 44100/:]

T 53. Some matrix programs, such as MATLAB, have a command
to create Hilbert matrices of various sizes. If possible, use an
inverse command to compute the inverse of a twelfth-order
or larger Hilbert matrix, A. ComputeAA�1: Report what you
find.

Solutions to Practice Problems

1. The columns of A are obviously linearly dependent because columns 2 and 3 are
STUDY GUIDE offers additional
resources for reviewing and
reflecting on what you have
learned.

multiples of column 1. Hence, A cannot be invertible (by the Invertible Matrix
Theorem).
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Solutions to Practice Problems (Continued)

2. If statement (g) is not true, then the equation Ax D b is inconsistent for at least one
b in Rn.

3. Apply the InvertibleMatrix Theorem to thematrixAB in place ofA. Then statement
(d) becomes: ABx D 0 has only the trivial solution. This is not true. So AB is not
invertible.

2.4 Partitioned Matrices
A key feature of our work with matrices has been the ability to regard a matrixA as a list
of column vectors rather than just a rectangular array of numbers. This point of view has
been so useful that we wish to consider other partitions of A, indicated by horizontal
and vertical dividing rules, as in Example 1 below. Partitioned matrices appear in most
modern applications of linear algebra because the notation highlights essential structures
in matrix analysis, as in the chapter introductory example on aircraft design. This section
provides an opportunity to reviewmatrix algebra and use the Invertible Matrix Theorem.

EXAMPLE 1 The matrix

A D

24 3 0 �1 5 9 �2

�5 2 4 0 �3 1

�8 �6 3 1 7 �4

35
can also be written as the 2 � 3 partitioned (or block) matrix

A D

�
A11 A12 A13

A21 A22 A23

�
whose entries are the blocks (or submatrices)

A11 D

�
3 0 �1

�5 2 4

�
; A12 D

�
5 9

0 �3

�
; A13 D

�
�2

1

�
A21 D

�
�8 �6 3

�
; A22 D

�
1 7

�
; A23 D

�
�4

�
EXAMPLE 2 When a matrix A appears in a mathematical model of a physical sys-
tem such as an electrical network, a transportation system, or a large corporation, it may
be natural to regard A as a partitioned matrix. For instance, if a microcomputer circuit
board consists mainly of three VLSI (very large-scale integrated) microchips, then the
matrix for the circuit board might have the general form

A D

264A11 A12 A13

A21 A22 A23

A31 A32 A33

375
The submatrices on the “diagonal” of A—namely A11, A22, and A33—concern the three
VLSI chips, while the other submatrices depend on the interconnections among those
microchips.

Addition and Scalar Multiplication
If matrices A and B are the same size and are partitioned in exactly the same way,
then it is natural to make the same partition of the ordinary matrix sum AC B . In this
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27. Without using row reduction, find the inverse of

A D

266664
1 2 0 0 0

3 5 0 0 0

0 0 2 0 0

0 0 0 7 8

0 0 0 5 6

377775
T 28. For block operations, it may be necessary to access or enter

submatrices of a large matrix. Describe the functions or com-
mands of your matrix program that accomplish the following
tasks. Suppose A is a 20 � 30 matrix.

a. Display the submatrix of A from rows 15 to 20 and
columns 5 to 10.

b. Insert a 5 � 10 matrix B into A, beginning at row 10 and
column 20.

c. Create a 50 � 50 matrix of the form B D

�
A 0

0 AT

�
.

[Note: It may not be necessary to specify the zero blocks
in B.]

T 29. Suppose memory or size restrictions prevent your matrix
program from working with matrices having more than 32
rows and 32 columns, and suppose some project involves
50 � 50 matrices A and B . Describe the commands or oper-
ations of your matrix program that accomplish the following
tasks.

a. Compute AC B.

b. Compute AB.

c. Solve Ax D b for some vector b in R50, assuming that
A can be partitioned into a 2 � 2 block matrix

�
Aij

�
,

with A11 an invertible 20 � 20 matrix, A22 an invertible
30 � 30 matrix, and A12 a zero matrix. [Hint: Describe
appropriate smaller systems to solve, without using any
matrix inverses.]

Solutions to Practice Problems

1. If
�

I 0

A I

�
is invertible, its inverse has the form

�
W X

Y Z

�
. Verify that

�
I 0

A I

��
W X

Y Z

�
D

�
W X

AW C Y AX CZ

�
SoW ,X , Y , andZ must satisfyW D I ,X D 0,AW C Y D 0, andAX CZ D I .
It follows that Y D �A and Z D I . Hence�

I 0

A I

��
I 0

�A I

�
D

�
I 0

0 I

�
The product in the reverse order is also the identity, so the block matrix is invertible,

and its inverse is
�

I 0

�A I

�
. (You could also appeal to the Invertible Matrix

Theorem.)

2. XT X D

"
XT

1

XT
2

#h
X1 X2

i
D

"
XT

1 X1 XT
1 X2

XT
2 X1 XT

2 X2

#
. The partitions of XT and X are

automatically conformable for block multiplication because the columns of XT are
the rows of X . This partition of XTX is used in several computer algorithms for
matrix computations.

2.5 Matrix Factorizations
A factorization of a matrixA is an equation that expressesA as a product of two or more
matrices. Whereas matrix multiplication involves a synthesis of data (combining the
effects of two or more linear transformations into a single matrix), matrix factorization is
an analysis of data. In the language of computer science, the expression ofA as a product
amounts to a preprocessing of the data in A, organizing that data into two or more parts
whose structures are more useful in some way, perhaps more accessible for computation.
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Matrix factorizations and, later, factorizations of linear transformations will appear
at a number of key points throughout the text. This section focuses on a factorization that
lies at the heart of several important computer programswidely used in applications, such
as the airflow problem described in the chapter introduction. Several other factorizations,
to be studied later, are introduced in the exercises.

The LU Factorization
The LU factorization, described below, is motivated by the fairly common industrial and
business problem of solving a sequence of equations, all with the same coefficientmatrix:

Ax D b1; Ax D b2; : : : ; Ax D bp (1)

See Exercise 32, for example. Also see Section 5.8, where the inverse power method
is used to estimate eigenvalues of a matrix by solving equations like those in sequence
(1), one at a time.

When A is invertible, one could compute A�1 and then compute A�1b1, A�1b2,
and so on. However, it is more efficient to solve the first equation in sequence (1) by
row reduction and obtain an LU factorization of A at the same time. Thereafter, the
remaining equations in sequence (1) are solved with the LU factorization.

At first, assume that A is an m � n matrix that can be row reduced to echelon
form, without row interchanges. (Later, we will treat the general case.) Then A can be
written in the form A D LU , where L is an m �m lower triangular matrix with 1’s on
the diagonal and U is an m � n echelon form of A. For instance, see Figure 1. Such a
factorization is called an LU factorization of A. The matrix L is invertible and is called
a unit lower triangular matrix.

A 5 

L U

1
*
*
*

0
1
*
*

0
0
1
*

0
0
0
1

0
0
0

*

0
0

*
*
0
0

*
*
*
0

*
*

0

FIGURE 1 An LU factorization.

Before studying how to construct L and U , we should look at why they are so
useful. When A D LU , the equation Ax D b can be written as L.Ux/ D b. Writing y
for Ux, we can find x by solving the pair of equations

Ly D b

U x D y
(2)

First solve Ly D b for y; and then solve Ux D y for x. See Figure 2. Each equation is
easy to solve because L and U are triangular.

x

Multiplication

by A

b

Multiplication
by L

Multiplication
by U

y

FIGURE 2 Factorization of the mapping x 7!Ax.
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EXAMPLE 1 It can be verified that

A D

2664
3 �7 �2 2

�3 5 1 0

6 �4 0 �5

�9 5 �5 12

3775 D
2664

1 0 0 0

�1 1 0 0

2 �5 1 0

�3 8 3 1

3775
2664

3 �7 �2 2

0 �2 �1 2

0 0 �1 1

0 0 0 �1

3775 D LU

Use this LU factorization of A to solve Ax D b, where b D

2664
�9

5

7

11

3775.
SOLUTION The solution of Ly D b needs only 6 multiplications and 6 additions,
because the arithmetic takes place only in column 5. (The zeros below each pivot in
L are created automatically by the choice of row operations.)

�
L b

�
D

2664
1 0 0 0 �9

�1 1 0 0 5

2 �5 1 0 7

�3 8 3 1 11

3775 �
2664

1 0 0 0 �9

0 1 0 0 �4

0 0 1 0 5

0 0 0 1 1

3775 D � I y
�

Then, for U x D y, the “backward” phase of row reduction requires 4 divisions, 6 mul-
tiplications, and 6 additions. (For instance, creating the zeros in column 4 of Œ U y �

requires 1 division in row 4 and 3 multiplication–addition pairs to add multiples of row 4
to the rows above.)

�
U y

�
D

2664
3 �7 �2 2 �9

0 �2 �1 2 �4

0 0 �1 1 5

0 0 0 �1 1

3775 �
2664

1 0 0 0 3

0 1 0 0 4

0 0 1 0 �6

0 0 0 1 �1

3775; x D

2664
3

4

�6

�1

3775
To find x requires 28 arithmetic operations, or “flops” (floating point operations),

excluding the cost of finding L and U . In contrast, row reduction of Œ A b � to Œ I x �

takes 62 operations.

The computational efficiency of the LU factorization depends on knowingL andU .
The next algorithm shows that the row reduction of A to an echelon form U amounts to
an LU factorization because it produces L with essentially no extra work. After the first
row reduction, L and U are available for solving additional equations whose coefficient
matrix is A.

An LU Factorization Algorithm
Suppose A can be reduced to an echelon form U using only row replacements that add a
multiple of one row to another row below it. In this case, there exist unit lower triangular
elementary matrices E1; : : : ; Ep such that

Ep � � �E1A D U (3)

Then
A D .Ep � � �E1/�1U D LU

where
L D .Ep � � �E1/�1 (4)
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It can be shown that products and inverses of unit lower triangular matrices are also unit
lower triangular. (For instance, see Exercise 19.) Thus L is unit lower triangular.

Note that the row operations in equation (3), which reduce A to U , also reduce
the L in equation (4) to I , because Ep � � �E1L D .Ep � � �E1/.Ep � � �E1/�1 D I. This
observation is the key to constructing L.

ALGORITHM FOR AN LU FACTORIZATION

1. ReduceA to an echelon form U by a sequence of row replacement operations,
if possible.

2. Place entries in L such that the same sequence of row operations reduces L

to I.

Step 1 is not always possible, but when it is, the argument above shows that an LU
factorization exists. Example 2 will show how to implement step 2. By construction, L

will satisfy
.Ep � � �E1/L D I

using the sameE1; : : : ; Ep as in equation (3). ThusLwill be invertible, by the Invertible
Matrix Theorem, with .Ep � � �E1/ D L�1. From (3), L�1A D U , and A D LU . So
step 2 will produce an acceptable L.

EXAMPLE 2 Find an LU factorization of

A D

2664
2 4 �1 5 �2

�4 �5 3 �8 1

2 �5 �4 1 8

�6 0 7 �3 1

3775
SOLUTION Since A has four rows, L should be 4 � 4. The first column of L is the
first column of A divided by the top pivot entry:

L D

2664
1 0 0 0

�2 1 0 0

1 1 0

�3 1

3775
Compare the first columns of A and L. The row operations that create zeros in the
first column of A will also create zeros in the first column of L. To make this same
correspondence of row operations on A hold for the rest of L, watch a row reduction
of A to an echelon form U . That is, highlight the entries in each matrix that are used to
determine the sequence of row operations that transform A into U . [See the highlighted
entries in equation (5).]

A D

2664
2 4 �1 5 �2

�4 �5 3 �8 1

2 �5 �4 1 8

�6 0 7 �3 1

3775 �
2664

2 4 �1 5 �2

0 3 1 2 �3

0 �9 �3 �4 10

0 12 4 12 �5

3775 D A1 (5)

� A2 D

2664
2 4 �1 5 �2

0 3 1 2 �3

0 0 0 2 1

0 0 0 4 7

3775 �
2664

2 4 �1 5 �2

0 3 1 2 �3

0 0 0 2 1

0 0 0 0 5

3775 D U
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These highlighted entries determine the row reduction of A to U . At each pivot column,
divide the highlighted entries by the pivot and place the result into L:2664

2

�4

2

�6

377524 3

�9

12

35� 2

4

� �
5
�

�2 �3 �2 �5

# # # #2664
1

�2 1

1 �3 1

�3 4 2 1

3775, and L D

2664
1 0 0 0

�2 1 0 0

1 �3 1 0

�3 4 2 1

3775
An easy calculation verifies that this L and U satisfy LU D A.

In practical work, row interchanges are nearly always needed, because partial piv-
oting is used for high accuracy. (Recall that this procedure selects, among the possible
choices for a pivot, an entry in the column having the largest absolute value.) To handle
row interchanges, the LU factorization above can be modified easily to produce anL that
is permuted lower triangular, in the sense that a rearrangement (called a permutation)
of the rows of L can make L .unit/ lower triangular. The resulting permuted LU factor-
ization solves Ax D b in the same way as before, except that the reduction of Œ L b �

to Œ I y � follows the order of the pivots in L from left to right, starting with the pivotSTUDY GUIDE offers information
about permuted LU factorizations. in the first column. A reference to an “LU factorization” usually includes the possibility

that L might be permuted lower triangular. For details, see the Study Guide.

Numerical Notes

The following operation counts apply to an n � n dense matrix A (with most
entries nonzero) for n moderately large, say, n � 30.1

1. Computing an LU factorization of A takes about 2n3=3 flops (about the same
as row reducing Œ A b �/, whereas finding A�1 requires about 2n3 flops.

2. Solving Ly D b and U x D y requires about 2n2 flops, because any n � n

triangular system can be solved in about n2 flops.

3. Multiplication of b by A�1 also requires about 2n2 flops, but the result may
not be as accurate as that obtained from L and U (because of roundoff error
when computing both A�1 and A�1b/.

4. If A is sparse (with mostly zero entries), then L and U may be sparse, too,
whereas A�1 is likely to be dense. In this case, a solution of Ax D b with an
LU factorization is much faster than using A�1. See Exercise 31.

A Matrix Factorization in Electrical Engineering
Matrix factorization is intimately related to the problem of constructing an electrical
network with specified properties. The following discussion gives just a glimpse of the
connection between factorization and circuit design.

1 See Section 3.8 in Applied Linear Algebra, 3rd ed., by Ben Noble and James W. Daniel (Englewood Cliffs,
NJ: Prentice-Hall, 1988). Recall that for our purposes, a flop isC, �, �, or�.
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Suppose the box in Figure 3 represents some sort of electric circuit, with an input

and output. Record the input voltage and current by
�

v1

i1

�
(with voltage v in volts and

current i in amps), and record the output voltage and current by
�

v2

i2

�
. Frequently, the

transformation
�

v1

i1

�
7!

�
v2

i2

�
is linear. That is, there is a matrix A, called the transfer

matrix, such that �
v2

i2

�
D A

�
v1

i1

�
i1 i2

electric
circuit

input
terminals

output
terminalsv1 v2

FIGURE 3 A circuit with input and output
terminals.

Figure 4 shows a ladder network, where two circuits (there could be more) are
connected in series, so that the output of one circuit becomes the input of the next circuit.
The left circuit in Figure 4 is called a series circuit, with resistance R1 (in ohms).

i1

R1
v1

i2 i2

v2 R2

i3

v3

A series circuit A shunt circuit

FIGURE 4 A ladder network.

The right circuit in Figure 4 is a shunt circuit, with resistance R2. Using Ohm’s law and
Kirchhoff’s laws, one can show that the transfer matrices of the series and shunt circuits,
respectively, are �

1 �R1

0 1

�
Transfer matrix
of series circuit

and
�

1 0

�1=R2 1

�
Transfer matrix
of shunt circuit

EXAMPLE 3

a. Compute the transfer matrix of the ladder network in Figure 4.

b. Design a ladder network whose transfer matrix is
�

1 �8

�:5 5

�
.

SOLUTION

a. Let A1 and A2 be the transfer matrices of the series and shunt circuits, respectively.
Then an input vector x is transformed first intoA1x and then intoA2.A1x/. The series
connection of the circuits corresponds to composition of linear transformations, and
the transfer matrix of the ladder network is (note the order)

A2A1 D

�
1 0

�1=R2 1

� �
1 �R1

0 1

�
D

�
1 �R1

�1=R2 1CR1=R2

�
(6)
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b. To factor the matrix
�

1 �8

�:5 5

�
into the product of transfer matrices, as in equation

(6), look for R1 and R2 in Figure 4 to satisfy�
1 �R1

�1=R2 1CR1=R2

�
D

�
1 �8

�:5 5

�
From the .1; 2/-entries, R1 D 8 ohms, and from the .2; 1/-entries, 1=R2 D :5 ohm
and R2 D 1=:5 D 2 ohms. With these values, the network in Figure 4 has the desired
transfer matrix.

A network transfer matrix summarizes the input–output behavior (the design spec-
ifications) of the network without reference to the interior circuits. To physically build
a network with specified properties, an engineer first determines if such a network can
be constructed (or realized). Then the engineer tries to factor the transfer matrix into
matrices corresponding to smaller circuits that perhaps are already manufactured and
ready for assembly. In the common case of alternating current, the entries in the trans-
fer matrix are usually rational complex-valued functions. (See Exercises 21 and 22 in
Section 2.4.) A standard problem is to find a minimal realization that uses the smallest
number of electrical components.

Practice Problem

Find an LU factorization of A D

266664
2 �4 �2 3

6 �9 �5 8

2 �7 �3 9

4 �2 �2 �1

�6 3 3 4

377775. [Note: It will turn out that A

has only three pivot columns, so the method of Example 2 will produce only the first
three columns of L. The remaining two columns of L come from I5.]

2.5 Exercises
In Exercises 1–6, solve the equation Ax D b by using the LU
factorization given for A. In Exercises l and 2, also solve Ax D b
by ordinary row reduction.

1. A D

24 3 �7 �2

�3 5 1

6 �4 0

35; b D

24�7

5

2

35
A D

24 1 0 0

�1 1 0

2 �5 1

35 24 3 �7 �2

0 �2 �1

0 0 �1

35
2. A D

24 4 3 �5

�4 �5 7

8 6 �8

35, b D 24 2

�4

6

35
A D

24 1 0 0

�1 1 0

2 0 1

35 24 4 3 �5

0 �2 2

0 0 2

35
3. A D

24 2 �1 2

�6 0 �2

8 �1 5

35, b D 24 1

0

4

35

A D

24 1 0 0

�3 1 0

4 �1 1

3524 2 �1 2

0 �3 4

0 0 1

35

4. A D

24 2 �2 4

1 �3 1

3 7 5

35, b D 24 0

�5

7

35
A D

24 1 0 0

1=2 1 0

3=2 �5 1

3524 2 �2 4

0 �2 �1

0 0 �6

35

5. A D

2664
1 �2 �4 �3

2 �7 �7 �6

�1 2 6 4

�4 �1 9 8

3775, b D
2664

1

7

0

3

3775
A D

2664
1 0 0 0

2 1 0 0

�1 0 1 0

�4 3 �5 1

3775
2664

1 �2 �4 �3

0 �3 1 0

0 0 2 1

0 0 0 1

3775
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6. A D

2664
1 3 4 0

�3 �6 �7 2

3 3 0 �4

�5 �3 2 9

3775, b D
2664

1

�2

�1

2

3775
A D

2664
1 0 0 0

�3 1 0 0

3 �2 1 0

�5 4 �1 1

3775
2664

1 3 4 0

0 3 5 2

0 0 �2 0

0 0 0 1

3775
Find an LU factorization of the matrices in Exercises 7–16 (with
L unit lower triangular). Note that MATLAB will usually produce
a permuted LU factorization because it uses partial pivoting for
numerical accuracy.

7.
�

2 5

�3 �4

�
8.

�
6 9

4 5

�

9.

24 3 �1 2

�3 �2 10

9 �5 6

35 10.

24�5 3 4

10 �8 �9

15 1 2

35
11.

24 3 �6 3

6 �7 2

�1 7 0

35 12.

24 2 �4 2

1 5 �4

�6 �2 4

35

13.

2664
1 3 �5 �3

�1 �5 8 4

4 2 �5 �7

�2 �4 7 5

3775 14.

2664
1 4 �1 5

3 7 �2 9

�2 �3 1 �4

�1 6 �1 7

3775

15.

24 2 �4 4 �2

6 �9 7 �3

�1 �4 8 0

35 16.

266664
2 �6 6

�4 5 �7

3 5 �1

�6 4 �8

8 �3 9

377775
17. When A is invertible, MATLAB finds A�1 by factoring A D

LU (where L may be permuted lower triangular), inverting
L and U, and then computing U�1L�1: Use this method to
compute the inverse of A in Exercise 2. (Apply the algorithm
of Section 2.2 to L and to U.)

18. Find A�1 as in Exercise 17, using A from Exercise 3.

19. Let A be a lower triangular n � n matrix with nonzero entries
on the diagonal. Show that A is invertible and A�1 is lower
triangular. [Hint: Explain why A can be changed into I using
only row replacements and scaling. (Where are the pivots?)
Also, explain why the row operations that reduce A to I
change I into a lower triangular matrix.]

20. Let A D LU be an LU factorization. Explain why A can be
row reduced to U using only replacement operations. (This
fact is the converse of what was proved in the text.)

21. Suppose A D BC; where B is invertible. Show that any
sequence of row operations that reduces B to I also reduces A
to C. The converse is not true, since the zero matrix may be
factored as 0 D B.0/:

Exercises 22–26 provide a glimpse of some widely used matrix
factorizations, some of which are discussed later in the text.

22. (Reduced LU Factorization) With A as in the Practice Prob-
lem, find a 5 � 3 matrix B and a 3 � 4 matrix C such that
A D BC: Generalize this idea to the case where A is m � n;

A D LU; and U has only three nonzero rows.

23. (Rank Factorization) Suppose an m � n matrix A admits a
factorization A D CD where C is m � 4 and D is 4 � n:

a. Show that A is the sum of four outer products. (See
Section 2.4.)

b. Let m D 400 and n D 100: Explain why a computer pro-
grammer might prefer to store the data from A in the form
of two matrices C and D.

24. (QR Factorization) Suppose A D QR; where Q and R are
n � n; R is invertible and upper triangular, and Q has the
property that QT Q D I: Show that for each b in Rn, the
equation Ax D b has a unique solution. What computations
with Q and R will produce the solution?

25. (Singular Value Decomposition) Suppose A D UDV T ;

where U and V are n � n matrices with the property that
U T U D I and V T V D I; and where D is a diagonal matrix
with positive numbers �1; : : : ; �n on the diagonal. Show that
A is invertible, and find a formula for A�1.

26. (Spectral Factorization) Suppose a 3 � 3 matrix A admits a
factorization as A D PDP�1; where P is some invertible
3 � 3 matrix and D is the diagonal matrix

D D

24 1 0 0

0 1=2 0

0 0 1=3

35
Show that this factorization is useful when computing high
powers of A. Find fairly simple formulas for A2; A3; and Ak

(k a positive integer), using P and the entries in D.

27. Design two different ladder networks that each output 9 volts
and 4 amps when the input is 12 volts and 6 amps.

28. Show that if three shunt circuits (with resistancesR1; R2; R3)
are connected in series, the resulting network has the same
transfer matrix as a single shunt circuit. Find a formula for
the resistance in that circuit.

29. a. Compute the transfer matrix of the network in the figure.

b. Let A D

�
4=3 �12

�1=4 3

�
. Design a ladder network

whose transfer matrix is A by finding a suitable matrix
factorization of A.

i1 i2 i2

R1

R2

i3 i3 i4

R3
v1 v2 v3 v4
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30. Find a different factorization of the A in Exercise 29, and
thereby design a different ladder network whose transfer
matrix is A.

T 31. The solution to the steady-state heat flow problem for the
plate in the figure is approximated by the solution to the
equation Ax D b; where b D .5; 15; 0; 10; 0; 10; 20; 30/ and

A D

266666666664

4 �1 �1

�1 4 0 �1

�1 0 4 �1 �1

�1 �1 4 0 �1

�1 0 4 �1 �1

�1 �1 4 0 �1

�1 0 4 �1

�1 �1 4

377777777775
08

58

58

208

208

08 0808

108 108 108108

1 3 5 7

2 4 6 8

(Refer to Exercise 43 of Section 1.1.) The missing entries in
A are zeros. The nonzero entries of A lie within a band along
the main diagonal. Such band matrices occur in a variety of
applications and often are extremely large (with thousands of
rows and columns but relatively narrow bands).

a. Use the method of Example 2 to construct an LU factor-
ization of A, and note that both factors are band matrices
(with two nonzero diagonals below or above the main
diagonal). Compute LU �A to check your work.

b. Use the LU factorization to solve Ax D b:

c. Obtain A�1 and note that A�1 is a dense matrix with no
band structure. When A is large, L and U can be stored in
much less space than A�1: This fact is another reason for
preferring the LU factorization of A to A�1 itself.

T 32. The band matrix A shown below can be used to estimate the
unsteady conduction of heat in a rod when the temperatures
at points p1; : : : ; p5 on the rod change with time.2

Dx Dx

p1 p2 p3 p4 p5

The constant C in the matrix depends on the physical nature
of the rod, the distance �x between the points on the rod,
and the length of time �t between successive temperature
measurements. Suppose that for k D 0; 1; 2; : : : ; a vector tk
inR5 lists the temperatures at time k�t . If the two ends of the
rod are maintained at 0ı, then the temperature vectors satisfy
the equation AtkC1 D tk.k D 0; 1; : : : /; where

A D

266664
.1C 2C / �C

�C .1C 2C / �C

�C .1C 2C / �C

�C .1C 2C / �C

�C .1C 2C /

377775
a. Find the LU factorization of A when C D 1: A matrix

such as A with three nonzero diagonals is called a tridiag-
onal matrix. The L andU factors are bidiagonal matrices.

b. Suppose C D 1 and t0 D .10; 12; 12; 12; 10/: Use the
LU factorization of A to find the temperature distributions
t1; t2; t3, and t4.

2 See Biswa N. Datta,Numerical Linear Algebra and Applications (Pacific
Grove, CA: Brooks/Cole, 1994), pp. 200–201.

Solution to Practice Problem

A D

266664
2 �4 �2 3

6 �9 �5 8

2 �7 �3 9

4 �2 �2 �1

�6 3 3 4

377775 �
266664

2 �4 �2 3

0 3 1 �1

0 �3 �1 6

0 6 2 �7

0 �9 �3 13

377775

�

266664
2 �4 �2 3

0 3 1 �1

0 0 0 5

0 0 0 �5

0 0 0 10

377775 �
266664

2 �4 �2 3

0 3 1 �1

0 0 0 5

0 0 0 0

0 0 0 0

377775 D U

Divide the entries in each highlighted column by the pivot at the top. The resulting
columns form the first three columns in the lower half of L. This suffices to make row
reduction of L to I correspond to reduction of A to U . Use the last two columns of I5
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to make L unit lower triangular.266664
2

6

2

4

�6

377775
2664

3

�3

6

�9

377524 5

�5

10

35
�2 �3 �5

# # #266664
1

3 1

1 �1 1 � � �

2 2 �1

�3 �3 2

377775, L D

266664
1 0 0 0 0

3 1 0 0 0

1 �1 1 0 0

2 2 �1 1 0

�3 �3 2 0 1

377775

2.6 The Leontief Input Output Model
Linear algebra played an essential role in the Nobel prize–winning work of Wassily
Leontief, as mentioned at the beginning of Chapter 1. The economic model described in
this section is the basis for more elaborate models used in many parts of the world.

Suppose a nation’s economy is divided into n sectors that produce goods or services,
and let x be a production vector in Rn that lists the output of each sector for one year.
Also, suppose another part of the economy (called the open sector) does not produce
goods or services but only consumes them, and let d be a final demand vector (or bill
of final demands) that lists the values of the goods and services demanded from the
various sectors by the nonproductive part of the economy. The vector d can represent
consumer demand, government consumption, surplus production, exports, or other ex-
ternal demands.

As the various sectors produce goods to meet consumer demand, the producers
themselves create additional intermediate demand for goods they need as inputs for
their own production. The interrelations between the sectors are very complex, and the
connection between the final demand and the production is unclear. Leontief asked if
there is a production level x such that the amounts produced (or “supplied”) will exactly
balance the total demand for that production, so that8<: amount

produced
x

9=; D
�
intermediate
demand

�
C

8<: final
demand

d

9=; (1)

The basic assumption of Leontief’s input–output model is that for each sector, there
is a unit consumption vector in Rn that lists the inputs needed per unit of output of
the sector. All input and output units are measured in millions of dollars, rather than in
quantities such as tons or bushels. (Prices of goods and services are held constant.)

As a simple example, suppose the economy consists of three sectors—manufac-
turing, agriculture, and services—with unit consumption vectors c1, c2, and c3, as shown
in the table that follows.
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If D D

2664
1 1 1 1

1 1 �1 �1

1 �1 1 �1

�1 1 1 �1

3775, then the determinant
of DTD D 256, and hence this is a better design. Notice
that the first weighing of this design is the same as the
previous one, but then the remaining weighings each have
two objects in each pan.

Calculating determinants of matrices and understand-
ing their properties is the theme of this chapter. As you
learn more about determinants, you may also come up with
strategies for good and bad choices for a weighing design.

Another important use of the determinant is to
calculate the area of a parallelogram or the volume of

a parallelepiped. In Section 1.9, we saw that matrix
multiplication can be used to change the shape of a box or
other object. The determinant of thematrix used determines
how much the area changes when it is multiplied by a
matrix, just as a fish story can transform the size of the fish
caught.

Indeed, the determinant has so many uses that a
summary of the applications known in the early 1900s
filled a four-volume treatise by Thomas Muir. With
changes in emphasis and the greatly increased sizes of the
matrices used in modem applications, many uses that were
important then are no longer critical today. Nevertheless,
the determinant still plays many important theoretical and
practical roles.

Beyond introducing the determinant in Section 3.1, this chapter presents two important
ideas. Section 3.2 derives an invertibility criterion for a square matrix that plays a pivotal
role in Chapter 5. Section 3.3 shows how the determinant measures the amount by which
a linear transformation changes the area of a figure. When applied locally, this technique
answers the question of a map’s expansion rate near the poles. This idea plays a critical
role in multivariable calculus in the form of the Jacobian.

3.1 Introduction to Determinants
Recall from Section 2.2 that a 2 � 2 matrix is invertible if and only if its determinant
is nonzero. To extend this useful fact to larger matrices, we need a definition for the
determinant of an n � n matrix. We can discover the definition for the 3 � 3 case by
watching what happens when an invertible 3 � 3 matrix A is row reduced.

Consider A D Œaij � with a11 ¤ 0. If we multiply the second and third rows of A by
a11 and then subtract appropriate multiples of the first row from the other two rows, we
find that A is row equivalent to the following two matrices:

24 a11 a12 a13

a11a21 a11a22 a11a23

a11a31 a11a32 a11a33

35 � 24a11 a12 a13

0 a11a22 � a12a21 a11a23 � a13a21

0 a11a32 � a12a31 a11a33 � a13a31

35 (1)

Since A is invertible, either the .2; 2/-entry or the .3; 2/-entry on the right in (1) is
nonzero. Let us suppose that the .2; 2/-entry is nonzero. (Otherwise, we can make a row
interchange before proceeding.) Multiply row 3 by a11a22 � a12a21, and then to the new
row 3 add �.a11a32 � a12a31/ times row 2. This will show that

A �

24 a11 a12 a13

0 a11a22 � a12a21 a11a23 � a13a21

0 0 a11�

35
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where

� D a11a22a33 C a12a23a31 C a13a21a32 � a11a23a32 � a12a21a33 � a13a22a31 (2)

Since A is invertible, � must be nonzero. The converse is true, too, as we will see in
Section 3.2. We call � in (2) the determinant of the 3 � 3 matrix A.

Recall that the determinant of a 2 � 2 matrix, A D Œaij �, is the number

detA D a11a22 � a12a21

For a 1 � 1 matrix—say, A D Œa11�—we define detA D a11. To generalize the defini-
tion of the determinant to larger matrices, we’ll use 2 � 2 determinants to rewrite
the 3 � 3 determinant � described above. Since the terms in � can be grouped as
.a11a22a33 � a11a23a32/ � .a12a21a33 � a12a23a31/C .a13a21a32 � a13a22a31/,

� D a11 det
�

a22 a23

a32 a33

�
� a12 det

�
a21 a23

a31 a33

�
C a13 det

�
a21 a22

a31 a32

�
For brevity, write

� D a11 detA11 � a12 detA12 C a13 detA13 (3)

where A11, A12, and A13 are obtained from A by deleting the first row and one of the
three columns. For any square matrixA, letAij denote the submatrix formed by deleting
the i th row and j th column of A. For instance, if

A D

2664
1 �2 5 0

2 0 4 �1

3 1 0 7

0 4 �2 0

3775
then A32 is obtained by crossing out row 3 and column 2,2664

1 �2 5 0

2 0 4 �1

3 1 0 7

0 4 �2 0

3775
so that

A32 D

24 1 5 0

2 4 �1

0 �2 0

35
We can now give a recursive definition of a determinant. When n D 3, detA is defined
using determinants of the 2 � 2 submatricesA1j , as in (3) above.When n D 4, detA uses
determinants of the 3 � 3 submatrices A1j . In general, an n � n determinant is defined
by determinants of .n � 1/ � .n � 1/ submatrices.

DEFINITION For n � 2, the determinant of an n � n matrix A D Œaij � is the sum of n terms
of the form ˙a1j detA1j , with plus and minus signs alternating, where the entries
a11; a12; : : : ; a1n are from the first row of A. In symbols,

detA D a11 detA11 � a12 detA12 C � � � C .�1/1Cna1n detA1n

D

nX
jD1

.�1/1Cj a1j detA1j
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EXAMPLE 1 Compute the determinant of

A D

24 1 5 0

2 4 �1

0 �2 0

35
SOLUTION Compute detA D a11 detA11 � a12 detA12 C a13 detA13:

detA D 1 det
�

4 �1

�2 0

�
� 5 det

�
2 �1

0 0

�
C 0 det

�
2 4

0 �2

�
D 1.0 � 2/ � 5.0 � 0/C 0.�4 � 0/ D �2

Another common notation for the determinant of a matrix uses a pair of vertical
lines in place of brackets. Thus the calculation in Example 1 can be written as

detA D 1

ˇ̌̌̌
4 �1

�2 0

ˇ̌̌̌
� 5

ˇ̌̌̌
2 �1

0 0

ˇ̌̌̌
C 0

ˇ̌̌̌
2 4

0 �2

ˇ̌̌̌
D � � � D �2

To state the next theorem, it is convenient to write the definition of detA in a slightly
different form. Given A D Œaij �, the .i; j /-cofactor of A is the number Cij given by

Cij D .�1/iCj detAij (4)

Then
detA D a11C11 C a12C12 C � � � C a1nC1n

This formula is called a cofactor expansion across the first row of A. We omit the
proof of the following fundamental theorem to avoid a lengthy digression.

THEOREM 1 The determinant of an n � n matrix A can be computed by a cofactor expansion
across any row or down any column. The expansion across the i th row using the
cofactors in (4) is

detA D ai1Ci1 C ai2Ci2 C � � � C ainCin

The cofactor expansion down the j th column is

detA D a1j C1j C a2j C2j C � � � C anj Cnj

The plus or minus sign in the .i; j /-cofactor depends on the position of aij in the
matrix, regardless of the sign of aij itself. The factor .�1/iCj determines the following
checkerboard pattern of signs: 26664

C � C � � �

� C �

C � C

:::
: : :

37775
EXAMPLE 2 Use a cofactor expansion across the third row to compute detA, where

A D

24 1 5 0

2 4 �1

0 �2 0

35
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SOLUTION Compute

detA D a31C31 C a32C32 C a33C33

D .�1/3C1a31 detA31 C .�1/3C2a32 detA32 C .�1/3C3a33 detA33

D 0

ˇ̌̌̌
5 0

4 �1

ˇ̌̌̌
� .�2/

ˇ̌̌̌
1 0

2 �1

ˇ̌̌̌
C 0

ˇ̌̌̌
1 5

2 4

ˇ̌̌̌
D 0C 2.�1/C 0 D �2

Theorem 1 is helpful for computing the determinant of a matrix that contains many
zeros. For example, if a row is mostly zeros, then the cofactor expansion across that row
has many terms that are zero, and the cofactors in those terms need not be calculated.
The same approach works with a column that contains many zeros.

EXAMPLE 3 Compute detA, where

A D

266664
3 �7 8 9 �6

0 2 �5 7 3

0 0 1 5 0

0 0 2 4 �1

0 0 0 �2 0

377775
SOLUTION The cofactor expansion down the first column of A has all terms equal to
zero except the first. Thus

detA D 3

ˇ̌̌̌
ˇ̌̌̌ 2 �5 7 3

0 1 5 0

0 2 4 �1

0 0 �2 0

ˇ̌̌̌
ˇ̌̌̌C 0 C21 C 0 C31 C 0 C41 C 0 C51

Henceforth we will omit the zero terms in the cofactor expansion. Next, expand this
4 � 4 determinant down the first column to take advantage of the zeros there. We have

detA D 3.2/

ˇ̌̌̌
ˇ̌ 1 5 0

2 4 �1

0 �2 0

ˇ̌̌̌
ˇ̌

This 3 � 3 determinant was computed in Example 1 and found to equal �2. Hence
detA D 3.2/.�2/ D �12.

The matrix in Example 3 was nearly triangular. The method in that example is easily
adapted to prove the following theorem.

THEOREM 2 If A is a triangular matrix, then detA is the product of the entries on the main
diagonal of A.

The strategy in Example 3 of looking for zeros works extremely well when an entire
row or column consists of zeros. In such a case, the cofactor expansion along such a row
or column is a sum of zeros! So the determinant is zero. Unfortunately, most cofactor
expansions are not so quickly evaluated.
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Reasonable Answers

How big can a determinant be? Let A be an n � n matrix. Notice that taking the
determinant ofA consists of adding and subtracting terms with n products each. If
p is the product of the n largest elements in absolute value (the same number may
be repeated if it occurs more than once as a matrix entry), then the determinant

must be between �np and np. For example, consider A D

�
6 5

�7 9

�
and B D�

7 6

7 �9

�
. The largest number in absolute value of each matrix is 9, and the

second largest number is 7. In these two cases, p D 7.9/ D 63 and np D 126.
The determinant of each of these matrices should be a number between �126

and 126. Notice that detA D 6.9/ � 5.�7/ D 54C 35 D 89, detB D 7.�9/ �

6.7/ D �63 � 42 D �105, illustrating that because the products are added and
subtracted, any number in the range between �126 and 126 could turn out to be
the determinant.

Next, considerC D

�
7 9

7 9

�
andD D

�
�9 9

9 9

�
. InmatricesC andD, the

number 9 appears twice and so should be selected twice. In this case, p D 9.9/ D

81 and np D 162, so the determinants of C and D should be numbers between
�162 and 162. Indeed, detC D .7/.9/ � .7/.9/ D 0 and detD D .�9/.9/ �

.9/.9/ D �162. Notice that it is important to choose 9 twice as the two largest
numbers in matrix D in order to get the correct bounds for the determinant
of D.

Numerical Note

By today’s standards, a 25 � 25 matrix is small. Yet it would be impossible
to calculate a 25 � 25 determinant by cofactor expansion. In general, a cofac-
tor expansion requires more than nŠ multiplications, and 25Š is approximately
1:55 � 1025.

If a computer performs one trillion multiplications per second, it would have
to run for almost 500,000 years to compute a 25 � 25 determinant by this method.
Fortunately, there are faster methods, as we’ll soon discover.

Exercises 19–38 explore important properties of determinants, mostly for the 2 � 2

case. The results from Exercises 33–36 will be used in the next section to derive the
analogous properties for n � n matrices.

Practice Problem

Compute

ˇ̌̌̌
ˇ̌̌̌ 5 �7 2 2

0 3 0 �4

�5 �8 0 3

0 5 0 �6

ˇ̌̌̌
ˇ̌̌̌.
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3.1 Exercises
Compute the determinants in Exercises 1–8 using a cofactor ex-
pansion across the first row. In Exercises 1–4, also compute the
determinant by a cofactor expansion down the second column.

1.

ˇ̌̌̌
ˇ̌ 3 0 4

2 3 2

0 5 �1

ˇ̌̌̌
ˇ̌ 2.

ˇ̌̌̌
ˇ̌ 0 4 1

5 �3 0

2 4 1

ˇ̌̌̌
ˇ̌

3.

ˇ̌̌̌
ˇ̌ 2 �2 3

3 1 2

1 3 �1

ˇ̌̌̌
ˇ̌ 4.

ˇ̌̌̌
ˇ̌ 1 2 4

3 1 1

2 4 2

ˇ̌̌̌
ˇ̌

5.

ˇ̌̌̌
ˇ̌ 4 5 �8

1 0 2

7 3 6

ˇ̌̌̌
ˇ̌ 6.

ˇ̌̌̌
ˇ̌ 6 �3 2

0 5 �5

3 �7 8

ˇ̌̌̌
ˇ̌

7.

ˇ̌̌̌
ˇ̌ 4 3 0

6 5 2

9 7 3

ˇ̌̌̌
ˇ̌ 8.

ˇ̌̌̌
ˇ̌ 4 1 2

4 0 3

3 �2 5

ˇ̌̌̌
ˇ̌

Compute the determinants in Exercises 9–14 by cofactor expan-
sions. At each step, choose a row or column that involves the least
amount of computation.

9.

ˇ̌̌̌
ˇ̌̌̌ 7 6 8 4

0 0 0 6

8 7 9 3

0 4 0 5

ˇ̌̌̌
ˇ̌̌̌ 10.

ˇ̌̌̌
ˇ̌̌̌ 1 �2 4 2

0 0 3 0

2 �4 �3 5

2 0 3 5

ˇ̌̌̌
ˇ̌̌̌

11.

ˇ̌̌̌
ˇ̌̌̌ 2 �3 4 5

0 5 3 �1

0 0 �2 7

0 0 0 4

ˇ̌̌̌
ˇ̌̌̌ 12.

ˇ̌̌̌
ˇ̌̌̌ 3 0 0 0

7 �2 0 0

2 6 3 0

3 �8 4 �3

ˇ̌̌̌
ˇ̌̌̌

13.

ˇ̌̌̌
ˇ̌̌̌
ˇ̌
4 0 �7 3 �5

0 0 2 0 0

7 3 �6 4 �8

5 0 5 2 �3

0 0 9 �1 2

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

14.

ˇ̌̌̌
ˇ̌̌̌
ˇ̌
6 0 2 4 0

9 0 �4 1 0

8 �5 6 7 1

2 0 0 0 0

4 2 3 2 0

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

The expansion of a 3 � 3 determinant can be remembered by the
following device. Write a second copy of the first two columns to
the right of the matrix, and compute the determinant by multiply-
ing entries on six diagonals:

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

2 2 2

1 1 1

Add the downward diagonal products and subtract the up-
ward products. Use this method to compute the determinants in
Exercises 15–18. Warning: This trick does not generalize in any
reasonable way to 4 � 4 or larger matrices.

15.

ˇ̌̌̌
ˇ̌ 1 0 4

2 3 2

0 5 �2

ˇ̌̌̌
ˇ̌ 16.

ˇ̌̌̌
ˇ̌ 6 5 0

4 3 �2

2 0 1

ˇ̌̌̌
ˇ̌

17.

ˇ̌̌̌
ˇ̌ 2 �3 3

3 2 2

1 3 �1

ˇ̌̌̌
ˇ̌ 18.

ˇ̌̌̌
ˇ̌ 1 4 5

3 4 3

3 3 4

ˇ̌̌̌
ˇ̌

In Exercises 19–24, explore the effect of an elementary row
operation on the determinant of a matrix. In each case, state the
row operation and describe how it affects the determinant.

19.
�

a b

c d

�
,
�

c d

a b

�
20.

�
a b

c d

�
,
�

a b

kc kd

�
21.

�
6 5

3 4

�
,
�

6 5

3C 6k 4C 5k

�
22.

�
a b

c d

�
,
�

aC kc b C kd

c d

�

23.

24 1 �2 3

2 3 �4

3 �4 5

35, 24 k �2k 3k

2 3 �4

3 �4 5

35
24.

24 a b c

1 4 5

2 3 6

35, 24 2 3 6

1 4 5

a b c

35
Compute the determinants of the elementary matrices given in
Exercises 25–30. (See Section 2.2, Examples 5 and 6.)

25.

24 1 0 0

0 1 0

0 k 1

35 26.

24 0 1 0

1 0 0

0 0 1

35
27.

24 1 0 0

0 1 0

k 0 1

35 28.

24 0 0 1

0 1 0

1 0 0

35
29.

24 1 0 0

0 k 0

0 0 1

35 30.

24 k 0 0

0 1 0

0 0 1

35
Use Exercises 25–30 to answer the questions in Exercises 31
and 32. Give reasons for your answers.

31. What is the determinant of an elementary row replacement
matrix?

32. What is the determinant of an elementary scaling matrix with
k on the diagonal?
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In Exercises 33–36, verify that detEA D .detE/.detA/, where

E is the elementary matrix shown and A D

�
a b

c d

�
.

33.
�

1 k

0 1

�
34.

�
1 0

k 1

�
35.

�
0 1

1 0

�
36.

�
k 0

0 1

�
37. Let A D

�
6 5

3 4

�
. Write 2A. Is det 2A D 2 detA?

38. Let A D

�
a b

c d

�
and let k be a scalar. Find a formula that

relates det kA to k and detA.

In Exercises 39 through 42, A is an n � n matrix. Mark each
statement True or False (T/F). Justify each answer.

39. (T/F) An n � n determinant is defined by determinants of
.n � 1/ � .n � 1/ submatrices.

40. (T/F) The .i; j /-cofactor of a matrix A is the matrix Aij

obtained by deleting from A its ith row and jth column.

41. (T/F)The cofactor expansion of detA down a column is equal
to the cofactor expansion along a row.

42. (T/F) The determinant of a triangular matrix is the sum of the
entries on the main diagonal.

43. Let u D
�

3

0

�
and v D

�
1

2

�
. Compute the area of the par-

allelogram determined by u, v, uC v, and 0, and compute
the determinant of Œ u v �. How do they compare? Replace
the first entry of v by an arbitrary number x, and repeat the
problem. Draw a picture and explain what you find.

44. Let u D
�

a

b

�
and v D

�
c

0

�
, where a, b, and c are positive

(for simplicity). Compute the area of the parallelogram deter-
mined by u, v, uC v, and 0, and compute the determinants of
the matrices Œ u v � and Œ v u �. Draw a picture and explain
what you find.

45. Let A be a 2 � 2 matrix all of whose entries are numbers that
are greater than or equal to �10 and less than or equal to 10.
Decide if each of the following is a reasonable answer for
detA.

a. 0

b. 202

c. �110

d. 555

46. Let A be a 3 � 3 matrix all of whose entries are numbers that
are greater than or equal to�5 and less than or equal to 5. De-
cide if each of the following is a reasonable answer for detA.

a. 300

b. �220

c. 1000

d. 10

T 47. Construct a random 4 � 4 matrix A with integer entries
between �9 and 9. How is detA�1 related to detA?
Experiment with random n � n integer matrices for n D 4,
5, and 6, and make a conjecture. Note: In the unlikely event
that you encounter a matrix with a zero determinant, reduce
it to echelon form and discuss what you find.

T 48. Is it true that detAB D .detA/.detB/? To find out,
generate random 5 � 5 matrices A and B , and compute
detAB � .detA detB/. Repeat the calculations for three
other pairs of n � n matrices, for various values of n. Report
your results.

T 49. Is it true that det.AC B/ D detAC detB? Experiment with
four pairs of random matrices as in Exercise 48, and make a
conjecture.

T 50. Construct a random 4 � 4 matrix A with integer entries
between �9 and 9, and compare detA with detAT , det.�A/,
det.2A/, and det.10A/. Repeat with two other random 4 � 4

integer matrices, and make conjectures about how these
determinants are related. (Refer to Exercise 44 in Section
2.1.) Then check your conjectures with several random
5 � 5 and 6 � 6 integer matrices. Modify your conjectures, if
necessary, and report your results.

T 51. Recall from the introductory section that the larger the
determinant of DT D, where D is the design matrix, the
better will be the accuracy of the calculated weights for small
light objects. Which of the following matrices corresponds to
the best design for four weighings of four objects? Describe
which of the objects s1; s2; s3, and s4 you would put in
the left and right pans for each weighing corresponding to
the best design matrix.

a. D D

2664
1 1 1 1

1 �1 1 1

�1 �1 1 �1

1 1 1 �1

3775
b. D D

2664
�1 �1 �1 �1

1 �1 �1 1

�1 1 �1 1

�1 �1 1 1

3775
c. D D

2664
1 1 �1 �1

1 �1 �1 1

�1 1 1 �1

1 �1 1 �1

3775
T 52. Repeat Exercise 51 for the case of five weighings of four

objects and the following design matrices.
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a. D D

266664
1 1 1 1

1 �1 1 1

�1 �1 1 �1

1 1 1 �1

�1 �1 �1 1

377775

b. D D

266664
�1 �1 �1 �1

1 �1 �1 1

�1 1 1 1

�1 �1 1 1

1 1 1 �1

377775

c. D D

266664
1 1 �1 �1

1 �1 �1 1

�1 1 1 �1

1 �1 1 �1

�1 �1 �1 �1

377775

Solution to Practice Problem

Take advantage of the zeros. Begin with a cofactor expansion down the third column to
obtain a 3 � 3 matrix, which may be evaluated by an expansion down its first column.ˇ̌̌̌

ˇ̌̌̌ 5 �7 2 2

0 3 0 �4

�5 �8 0 3

0 5 0 �6

ˇ̌̌̌
ˇ̌̌̌ D .�1/1C3.2/

ˇ̌̌̌
ˇ̌ 0 3 �4

�5 �8 3

0 5 �6

ˇ̌̌̌
ˇ̌

D 2 .�1/2C1.�5/

ˇ̌̌̌
3 �4

5 �6

ˇ̌̌̌
D 20

The .�1/2C1 in the next-to-last calculation came from the .2; 1/-position of the �5 in
the 3 � 3 determinant.

3.2 Properties of Determinants
The secret of determinants lies in how they change when row operations are performed.
The following theorem generalizes the results of Exercises 19–24 in Section 3.1. The
proof is at the end of this section.

THEOREM 3 Row Operations

Let A be a square matrix.

a. If a multiple of one row of A is added to another row to produce a matrix B ,
then detB D detA.

b. If two rows of A are interchanged to produce B , then detB D � detA.

c. If one row of A is multiplied by k to produce B , then detB D k detA.

The following examples show how to use Theorem 3 to find determinants
efficiently.

EXAMPLE 1 Compute detA, where A D

24 1 �4 2

�2 8 �9

�1 7 0

35.
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SOLUTION The strategy is to reduce A to echelon form and then to use the fact that
the determinant of a triangular matrix is the product of the diagonal entries. The first two
row replacements in column 1 do not change the determinant:

detA D

ˇ̌̌̌
ˇ̌ 1 �4 2

�2 8 �9

�1 7 0

ˇ̌̌̌
ˇ̌ D

ˇ̌̌̌
ˇ̌ 1 �4 2

0 0 �5

�1 7 0

ˇ̌̌̌
ˇ̌ D

ˇ̌̌̌
ˇ̌ 1 �4 2

0 0 �5

0 3 2

ˇ̌̌̌
ˇ̌

An interchange of rows 2 and 3 reverses the sign of the determinant, so

detA D �

ˇ̌̌̌
ˇ̌ 1 �4 2

0 3 2

0 0 �5

ˇ̌̌̌
ˇ̌ D �.1/.3/.�5/ D 15

A common use of Theorem 3(c) in hand calculations is to factor out a common
multiple of one row of a matrix. For instance,ˇ̌̌̌

ˇ̌ � � �

5k �2k 3k

� � �

ˇ̌̌̌
ˇ̌ D k

ˇ̌̌̌
ˇ̌ � � �

5 �2 3

� � �

ˇ̌̌̌
ˇ̌

where the starred entries are unchanged. We use this step in the next example.

EXAMPLE 2 Compute detA, where A D

2664
2 �8 6 8

3 �9 5 10

�3 0 1 �2

1 �4 0 6

3775.
SOLUTION To simplify the arithmetic, we want a 1 in the upper-left corner. We could
interchange rows 1 and 4. Instead, we factor out 2 from the top row, and then proceed
with row replacements in the first column:

detA D 2

ˇ̌̌̌
ˇ̌̌̌ 1 �4 3 4

3 �9 5 10

�3 0 1 �2

1 �4 0 6

ˇ̌̌̌
ˇ̌̌̌ D 2

ˇ̌̌̌
ˇ̌̌̌ 1 �4 3 4

0 3 �4 �2

0 �12 10 10

0 0 �3 2

ˇ̌̌̌
ˇ̌̌̌

Next, we could factor out another 2 from row 3 or use the 3 in the second column as a
pivot. We choose the latter operation, adding 4 times row 2 to row 3:

detA D 2

ˇ̌̌̌
ˇ̌̌̌ 1 �4 3 4

0 3 �4 �2

0 0 �6 2

0 0 �3 2

ˇ̌̌̌
ˇ̌̌̌

Finally, adding�1=2 times row 3 to row 4, and computing the “triangular” determinant,
we find that

detA D 2

ˇ̌̌̌
ˇ̌̌̌ 1 �4 3 4

0 3 �4 �2

0 0 �6 2

0 0 0 1

ˇ̌̌̌
ˇ̌̌̌ D 2 .1/.3/.�6/.1/ D �36
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Suppose a square matrix A has been reduced to an echelon form U by row replace-

U  5 

det U Þ 0

0
0
0

*

0
0

*
*

0

*
*
*

U  5 

det U 5 0

0
0
0

*

0
0

*
*
0
0

*
*

0

FIGURE 1

Typical echelon forms of square
matrices.

ments and row interchanges. (This is always possible. See the row reduction algorithm
in Section 1.2.) If there are r interchanges, then Theorem 3 shows that

detA D .�1/r detU

SinceU is in echelon form, it is triangular, and so detU is the product of the diagonal
entries u11; : : : ; unn. If A is invertible, the entries ui i are all pivots (because A � In and
the ui i have not been scaled to 1’s). Otherwise, at least unn is zero, and the product
u11 � � �unn is zero. See Figure 1. Thus

detA D

8̂<̂
:.�1/r

 
product of

pivots in U

!
when A is invertible

0 when A is not invertible

(1)

It is interesting to note that although the echelon form U described above is not
unique (because it is not completely row reduced), and the pivots are not unique, the
product of the pivots is unique, except for a possible minus sign.

Formula (1) not only gives a concrete interpretation of detA but also proves the
main theorem of this section:

THEOREM 4 A square matrix A is invertible if and only if detA ¤ 0.

Theorem 4 adds the statement “detA ¤ 0” to the Invertible Matrix Theorem. A
useful corollary is that detA D 0 when the columns of A are linearly dependent. Also,
detA D 0 when the rows of A are linearly dependent. (Rows of A are columns of AT ,
and linearly dependent columns of AT make AT singular. When AT is singular, so is A,
by the Invertible Matrix Theorem.) In practice, linear dependence is obvious when two
columns or two rows are the same or a column or a row is zero.

EXAMPLE 3 Compute detA, where A D

2664
3 �1 2 �5

0 5 �3 �6

�6 7 �7 4

�5 �8 0 9

3775.
SOLUTION Add 2 times row 1 to row 3 to obtain

detA D det

2664
3 �1 2 �5

0 5 �3 �6

0 5 �3 �6

�5 �8 0 9

3775 D 0

because the second and third rows of the second matrix are equal.

Numerical Notes

1. Most computer programs that compute detA for a general matrix A use the
method of formula (1) above.

2. It can be shown that evaluation of an n � n determinant using row operations
requires about 2n3=3 arithmetic operations. Any modern microcomputer can
calculate a 25 � 25 determinant in a fraction of a second, since only about
10,000 operations are required.
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Computers can also handle large “sparse” matrices, with special routines that
take advantage of the presence of many zeros. Of course, zero entries can speed
hand computations, too. The calculations in the next example combine the power
of row operations with the strategy from Section 3.1 of using zero entries in cofactor
expansions.

EXAMPLE 4 Compute detA, where A D

2664
0 1 2 �1

2 5 �7 3

0 3 6 2

�2 �5 4 �2

3775.
SOLUTION A good way to begin is to use the 2 in column 1 as a pivot, eliminating
the �2 below it. Then use a cofactor expansion to reduce the size of the determinant,
followed by another row replacement operation. Thus

detA D

ˇ̌̌̌
ˇ̌̌̌ 0 1 2 �1

2 5 �7 3

0 3 6 2

0 0 �3 1

ˇ̌̌̌
ˇ̌̌̌ D �2

ˇ̌̌̌
ˇ̌ 1 2 �1

3 6 2

0 �3 1

ˇ̌̌̌
ˇ̌ D �2

ˇ̌̌̌
ˇ̌ 1 2 �1

0 0 5

0 �3 1

ˇ̌̌̌
ˇ̌

An interchange of rows 2 and 3 would produce a “triangular determinant.” Another
approach is to make a cofactor expansion down the first column:

detA D .�2/.1/

ˇ̌̌̌
0 5

�3 1

ˇ̌̌̌
D �2 .15/ D �30

Column Operations
We can perform operations on the columns of a matrix in a way that is analogous to
the row operations we have considered. The next theorem shows that column operations
have the same effects on determinants as row operations.

Remark: The Principle of Mathematical Induction says the following: Let P.n/ be a
statement that is either true or false for each natural number n. Then P.n/ is true for
all n � 1 provided that P.1/ is true, and for each natural number k, if P.k/ is true,
then P.k C 1/ is true. The Principle of Mathematical Induction is used to prove the next
theorem.

THEOREM 5 If A is an n � n matrix, then detAT D detA.

PROOF The theorem is obvious for n D 1. Suppose the theorem is true for k � k

determinants and let n D k C 1. Then the cofactor of a1j in A equals the cofactor of aj1

in AT , because the cofactors involve k � k determinants. Hence the cofactor expansion
of detA along the first row equals the cofactor expansion of detAT down the first column.
That is, A and AT have equal determinants. The theorem is true for n D 1, and the truth
of the theorem for one value of n implies its truth for the next value of n. By the Principle
of Mathematical Induction, the theorem is true for all n � 1.
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Because of Theorem 5, each statement in Theorem 3 is true when the word row
is replaced everywhere by column. To verify this property, one merely applies the
original Theorem 3 to AT . A row operation on AT amounts to a column operation
on A.

Column operations are useful for both theoretical purposes and hand computations.
However, for simplicity we’ll perform only row operations in numerical calculations.

Determinants and Matrix Products
The proof of the following useful theorem is at the end of the section. Applications are
in the exercises.

THEOREM 6 Multiplicative Property

If A and B are n � n matrices, then detAB D .detA/.detB/.

EXAMPLE 5 Verify Theorem 6 for A D

�
6 1

3 2

�
and B D

�
4 3

1 2

�
.

SOLUTION

AB D

�
6 1

3 2

��
4 3

1 2

�
D

�
25 20

14 13

�
and

detAB D 25.13/ � 20.14/ D 325 � 280 D 45

Since detA D 9 and detB D 5,

.detA/.detB/ D 9.5/ D 45 D detAB

Warning: A common misconception is that Theorem 6 has an analogue for sums of
matrices. However, det.AC B/ is not equal to detAC detB , in general.

A Linearity Property of the Determinant Function
For an n � nmatrixA, we can consider detA as a function of the n column vectors inA.
We will show that if all columns except one are held fixed, then detA is a linear function
of that one (vector) variable.

Suppose that the j th column of A is allowed to vary, and write

A D
�
a1 � � � aj�1 x ajC1 � � � an

�
Define a transformation T from Rn to R by

T .x/ D det
�
a1 � � � aj�1 x ajC1 � � � an

�
Then,

T .cx/ D cT .x/ for all scalars c and all x in Rn (2)

T .uC v/ D T .u/C T .v/ for all u, v in Rn (3)
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Property (2) is Theorem 3(c) applied to the columns ofA. A proof of property (3) follows
from a cofactor expansion of detA down the j th column. (See Exercise 49.) This (multi-)
linearity property of the determinant turns out to have many useful consequences that
are studied in more advanced courses.

Proofs of Theorems 3 and 6
It is convenient to prove Theorem 3 when it is stated in terms of the elementary matrices
discussed in Section 2.2. We call an elementary matrix E a row replacement (matrix) if
E is obtained from the identity I by adding a multiple of one row to another row; E is
an interchange if E is obtained by interchanging two rows of I ; and E is a scale by r if
E is obtained by multiplying a row of I by a nonzero scalar r . With this terminology,
Theorem 3 can be reformulated as follows:

If A is an n � n matrix and E is an n � n elementary matrix, then

detEA D .detE/.detA/

where

detE D

8̂<̂
:

1 if E is a row replacement

�1 if E is an interchange

r if E is a scale by r

PROOF OF THEOREM 3 The proof is by induction on the size of A. The case of a
2 � 2 matrix was verified in Exercises 33–36 of Section 3.1. Suppose the theorem has
been verified for determinants of k � k matrices with k � 2, let n D k C 1, and let A

be n � n. The action of E on A involves either two rows or only one row. So we can
expand detEA across a row that is unchanged by the action of E, say, row i . Let
Aij (respectively, Bij / be the matrix obtained by deleting row i and column j from
A (respectively, EA). Then the rows of Bij are obtained from the rows of Aij by the
same type of elementary row operation that E performs on A. Since these submatrices
are only k � k, the induction assumption implies that

detBij D ˛ detAij

where ˛ D 1, �1, or r , depending on the nature of E. The cofactor expansion across
row i is

detEA D ai1.�1/iC1 detBi1 C � � � C ain.�1/iCn detBin

D ˛ai1.�1/iC1 detAi1 C � � � C ˛ain.�1/iCn detAin

D ˛ detA

In particular, taking A D In, we see that detE D 1, �1, or r , depending on the nature
of E. Thus the theorem is true for n D 2, and the truth of the theorem for one value of n

implies its truth for the next value of n. By the principle of induction, the theorem must
be true for n � 2. The theorem is trivially true for n D 1.

PROOF OF THEOREM 6 If A is not invertible, then neither is AB, by Exercise 35
in Section 2.3. In this case, detAB D .detA/.detB/, because both sides are zero, by
Theorem 4. If A is invertible, then A and the identity matrix In are row equivalent
by the Invertible Matrix Theorem. So there exist elementary matrices E1; : : : ; Ep such
that

A D EpEp�1 � � �E1 In D EpEp�1 � � �E1
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For brevity, write jAj for detA. Then repeated application of Theorem 3, as rephrased
above, shows that

jABj D jEp � � �E1Bj D jEpjjEp�1 � � �E1Bj D � � �

D jEpj � � � jE1jjBj D � � � D jEp � � �E1jjBj

D jAjjBj

Practice Problems

1. Compute

ˇ̌̌̌
ˇ̌̌̌ 1 �3 1 �2

2 �5 �1 �2

0 �4 5 1

�3 10 �6 8

ˇ̌̌̌
ˇ̌̌̌ in as few steps as possible.

2. Use a determinant to decide if v1, v2, and v3 are linearly independent, when

v1 D

24 5

�7

9

35; v2 D

24�3

3

�5

35; v3 D

24 2

�7

5

35
3. Let A be an n � n matrix such that A2 D I . Show that det A D ˙1.

3.2 Exercises
Each equation in Exercises 1–4 illustrates a property of determi-
nants. State the property.

1.

ˇ̌̌̌
ˇ̌ 0 5 �2

1 �3 6

4 �1 8

ˇ̌̌̌
ˇ̌ D �

ˇ̌̌̌
ˇ̌ 1 �3 6

0 5 �2

4 �1 8

ˇ̌̌̌
ˇ̌

2.

ˇ̌̌̌
ˇ̌ 3 �6 9

3 5 �5

1 3 3

ˇ̌̌̌
ˇ̌ D 3

ˇ̌̌̌
ˇ̌ 1 �2 3

3 5 �5

1 3 3

ˇ̌̌̌
ˇ̌

3.

ˇ̌̌̌
ˇ̌ 1 2 2

0 3 �4

2 7 4

ˇ̌̌̌
ˇ̌ D

ˇ̌̌̌
ˇ̌ 1 2 2

0 3 �4

0 3 0

ˇ̌̌̌
ˇ̌

4.

ˇ̌̌̌
ˇ̌ 1 3 �4

2 0 �3

3 �5 2

ˇ̌̌̌
ˇ̌ D

ˇ̌̌̌
ˇ̌ 1 3 �4

0 �6 5

3 �5 2

ˇ̌̌̌
ˇ̌

Find the determinants in Exercises 5–10 by row reduction to
echelon form.

5.

ˇ̌̌̌
ˇ̌ 1 5 �4

�1 �4 5

�2 �8 7

ˇ̌̌̌
ˇ̌ 6.

ˇ̌̌̌
ˇ̌ 3 �6 6

3 �5 9

3 �4 8

ˇ̌̌̌
ˇ̌

7.

ˇ̌̌̌
ˇ̌̌̌ 1 3 0 2

�2 �5 7 4

3 5 2 1

1 �1 2 �3

ˇ̌̌̌
ˇ̌̌̌ 8.

ˇ̌̌̌
ˇ̌̌̌ 1 2 �3 4

0 1 5 6

�4 �9 7 �14

2 5 0 7

ˇ̌̌̌
ˇ̌̌̌

9.

ˇ̌̌̌
ˇ̌̌̌ 1 �1 �3 0

0 1 5 4

�1 0 5 3

3 �3 �2 3

ˇ̌̌̌
ˇ̌̌̌

10.

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

1 3 �1 0 �2

0 1 �2 �1 �3

�2 �6 2 3 10

1 5 �6 2 �3

0 2 �4 5 9

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

Combine the methods of row reduction and cofactor expansion to
compute the determinants in Exercises 11–14.

11.

ˇ̌̌̌
ˇ̌̌̌ 3 4 �3 �1

3 0 1 �3

�6 0 �4 3

6 8 �4 �1

ˇ̌̌̌
ˇ̌̌̌ 12.

ˇ̌̌̌
ˇ̌̌̌�2 6 0 9

3 4 8 2

4 3 0 1

3 1 2 �1

ˇ̌̌̌
ˇ̌̌̌

13.

ˇ̌̌̌
ˇ̌̌̌ 2 5 4 1

4 7 6 2

6 �2 �4 0

�6 7 7 0

ˇ̌̌̌
ˇ̌̌̌ 14.

ˇ̌̌̌
ˇ̌̌̌ 4 3 2 1

5 4 �3 0

9 �8 �7 0

4 6 2 1

ˇ̌̌̌
ˇ̌̌̌

Find the determinants in Exercises 15–20, whereˇ̌̌̌
ˇ̌ a b c

d e f

g h i

ˇ̌̌̌
ˇ̌ D 7:
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15.

ˇ̌̌̌
ˇ̌ a b c

d e f

3g 3h 3i

ˇ̌̌̌
ˇ̌ 16.

ˇ̌̌̌
ˇ̌ a b c

d C 3g e C 3h f C 3i

g h i

ˇ̌̌̌
ˇ̌

17.

ˇ̌̌̌
ˇ̌ aC d b C e c C f

d e f

g h i

ˇ̌̌̌
ˇ̌

18.

ˇ̌̌̌
ˇ̌ a b c

8d 8e 8f

g h i

ˇ̌̌̌
ˇ̌

19.

ˇ̌̌̌
ˇ̌ a b c

2d C a 2e C b 2f C c

g h i

ˇ̌̌̌
ˇ̌

20.

ˇ̌̌̌
ˇ̌ g h i

a b c

d e f

ˇ̌̌̌
ˇ̌

In Exercises 21–23, use determinants to find out if the matrix is
invertible.

21.

24 1 3 6

2 4 7

0 5 8

35 22.

24 4 5 0

3 2 1

1 �4 3

35

23.

2664
3 0 0 2

6 8 9 0

4 5 6 0

0 �8 �9 4

3775
In Exercises 24–26, use determinants to decide if the set of vectors
is linearly independent.

24.

24 4

6

2

35, 24�6

0

6

35, 24�3

�5

�2

35
25.

24 7

�4

�6

35, 24�8

5

7

35, 24 7

0

�5

35

26.

2664
3

5

�6

4

3775,
2664

2

�6

0

7

3775,
2664
�2

�1

3

0

3775,
2664

0

0

0

�2

3775
In Exercises 27–34, A and B are n � n matrices. Mark each
statement True or False (T/F). Justify each answer.

27. (T/F) A row replacement operation does not affect the deter-
minant of a matrix.

28. (T/F) If detA is zero, then two rows or two columns are the
same, or a row or a column is zero.

29. (T/F) If the columns of A are linearly dependent, then
detA D 0.

30. (T/F) The determinant of A is the product of the diagonal
entries in A.

31. (T/F) If three row interchanges are made in succession, then
the new determinant equals the old determinant.

32. (T/F) The determinant of A is the product of the pivots in
any echelon formU ofA, multiplied by .�1/r , where r is the
number of row interchanges made during row reduction from
A to U .

33. (T/F) det.AC B/ D detAC detB .

34. (T/F) detA�1 D .�1/ detA.

35. Compute detB4, where B D

24 1 0 1

2 4 5

3 5 6

35.
36. Use Theorem 3 (but not Theorem 4) to show that if two rows

of a square matrix A are equal, then detA D 0. The same is
true for two columns. Why?

In Exercises 37–42, mention an appropriate theorem in your
explanation.

37. Show that if A is invertible, then detA�1 D
1

detA
.

38. Suppose that A is a square matrix such that detA3 D 0.
Explain why A cannot be invertible.

39. Let A and B be square matrices. Show that even though
AB and BA may not be equal, it is always true that
detAB D detBA.

40. LetA and P be square matrices, with P invertible. Show that
det.PAP�1/ D detA.

41. Let U be a square matrix such that U T U D I . Show that
detU D ˙1.

42. Find a formula for det.rA/ when A is an n � n matrix.

Verify that detAB D .detA/.detB/ for the matrices in Exercises
43 and 44. (Do not use Theorem 6.)

43. A D

�
3 0

6 1

�
, B D

�
2 0

5 4

�
44. A D

�
2 3

�3 �1

�
, B D

�
2 4

�3 �6

�
45. Let A and B be 3 � 3 matrices, with detA D �2 and

detB D 3. Use properties of determinants (in the text and in
the preceding exercises) to compute:

a. detAB b. det 5A c. detBT

d. detA�1 e. detA3

46. Let A and B be 4 � 4 matrices, with detA D 4 and
detB D �5. Compute:

a. detAB b. det 3A c. detB4

d. detBABT e. detABA�1
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47. Verify that detA D detB C detC , where

A D

�
aC e b C f

c d

�
; B D

�
a b

c d

�
; C D

�
e f

c d

�
48. Let A D

�
1 0

0 1

�
and B D

�
a b

c d

�
. Show that

det.AC B/ D detAC detB if and only if aC d D 0.

49. Verify that detA D detB C detC , where

A D

24 a11 a12 u1 C v1

a21 a22 u2 C v2

a31 a32 u3 C v3

35;

B D

24 a11 a12 u1

a21 a22 u2

a31 a32 u3

35; C D

24 a11 a12 v1

a21 a22 v2

a31 a32 v3

35
Note, however, that A is not the same as B C C .

50. Right-multiplication by an elementary matrix E affects the
columns of A in the same way that left-multiplication affects
the rows. Use Theorems 5 and 3 and the obvious fact that ET

is another elementary matrix to show that

detAE D .detE/.detA/

Do not use Theorem 6.

51. Suppose A is an n � n matrix and a computer suggests
that detA D 5 and det

�
A�1

�
D 1. Should you trust these

answers? Why or why not?

52. SupposeA andB are n � nmatrices and a computer suggests
that detA D 5, detB D 2 and detAB D 7. Should you trust
these answers? Why or why not?

T 53. Compute detAT A and detAAT for several random 4 � 5

matrices and several random 5 � 6 matrices. What can you
say about AT A and AAT when A has more columns than
rows?

T 54. If detA is close to zero, is the matrix A nearly singular?
Experiment with the nearly singular 4 � 4 matrix

A D

2664
4 0 �7 �7

�6 1 11 9

7 �5 10 19

�1 2 3 �1

3775
Compute the determinants of A, 10A, and 0:1A. In contrast,
compute the condition numbers of these matrices. Repeat
these calculations when A is the 4 � 4 identity matrix. Dis-
cuss your results.

Solutions to Practice Problems

1. Perform row replacements to create zeros in the first column, and then create a row
of zeros.ˇ̌̌̌

ˇ̌̌̌ 1 �3 1 �2

2 �5 �1 �2

0 �4 5 1

�3 10 �6 8

ˇ̌̌̌
ˇ̌̌̌ D

ˇ̌̌̌
ˇ̌̌̌ 1 �3 1 �2

0 1 �3 2

0 �4 5 1

0 1 �3 2

ˇ̌̌̌
ˇ̌̌̌ D

ˇ̌̌̌
ˇ̌̌̌ 1 �3 1 �2

0 1 �3 2

0 �4 5 1

0 0 0 0

ˇ̌̌̌
ˇ̌̌̌ D 0

2. det Œ v1 v2 v3 � D

ˇ̌̌̌
ˇ̌ 5 �3 2

�7 3 �7

9 �5 5

ˇ̌̌̌
ˇ̌ D

ˇ̌̌̌
ˇ̌ 5 �3 2

�2 0 �5

9 �5 5

ˇ̌̌̌
ˇ̌ Row 1 added

to row 2

D �.�3/

ˇ̌̌̌
�2 �5

9 5

ˇ̌̌̌
� .�5/

ˇ̌̌̌
5 2

�2 �5

ˇ̌̌̌
Cofactors of
column 2

D 3 .35/C 5 .�21/ D 0

By Theorem 4, the matrix Œ v1 v2 v3 � is not invertible. The columns are linearly
dependent, by the Invertible Matrix Theorem.

3. Recall that det I D 1. By Theorem 6, det .AA/ = (det A)(det A). Putting these two
observations together results in

1 D det I D detA2
D det .AA/ D .detA/.detA/ D .detA/2

Taking the square root of both sides establishes that det A D ˙1.
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3.3 Cramer’s Rule, Volume, and Linear Transformations
This section applies the theory of the preceding sections to obtain important theoretical
formulas and a geometric interpretation of the determinant.

Cramer’s Rule
Cramer’s rule is needed in a variety of theoretical calculations. For instance, it can be
used to study how the solution of Ax D b is affected by changes in the entries of b.
However, the formula is inefficient for hand calculations, except for 2 � 2 or perhaps
3 � 3 matrices.

For any n � n matrix A and any b in Rn, let Ai .b/ be the matrix obtained from A

by replacing column i by the vector b.

Ai .b/ D Œa1 � � � b � � � an�

-

col i

THEOREM 7 Cramer’s Rule

Let A be an invertible n � n matrix. For any b in Rn, the unique solution x of
Ax D b has entries given by

xi D
detAi .b/

detA
; i D 1; 2; : : : ; n (1)

PROOF Denote the columns of A by a1; : : : ; an and the columns of the n � n identity
matrix I by e1; : : : ; en. If Ax D b, the definition of matrix multiplication shows that

A .Ii .x// D A
�
e1 � � � x � � � en

�
D
�

Ae1 � � � Ax � � � Aen

�
D
�
a1 � � � b � � � an

�
D Ai .b/

By the multiplicative property of determinants,

.detA/.det Ii .x// D detAi .b/

The second determinant on the left is simply xi . (Make a cofactor expansion along
the i th row.) Hence .detA/ xi D detAi .b/. This proves (1) because A is invertible and
detA ¤ 0.

EXAMPLE 1 Use Cramer’s rule to solve the system

3x1 � 2x2 D 6

�5x1 C 4x2 D 8

SOLUTION View the system as Ax D b. Using the notation introduced above,

A D

�
3 �2

�5 4

�
; A1.b/ D

�
6 �2

8 4

�
; A2.b/ D

�
3 6

�5 8

�
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Since detA D 2, the system has a unique solution. By Cramer’s rule,

x1 D
detA1.b/

detA
D

24C 16

2
D 20

x2 D
detA2.b/

detA
D

24C 30

2
D 27

Application to Engineering
A number of important engineering problems, particularly in electrical engineering and
control theory, can be analyzed by Laplace transforms. This approach converts an appro-
priate system of linear differential equations into a system of linear algebraic equations
whose coefficients involve a parameter. The next example illustrates the type of algebraic
system that may arise.

EXAMPLE 2 Consider the following system in which s is an unspecified parameter.
Determine the values of s for which the system has a unique solution, and use Cramer’s
rule to describe the solution.

3sx1 � 2x2 D 4

�6x1 C sx2 D 1

SOLUTION View the system as Ax D b. Then

A D

�
3s �2

�6 s

�
; A1.b/ D

�
4 �2

1 s

�
; A2.b/ D

�
3s 4

�6 1

�
Since

detA D 3s2
� 12 D 3.s C 2/.s � 2/

the system has a unique solution precisely when s ¤ ˙2. For such an s, the solution is
.x1; x2/, where

x1 D
detA1.b/

detA
D

4s C 2

3.s C 2/.s � 2/

x2 D
detA2.b/

detA
D

3s C 24

3.s C 2/.s � 2/
D

s C 8

.s C 2/.s � 2/

A Formula for A–1
Cramer’s rule leads easily to a general formula for the inverse of an n � n matrix A. The
j th column of A�1 is a vector x that satisfies

Ax D ej

where ej is the j th column of the identity matrix, and the i th entry of x is the .i; j /-entry
of A�1. By Cramer’s rule,˚

.i; j /-entry of A�1
	
D xi D

detAi .ej /

detA
(2)

Recall that Aj i denotes the submatrix of A formed by deleting row j and column i . A
cofactor expansion down column i of Ai .ej / shows that

detAi .ej / D .�1/iCj detAj i D Cj i (3)
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where Cj i is a cofactor of A. By (2), the .i; j /-entry of A�1 is the cofactor Cj i divided
by detA. [Note that the subscripts on Cj i are the reverse of .i; j /.] Thus

A�1
D

1

detA

26664
C11 C21 � � � Cn1

C12 C22 � � � Cn2

:::
:::

:::

C1n C2n � � � Cnn

37775 (4)

The matrix of cofactors on the right side of (4) is called the adjugate (or classical
adjoint) ofA, denoted by adjA. (The term adjoint also has another meaning in advanced
texts on linear transformations.) The next theorem simply restates (4).

THEOREM 8 An Inverse Formula

Let A be an invertible n � n matrix. Then

A�1
D

1

detA
adjA

EXAMPLE 3 Find the inverse of the matrix A D

24 2 1 3

1 �1 1

1 4 �2

35.
SOLUTION The nine cofactors are

C11 D C

ˇ̌̌̌
�1 1

4 �2

ˇ̌̌̌
D �2; C12 D �

ˇ̌̌̌
1 1

1 �2

ˇ̌̌̌
D 3; C13 D C

ˇ̌̌̌
1 �1

1 4

ˇ̌̌̌
D 5

C21 D �

ˇ̌̌̌
1 3

4 �2

ˇ̌̌̌
D 14; C22 D C

ˇ̌̌̌
2 3

1 �2

ˇ̌̌̌
D �7; C23 D �

ˇ̌̌̌
2 1

1 4

ˇ̌̌̌
D �7

C31 D C

ˇ̌̌̌
1 3

�1 1

ˇ̌̌̌
D 4; C32 D �

ˇ̌̌̌
2 3

1 1

ˇ̌̌̌
D 1; C33 D C

ˇ̌̌̌
2 1

1 �1

ˇ̌̌̌
D �3

The adjugate matrix is the transpose of the matrix of cofactors. [For instance, C12 goes
in the .2; 1/ position.] Thus

adjA D

24�2 14 4

3 �7 1

5 �7 �3

35
We could compute detA directly, but the following computation provides a check on the
calculations for adj A and produces detA:

.adjA/ A D

24�2 14 4

3 �7 1

5 �7 �3

3524 2 1 3

1 �1 1

1 4 �2

35 D 24 14 0 0

0 14 0

0 0 14

35 D 14I

Since .adjA/A D 14I , Theorem 8 shows that detA D 14 and

A�1
D

1

14

24�2 14 4

3 �7 1

5 �7 �3

35 D 24�1=7 1 2=7

3=14 �1=2 1=14

5=14 �1=2 �3=14

35
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Numerical Notes

Theorem 8 is useful mainly for theoretical calculations. The formula for A�1

permits one to deduce properties of the inverse without actually calculating it.
Except for special cases, the algorithm in Section 2.2 gives a much better way to
compute A�1, if the inverse is really needed.

Cramer’s rule is also a theoretical tool. It can be used to study how sensitive
the solution of Ax D b is to changes in an entry in b or in A (perhaps due
to experimental error when acquiring the entries for b or A). When A is a
3 � 3 matrix with complex entries, Cramer’s rule is sometimes selected for hand
computation because row reduction of Œ A b � with complex arithmetic can be
messy, and the determinants are fairly easy to compute. For a larger n � n matrix
(real or complex), Cramer’s rule is hopelessly inefficient. Computing just one
determinant takes about as much work as solving Ax D b by row reduction.

Determinants as Area or Volume
In the next application, we verify the geometric interpretation of determinants described
in the chapter introduction. Although a general discussion of length and distance in Rn

will not be given until Chapter 6, we assume here that the usual Euclidean concepts of
length, area, and volume are already understood for R2 and R3.

THEOREM 9 If A is a 2 � 2 matrix, the area of the parallelogram determined by the columns of
A is jdetAj. If A is a 3 � 3 matrix, the volume of the parallelepiped determined
by the columns of A is jdetAj.

PROOF The theorem is obviously true for any 2 � 2 diagonal matrix:STUDY GUIDE provides a
geometric proof of the
determinant as area.

ˇ̌̌̌
det
�

a 0

0 d

� ˇ̌̌̌
D jad j D

�
area of
rectangle

�
See Figure 1. It will suffice to show that any 2 � 2 matrix A D Œ a1 a2 � can be trans-

y

x

0
d

a
0

FIGURE 1

Area D jad j.

formed into a diagonal matrix in a way that changes neither the area of the associated
parallelogram nor jdetAj. From Section 3.2, we know that the absolute value of the
determinant is unchanged when two columns are interchanged or a multiple of one
column is added to another. And it is easy to see that such operations suffice to transform
A into a diagonal matrix. Column interchanges do not change the parallelogram at all.
So it suffices to prove the following simple geometric observation that applies to vectors
in R2 or R3:

Let a1 and a2 be nonzero vectors. Then for any scalar c, the area of the
parallelogram determined by a1 and a2 equals the area of the parallelogram
determined by a1 and a2 C ca1.

To prove this statement, we may assume that a2 is not a multiple of a1, for other-
wise the two parallelograms would be degenerate and have zero area. If L is the line
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through 0 and a1, then a2 C L is the line through a2 parallel to L, and a2 C ca1 is on
this line. See Figure 2. The points a2 and a2 C ca1 have the same perpendicular distance
to L. Hence the two parallelograms in Figure 2 have the same area, since they share the
base from 0 to a1. This completes the proof for R2.

a2 1 ca1 a2

ca1

a2 1 L

a10
L

FIGURE 2 Two parallelograms of equal area.

The proof for R3 is similar. The theorem is obviously true for a 3 � 3 diagonal
matrix. See Figure 3. And any 3 � 3 matrix A can be transformed into a diagonal matrix
using column operations that do not change jdetAj. (Think about doing row operations
on AT .) So it suffices to show that these operations do not affect the volume of the
parallelepiped determined by the columns of A.

0
b
0

0
0
c

a
0
0

z

x

y

FIGURE 3

Volume D jabcj.

A parallelepiped is shown in Figure 4 as a shaded box with two sloping sides.
Its volume is the area of the base in the plane Span fa1; a3g times the altitude of a2

above Span fa1; a3g. Any vector a2 C ca1 has the same altitude because a2 C ca1 lies
in the plane a2 C Span fa1; a3g, which is parallel to Span fa1; a3g. Hence the volume of
the parallelepiped is unchanged when Œ a1 a2 a3 � is changed to Œ a1 a2 C ca1 a3 �.
Thus a column replacement operation does not affect the volume of the parallelepiped.
Since column interchanges have no effect on the volume, the proof is complete.

a 3

a2

0
a1

Span{a1, a3}

a2 1 Span{a1, a3}

a2

0
a1

Span{a1, a3}

a2 1 Span{a1, a3}

a2 1 ca1

a 3

FIGURE 4 Two parallelepipeds of equal volume.

EXAMPLE 4 Calculate the area of the parallelogram determined by the points
.�2;�2/, .0; 3/, .4;�1/, and .6; 4/. See Figure 5(a).

SOLUTION First translate the parallelogram to one having the origin as a vertex. For
example, subtract the vertex .�2;�2/ from each of the four vertices. The new paral-
lelogram has the same area, and its vertices are .0; 0/, .2; 5/, .6; 1/, and .8; 6/. See
Figure 5(b). This parallelogram is determined by the columns of

A D

�
2 6

5 1

�
Since jdetAj D j�28j, the area of the parallelogram is 28.
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x2

x1 x1

x2

(a) (b)

FIGURE 5 Translating a parallelogram does not change its
area.

Linear Transformations
Determinants can be used to describe an important geometric property of linear trans-
formations in the plane and in R3. If T is a linear transformation and S is a set in the
domain of T , let T .S/ denote the set of images of points in S . We are interested in how
the area (or volume) of T .S/ compares with the area (or volume) of the original set S .
For convenience, when S is a region bounded by a parallelogram, we also refer to S as
a parallelogram.

THEOREM 10 Let T W R2 ! R2 be the linear transformation determined by a 2 � 2 matrix A. If
S is a parallelogram in R2, then

farea of T .S/g D jdetAj � farea of Sg (5)

If T is determined by a 3 � 3 matrix A, and if S is a parallelepiped in R3, then

fvolume of T .S/g D jdetAj � fvolume of Sg (6)

PROOF Consider the 2 � 2 case, with A D Œ a1 a2 �. A parallelogram at the origin in
R2 determined by vectors b1 and b2 has the form

S D fs1b1 C s2b2 W 0 � s1 � 1; 0 � s2 � 1g

The image of S under T consists of points of the form

T .s1b1 C s2b2/ D s1T .b1/C s2T .b2/

D s1Ab1 C s2Ab2

where 0 � s1 � 1, 0 � s2 � 1. It follows that T .S/ is the parallelogram determined
by the columns of the matrix Œ Ab1 Ab2 �. This matrix can be written as AB , where
B D Œ b1 b2 �. By Theorem 9 and the product theorem for determinants,

farea of T .S/g D jdetABj D jdetAj jdetBj

D jdetAj � farea of Sg
(7)

An arbitrary parallelogram has the form pC S , where p is a vector and S is a
parallelogram at the origin, as seen previously. It is easy to see that T transformspC S
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into T .p/C T .S/. (See Exercise 26.) Since translation does not affect the area
of a set,

farea of T .pC S/g D farea of T .p/C T .S/g

D farea of T .S/g Translation

D j detAj � farea of Sg By equation (7)

D j detAj � farea of (pC S )g Translation

This shows that (5) holds for all parallelograms inR2. The proof of (6) for the 3 � 3 case
is analogous.

When we attempt to generalize Theorem 10 to a region in R2 or R3 that is not
bounded by straight lines or planes, we must face the problem of how to define and
compute its area or volume. This is a question studied in calculus, and we shall only
outline the basic idea for R2. If R is a planar region that has a finite area, then R can
be approximated by a grid of small squares that lie inside R. By making the squares
sufficiently small, the area of R may be approximated as closely as desired by the sum
of the areas of the small squares. See Figure 6.

0 0

FIGURE 6 Approximating a planar region by a union of squares.
The approximation improves as the grid becomes finer.

If T is a linear transformation associated with a 2 � 2 matrix A, then the image of
a planar region R under T is approximated by the images of the small squares inside
R. The proof of Theorem 10 shows that each such image is a parallelogram whose area
is jdetAj times the area of the square. If R0 is the union of the squares inside R, then
the area of T .R0/ is jdetAj times the area of R0. See Figure 7. Also, the area of T .R0/

is close to the area of T .R/. An argument involving a limiting process may be given to
justify the following generalization of Theorem 10.

0 0
R9 T(R9)

T

FIGURE 7 Approximating T .R/ by a union of parallelograms.
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The conclusions of Theorem 10 hold whenever S is a region in R2 with finite area
or a region in R3 with finite volume.

EXAMPLE 5 Let a and b be positive numbers. Find the area of the regionE bounded
by the ellipse whose equation is

x2
1

a2
C

x2
2

b2
D 1

SOLUTION We claim that E is the image of the unit disk D under the linear transfor-

x2

x1

1

a

b

u1

u2

T

D

E

mation T determined by the matrix A D

�
a 0

0 b

�
, because if u D

�
u1

u2

�
, x D

�
x1

x2

�
,

and x D Au, then
u1 D

x1

a
and u2 D

x2

b

It follows that u is in the unit disk, with u2
1 C u2

2 � 1, if and only if x is in E, with
.x1=a/2 C .x2=b/2 � 1. By the generalization of Theorem 10,

farea of ellipseg D farea of T .D/g

D jdetAj � farea of Dg

D ab�.1/2
D �ab

Practice Problem

Let S be the parallelogram determined by the vectors b1 D

�
1

3

�
and b2 D

�
5

1

�
, and

let A D

�
1 �:1

0 2

�
. Compute the area of the image of S under the mapping x 7!Ax.

3.3 Exercises
Use Cramer’s rule to compute the solutions of the systems in
Exercises 1–6.

1. 5x1 C 7x2 D 3

2x1 C 4x2 D 1

2. 6x1 C x2 D 3

5x1 C 2x2 D 4

3. 3x1 � 2x2 D 3

�4x1 C 6x2 D �5

4. �5x1 C 2x2 D 9

3x1 � x2 D �4

5. x1 C x2 D 2

�5x1 C 4x3 D 0

x2 � x3 D �1

6. x1 C 3x2 C x3 D 8

�x1 C 2x3 D 4

3x1 C x2 D 4

In Exercises 7–10, determine the values of the parameter s

for which the system has a unique solution, and describe the
solution.

7. 2sx1 C 5x2 D 8

6x1 C 3sx2 D 4

8. 3sx1 C 5x2 D 3

12x1 C 5sx2 D 2

9. sx1 C 2sx2 D �1

3x1 C 6sx2 D 4

10. sx1 � 2x2 D 1

4sx1 C 4sx2 D 2

In Exercises 11–16, compute the adjugate of the given matrix, and
then use Theorem 8 to give the inverse of the matrix.

11.

24 0 �2 �1

5 0 0

�1 1 1

35 12.

24 1 1 �2

�1 1 3

0 �1 3

35

13.

24 3 5 4

1 0 1

2 1 1

35 14.

24 1 �1 2

0 2 1

3 0 6

35

15.

24 1 0 0

�3 4 0

�2 3 �1

35 16.

24 1 2 4

0 �3 1

0 0 �2

35
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17. Show that if A is 2 � 2, then Theorem 8 gives the same
formula for A�1 as that given by Theorem 4 in Section 2.2.

18. Suppose that all the entries in A are integers and detA D 1.
Explain why all the entries in A�1 are integers.

In Exercises 19–22, find the area of the parallelogram whose
vertices are listed.

19. .0; 0/, .5; 2/, .6; 4/, .11; 6/

20. .0; 0/, .�3; 7/, .8;�9/, .5;�2/

21. .�6; 0/, .0; 5/, .4; 5/, .�2; 0/

22. .0;�2/, .5;�2/, .�3; 1/, .2; 1/

23. Find the volume of the parallelepiped with one vertex at
the origin and adjacent vertices at .1; 0;�6/, .1; 3; 5/, and
.6; 7; 0/.

24. Find the volume of the parallelepiped with one vertex at
the origin and adjacent vertices at .1; 5; 0/, .�3; 0; 3/, and
.�1; 4;�1/.

25. Use the concept of volume to explain why the determinant of
a 3 � 3 matrix A is zero if and only if A is not invertible. Do
not appeal to Theorem 4 in Section 3.2. [Hint: Think about
the columns of A.]

26. Let T W Rm ! Rn be a linear transformation, and let p be a
vector and S a set inRm. Show that the image of pC S under
T is the translated set T .p/C T .S/ in Rn.

27. Let S be the parallelogram determined by the vectors

b1 D

�
�3

5

�
and b2 D

�
�3

8

�
, and let A D

�
3 �4

�4 6

�
.

Compute the area of the image of S under the mapping
x 7! Ax.

28. Repeat Exercise 27 with b1 D

�
�3

5

�
and b2 D

�
0

�3

�
, and

A D

�
3 4

�2 �2

�
.

29. Find a formula for the area of the triangle whose vertices are
0, v1, and v2 in R2.

30. Let R be the triangle with vertices at .x1; y1/, .x2; y2/, and
.x3; y3/. Show that

farea of triangleg D
1

2
det

24 x1 y1 1

x2 y2 1

x3 y3 1

35
[Hint: Translate R to the origin by subtracting one of the
vertices, and use Exercise 29.]

31. Let T W R3 ! R3 be the linear transformation determined

by the matrix A D

24 a 0 0

0 b 0

0 0 c

35, where a, b, and c are

positive numbers. Let S be the unit ball, whose bounding
surface has the equation x2

1 C x2
2 C x2

3 D 1.

a. Show that T .S/ is bounded by the ellipsoid with the

equation
x2

1

a2
C

x2
2

b2
C

x2
3

c2
D 1.

b. Use the fact that the volume of the unit ball is 4�=3

to determine the volume of the region bounded by the
ellipsoid in part (a).

32. Let S be the tetrahedron in R3 with vertices at the vectors 0,
e1, e2, and e3, and let S 0 be the tetrahedron with vertices at
vectors 0, v1, v2, and v3. See the figure.

e3

e2

x2x2

00

e1

v3 S9
v2

v1

S

x3

x1

x3

x1

a. Describe a linear transformation that maps S onto S 0.

b. Find a formula for the volume of the tetrahedron S 0 using
the fact that

fvolume of Sg D .1=3/ � farea of baseg � fheightg

33. LetA be an n � nmatrix. IfA�1 D
1

detA
adjA is computed,

what should AA�1 be equal to in order to confirm that A�1

has been found correctly?

34. If a parallelogram fits inside a circle radius 1 and detA D 4,
whereA is the matrix whose columns correspond to the edges
of the parallelogram, does it seem like A and its determinant
have been calculated correctly to correspond to the area of
this parallelogram? Explain why or why not.

In Exercises 35–38, mark each statement as True or False (T/F).
Justify each answer.

35. (T/F) Two parallelograms with the same base and height have
the same area.

36. (T/F) Applying a linear transformation to a region does not
change its area.

37. (T/F) If A is an invertible n � n matrix, then A�1 D adjA.

38. (T/F) Cramer’s rule can only be used for invertible matrices.

T 39. Test the inverse formula of Theorem 8 for a random 4 � 4

matrix A. Use your matrix program to compute the cofac-
tors of the 3 � 3 submatrices, construct the adjugate, and
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set B D .adjA/=.detA/. Then compute B � inv.A/, where
inv.A/ is the inverse ofA as computed by thematrix program.
Use floating point arithmetic with the maximum possible
number of decimal places. Report your results.

T 40. Test Cramer’s rule for a random 4 � 4matrixA and a random
4 � 1 vector b. Compute each entry in the solution ofAx D b,
and compare these entries with the entries inA�1b. Write the

command (or keystrokes) for your matrix program that uses
Cramer’s rule to produce the second entry of x.

T 41. If your version of MATLAB has the flops command, use it
to count the number of floating point operations to compute
A�1 for a random 30 � 30matrix. Compare this number with
the number of flops needed to form .adjA/=.detA/.

Solution to Practice Problem

The area of S is

ˇ̌̌̌
det

�
1 5

3 1

� ˇ̌̌̌
D 14; and detA D 2. By Theorem 10, the area of the

image of S under the mapping x 7! Ax is

jdetAj � farea of Sg D 2 � 14 D 28

CHAPTER 3 PROJECTS
Chapter 3 projects are available online.

A. Weighing Design: This project develops the concept of
weighing design and their corresponding matrices for use
in weighing a few small, light objects.

B. Jacobians: This set of exercises examines how a particular
determinant called the Jacobian may be used to allow us to
change variables in double and triple integrals.

CHAPTER 3 SUPPLEMENTARY EXERCISES
In Exercises 1-15, mark each statement True or False (T/F). Justify
each answer. Assume that all matrices here are square.

1. (T/F) If A is a 2 � 2 matrix with a zero determinant, then one
column of A is a multiple of the other.

2. (T/F) If two rows of a 3 � 3 matrix A are the same, then
detA D 0.

3. (T/F) If A is a 3 � 3 matrix, then det 5A D 5 detA.

4. (T/F) If A and B are n � n matrices, with detA D 2 and
detB D 3, then det.AC B/ D 5.

5. (T/F) If A is n � n and detA D 2, then detA3 D 6.

6. (T/F) If B is produced by interchanging two rows of A, then
detB D detA.

7. (T/F) If B is produced by multiplying row 3 of A by 5, then
detB D 5 detA.

8. (T/F) If B is formed by adding to one row of A a linear
combination of the other rows, then detB D detA.

9. (T/F) detAT D � detA.

10. (T/F) det.�A/ D � detA.

11. (T/F) detATA � 0.

12. (T/F) Any system of n linear equations in n variables can be
solved by Cramer’s rule.

13. (T/F) If u and v are in R2 and det Œ u v � D 10, then the
area of the triangle in the plane with vertices at 0, u, and v
is 10.

14. (T/F) If A3 D 0, then detA D 0.

15. (T/F) If A is invertible, then detA�1 D detA.

Use row operations to show that the determinants in Exercises 16–
18 are all zero.

16.

ˇ̌̌̌
ˇ̌ 12 13 14

15 16 17

18 19 20

ˇ̌̌̌
ˇ̌ 17.

ˇ̌̌̌
ˇ̌ 1 a b C c

1 b aC c

1 c aC b

ˇ̌̌̌
ˇ̌

18.

ˇ̌̌̌
ˇ̌ a b c

aC x b C x c C x

aC y b C y c C y

ˇ̌̌̌
ˇ̌

Compute the determinants in Exercises 19 and 20.

19.

ˇ̌̌̌
ˇ̌̌̌
ˇ̌
1 5 4 3 2

0 8 5 9 0

0 7 0 0 0

3 9 6 5 4

0 8 0 6 0

ˇ̌̌̌
ˇ̌̌̌
ˇ̌
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virtually and synthesized using DSP. In Example 3 of
Section 4.7, we see how signal processing can be used to
add richness to virtual sounds.

Discrete-time signals and DSP have become signifi-
cant tools in many industries and areas of research. Math-
ematically speaking, discrete-time signals can be viewed
as vectors that are processed using linear transformations.
The operations of adding, scaling, and applying linear
transformations to signals is completely analogous to the
same operations for vectors in Rn. For this reason, the

set of all possible signals, S, is treated as a vector space.
In Sections 4.7 and 4.8, we look at the vector space of
discrete-time signals in more detail.

The focus of Chapter 4 is to extend the theory of
vectors in Rn to include signals and other mathematical
structures that behave like the vectors you are already
familiar with. Later on in the text, you will see how
other vector spaces and their corresponding linear
transformations arise in engineering, physics, biology, and
statistics.

The mathematical seeds planted in Chapters 1 and 2 germinate and begin to blossom in
this chapter. The beauty and power of linear algebra will be seen more clearly when you
viewRn as only one of a variety of vector spaces that arise naturally in applied problems.

Beginning with basic definitions in Section 4.1, the general vector space frame-
work develops gradually throughout the chapter. A goal of Sections 4.5 and 4.6 is to
demonstrate how closely other vector spaces resemble Rn. Sections 4.7 and 4.8 apply
the theory of this chapter to discrete-time signals, DSP, and difference equations—the
mathematics underlying the digital revolution.

4.1 Vector Spaces and Subspaces
Much of the theory in Chapters 1 and 2 rested on certain simple and obvious alge-
braic properties of Rn, listed in Section 1.3. In fact, many other mathematical systems
have the same properties. The specific properties of interest are listed in the following
definition.

DEFINITION A vector space is a nonempty set V of objects, called vectors, on which are defined
two operations, called addition and multiplication by scalars (real numbers),
subject to the ten axioms (or rules) listed below.1 The axioms must hold for all
vectors u, v, and w in V and for all scalars c and d .

1. The sum of u and v, denoted by uC v, is in V .

2. uC v D vC u.

3. .uC v/C w D uC .vC w/.

4. There is a zero vector 0 in V such that uC 0 D u.

5. For each u in V , there is a vector �u in V such that uC .�u/ D 0.

1 Technically, V is a real vector space. All of the theory in this chapter also holds for a complex vector space
in which the scalars and matrix entries are complex numbers. We will look at this briefly in Chapter 5. Until
then, all scalars and matrix entries are assumed to be real.
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6. The scalar multiple of u by c, denoted by cu, is in V .

7. c.uC v/ D cuC cv.

8. .c C d/u D cuC du.

9. c.du/ D .cd/u.

10. 1u D u.

Using only these axioms, one can show that the zero vector in Axiom 4 is unique,
and the vector �u, called the negative of u, in Axiom 5 is unique for each u in V .
See Exercises 33 and 34. Proofs of the following simple facts are also outlined in the
exercises:

For each u in V and scalar c,
0u D 0 (1)

c0 D 0 (2)

�u D .�1/u (3)

EXAMPLE 1 The spaces Rn, where n � 1, are the premier examples of vector
spaces. The geometric intuition developed forR3 will help you understand and visualize
many concepts throughout the chapter.

EXAMPLE 2 Let V be the set of all arrows (directed line segments) in three-
dimensional space, with two arrows regarded as equal if they have the same length and
point in the same direction. Define addition by the parallelogram rule (from Section 1.3),
and for each v in V , define cv to be the arrow whose length is jcj times the length of
v, pointing in the same direction as v if c � 0 and otherwise pointing in the opposite
direction. (See Figure 1.) Show that V is a vector space. This space is a common model
in physical problems for various forces.

v 3v 2v

FIGURE 1

SOLUTION The definition of V is geometric, using concepts of length and direction.
No xy´-coordinate system is involved. An arrow of zero length is a single point and
represents the zero vector. The negative of v is .�1/v. So Axioms 1, 4, 5, 6, and 10 are
evident. The rest are verified by geometry. For instance, see Figures 2 and 3.

v u
u

v 1 u

u 1 v

FIGURE 2 uC v D vC u.

v

w

u v 1 w

u 1 v 1 w

u 1 v

FIGURE 3 .uC v/C w D uC .vC w/.

EXAMPLE 3 Let S be the space of all doubly infinite sequences of numbers (usually
written in a row rather than a column):

fykg D .: : : ; y�2; y�1; y0; y1; y2; : : :/
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If f´kg is another element of S, then the sum fykg C f´kg is the sequence fyk C ´kg

formed by adding corresponding terms of fykg and f´kg. The scalar multiple c fykg is
the sequence fcykg. The vector space axioms are verified in the same way as for Rn.

Elements of S arise in engineering, for example, whenever a signal is measured (or
sampled) at discrete times. A signal might be electrical, mechanical, optical, biological,
audio, and so on. The digital signal processors mentioned in the chapter introduction use
discrete (or digital) signals. For convenience, we will call S the space of (discrete-time)
signals. A signal may be visualized by a graph as in Figure 4.

25 0 5 10

FIGURE 4 A discrete-time signal.

EXAMPLE 4 For n � 0, the set Pn of polynomials of degree at most n consists of
all polynomials of the form

p.t/ D a0 C a1t C a2t2
C � � � C antn (4)

where the coefficients a0; : : : ; an and the variable t are real numbers. The degree of
p is the highest power of t in (4) whose coefficient is not zero. If p.t/ D a0 ¤ 0, the
degree of p is zero. If all the coefficients are zero, p is called the zero polynomial. The
zero polynomial is included in Pn even though its degree, for technical reasons, is not
defined.

If p is given by (4) and if q.t/ D b0 C b1t C � � � C bntn, then the sum pC q is
defined by

.pC q/.t/ D p.t/C q.t/

D .a0 C b0/C .a1 C b1/t C � � � C .an C bn/tn

The scalar multiple cp is the polynomial defined by

.cp/.t/ D cp.t/ D ca0 C .ca1/t C � � � C .can/tn

These definitions satisfy Axioms 1 and 6 because pC q and cp are polynomials of
degree less than or equal to n. Axioms 2, 3, and 7–10 follow from properties of the real
numbers. Clearly, the zero polynomial acts as the zero vector in Axiom 4. Finally, .�1/p
acts as the negative of p, so Axiom 5 is satisfied. Thus Pn is a vector space.

The vector spaces Pn for various n are used, for instance, in statistical trend analysis
of data, discussed in Section 6.8.

EXAMPLE 5 Let V be the set of all real-valued functions defined on a set D. (Typi-
cally, D is the set of real numbers or some interval on the real line.) Functions are added
in the usual way: fC g is the function whose value at t in the domain D is f.t/C g.t/.
Likewise, for a scalar c and an f in V , the scalar multiple cf is the function whose value
at t is cf.t/. For instance, if D D R, f.t/ D 1C sin 2t , and g.t/ D 2C :5t , then

.fC g/.t/ D 3C sin 2t C :5t and .2g/.t/ D 4C t
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Two functions in V are equal if and only if their values are equal for every t in D.
Hence the zero vector in V is the function that is identically zero, f.t/ D 0 for all t ,
and the negative of f is .�1/f. Axioms 1 and 6 are obviously true, and the other axioms
follow from properties of the real numbers, so V is a vector space.

It is important to think of each function in the vector space V of Example 5 as a
single object, as just one “point” or vector in the vector space. The sum of two vectors f
and g (functions in V , or elements of any vector space) can be visualized as in Figure 5,
because this can help you carry over to a general vector space the geometric intuition
you have developed while working with the vector space Rn. See the Study Guide for
help as you learn to adopt this more general point of view.

f 1 g

g

f

0

FIGURE 5

The sum of two vectors
(functions).

Subspaces
In many problems, a vector space consists of an appropriate subset of vectors from some
larger vector space. In this case, only three of the ten vector space axioms need to be
checked; the rest are automatically satisfied.

DEFINITION A subspace of a vector space V is a subset H of V that has three properties:

a. The zero vector of V is in H .2

b. H is closed under vector addition. That is, for each u and v inH , the sum uC v
is in H .

c. H is closed under multiplication by scalars. That is, for each u in H and each
scalar c, the vector cu is in H .

Properties (a), (b), and (c) guarantee that a subspace H of V is itself a vector space,
under the vector space operations already defined inV . To verify this, note that properties
(a), (b), and (c) are Axioms 1, 4, and 6. Axioms 2, 3, and 7–10 are automatically true
in H because they apply to all elements of V , including those in H . Axiom 5 is also
true in H , because if u is in H , then .�1/u is in H by property (c), and we know from
equation (3) earlier in this section that .�1/u is the vector �u in Axiom 5.

So every subspace is a vector space. Conversely, every vector space is a subspace
(of itself and possibly of other larger spaces). The term subspace is used when at least
two vector spaces are in mind, with one inside the other, and the phrase subspace of V

identifies V as the larger space. (See Figure 6.)

0

H

V

FIGURE 6

A subspace of V .

EXAMPLE 6 The set consisting of only the zero vector in a vector space V is a
subspace of V , called the zero subspace and written as f0g.

EXAMPLE 7 Let P be the set of all polynomials with real coefficients, with opera-
tions in P defined as for functions. Then P is a subspace of the space of all real-valued
functions defined on R. Also, for each n � 0, Pn is a subspace of P , because Pn is a
subset of P that contains the zero polynomial, the sum of two polynomials in Pn is also
in Pn, and a scalar multiple of a polynomial in Pn is also in Pn.

2 Some texts replace property (a) in this definition by the assumption that H is nonempty. Then (a) could be
deduced from (c) and the fact that 0u D 0. But the best way to test for a subspace is to look first for the zero
vector. If 0 is in H , then properties (b) and (c) must be checked. If 0 is not in H , then H cannot be a
subspace and the other properties need not be checked.
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EXAMPLE 8 The set of finitely supported signals Sf consists of the signals
fykg, where only finitely many of the yk are nonzero. Since the zero signal 0 D
.: : : ; 0; 0; 0; : : :/ has no nonzero entries, it is clearly an element of Sf . If two signals
with finitely many nonzeros are added, the resulting signal will have finitely many
nonzeros. Similarly if a signal with finitely many nonzeros is scaled, the result will still
have finitely many nonzeros. Thus Sf is a subspace of S, the discrete-time signals. See
Figure 7.

t

c 1 d

t

c
d c

bc

FIGURE 7

EXAMPLE 9 The vector space R2 is not a subspace of R3 because R2 is not even a
subset of R3. (The vectors in R3 all have three entries, whereas the vectors in R2 have
only two.) The set

H D

8<:
24 s

t

0

35 W s and t are real

9=;
is a subset of R3 that “looks” and “acts” like R2, although it is logically distinct from
R2. See Figure 8. Show that H is a subspace of R3.

SOLUTION The zero vector is in H , and H is closed under vector addition and scalar
multiplication because these operations on vectors in H always produce vectors whose
third entries are zero (and so belong to H/. Thus H is a subspace of R3.

x3

x2

x1

H

FIGURE 8

The x1x2-plane as a subspace
of R3.

EXAMPLE 10 A plane inR3 not through the origin is not a subspace ofR3, because
the plane does not contain the zero vector of R3. Similarly, a line in R2 not through the
origin, such as in Figure 9, is not a subspace of R2.

A Subspace Spanned by a Set
The next example illustrates one of the most common ways of describing a subspace.
As in Chapter 1, the term linear combination refers to any sum of scalar multiples of
vectors, and Span fv1; : : : ; vpg denotes the set of all vectors that can be written as linear
combinations of v1; : : : ; vp .

H

x2

x1

FIGURE 9

A line that is not a vector space.

EXAMPLE 11 Given v1 and v2 in a vector space V , let H D Span fv1; v2g. Show
that H is a subspace of V .

SOLUTION The zero vector is in H , since 0 D 0v1 C 0v2. To show that H is closed
under vector addition, take two arbitrary vectors in H , say,

u D s1v1 C s2v2 and w D t1v1 C t2v2

By Axioms 2, 3, and 8 for the vector space V ,

uC w D .s1v1 C s2v2/C .t1v1 C t2v2/

D .s1 C t1/v1 C .s2 C t2/v2
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So uC w is in H . Furthermore, if c is any scalar, then by Axioms 7 and 9,

cu D c.s1v1 C s2v2/ D .cs1/v1 C .cs2/v2

which shows that cu is in H and H is closed under scalar multiplication. Thus H is a
subspace of V .

In Section 4.5, you will see that every nonzero subspace of R3, other than R3 itself,
is either Span fv1, v2g for some linearly independent v1 and v2 or Span fvg for v ¤ 0.
In the first case, the subspace is a plane through the origin; in the second case, it is a
line through the origin. (See Figure 10.) It is helpful to keep these geometric pictures in
mind, even for an abstract vector space.

x3

x2

x1

v2v1
0

FIGURE 10

An example of a subspace.
The argument in Example 11 can easily be generalized to prove the following

theorem.

THEOREM 1 If v1; : : : ; vp are in a vector space V , then Span fv1; : : : ; vpg is a subspace of V .

We call Span fv1; : : : ; vpg the subspace spanned (or generated) by fv1; : : : ; vpg.
Given any subspace H of V , a spanning (or generating) set for H is a set fv1; : : : ; vpg

in H such that H D Span fv1; : : : ; vpg.
The next example shows how to use Theorem 1.

EXAMPLE 12 Let H be the set of all vectors of the form .a � 3b; b � a; a; b/,
where a and b are arbitrary scalars. That is, let H D f.a � 3b; b � a; a; b/ W a and b

in Rg. Show that H is a subspace of R4.

SOLUTION Write the vectors in H as column vectors. Then an arbitrary vector in H

has the form

2664
a � 3b

b � a

a

b

3775 D a

2664
1

�1

1

0

3775
6
v1

C b

2664
�3

1

0

1

3775
6
v2

This calculation shows thatH D Span fv1; v2g, where v1 and v2 are the vectors indicated
above. Thus H is a subspace of R4 by Theorem 1.

Example 12 illustrates a useful technique of expressing a subspace H as the set
of linear combinations of some small collection of vectors. If H D Span fv1; : : : ; vpg,
we can think of the vectors v1; : : : ; vp in the spanning set as “handles” that allow us to
hold on to the subspace H . Calculations with the infinitely many vectors in H are often
reduced to operations with the finite number of vectors in the spanning set.

EXAMPLE 13 For what value(s) of h will y be in the subspace of R3 spanned by
v1; v2; v3, if

v1 D

24 1

�1

�2

35; v2 D

24 5

�4

�7

35; v3 D

24�3

1

0

35; and y D

24�4

3

h

35
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SOLUTION This question is Practice Problem 2 in Section 1.3, written here with
the term subspace rather than Span fv1; v2; v3g. The solution there shows that y is in
Span fv1; v2; v3g if and only if h D 5. That solution is worth reviewing now, along with
Exercises 11–16 and 19–21 in Section 1.3.

Although many vector spaces in this chapter will be subspaces ofRn, it is important
to keep in mind that the abstract theory applies to other vector spaces as well. Vector
spaces of functions arise in many applications, and they will receive more attention later.

Practice Problems

1. Show that the setH of all points inR2 of the form .3s; 2C 5s/ is not a vector space,
by showing that it is not closed under scalar multiplication. (Find a specific vector
u in H and a scalar c such that cu is not in H .)

2. Let W D Span fv1; : : : ; vpg, where v1; : : : ; vp are in a vector space V . Show that
vk is in W for 1 � k � p. [Hint: First write an equation that shows that v1 is in W .
Then adjust your notation for the general case.]

3. An n � n matrix A is said to be symmetric if AT D A. Let S be the set of all 3 � 3

symmetric matrices. Show that S is a subspace of M3�3, the vector space of 3 � 3

matrices.

4.1 Exercises
1. Let V be the first quadrant in the xy-plane; that is, let

V D

��
x

y

�
W x � 0; y � 0

�
a. If u and v are in V , is uC v in V ? Why?

b. Find a specific vector u in V and a specific scalar c such
that cu is not in V . (This is enough to show that V is not
a vector space.)

2. Let W be the union of the first and third quadrants in the xy-

plane. That is, let W D

��
x

y

�
W xy � 0

�
.

a. If u is in W and c is any scalar, is cu in W ? Why?

b. Find specific vectors u and v in W such that uC v is not
in W . (This is enough to show that W is not a vector
space.)

3. Let H be the set of points inside and on the unit circle in

the xy-plane. That is, let H D

��
x

y

�
W x2 C y2 � 1

�
. Find

a specific example—two vectors or a vector and a scalar—to
show that H is not a subspace of R2.

4. Construct a geometric figure that illustrates why a line in R2

not through the origin is not closed under vector addition.

In Exercises 5–8, determine if the given set is a subspace of Pn for
an appropriate value of n. Justify your answers.

5. All polynomials of the form p.t/ D at2, where a is in R.

6. All polynomials of the form p.t/ D aC t2, where a is in R.

7. All polynomials of degree at most 3, with integers as coeffi-
cients.

8. All polynomials in Pn such that p.0/ D 0.

9. Let H be the set of all vectors of the form

24 s

3s

2s

35. Find a

vector v in R3 such that H D Span fvg. Why does this show
that H is a subspace of R3?

10. Let H be the set of all vectors of the form

24 2t

0

�t

35. Show that

H is a subspace of R3. (Use the method of Exercise 9.)

11. Let W be the set of all vectors of the form

246b C 7c

b

c

35,
where b and c are arbitrary. Find vectors u and v such that
W D Span u; v. Why does this show that W is a subspace
of R3?

12. Let W be the set of all vectors of the form

2664
s C 3t

s � t

2s � t

4t

3775. Show
that W is a subspace of R4. (Use the method of Exercise 11.)

13. Let v1 D

24 1

0

�1

35, v2 D

242

1

3

35, v3 D

244

2

6

35, and w D 243

1

2

35.
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a. Isw in fv1; v2; v3g? Howmany vectors are in fv1; v2; v3g?

b. How many vectors are in Span fv1; v2; v3g?

c. Is w in the subspace spanned by fv1; v2; v3g? Why?

14. Let v1; v2; v3 be as in Exercise 13, and let w D

248

4

7

35. Is w in

the subspace spanned by fv1; v2; v3g? Why?

In Exercises 15–18, let W be the set of all vectors of the form
shown, where a, b, and c represent arbitrary real numbers. In each
case, either find a set S of vectors that spansW or give an example
to show that W is not a vector space.

15.

24 3aC b

4

a � 5b

35 16.

24�aC 1

a � 6b

2b C a

35

17.

2664
a � b

b � c

c � a

b

3775 18.

2664
4aC 3b

0

aC b C c

c � 2a

3775
19. If a mass m is placed at the end of a spring, and if the mass is

pulled downward and released, the mass–spring system will
begin to oscillate. The displacement y of the mass from its
resting position is given by a function of the form

y.t/ D c1 cos!t C c2 sin!t (5)

where ! is a constant that depends on the spring and the
mass. (See the figure below.) Show that the set of all functions
described in (5) (with ! fixed and c1, c2 arbitrary) is a vector
space.

y

20. The set of all continuous real-valued functions defined on a
closed interval Œa; b� in R is denoted by C Œa; b�. This set is
a subspace of the vector space of all real-valued functions
defined on Œa; b�.

a. What facts about continuous functions should be proved
in order to demonstrate that C Œa; b� is indeed a subspace
as claimed? (These facts are usually discussed in a calcu-
lus class.)

b. Show that ff in C Œa; b� W f.a/ D f.b/g is a subspace of
C Œa; b�.

For fixed positive integers m and n, the set Mm�n of all m � n

matrices is a vector space, under the usual operations of addition
of matrices and multiplication by real scalars.

21. Determine if the set H of all matrices of the form
�

a b

0 d

�
is a subspace of M2�2.

22. Let F be a fixed 3 � 2 matrix, and let H be the set of all
matrices A in M2�4 with the property that FA D 0 (the zero
matrix in M3�4/. Determine if H is a subspace of M2�4.

In Exercises 23–32, mark each statement True or False (T/F).
Justify each answer.

23. (T/F) If f is a function in the vector space V of all real-valued
functions on R and if f.t/ D 0 for some t , then f is the zero
vector in V .

24. (T/F) A vector is any element of a vector space.

25. (T/F)An arrow in three-dimensional space can be considered
to be a vector.

26. (T/F) If u is a vector in a vector space V , then .�1/ u is the
same as the negative of u.

27. (T/F) A subset H of a vector space V is a subspace of V if
the zero vector is in H .

28. (T/F) A vector space is also a subspace.

29. (T/F) A subspace is also a vector space.

30. (T/F) R2 is a subspace of R3.

31. (T/F) The polynomials of degree two or less are a subspace
of the polynomials of degree three or less.

32. (T/F) A subset H of a vector space V is a subspace of V if
the following conditions are satisfied: (i) the zero vector of V

is in H , (ii) u; v, and uC v are in H , and (iii) c is a scalar
and cu is in H .

Exercises 33–36 show how the axioms for a vector space V can
be used to prove the elementary properties described after the
definition of a vector space. Fill in the blanks with the appropriate
axiom numbers. Because of Axiom 2, Axioms 4 and 5 imply,
respectively, that 0C u D u and �uC u D 0 for all u.

33. Complete the following proof that the zero vector is
unique. Suppose that w in V has the property that
uC w D wC u D u for all u in V . In particular, 0C w D 0.
But 0C w D w, by Axiom . Hence w D 0C w D 0.

34. Complete the following proof that �u is the unique vec-
tor in V such that uC .�u/ D 0. Suppose that w satisfies
uC w D 0. Adding �u to both sides, we have

.�u/C ŒuC w� D .�u/C 0

Œ.�u/C u�C w D .�u/C 0 by Axiom (a)

0C w D .�u/C 0 by Axiom (b)

w D �u by Axiom (c)

35. Fill in the missing axiom numbers in the following proof that
0u D 0 for every u in V .

0u D .0C 0/u D 0uC 0u by Axiom (a)
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Add the negative of 0u to both sides:

0uC .�0u/ D Œ0uC 0u�C .�0u/

0uC .�0u/ D 0uC Œ0uC .�0u/� by Axiom (b)

0 D 0uC 0 by Axiom (c)

0 D 0u by Axiom (d)

36. Fill in the missing axiom numbers in the following proof that
c0 D 0 for every scalar c.

c0 D c.0C 0/ by Axiom (a)

D c0C c0 by Axiom (b)

Add the negative of c0 to both sides:

c0C .�c0/ D Œc0C c0�C .�c0/

c0C .�c0/ D c0C Œc0C .�c0/� by Axiom (c)

0 D c0C 0 by Axiom (d)

0 D c0 by Axiom (e)

37. Prove that .�1/u D �u. [Hint: Show that uC .�1/u D 0.
Use some axioms and the results of Exercises 34 and 35.]

38. Suppose cu D 0 for some nonzero scalar c. Show that u D 0.
Mention the axioms or properties you use.

39. Let u and v be vectors in a vector space V , and let H be any
subspace of V that contains both u and v. Explain why H

also contains Span fu; vg. This shows that Span fu; vg is the
smallest subspace of V that contains both u and v.

40. LetH andK be subspaces of a vector space V . The intersec-
tion of H and K, written as H \K, is the set of v in V that
belong to both H and K. Show that H \K is a subspace of
V . (See the figure.) Give an example in R2 to show that the
union of two subspaces is not, in general, a subspace.

0

K

H

V

H > K

41. Given subspacesH andK of a vector space V , the sum ofH

and K, written as H CK, is the set of all vectors in V that

can be written as the sum of two vectors, one in H and the
other in K; that is,

H CK D fw : w = u + v for some u in H

and some v in Kg

a. Show that H CK is a subspace of V .

b. Show thatH is a subspace ofH CK andK is a subspace
of H CK.

42. Suppose u1; : : : ; up and v1; : : : ; vq are vectors in a vector
space V , and let

H D Span fu1; : : : ; upg and K D Span fv1; : : : ; vqg

Show that H CK D Span fu1; : : : ; up; v1; : : : ; vqg.

T 43. Show that w is in the subspace of R4 spanned by v1; v2; v3,
where

w D

2664
6

�7

8

�9

3775; v1 D

2664
7

�6

�5

4

3775; v2 D

2664
�3

2

�1

�4

3775; v3 D

2664
�2

1

2

�5

3775
T 44. Determine if y is in the subspace of R4 spanned by the

columns of A, where

y D

2664
�4

�8

6

�5

3775; A D

2664
3 �5 �9

8 7 �6

�5 �8 3

2 �2 �9

3775
T 45. The vector space H D Span f1; cos2 t; cos4 t; cos6 tg con-

tains at least two interesting functions that will be used in
a later exercise:
f.t/ D 1 � 8 cos2 t C 8 cos4 t

g.t/ D �1C 18 cos2 t � 48 cos4 t C 32 cos6 t

Study the graph of f for 0 � t � 2� , and guess a simple
formula for f.t/. Verify your conjecture by graphing the
difference between 1C f.t/ and your formula for f.t/. (Hope-
fully, you will see the constant function 1.) Repeat for g.

T 46. Repeat Exercise 45 for the functions

f.t/ D 3 sin t � 4 sin3 t

g.t/ D 1 � 8 sin2 t C 8 sin4 t

h.t/ D 5 sin t � 20 sin3 t C 16 sin5 t

in the vector space Span f1; sin t; sin2 t; : : : ; sin5 tg.

Solutions to Practice Problems

1. Take any u in H—say, u D
�

3

7

�
—and take any c ¤ 1—say, c D 2. Then

cu D
�

6

14

�
. If this is in H , then there is some s such that

�
3s

2C 5s

�
D

�
6

14

�
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That is, s D 2 and s D 12=5, which is impossible. So 2u is not in H and H is not
a vector space.

2. v1 D 1v1 C 0v2 C � � � C 0vp . This expresses v1 as a linear combination of
v1; : : : ; vp , so v1 is in W . In general, vk is in W because

vk D 0v1 C � � � C 0vk�1 C 1vk C 0vkC1 C � � � C 0vp

3. The subset S is a subspace of M3�3 since it satisfies all three of the requirements
listed in the definition of a subspace:
a. Observe that the 0 in M3�3 is the 3 � 3 zero matrix and since 0T

D 0, the matrix
0 is symmetric and hence 0 is in S .

b. LetA andB in S . Notice thatA andB are 3 � 3 symmetric matrices soAT D A

and BT D B . By the properties of transposes of matrices, .AC B/T D AT C

BT D AC B . Thus AC B is symmetric and hence AC B is in S .

c. Let A be in S and let c be a scalar. Since A is symmetric, by the properties of
symmetric matrices, .cA/T D c.AT / D cA. Thus cA is also a symmetric matrix
and hence cA is in S .

4.2 Null Spaces, Column Spaces, Row Spaces, and Linear
Transformations

In applications of linear algebra, subspaces ofRn usually arise in one of two ways: (1) as
the set of all solutions to a system of homogeneous linear equations or (2) as the set of all
linear combinations of certain specified vectors. In this section, we compare and contrast
these two descriptions of subspaces, allowing us to practice using the concept of a
subspace. Actually, as youwill soon discover, we have beenworkingwith subspaces ever
since Section 1.3. The main new feature here is the terminology. The section concludes
with a discussion of the kernel and range of a linear transformation.

The Null Space of a Matrix
Consider the following system of homogeneous equations:

x1 � 3x2 � 2x3 D 0

�5x1 C 9x2 C x3 D 0
(1)

In matrix form, this system is written as Ax D 0, where

A D

�
1 �3 �2

�5 9 1

�
(2)

Recall that the set of all x that satisfy (1) is called the solution set of the system (1).
Often it is convenient to relate this set directly to the matrix A and the equation Ax D 0.
We call the set of x that satisfy Ax D 0 the null space of the matrix A.
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DEFINITION The null space of an m � n matrix A, written as NulA, is the set of all solutions of
the homogeneous equation Ax D 0. In set notation,

NulA D fx W x is in Rn and Ax D 0g

A more dynamic description of NulA is the set of all x in Rn that are mapped into
the zero vector of Rm via the linear transformation x 7! Ax. See Figure 1.

0
0

R
n

Nul A

Rm

FIGURE 1

EXAMPLE 1 LetA be the matrix in (2), and let u D

24 5

3

�2

35. Determine if u belongs
to the null space of A.

SOLUTION To test if u satisfies Au D 0, simply compute

Au D
�

1 �3 �2

�5 9 1

�24 5

3

�2

35 D � 5 � 9C 4

�25C 27 � 2

�
D

�
0

0

�
Thus u is in NulA.

The term space in null space is appropriate because the null space of a matrix is a
vector space, as shown in the next theorem.

THEOREM 2 The null space of anm � nmatrixA is a subspace ofRn. Equivalently, the set of all
solutions to a system Ax D 0 of m homogeneous linear equations in n unknowns
is a subspace of Rn.

PROOF Certainly NulA is a subset of Rn because A has n columns. We must show
that NulA satisfies the three properties of a subspace. Of course, 0 is in NulA. Next, let
u and v represent any two vectors in NulA. Then

Au D 0 and Av D 0

To show that uC v is in NulA, we must show that A.uC v/ D 0. Using a property of
matrix multiplication, compute

A.uC v/ D AuC Av D 0C 0 D 0

Thus uC v is in NulA, and NulA is closed under vector addition. Finally, if c is any
scalar, then

A.cu/ D c.Au/ D c.0/ D 0

which shows that cu is in NulA. Thus NulA is a subspace of Rn.
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EXAMPLE 2 Let H be the set of all vectors in R4 whose coordinates a, b, c, d

satisfy the equations a � 2b C 5c D d and c � a D b. Show that H is a subspace of
R4.

SOLUTION Rearrange the equations that describe the elements of H , and note that H

is the set of all solutions of the following system of homogeneous linear equations:

a � 2b C 5c � d D 0

�a � b C c D 0

By Theorem 2, H is a subspace of R4.

It is important that the linear equations defining the set H are homogeneous.
Otherwise, the set of solutions will definitely not be a subspace (because the zero vector
is not a solution of a nonhomogeneous system). Also, in some cases, the set of solutions
could be empty.

An Explicit Description of Nul A
There is no obvious relation between vectors in NulA and the entries in A. We say that
NulA is defined implicitly, because it is defined by a condition that must be checked.
No explicit list or description of the elements in NulA is given. However, solving
the equation Ax D 0 amounts to producing an explicit description of NulA. The next
example reviews the procedure from Section 1.5.

EXAMPLE 3 Find a spanning set for the null space of the matrix

A D

24�3 6 �1 1 �7

1 �2 2 3 �1

2 �4 5 8 �4

35
SOLUTION The first step is to find the general solution of Ax D 0 in terms of free
variables. Row reduce the augmented matrix Œ A 0 � to reduced echelon form in order
to write the basic variables in terms of the free variables:24 1 �2 0 �1 3 0

0 0 1 2 �2 0

0 0 0 0 0 0

35;

x1 � 2x2 � x4 C 3x5 D 0

x3 C 2x4 � 2x5 D 0

0 D 0

The general solution is x1 D 2x2 C x4 � 3x5, x3 D �2x4 C 2x5, with x2, x4, and x5

free. Next, decompose the vector giving the general solution into a linear combination
of vectors where the weights are the free variables. That is,266664

x1

x2

x3

x4

x5

377775 D
266664

2x2 C x4 � 3x5

x2

�2x4 C 2x5

x4

x5

377775 D x2

266664
2

1

0

0

0

377775
"

u

C x4

266664
1

0

�2

1

0

377775
"

v

C x5

266664
�3

0

2

0

1

377775
"

w
D x2uC x4vC x5w (3)

Every linear combination of u, v, and w is an element of NulA and vice versa. Thus
fu; v;wg is a spanning set for NulA.
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Two points should be made about the solution of Example 3 that apply to all
problems of this type where NulA contains nonzero vectors. We will use these facts
later.

1. The spanning set produced by the method in Example 3 is automatically linearly
independent because the free variables are the weights on the spanning vectors. For
instance, look at the 2nd, 4th, and 5th entries in the solution vector in (3) and note
that x2uC x4vC x5w can be 0 only if the weights x2; x4, and x5 are all zero.

2. When NulA contains nonzero vectors, the number of vectors in the spanning set for
NulA equals the number of free variables in the equation Ax D 0.

The Column Space of a Matrix
Another important subspace associated with a matrix is its column space. Unlike the null
space, the column space is defined explicitly via linear combinations.

DEFINITION The column space of an m � n matrix A, written as ColA, is the set of all linear
combinations of the columns of A. If A D Œ a1 � � � an �, then

ColA D Span fa1; : : : ; ang

Since Span fa1; : : : ; ang is a subspace, by Theorem 1, the next theorem follows from
the definition of ColA and the fact that the columns of A are in Rm.

THEOREM 3 The column space of an m � n matrix A is a subspace of Rm.

Note that a typical vector in ColA can be written as Ax for some x because the
notation Ax stands for a linear combination of the columns of A. That is,

ColA D fb W b D Ax for some x in Rng

The notation Ax for vectors in ColA also shows that ColA is the range of the linear
transformation x 7! Ax. We will return to this point of view at the end of the section.

EXAMPLE 4 Find a matrix A such that W D ColA.

W D

8<:
24 6a � b

aC b

�7a

35 W a, b in R

9=;
SOLUTION First, write W as a set of linear combinations.

W D

8<:a

24 6

1

�7

35C b

24�1

1

0

35 W a, b in R

9=; D Span

8<:
24 6

1

�7

35;

24�1

1

0

359=;
Second, use the vectors in the spanning set as the columns of A. Let A D

24 6 �1

1 1

�7 0

35.W

x3

x2

x1

0

Then W D ColA, as desired.
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Recall from Theorem 4 in Section 1.4 that the columns of A span Rm if and only if
the equation Ax D b has a solution for each b. We can restate this fact as follows:

The column space of an m � n matrix A is all of Rm if and only if the equation
Ax D b has a solution for each b in Rm.

The Row Space
If A is an m � n matrix, each row of A has n entries and thus can be identified with
a vector in Rn. The set of all linear combinations of the row vectors is called the row
space of A and is denoted by Row A. Each row has n entries, so Row A is a subspace
of Rn. Since the rows of A are identified with the columns of AT , we could also write
Col AT in place of Row A.

EXAMPLE 5 Let

A D

2664
�2 �5 8 0 �17

1 3 �5 1 5

3 11 �19 7 1

1 7 �13 5 �3

3775 and

r1 D .�2;�5; 8; 0;�17/

r2 D .1; 3;�5; 1; 5/

r3 D .3; 11;�19; 7; 1/

r4 D .1; 7;�13; 5;�3/

The row space of A is the subspace of R5 spanned by fr1; r2; r3; r4g. That is, Row A D

Span fr1; r2; r3; r4g. It is natural to write row vectors horizontally; however, they may
also be written as column vectors if that is more convenient.

The Contrast Between Nul A and Col A
It is natural to wonder how the null space and column space of a matrix are related.
In fact, the two spaces are quite dissimilar, as Examples 6–8 will show. Nevertheless,
a surprising connection between the null space and column space will emerge in
Section 4.5, after more theory is available.

EXAMPLE 6 Let

A D

24 2 4 �2 1

�2 �5 7 3

3 7 �8 6

35
a. If the column space of A is a subspace of Rk , what is k?

b. If the null space of A is a subspace of Rk , what is k?

SOLUTION

a. The columns ofA each have three entries, so ColA is a subspace ofRk , where k D 3.

b. A vector x such that Ax is defined must have four entries, so NulA is a subspace of
Rk , where k D 4.

When a matrix is not square, as in Example 6, the vectors in NulA and ColA live in
entirely different “universes.” For example, no linear combination of vectors in R3 can
produce a vector in R4. When A is square, NulA and ColA do have the zero vector in
common, and in special cases it is possible that some nonzero vectors belong to both
NulA and ColA.
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EXAMPLE 7 With A as in Example 6, find a nonzero vector in ColA and a nonzero
vector in NulA.

SOLUTION It is easy to find a vector in ColA. Any column of A will do, say,

24 2

�2

3

35.
To find a nonzero vector in NulA, row reduce the augmented matrix Œ A 0 � and obtain

Œ A 0 � �

24 1 0 9 0 0

0 1 �5 0 0

0 0 0 1 0

35
Thus, if x satisfies Ax D 0, then x1 D �9x3, x2 D 5x3, x4 D 0, and x3 is free. As-
signing a nonzero value to x3—say, x3 D 1—we obtain a vector in NulA, namely,
x D .�9; 5; 1; 0/.

EXAMPLE 8 With A as in Example 6, let u D

2664
3

�2

�1

0

3775 and v D

24 3

�1

3

35.
a. Determine if u is in NulA. Could u be in ColA?

b. Determine if v is in ColA. Could v be in NulA?

SOLUTION

a. An explicit description of NulA is not needed here. Simply compute the product Au.

Au D

24 2 4 �2 1

�2 �5 7 3

3 7 �8 6

35
2664

3

�2

�1

0

3775 D
24 0

�3

3

35 ¤ 24 0

0

0

35
Obviously, u is not a solution ofAx D 0, so u is not in NulA. Also, with four entries,
u could not possibly be in ColA, since ColA is a subspace of R3.

b. Reduce Œ A v � to an echelon form.

Œ A v � D

24 2 4 �2 1 3

�2 �5 7 3 �1

3 7 �8 6 3

35 � 24 2 4 �2 1 3

0 1 �5 �4 �2

0 0 0 17 1

35
At this point, it is clear that the equation Ax D v is consistent, so v is in ColA.
With only three entries, v could not possibly be in NulA, since NulA is a subspace
of R4.

The table on page 241 summarizes what we have learned about NulA and ColA.
Item 8 is a restatement of Theorems 11 and 12(a) in Section 1.9.

Kernel and Range of a Linear Transformation
Subspaces of vector spaces other than Rn are often described in terms of a linear
transformation instead of a matrix. To make this precise, we generalize the definition
given in Section 1.8.
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Contrast Between Nul A and Col A for an m � n Matrix A

Nul A Col A

1. NulA is a subspace of Rn. 1. ColA is a subspace of Rm.

2. NulA is implicitly defined; that is, you are
given only a condition .Ax D 0/ that vec-
tors in NulA must satisfy.

2. ColA is explicitly defined; that is, you are
told how to build vectors in ColA.

3. It takes time to find vectors in NulA. Row
operations on Œ A 0 � are required.

3. It is easy to find vectors in ColA. The
columns of A are displayed; others are
formed from them.

4. There is no obvious relation between NulA
and the entries in A.

4. There is an obvious relation between ColA
and the entries in A, since each column of
A is in ColA.

5. A typical vector v in NulA has the property
that Av D 0.

5. A typical vector v in ColA has the property
that the equation Ax D v is consistent.

6. Given a specific vector v, it is easy to tell if
v is in NulA. Just compute Av.

6. Given a specific vector v, it may take time
to tell if v is in ColA. Row operations on
Œ A v � are required.

7. NulA D f0g if and only if the equation
Ax D 0 has only the trivial solution.

7. ColA D Rm if and only if the equation
Ax D b has a solution for every b in Rm.

8. NulA D f0g if and only if the linear trans-
formation x 7! Ax is one-to-one.

8. ColA D Rm if and only if the linear trans-
formation x 7! Ax maps Rn onto Rm.

DEFINITION A linear transformation T from a vector space V into a vector space W is a rule
that assigns to each vector x in V a unique vector T .x/ in W , such that

(i) T .uC v/ D T .u/C T .v/ for all u, v in V , and

(ii) T .cu/ D cT .u/ for all u in V and all scalars c.

The kernel (or null space) of such a T is the set of all u in V such that T .u/ D 0
(the zero vector in W /. The range of T is the set of all vectors in W of the form T .x/

for some x in V . If T happens to arise as a matrix transformation—say, T .x/ D Ax for
somematrixA—then the kernel and the range of T are just the null space and the column
space of A, as defined earlier.

It is not difficult to show that the kernel of T is a subspace of V . The proof is
essentially the same as the one for Theorem 2. Also, the range of T is a subspace of W .
See Figure 2 and Exercise 42.

Kernel is a 
subspace of V

Range is a 
subspace of W

Domain
Range

0

T

0

V

Kern
el

W

FIGURE 2 Subspaces associated with
a linear transformation.
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In applications, a subspace usually arises as either the kernel or the range of an
appropriate linear transformation. For instance, the set of all solutions of a homogeneous
linear differential equation turns out to be the kernel of a linear transformation. Typically,
such a linear transformation is described in terms of one ormore derivatives of a function.
To explain this in any detail would take us too far afield at this point. So we consider
only two examples. The first explains why the operation of differentiation is a linear
transformation.

EXAMPLE 9 (Calculus required) Let V be the vector space of all real-valued func-
tions f defined on an interval Œa; b� with the property that they are differentiable and
their derivatives are continuous functions on Œa; b�. Let W be the vector space C Œa; b�

of all continuous functions on Œa; b�, and let D W V ! W be the transformation that
changes f in V into its derivative f 0. In calculus, two simple differentiation rules are

D.f C g/ D D.f /CD.g/ and D.cf / D cD.f /

That is, D is a linear transformation. It can be shown that the kernel of D is the set of
constant functions on Œa; b� and the range of D is the set W of all continuous functions
on Œa; b�.

EXAMPLE 10 (Calculus required) The differential equation

y00 C !2y D 0 (4)

where ! is a constant, is used to describe a variety of physical systems, such as the
vibration of a weighted spring, the movement of a pendulum, and the voltage in an
inductance-capacitance electrical circuit. The set of solutions of (4) is precisely the
kernel of the linear transformation that maps a function y D f .t/ into the function
f 00.t/C !2f .t/. Finding an explicit description of this vector space is a problem in
differential equations. The solution set turns out to be the space described in Exercise 19
in Section 4.1.

A common technique used in the stockmarket is technical analysis. Statistical trends
gathered from stock-trading activity, such as price movement and volume, are analyzed.
Technical analysts focus on patterns of stock-price movements, trading signals, and
various other analytical charting tools to evaluate a security’s strength or weakness. A
moving average is a commonly used indicator in technical analysis. It smooths out price
action by filtering out the effects from random price fluctuations. In the final example
for this section, we examine the linear transformation that creates the two-day moving
average from a “signal” of daily prices. We will look at moving average transformations
that average over a longer period of time in Section 4.7.

EXAMPLE 11 Let fpkg in S represent the price of a stock that has been recorded
daily over an extended period of time. Note that we can assume that pk D 0 for k outside
the time period under study. To create a two-daymoving average, themappingM2 W S!

S defined by M2.fpkg/ D

�
pk C pk�1

2

�
is applied to the data. Show that M2 is a linear

transformation and find its kernel.

SOLUTION To see thatM2 is a linear transformation, observe that for two signals fpkg

and fqkg in S and any scalar c,
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M2.fpkg C fqkg/ DM2.fpk C qkg/ D

�
pk C qk C pk�1 C qk�1

2

�
D

�
pk C pk�1

2

�
C

�
qk C qk�1

2

�
DM2.fpkg/CM2.fqkg/

and

M2.cfpkg/ DM2.fcpkg/ D

�
cpk C cpk�1

2

�
D c

�
pk C pk�1

2

�
D cM2.fpkg/

thus M2 is a linear transformation.
To find the kernel of M2, notice that fpkg is in the kernel if and only if

pk C pk�1

2
D 0 for all k, and hence pk D �pk�1. Since this relationship is true for

all integers k, it can be applied recursively resulting in pk D �pk�1 D .�1/2pk�2 D

.�1/3pk�3 : : : . Working out from k D 0, any signal in the kernel can be written as
pk D p0.�1/k , a multiple of the alternating signal described by f.�1/kg. Since the
kernel of the two-day moving average function consists of all multiples of the alternating
sequence, it smooths out daily fluctuations, without leveling out overall trends. (See
Figure 3.)

k

Moving average
Original signal

FIGURE 3

Practice Problems

1. Let W D

8<:
24 a

b

c

35 W a � 3b � c D 0

9=;. Show in two different ways that W is a

subspace of R3. (Use two theorems.)

2. LetA D

24 7 �3 5

�4 1 �5

�5 2 �4

35, v D 24 2

1

�1

35, andw D 24 7

6

�3

35. Suppose you know that

the equations Ax D v and Ax D w are both consistent. What can you say about the
equation Ax D vC w?

3. Let A be an n � n matrix. If Col A D Nul A, show that Nul A2 D Rn.

4.2 Exercises

1. Determine if w D

24 1

3

�4

35 is in NulA, where

A D

24 3 �5 �3

6 �2 0

�8 4 1

35 :

2. Determine if w D

24 5

�3

2

35 is in NulA, where

A D

24 5 21 19

13 23 2

8 14 1

35 :
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In Exercises 3–6, find an explicit description of NulA by listing
vectors that span the null space.

3. A D

�
1 3 5 0

0 1 4 �2

�
4. A D

�
1 �6 4 0

0 0 2 0

�

5. A D

241 �2 0 4 0

0 0 1 �9 0

0 0 0 0 1

35
6. A D

241 5 �4 �3 1

0 1 �2 1 0

0 0 0 0 0

35
In Exercises 7–14, either use an appropriate theorem to show that
the given set, W , is a vector space, or find a specific example to
the contrary.

7.

8<:
24 a

b

c

35 W aC b C c D 2

9=; 8.

8<:
24 r

s

t

35 W 5r � 1 D s C 2t

9=;
9.

8̂̂<̂
:̂
2664

a

b

c

d

3775 W a � 2b D 4c

2a D c C 3d

9>>=>>; 10.

8̂̂<̂
:̂
2664

a

b

c

d

3775 W aC 3b D c

b C c C a D d

9>>=>>;
11.

8̂̂<̂
:̂
2664

b � 2d

5C d

b C 3d

d

3775 W b; d real

9>>=>>; 12.

8̂̂<̂
:̂
2664

b � 5d

2b

2d C 1

d

3775 W b; d real

9>>=>>;
13.

8<:
24 c � 6d

d

c

35 W c; d real

9=; 14.

8<:
24�aC 2b

a � 2b

3a � 6b

35 W a; b real

9=;
In Exercises 15 and 16, find A such that the given set is ColA.

15.

8̂̂<̂
:̂
2664

2s C 3t

r C s � 2t

4r C s

3r � s � t

3775 W r; s; t real

9>>=>>;
16.

8̂̂<̂
:̂
2664

b � c

2b C c C d

5c � 4d

d

3775 W b; c; d real

9>>=>>;
For the matrices in Exercises 17–20, (a) find k such that NulA
is a subspace of Rk , and (b) find k such that ColA is a subspace
of Rk .

17. A D

24 2 �8

�1 4

1 �4

35 18. A D

24 8 �3 0 �1

�3 0 �1 8

0 �1 8 �3

35
19. A D

�
4 5 �2 6 0

1 1 0 1 0

�

20. A D
�
1 �3 9 0 �5

�
21. With A as in Exercise 17, find a nonzero vector in NulA, a

nonzero vector in ColA, and a nonzero vector in Row A.

22. With A as in Exercise 3, find a nonzero vector in NulA, a
nonzero vector in ColA, and a nonzero vector in Row A.

23. Let A D

�
�6 12

�3 6

�
and w D

�
2

1

�
. Determine if w is in

ColA. Is w in NulA?

24. Let A D

24�8 �2 �9

6 4 8

4 0 4

35 and w D

24 2

1

�2

35. Determine if
w is in ColA. Is w in NulA?

In Exercises 25–38, A denotes an m � n matrix. Mark each state-
ment True or False (T/F). Justify each answer.

25. (T/F) The null space of A is the solution set of the equation
Ax D 0.

26. (T/F) A null space is a vector space.

27. (T/F) The null space of an m � n matrix is in Rm.

28. (T/F) The column space of an m � n matrix is in Rm.

29. (T/F) The column space of A is the range of the mapping
x 7! Ax.

30. (T/F) Col A is the set of all solutions of Ax D b.

31. (T/F) If the equation Ax D b is consistent, then Col A = Rm.

32. (T/F) Nul A is the kernel of the mapping x 7! Ax.

33. (T/F) The kernel of a linear transformation is a vector space.

34. (T/F) The range of a linear transformation is a vector space.

35. (T/F) Col A is the set of all vectors that can be written as Ax
for some x.

36. (T/F) The set of all solutions of a homogeneous linear differ-
ential equation is the kernel of a linear transformation.

37. (T/F) The row space of A is the same as the column space
of AT .

38. (T/F) The null space ofA is the same as the row space ofAT .

39. It can be shown that a solution of the system below is x1 D 3,
x2 D 2, and x3 D �1. Use this fact and the theory from this
section to explain why another solution is x1 D 30, x2 D 20,
and x3 D �10. (Observe how the solutions are related, but
make no other calculations.)

x1 � 3x2 � 3x3 D 0

�2x1 C 4x2 C 2x3 D 0

�x1 C 5x2 C 7x3 D 0
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40. Consider the following two systems of equations:

5x1 C x2 � 3x3 D 0 5x1 C x2 � 3x3 D 0

�9x1 C 2x2 C 5x3 D 1 �9x1 C 2x2 C 5x3 D 5

4x1 C x2 � 6x3 D 9 4x1 C x2 � 6x3 D 45

It can be shown that the first system has a solution. Use this
fact and the theory from this section to explainwhy the second
system must also have a solution. (Make no row operations.)

41. Prove Theorem 3 as follows: Given an m � n matrix A, an
element in ColA has the form Ax for some x in Rn. Let Ax
and Aw represent any two vectors in ColA.

a. Explain why the zero vector is in ColA.

b. Show that the vector AxC Aw is in ColA.

c. Given a scalar c, show that c.Ax/ is in ColA.

42. Let T W V ! W be a linear transformation from a vector
space V into a vector space W . Prove that the range of T is
a subspace of W . [Hint: Typical elements of the range have
the form T .x/ and T .w/ for some x, w in V .]

43. Define T W P2 ! R2 by T .p/ D

�
p.0/

p.1/

�
. For instance, if

p.t/ D 3C 5t C 7t2, then T .p/ D

�
3

15

�
.

a. Show thatT is a linear transformation. [Hint: For arbitrary
polynomials p, q in P2, compute T .pC q/ and T .cp/.]

b. Find a polynomial p in P2 that spans the kernel of T , and
describe the range of T .

44. Define a linear transformation T W P2 ! R2 by

T .p/ D

�
p.0/

p.0/

�
. Find polynomials p1 and p2 in P2 that

span the kernel of T , and describe the range of T .

45. Let M2�2 be the vector space of all 2 � 2 matrices,
and define T WM2�2 !M2�2 by T .A/ D AC AT , where

A D

�
a b

c d

�
.

a. Show that T is a linear transformation.

b. Let B be any element of M2�2 such that BT D B . Find
an A in M2�2 such that T .A/ D B .

c. Show that the range of T is the set of B in M2�2 with the
property that BT D B .

d. Describe the kernel of T .

46. (Calculus required) Define T W C Œ0; 1�! C Œ0; 1� as follows:
For f in C Œ0; 1�, let T .f/ be the antiderivative F of f such
that F.0/ D 0. Show that T is a linear transformation, and
describe the kernel of T . (See the notation in Exercise 20 of
Section 4.1.)

47. LetV andW be vector spaces, and let T W V ! W be a linear
transformation. Given a subspace U of V , let T .U / denote
the set of all images of the form T .x/, where x is in U . Show
that T .U / is a subspace of W .

48. Given T W V ! W as in Exercise 47, and given a subspace
Z of W , let U be the set of all x in V such that T .x/ is in Z.
Show that U is a subspace of V .

T 49. Determine whether w is in the column space of A, the null
space of A, or both, where

w D

2664
1

1

�1

�3

3775; A D

2664
7 6 �4 1

�5 �1 0 �2

9 �11 7 �3

19 �9 7 1

3775
T 50. Determine whether w is in the column space of A, the null

space of A, or both, where

w D

2664
1

2

1

0

3775; A D

2664
�8 5 �2 0

�5 2 1 �2

10 �8 6 �3

3 �2 1 0

3775
T 51. Let a1; : : : ; a5 denote the columns of the matrix A, where

A D

2664
5 1 2 2 0

3 3 2 �1 �12

8 4 4 �5 12

2 1 1 0 �2

3775; B D Œ a1 a2 a4 �

a. Explain why a3 and a5 are in the column space of B .

b. Find a set of vectors that spans NulA.

c. Let T W R5 ! R4 be defined by T .x/ D Ax. Explain why
T is neither one-to-one nor onto.

T 52. Let H D Span fv1; v2g and K D Span fv3; v4g, where

v1 D

24 5

3

8

35; v2 D

24 1

3

4

35; v3 D

24 2

�1

5

35; v4 D

24 0

�12

�28

35:

Then H and K are subspaces of R3. In fact, H and K

are planes in R3 through the origin, and they intersect
in a line through 0. Find a nonzero vector w that gen-
erates that line. [Hint: w can be written as c1v1 C c2v2

and also as c3v3 C c4v4. To build w, solve the equation
c1v1 C c2v2 D c3v3 C c4v4 for the unknown cj ’s.]

STUDY GUIDE offers additional
resources for mastering vector
spaces, subspaces, and column
row, and null spaces.
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Solutions to Practice Problems

1. First method: W is a subspace of R3 by Theorem 2 because W is the set of
all solutions to a system of homogeneous linear equations (where the system
has only one equation). Equivalently, W is the null space of the 1 � 3 matrix
A D Œ 1 �3 �1 �.
Second method: Solve the equation a � 3b � c D 0 for the leading variable a in

terms of the free variables b and c. Any solution has the form

24 3b C c

b

c

35, where b

and c are arbitrary, and 24 3b C c

b

c

35 D b

24 3

1

0

35
"

v1

C c

24 1

0

1

35
"

v2

This calculation shows that W D Span fv1; v2g. Thus W is a subspace of R3 by
Theorem 1. We could also solve the equation a � 3b � c D 0 for b or c and get
alternative descriptions of W as a set of linear combinations of two vectors.

2. Both v and w are in ColA. Since ColA is a vector space, vC w must be in ColA.
That is, the equation Ax D vC w is consistent.

3. Let x be any vector in Rn. Notice Ax is in Col A, since it is a linear combination
of the columns of A. Since Col A D Nul A, the vector Ax is also in Nul A. Hence
A2x D A.Ax/ D 0 establishing that every vector x from Rn is in Nul A2.

4.3 Linearly Independent Sets; Bases
In this section we identify and study the subsets that span a vector space V or a subspace
H as “efficiently” as possible. The key idea is that of linear independence, defined as
in Rn.

An indexed set of vectors fv1; : : : ; vpg in V is said to be linearly independent if
the vector equation

c1v1 C c2v2 C � � � C cpvp D 0 (1)

has only the trivial solution, c1 D 0; : : : ; cp D 0.1

The set fv1; : : : ; vpg is said to be linearly dependent if (1) has a nontrivial solution,
that is, if there are some weights, c1; : : : ; cp , not all zero, such that (1) holds. In such a
case, (1) is called a linear dependence relation among v1; : : : ; vp .

Just as in Rn, a set containing a single vector v is linearly independent if and only
if v ¤ 0. Also, a set of two vectors is linearly dependent if and only if one of the vectors
is a multiple of the other. And any set containing the zero vector is linearly dependent.
The following theorem has the same proof as Theorem 7 in Section 1.7.

1 It is convenient to use c1; : : : ; cp in (1) for the scalars instead of x1; : : : ; xp , as we did previously.
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THEOREM 4 An indexed set fv1; : : : ; vpg of two or more vectors, with v1 ¤ 0, is linearly
dependent if and only if some vj (with j > 1/ is a linear combination of the
preceding vectors, v1; : : : ; vj�1.

The main difference between linear dependence in Rn and in a general vector space
is that when the vectors are not n-tuples, the homogeneous equation (1) usually cannot
be written as a system of n linear equations. That is, the vectors cannot be made into the
columns of a matrix A in order to study the equation Ax D 0. We must rely instead on
the definition of linear dependence and on Theorem 4.

EXAMPLE 1 Let p1.t/ D 1, p2.t/ D t , and p3.t/ D 4 � t . Then fp1; p2; p3g is
linearly dependent in P because p3 D 4p1 � p2.

EXAMPLE 2 The set fsin t; cos tg is linearly independent in C Œ0; 1�, the space of
all continuous functions on 0 � t � 1, because sin t and cos t are not multiples of one
another as vectors in C Œ0; 1�. That is, there is no scalar c such that cos t D c � sin t for all
t in Œ0; 1�. (Look at the graphs of sin t and cos t .) However, fsin t cos t; sin 2tg is linearly
dependent because of the identity sin 2t D 2 sin t cos t , for all t .

DEFINITION Let H be a subspace of a vector space V . A set of vectors B in V is a basis for
H if

(i) B is a linearly independent set, and

(ii) the subspace spanned by B coincides with H ; that is,

H D Span B

The definition of a basis applies to the case when H D V , because any vector
space is a subspace of itself. Thus a basis of V is a linearly independent set that spans
V . Observe that when H ¤ V , condition (ii) includes the requirement that each of the
vectors b in Bmust belong toH , because Span B contains every element in B, as shown
in Section 4.1.

EXAMPLE 3 Let A be an invertible n � n matrix—say, A D Œ a1 � � � an �. Then
the columns of A form a basis for Rn because they are linearly independent and they
span Rn, by the Invertible Matrix Theorem.

EXAMPLE 4 Let e1; : : : ; en be the columns of the n � n identity matrix, In. That is,

e1 D

26664
1

0
:::

0

37775; e2 D

26664
0

1
:::

0

37775; : : : ; en D

26664
0
:::

0

1

37775
The set fe1; : : : ; eng is called the standard basis for Rn (Figure 1).

x1

x2

x3

e3

e2

e1

FIGURE 1

The standard basis for R3.
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EXAMPLE 5 Let v1 D

24 3

0

�6

35, v2 D

24�4

1

7

35, and v3 D

24�2

1

5

35. Determine if

fv1; v2; v3g is a basis for R3.

SOLUTION Since there are exactly three vectors here in R3, we can use any of several
methods to determine if the matrix A D Œ v1 v2 v3 � is invertible. For instance, two
row replacements reveal that A has three pivot positions. Thus A is invertible. As in
Example 3, the columns of A form a basis for R3.

EXAMPLE 6 Let S D f1; t; t2; : : : ; tng. Verify that S is a basis for Pn. This basis is
called the standard basis for Pn.

SOLUTION Certainly S spans Pn. To show that S is linearly independent, suppose that
c0; : : : ; cn satisfy

c01C c1t C c2t2
C � � � C cntn

D 0.t/ (2)

This equality means that the polynomial on the left has the same values as the zero
polynomial on the right. A fundamental theorem in algebra says that the only polynomial
in Pn with more than n zeros is the zero polynomial. That is, equation (2) holds for all
t only if c0 D � � � D cn D 0. This proves that S is linearly independent and hence is a
basis for Pn. See Figure 2.

y 5 1

y 5 t

y 5 t2

tt

y

FIGURE 2

The standard basis for P2.

Problems involving linear independence and spanning in Pn are handled best by a
technique to be discussed in Section 4.4.

The Spanning Set Theorem
Aswewill see, a basis is an “efficient” spanning set that contains no unnecessary vectors.
In fact, a basis can be constructed from a spanning set by discarding unneeded vectors.

EXAMPLE 7 Let

v1 D

24 0

2

�1

35; v2 D

24 2

2

0

35; v3 D

24 6

16

�5

35; and H D Span fv1; v2; v3g:

Note that v3 D 5v1 C 3v2, and show that Span fv1; v2; v3g D Span fv1; v2g. Then find a
basis for the subspace H .

SOLUTION Every vector in Span fv1; v2g belongs to H because

c1v1 C c2v2 D c1v1 C c2v2 C 0v3

Now let x be any vector inH—say, x D c1v1 C c2v2 C c3v3. Since v3 D 5v1 C 3v2, we
may substitute

H

v1

v3

v2

x D c1v1 C c2v2 C c3.5v1 C 3v2/

D .c1 C 5c3/v1 C .c2 C 3c3/v2

Thus x is in Span fv1; v2g, so every vector in H already belongs to Span fv1; v2g. We
conclude that H and Span fv1; v2g are actually the same set of vectors. It follows that
fv1; v2g is a basis of H since fv1; v2g is obviously linearly independent.

The next theorem generalizes Example 7.
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THEOREM 5 The Spanning Set Theorem

Let S D fv1; : : : ; vpg be a set in a vector space V , and letH D Span fv1; : : : ; vpg.

a. If one of the vectors in S—say, vk—is a linear combination of the remaining
vectors in S , then the set formed from S by removing vk still spans H .

b. If H ¤ f0g, some subset of S is a basis for H .

PROOF

a. By rearranging the list of vectors in S , if necessary, we may suppose that vp is a linear
combination of v1; : : : ; vp�1—say,

vp D a1v1 C � � � C ap�1vp�1 (3)

Given any x in H , we may write

x D c1v1 C � � � C cp�1vp�1 C cpvp (4)

for suitable scalars c1; : : : ; cp . Substituting the expression for vp from (3) into (4),
it is easy to see that x is a linear combination of v1; : : : ; vp�1. Thus fv1; : : : ; vp�1g

spans H , because x was an arbitrary element of H .

b. If the original spanning set S is linearly independent, then it is already a basis for H .
Otherwise, one of the vectors in S depends on the others and can be deleted, by part
(a). So long as there are two or more vectors in the spanning set, we can repeat this
process until the spanning set is linearly independent and hence is a basis for H . If
the spanning set is eventually reduced to one vector, that vector will be nonzero (and
hence linearly independent) because H ¤ f0g.

Bases for Nul A, Col A, and Row A
We already know how to find vectors that span the null space of a matrix A. The
discussion in Section 4.2 pointed out that our method always produces a linearly
independent set when NulA contains nonzero vectors. So, in this case, that method
produces a basis for NulA.

The next two examples describe a simple algorithm for finding a basis for the
column space.

EXAMPLE 8 Find a basis for ColB , where

B D
�
b1 b2 � � � b5

�
D

2664
1 4 0 2 0

0 0 1 �1 0

0 0 0 0 1

0 0 0 0 0

3775
SOLUTION Each nonpivot column of B is a linear combination of the pivot columns.
In fact, b2 D 4b1 and b4 D 2b1 � b3. By the Spanning Set Theorem, we may discard
b2 and b4, and fb1; b3; b5g will still span ColB . Let

S D fb1; b3; b5g D

8̂̂<̂
:̂
2664

1

0

0

0

3775;

2664
0

1

0

0

3775;

2664
0

0

1

0

3775
9>>=>>;
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Since b1 ¤ 0 and no vector in S is a linear combination of the vectors that precede it, S
is linearly independent (Theorem 4). Thus S is a basis for ColB .

What about a matrix A that is not in reduced echelon form? Recall that any
linear dependence relationship among the columns of A can be expressed in the form
Ax D 0, where x is a column of weights. (If some columns are not involved in a
particular dependence relation, then their weights are zero.) When A is row reduced
to a matrix B , the columns of B are often totally different from the columns of A.
However, the equations Ax D 0 and Bx D 0 have exactly the same set of solutions.
If A D Œ a1 � � � an � and B D Œ b1 � � � bn �, then the vector equations

x1a1 C � � � C xnan D 0 and x1b1 C � � � C xnbn D 0

also have the same set of solutions. That is, the columns of A have exactly the same
linear dependence relationships as the columns of B .

EXAMPLE 9 It can be shown that the matrix

A D
�
a1 a2 � � � a5

�
D

2664
1 4 0 2 �1

3 12 1 5 5

2 8 1 3 2

5 20 2 8 8

3775
is row equivalent to the matrix B in Example 8. Find a basis for ColA.

SOLUTION In Example 8 we saw that

b2 D 4b1 and b4 D 2b1 � b3

so we can expect that
a2 D 4a1 and a4 D 2a1 � a3

Check that this is indeed the case! Thus we may discard a2 and a4 when selecting a
minimal spanning set for ColA. In fact, fa1; a3; a5gmust be linearly independent because
any linear dependence relationship among a1, a3, a5 would imply a linear dependence
relationship among b1, b3, b5. But we know that fb1; b3; b5g is a linearly independent
set. Thus fa1; a3; a5g is a basis for ColA. The columns we have used for this basis are
the pivot columns of A.

Examples 8 and 9 illustrate the following useful fact.

THEOREM 6 The pivot columns of a matrix A form a basis for ColA.

PROOF The general proof uses the arguments discussed above. Let B be the reduced
echelon form of A. The set of pivot columns of B is linearly independent, for no
vector in the set is a linear combination of the vectors that precede it. Since A is row
equivalent to B , the pivot columns of A are linearly independent as well, because any
linear dependence relation among the columns of A corresponds to a linear dependence
relation among the columns of B . For this same reason, every nonpivot column of A is
a linear combination of the pivot columns of A. Thus the nonpivot columns of A may
be discarded from the spanning set for ColA, by the Spanning Set Theorem. This leaves
the pivot columns of A as a basis for ColA.
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Warning: The pivot columns of a matrix A are evident when A has been reduced only
to echelon form. But, be careful to use the pivot columns ofA itself for the basis of ColA.
Row operations can change the column space of a matrix. The columns of an echelon
form B of A are often not in the column space of A. For instance, the columns of matrix
B in Example 8 all have zeros in their last entries, so they cannot span the column space
of matrix A in Example 9.

In contrast, the following theorem establishes that row reduction does not change
the row space of a matrix.

THEOREM 7 If two matrices A and B are row equivalent, then their row spaces are the same. If
B is in echelon form, the nonzero rows of B form a basis for the row space of A

as well as for that of B .

PROOF If B is obtained from A by row operations, the rows of B are linear com-
binations of the rows of A. It follows that any linear combination of the rows of B

is automatically a linear combination of the rows of A. Thus the row space of B is
contained in the row space of A. Since row operations are reversible, the same argument
shows that the row space of A is a subset of the row space of B . So the two row spaces
are the same. If B is in echelon form, its nonzero rows are linearly independent because
no nonzero row is a linear combination of the nonzero rows below it. (Apply Theorem
4 to the nonzero rows of B in reverse order, with the first row last.) Thus the nonzero
rows of B form a basis of the (common) row space of B and A.

EXAMPLE 10 Find a basis for the row space of the matrix A from Example 9.

SOLUTION To find a basis for the row space, recall that matrix A from Example 9 is
row equivalent to matrix B from Example 8:

A D

2664
1 4 0 2 �1

3 12 1 5 5

2 8 1 3 2

5 20 2 8 8

3775 � B D

2664
1 4 0 2 0

0 0 1 �1 0

0 0 0 0 1

0 0 0 0 0

3775
By Theorem 7, the first three rows of B form a basis for the row space of A (as well as
for the row space of B). Thus

Basis for Row A W f.1; 4; 0; 2; 0/; .0; 0; 1;�1; 0/; .0; 0; 0; 0; 1/g

Observe that, unlike the basis for Col A, the bases for Row A and Nul A have no simple
connection with the entries in A itself.2

Two Views of a Basis
When the Spanning Set Theorem is used, the deletion of vectors from a spanning set
must stop when the set becomes linearly independent. If an additional vector is deleted,

2 It is possible to find a basis for the row space Row A that uses rows of A. First form AT , and then row
reduce until the pivot columns of AT are found. These pivot columns of AT are rows of A, and they form a
basis for the row space of A.
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it will not be a linear combination of the remaining vectors, and hence the smaller set
will no longer span V . Thus a basis is a spanning set that is as small as possible.

A basis is also a linearly independent set that is as large as possible. If S is a basis
for V , and if S is enlarged by one vector—say, w—from V , then the new set cannot be
linearly independent, because S spans V , and w is therefore a linear combination of the
elements in S .

EXAMPLE 11 The following three sets in R3 show how a linearly independent set
can be enlarged to a basis and how further enlargement destroys the linear independence
of the set. Also, a spanning set can be shrunk to a basis, but further shrinking destroys
the spanning property.8<:

24 1

0

0

35;

24 2

3

0

359=;
8<:
24 1

0

0

35;

24 2

3

0

35;

24 4

5

6

359=;
8<:
24 1

0

0

35;

24 2

3

0

35;

24 4

5

6

35;

24 7

8

9

359=;
Linearly independent A basis Spans R3 but is
but does not span R3 for R3 linearly dependent

Practice Problems

1. Let v1 D

24 1

�2

3

35 and v2 D

24�2

7

�9

35. Determine if fv1; v2g is a basis for R3. Is

fv1; v2g a basis for R2?

2. Let v1 D

24 1

�3

4

35, v2 D

24 6

2

�1

35, v3 D

24 2

�2

3

35, and v4 D

24�4

�8

9

35. Find a basis for
the subspace W spanned by fv1; v2; v3; v4g.

3. Let v1 D

24 1

0

0

35, v2 D

24 0

1

0

35, and H D

8<:
24 s

s

0

35 W s in R

9=;. Then every vector in H

is a linear combination of v1 and v2 because24 s

s

0

35 D s

24 1

0

0

35C s

24 0

1

0

35
Is fv1; v2g a basis for H?

4. Let V and W be vector spaces, let T W V ! W and U W V ! W be linear transfor-
mations, and let fv1;…; vpg be a basis for V . If T .vj / D U.vj / for every value of

STUDY GUIDE offers additional
resources for mastering the
concept of basis. j between 1 and p, show that T .x/ D U.x/ for every vector x in V .

4.3 Exercises
Determinewhich sets in Exercises 1–8 are bases forR3. Of the sets
that are not bases, determine which ones are linearly independent
and which ones span R3. Justify your answers.

1.

24 1

0

0

35, 24 1

1

0

35, 24 1

1

1

35 2.

24 1

0

1

35, 24 0

0

0

35, 24 0

1

0

35
3.

24 1

0

�2

35, 24 3

2

�4

35, 24�3

�5

1

35 4.

24 2

�2

1

35, 24 1

�3

2

35, 24�7

5

4

35

5.

24 1

�3

0

35, 24�2

9

0

35, 24 0

0

0

35, 24 0

�3

5

35 6.

24 1

2

�3

35, 24�4

�5

6

35
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7.

24�2

3

0

35, 24 6

�1

5

35 8.

24 1

�4

3

35, 24 0

3

�1

35, 24 3

�5

4

35, 24 0

2

�2

35
Find bases for the null spaces of the matrices given in Exercises 9
and 10. Refer to the remarks that follow Example 3 in Section 4.2.

9.

24 1 0 �3 2

0 1 �5 4

3 �2 1 �2

35 10.

24 1 0 �5 1 4

�2 1 6 �2 �2

0 2 �8 1 9

35
11. Find a basis for the set of vectors in R3 in the plane

x C 4y � 5´ D 0. [Hint: Think of the equation as a “system”
of homogeneous equations.]

12. Find a basis for the set of vectors in R2 on the line y D 5x.

In Exercises 13 and 14, assume thatA is row equivalent toB . Find
bases for NulA, ColA, and RowA.

13. A D

24�2 4 �2 �4

2 �6 �3 1

�3 8 2 �3

35, B D

241 0 6 5

0 2 5 3

0 0 0 0

35

14. A D

2664
1 2 �5 11 �3

2 4 �5 15 2

1 2 0 4 5

3 6 �5 19 �2

3775,

B D

2664
1 2 0 4 5

0 0 5 �7 8

0 0 0 0 �9

0 0 0 0 0

3775
In Exercises 15–18, find a basis for the space spanned by the given
vectors, v1; : : : ; v5.

15.

2664
1

0

�3

2

3775,
2664

0

1

2

�3

3775,
2664
�3

�4

1

6

3775,
2664

1

�3

�8

7

3775,
2664

2

1

�6

9

3775

16.

2664
1

0

0

1

3775,
2664
�2

1

�1

1

3775,
2664

6

�1

2

�1

3775,
2664

5

�3

3

�4

3775,
2664

0

3

�1

1

3775

T 17.

266664
8

9

�3

�6

0

377775,
266664

4

5

1

�4

4

377775,
266664
�1

�4

�9

6

�7

377775,
266664

6

8

4

�7

10

377775,
266664
�1

4

11

�8

�7

377775

T 18.

266664
�8

7

6

5

�7

377775,
266664

8

�7

�9

�5

7

377775,
266664
�8

7

4

5

�7

377775,
266664

1

4

9

6

�7

377775,
266664
�9

3

�4

�1

0

377775

19. Let v1 D

24 4

�3

7

35, v2 D

24 1

9

�2

35, v3 D

24 7

11

6

35, and H D

Span fv1; v2; v3g. It can be verified that 4v1 C 5v2 � 3v3 D 0.
Use this information to find a basis forH . There is more than
one answer.

20. Let v1 D

2664
7

4

�9

�5

3775, v2 D

2664
4

�7

2

5

3775, v3 D

2664
1

�5

3

4

3775. It can be ver-
ified that v1 � 3v2 C 5v3 D 0. Use this information to find a
basis for H D Span fv1; v2; v3g.

In Exercises 21–32, mark each statement True or False (T/F).
Justify each answer.

21. (T/F) A single vector by itself is linearly dependent.

22. (T/F) A linearly independent set in a subspace H is a basis
for H .

23. (T/F) If H D Span fb1; : : : ; bpg, then fb1; : : : ; bpg is a basis
for H .

24. (T/F) If a finite set S of nonzero vectors spans a vector space
V , then some subset of S is a basis for V .

25. (T/F) The columns of an invertible n � n matrix form a basis
for Rn.

26. (T/F) A basis is a linearly independent set that is as large as
possible.

27. (T/F) A basis is a spanning set that is as large as possible.

28. (T/F) The standard method for producing a spanning set for
Nul A, described in Section 4.2, sometimes fails to produce
a basis for Nul A.

29. (T/F) In some cases, the linear dependence relations among
the columns of a matrix can be affected by certain elementary
row operations on the matrix.

30. (T/F) If B is an echelon form of a matrix A, then the pivot
columns of B form a basis for Col A.

31. (T/F) Row operations preserve the linear dependence rela-
tions among the rows of A.

32. (T/F) If A and B are row equivalent, then their row spaces
are the same.

33. Suppose R4 D Span fv1; : : : ; v4g. Explain why fv1; : : : ; v4g

is a basis for R4.

34. Let B D fv1; : : : ; vng be a linearly independent set in Rn.
Explain why B must be a basis for Rn.
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35. Let v1 D

24 1

0

1

35, v2 D

24 0

1

1

35, v3 D

24 0

1

0

35, and let H be the

set of vectors in R3 whose second and third entries are equal.
Then every vector in H has a unique expansion as a linear
combination of v1; v2; v3, because24 s

t

t

35 D s

24 1

0

1

35C .t � s/

24 0

1

1

35C s

24 0

1

0

35
for any s and t . Is fv1; v2; v3g a basis forH?Why or why not?

36. In the vector space of all real-valued functions, find a basis
for the subspace spanned by fsin t; sin 2t; sin t cos tg.

37. Let V be the vector space of functions that describe the
vibration of a mass–spring system. (Refer to Exercise 19 in
Section 4.1.) Find a basis for V .

38. (RLC circuit) The circuit in the figure consists of a resistor
(R ohms), an inductor (L henrys), a capacitor (C farads),
and an initial voltage source. Let b D R=.2L/, and sup-
pose R, L, and C have been selected so that b also equals
1=
p

LC . (This is done, for instance, when the circuit is used
in a voltmeter.) Let v.t/ be the voltage (in volts) at time
t , measured across the capacitor. It can be shown that v is
in the null space H of the linear transformation that maps
v.t/ into Lv00.t/CRv0.t/C .1=C /v.t/, and H consists of
all functions of the form v.t/ D e�bt .c1 C c2t /. Find a basis
for H .

Voltage
source

L

R

C

Exercises 39 and 40 show that every basis for Rn must contain
exactly n vectors.

39. Let S D fv1; : : : ; vkg be a set of k vectors in Rn, with k < n.
Use a theorem from Section 1.4 to explain why S cannot be
a basis for Rn.

40. Let S D fv1; : : : ; vkg be a set of k vectors in Rn, with k > n.
Use a theorem from Chapter 1 to explain why S cannot be a
basis for Rn.

Exercises 41 and 42 reveal an important connection between
linear independence and linear transformations and provide prac-
tice using the definition of linear dependence. Let V and W be
vector spaces, let T W V ! W be a linear transformation, and let
fv1; : : : ; vpg be a subset of V .

41. Show that if fv1; : : : ; vpg is linearly dependent in V , then
the set of images, fT .v1/; : : : ; T .vp/g, is linearly dependent
in W . This fact shows that if a linear transformation
maps a set fv1; : : : ; vpg onto a linearly independent set
fT .v1/; : : : ; T .vp/g, then the original set is linearly indepen-
dent, too (because it cannot be linearly dependent).

42. Suppose that T is a one-to-one transformation, so that an
equationT .u/ D T .v/ always implies u D v. Show that if the
set of images fT .v1/; : : : ; T .vp/g is linearly dependent, then
fv1; : : : ; vpg is linearly dependent. This fact shows that a one-
to-one linear transformation maps a linearly independent set
onto a linearly independent set (because in this case the set
of images cannot be linearly dependent).

43. Consider the polynomials p1.t/ D 1C t2 and p2.t/ D 1 �

t2. Is fp1; p2g a linearly independent set in P3? Why or why
not?

44. Consider the polynomials p1.t/ D 1C t , p2.t/ D 1 � t , and
p3.t/ D 2 (for all t ). By inspection, write a linear depen-
dence relation among p1, p2, and p3. Then find a basis for
Span fp1; p2; p3g.

45. Let V be a vector space that contains a linearly indepen-
dent set fu1; u2; u3; u4g. Describe how to construct a set of
vectors fv1; v2; v3; v4g in V such that fv1; v3g is a basis for
Span fv1; v2; v3; v4g.

T 46. LetH D Span fu1; u2; u3g andK D Span fv1; v2; v3g, where

u1 D

2664
1

3

0

�1

3775; u2 D

2664
0

3

�2

1

3775; u3 D

2664
2

�3

6

�5

3775;

v1 D

2664
�4

3

2

1

3775; v2 D

2664
1

9

�4

1

3775; v3 D

2664
�1

7

6

5

3775
Find bases for H , K, and H CK. (See Exercises 41 and 42
in Section 4.1.)

T 47. Show that ft; sin t; cos 2t; sin t cos tg is a linearly independent
set of functions defined on R. Start by assuming that

c1t C c2 sin t C c3 cos 2t C c4 sin t cos t D 0 (5)

Equation (5)must hold for all real t , so choose several specific
values of t (say, t D 0; :1; :2/ until you get a system of
enough equations to determine that all the cj must be zero.

T 48. Show that f1; cos t; cos2 t; : : : ; cos6 tg is a linearly indepen-
dent set of functions defined on R. Use the method of
Exercise 47. (This result will be needed in Exercise 54 in
Section 4.5.)
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Solutions to Practice Problems

1. Let A D Œ v1 v2 �. Row operations show that

A D

24 1 �2

�2 7

3 �9

35 � 24 1 �2

0 3

0 0

35
Not every row of A contains a pivot position. So the columns of A do not span R3,
by Theorem 4 in Section 1.4. Hence fv1; v2g is not a basis for R3. Since v1 and
v2 are not in R2, they cannot possibly be a basis for R2. However, since v1 and v2

are obviously linearly independent, they are a basis for a subspace of R3, namely
Span fv1; v2g.

2. Set up a matrix A whose column space is the space spanned by fv1; v2; v3; v4g, and
then row reduce A to find its pivot columns.

A D

24 1 6 2 �4

�3 2 �2 �8

4 �1 3 9

35 � 24 1 6 2 �4

0 20 4 �20

0 �25 �5 25

35 � 24 1 6 2 �4

0 5 1 �5

0 0 0 0

35
The first two columns of A are the pivot columns and hence form a basis of
ColA D W . Hence fv1; v2g is a basis for W . Note that the reduced echelon form of
A is not needed in order to locate the pivot columns.

3. Neither v1 nor v2 is in H , so fv1; v2g cannot be a basis for H . In fact, fv1; v2g is a
basis for the plane of all vectors of the form .c1; c2; 0/, but H is only a line.

4. Since fv1; : : : ; vpg is a basis for V , for any vector x in V , there exist scalars
c1; : : : ; cp such that x D c1v1 C � � � C cpvp . Then since T and U are linear trans-
formations

T .x/ D T .c1v1 C � � � C cpvp/ D c1T .v1/C � � � C cpT .vp/

D c1U.v1/C � � � C cpU.vp/ D U.c1v1 C � � � C cpvp/

D U.x/

4.4 Coordinate Systems
An important reason for specifying a basis B for a vector space V is to impose a
“coordinate system” on V . This section will show that if B contains n vectors, then
the coordinate system will make V act like Rn. If V is already Rn itself, then B will
determine a coordinate system that gives a new “view” of V .

The existence of coordinate systems rests on the following fundamental result.

THEOREM 8 The Unique Representation Theorem

Let B D fb1; : : : ; bng be a basis for a vector space V . Then for each x in V , there
exists a unique set of scalars c1; : : : ; cn such that

x D c1b1 C � � � C cnbn (1)
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PROOF Since B spans V , there exist scalars such that (1) holds. Suppose x also has the
representation

x D d1b1 C � � � C dnbn

for scalars d1; : : : ; dn. Then, subtracting, we have

0 D x � x D .c1 � d1/b1 C � � � C .cn � dn/bn (2)

Since B is linearly independent, the weights in (2) must all be zero. That is, cj D dj for
1 � j � n.

DEFINITION Suppose B D fb1; : : : ; bng is a basis for a vector space V and x is in V . The
coordinates of x relative to the basisB (or theB-coordinates of x) are the weights
c1; : : : ; cn such that x D c1b1 C � � � C cnbn.

If c1; : : : ; cn are the B-coordinates of x, then the vector in Rn

�
x
�
B D

264 c1

:::

cn

375
is the coordinate vector of x (relative to B/, or the B-coordinate vector of x. The
mapping x 7!

�
x
�
B is the coordinate mapping (determined by B/.1

EXAMPLE 1 Consider a basis B D fb1; b2g for R2, where b1 D

�
1

0

�
and

b2 D

�
1

2

�
. Suppose an x in R2 has the coordinate vector Œ x �B D

�
�2

3

�
. Find x.

SOLUTION The B-coordinates of x tell how to build x from the vectors in B. That is,

x D .�2/b1 C 3b2 D .�2/

�
1

0

�
C 3

�
1

2

�
D

�
1

6

�

EXAMPLE 2 The entries in the vector x D
�

1

6

�
are the coordinates of x relative to

the standard basis E D fe1; e2g, since�
1

6

�
D 1

�
1

0

�
C 6

�
0

1

�
D 1e1 C 6e2

If E D fe1; e2g, then Œ x �E D x.

A Graphical Interpretation of Coordinates
A coordinate system on a set consists of a one-to-one mapping of the points in the set
into Rn. For example, ordinary graph paper provides a coordinate system for the plane

1 The concept of a coordinate mapping assumes that the basis B is an indexed set whose vectors are listed in
some fixed preassigned order. This property makes the definition of Œ x �B unambiguous.



4.4 Coordinate Systems 257

when one selects perpendicular axes and a unit of measurement on each axis. Figure 1
shows the standard basis fe1; e2g, the vectors b1.D e1/ and b2 from Example 1, and the

vector x D
�

1

6

�
. The coordinates 1 and 6 give the location of x relative to the standard

basis: 1 unit in the e1 direction and 6 units in the e2 direction.
Figure 2 shows the vectors b1, b2, and x from Figure 1. (Geometrically, the three

vectors lie on a vertical line in both figures.) However, the standard coordinate grid
was erased and replaced by a grid especially adapted to the basis B in Example 1. The

coordinate vector Œ x �B D

�
�2

3

�
gives the location of x on this new coordinate system:

�2 units in the b1 direction and 3 units in the b2 direction.

b2

x

b1 5 e1

e2

0

FIGURE 1 Standard graph
paper.

b2

b1

x

0

FIGURE 2 B-graph paper.

EXAMPLE 3 In crystallography, the description of a crystal lattice is aided by
choosing a basis fu; v;wg for R3 that corresponds to three adjacent edges of one “unit
cell” of the crystal. An entire lattice is constructed by stacking together many copies of
one cell. There are fourteen basic types of unit cells; three are displayed in Figure 3.2

(b)
Body-centered

cubic

u
v

w

0

(c)
Face-centered
orthorhombic

0

u

w

v

(a)
Simple

monoclinic

0

u

w

v

FIGURE 3 Examples of unit cells.

The coordinates of atoms within the crystal are given relative to the basis for the
lattice. For instance, 24 1=2

1=2

1

35
identifies the top face-centered atom in the cell in Figure 3(c).

2Adapted from The Science and Engineering of Materials, 4th Ed., by Donald R. Askeland (Boston: Prindle,
Weber & Schmidt, © 2002), p. 36.
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Coordinates in Rn

When a basis B for Rn is fixed, the B-coordinate vector of a specified x is easily found,
as in the next example.

EXAMPLE 4 Let b1 D

�
2

1

�
, b2 D

�
�1

1

�
, x D

�
4

5

�
, and B D fb1; b2g. Find the

coordinate vector Œ x �B of x relative to B.

SOLUTION The B-coordinates c1, c2 of x satisfy

c1

�
2

1

�
b1

C c2

�
�1

1

�
b2

D

�
4

5

�
x

or �
2 �1

1 1

�
b1 b2

�
c1

c2

�
D

�
4

5

�
x

(3)

This equation can be solved by row operations on an augmented matrix or by
multiplying the vector x by the inverse of the matrix. In any case, the solution is c1 D 3,
c2 D 2. Thus x D 3b1 C 2b2, and

Œ x �B D

�
c1

c2

�
D

�
3

2

�
See Figure 4.

b2 b1

x

FIGURE 4

The B-coordinate vector of x is
.3; 2/.

The matrix in (3) changes the B-coordinates of a vector x into the standard
coordinates for x. An analogous change of coordinates can be carried out in Rn for a
basis B D fb1; : : : ; bng. Let

PB D Œ b1 b2 � � � bn �

Then the vector equation

x D c1b1 C c2b2 C � � � C cnbn

is equivalent to

x D PBŒ x �B (4)

We call PB the change-of-coordinates matrix from B to the standard basis in Rn.
Left-multiplication by PB transforms the coordinate vector Œ x �B into x. The change-of-
coordinates equation (4) is important and will be needed at several points in Chapters 5
and 7.

Since the columns of PB form a basis for Rn, PB is invertible (by the Invertible
Matrix Theorem). Left-multiplication by P�1

B converts x into its B-coordinate vector:

P�1
B x D Œ x �B

The correspondence x 7! Œ x �B, produced here by P�1
B , is the coordinate mapping

mentioned earlier. Since P�1
B is an invertible matrix, the coordinate mapping is a one-

to-one linear transformation from Rn onto Rn, by the Invertible Matrix Theorem. (See
also Theorem 12 in Section 1.9.) This property of the coordinate mapping is also true in
a general vector space that has a basis, as we shall see.
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The Coordinate Mapping
Choosing a basis B D fb1; : : : ; bng for a vector space V introduces a coordinate system
in V . The coordinate mapping x 7! Œ x �B connects the possibly unfamiliar space V to the
familiar spaceRn. See Figure 5. Points in V can now be identified by their new “names.”

Rn
V

[ ]

[x]x

FIGURE 5 The coordinate mapping from V

onto Rn.

THEOREM 9 LetB D fb1; : : : ; bng be a basis for a vector spaceV . Then the coordinatemapping
x 7! Œ x �B is a one-to-one linear transformation from V onto Rn.

PROOF Take two typical vectors in V , say,

u D c1b1 C � � � C cnbn

w D d1b1 C � � � C dnbn

Then, using vector operations,

uC w D .c1 C d1/b1 C � � � C .cn C dn/bn

It follows that

Œ uC w �B D

264 c1 C d1

:::

cn C dn

375 D
264 c1

:::

cn

375C
264 d1

:::

dn

375 D Œ u �B C Œw �B

So the coordinate mapping preserves addition. If r is any scalar, then

ru D r.c1b1 C � � � C cnbn/ D .rc1/b1 C � � � C .rcn/bn

So

Œ ru �B D

264 rc1

:::

rcn

375 D r

264 c1

:::

cn

375 D rŒ u �B

Thus the coordinate mapping also preserves scalar multiplication and hence is a linear
transformation. See Exercises 27 and 28 for verification that the coordinate mapping is
one-to-one and maps V onto Rn.

The linearity of the coordinate mapping extends to linear combinations, just as in
Section 1.8. If u1; : : : ; up are in V and if c1; : : : ; cp are scalars, then

Œ c1u1 C � � � C cpup �B D c1Œ u1 �B C � � � C cpŒ up �B (5)
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In words, (5) says that the B-coordinate vector of a linear combination of u1; : : : ; up is
the same linear combination of their coordinate vectors.

The coordinate mapping in Theorem 9 is an important example of an isomorphism
from V onto Rn. In general, a one-to-one linear transformation from a vector space V

onto a vector space W is called an isomorphism from V onto W (iso from the Greek
for “the same,” and morph from the Greek for “form” or “structure”). The notation and
terminology for V and W may differ, but the two spaces are indistinguishable as vector
spaces. Every vector space calculation in V is accurately reproduced in W, and viceSTUDY GUIDE offers additional

resources about isomorphic vector
spaces.

versa. In particular, any real vector space with a basis of n vectors is indistinguishable
from Rn. See Exercises 29 and 30.

EXAMPLE 5 Let B be the standard basis of the space P3 of polynomials; that is, let
B D f1; t; t2; t3g. A typical element p of P3 has the form

p.t/ D a0 C a1t C a2t2
C a3t3

Since p is already displayed as a linear combination of the standard basis vectors, we
conclude that

Œ p �B D

2664
a0

a1

a2

a3

3775
Thus the coordinate mapping p 7! Œ p �B is an isomorphism from P3 onto R4. All vector
space operations in P3 correspond to operations in R4.

If we think of P3 andR4 as displays on two computer screens that are connected via
the coordinate mapping, then every vector space operation in P3 on one screen is exactly
duplicated by a corresponding vector operation in R4 on the other screen. The vectors
on the P3 screen look different from those on the R4 screen, but they “act” as vectors in
exactly the same way. See Figure 6.

a0 1 a1t 1 a2t2 1 a3t 3

a0

a1

a2

a3

FIGURE 6 The space P3 is isomorphic to R4.

EXAMPLE 6 Use coordinate vectors to verify that the polynomials 1C 2t2,
4C t C 5t2, and 3C 2t are linearly dependent in P2.

SOLUTION The coordinate mapping from Example 5 produces the coordinate vectors
.1; 0; 2/, .4; 1; 5/, and .3; 2; 0/, respectively. Writing these vectors as the columns of a
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matrix A, we can determine their independence by row reducing the augmented matrix
for Ax D 0: 24 1 4 3 0

0 1 2 0

2 5 0 0

35 � 24 1 4 3 0

0 1 2 0

0 0 0 0

35
The columns of A are linearly dependent, so the corresponding polynomials are linearly
dependent. In fact, it is easy to check that column 3 of A is 2 times column 2 minus 5
times column 1. The corresponding relation for the polynomials is

3C 2t D 2.4C t C 5t2/ � 5.1C 2t2/

The final example concerns a plane in R3 that is isomorphic to R2.

EXAMPLE 7 Let

v1 D

24 3

6

2

35; v2 D

24�1

0

1

35; x D

24 3

12

7

35;

and B D fv1; v2g. Then B is a basis for H D Span fv1; v2g. Determine if x is in H , and
if it is, find the coordinate vector of x relative to B.

SOLUTION If x is in H , then the following vector equation is consistent:

c1

24 3

6

2

35C c2

24�1

0

1

35 D 24 3

12

7

35
The scalars c1 and c2, if they exist, are the B-coordinates of x. Using row operations, we
obtain 24 3 �1 3

6 0 12

2 1 7

35 � 24 1 0 2

0 1 3

0 0 0

35
Thus c1 D 2, c2 D 3, and Œ x �B D

�
2

3

�
. The coordinate system on H determined by B

is shown in Figure 7.

x 5 2v1 1 3v2

v1

2v1

3v2

2v2

v2

0

x2
x1

x3

FIGURE 7 A coordinate system on a plane H in R3.
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If a different basis for H were chosen, would the associated coordinate system also
makeH isomorphic toR2? Surely, this must be true.We shall prove it in the next section.

Practice Problems

1. Let b1 D

24 1

0

0

35, b2 D

24�3

4

0

35, b3 D

24 3

�6

3

35, and x D 24�8

2

3

35.
a. Show that the set B D fb1; b2; b3g is a basis of R3.

b. Find the change-of-coordinates matrix from B to the standard basis.

c. Write the equation that relates x in R3 to Œ x �B.

d. Find Œ x �B, for the x given above.

2. The set B D f1C t; 1C t2; t C t2g is a basis for P2. Find the coordinate vector of
p.t/ D 6C 3t � t2 relative to B.

4.4 Exercises
In Exercises 1–4, find the vector x determined by the given coor-
dinate vector Œ x �B and the given basis B.

1. B D
��

3

�5

�
;

�
�4

6

��
, Œ x �B D

�
5

3

�
2. B D

��
4

5

�
;

�
6

7

��
, Œ x �B D

�
8

�5

�

3. B D

8<:
24 1

�8

6

35 ;

24 2

�5

7

35 ;

24 3

9

�4

359=;, Œ x �B D

24 2

�3

0

35
4. B D

8<:
24�1

2

0

35 ;

24 3

�5

2

35 ;

24 4

�7

3

359=;, Œ x �B D

24�4

8

�7

35
In Exercises 5–8, find the coordinate vector Œ x �B of x relative to
the given basis B D fb1; : : : ; bng.

5. b1 D

�
1

�3

�
, b2 D

�
2

�5

�
, x D

�
�2

1

�
6. b1 D

�
1

�2

�
, b2 D

�
5

�6

�
, x D

�
4

0

�

7. b1 D

24 1

�1

�3

35, b2 D

24�3

4

9

35, b3 D

24 2

�2

4

35, x D 24 8

�9

6

35
8. b1 D

241

0

4

35, b2 D

243

1

7

35, b3 D

24 1

�1

5

35, x D 241

3

1

35
In Exercises 9 and 10, find the change-of-coordinates matrix from
B to the standard basis in Rn.

9. B D
��

2

�9

�
,
�

1

8

��

10. B D

8<:
24 5

�2

3

35 , 24 4

0

�1

35, 24 3

�7

8

359=;
In Exercises 11 and 12, use an inverse matrix to find Œ x �B for the
given x and B.

11. B D
��

3

�5

�
;

�
�4

6

��
; x D

�
2

�6

�
12. B D

��
4

5

�
;

�
6

7

��
; x D

�
2

0

�
13. The set B D f1C t2; t C t2; 1C 2t C t2g is a basis for P2.

Find the coordinate vector of p.t/ D 1C 4t C 7t2 relative
to B.

14. The set B D f1 � t2; t � t2; 2 � 2t C t2g is a basis for P2.
Find the coordinate vector of p.t/ D 3C t � 6t2 relative
to B.

In Exercises 15–20, mark each statement True or False (T/F).
Justify each answer. Unless stated otherwise, B is a basis for a
vector space V .

15. (T/F) If x is in V and if B contains n vectors, then the B-
coordinate vector of x is in Rn.

16. (T/F) If B is the standard basis for Rn, then the B-coordinate
vector of an x in Rn is x itself.

17. (T/F) If PB is the change-of-coordinates matrix, then Œx�B D

PB x, for x in V .

18. (T/F) The correspondence Œ x �B 7! x is called the coordinate
mapping.

19. (T/F) The vector spaces P3 and R3 are isomorphic.

20. (T/F) In some cases, a plane in R3 can be isomorphic to R2.
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21. The vectors v1 D

�
1

�3

�
, v2 D

�
2

�8

�
, v3 D

�
�3

7

�
spanR2

but do not form a basis. Find two different ways to express�
1

1

�
as a linear combination of v1, v2, v3.

22. LetB D fb1; : : : ; bng be a basis for a vector space V . Explain
why the B-coordinate vectors of b1; : : : ; bn are the columns
e1; : : : ; en of the n � n identity matrix.

23. Let S be a finite set in a vector space V with the prop-
erty that every x in V has a unique representation as a
linear combination of elements of S . Show that S is a basis
of V .

24. Suppose fv1; : : : ; v4g is a linearly dependent spanning set for
a vector space V . Show that each w in V can be expressed
in more than one way as a linear combination of v1; : : : ; v4.
[Hint:Letw D k1v1 C � � � C k4v4 be an arbitrary vector inV .
Use the linear dependence of fv1; : : : ; v4g to produce another
representation of w as a linear combination of v1; : : : ; v4.]

25. Let B D
��

1

�2

�
;

�
�3

7

��
. Since the coordinate mapping

determined by B is a linear transformation from R2 into R2,
this mapping must be implemented by some 2 � 2 matrix A.
Find it. [Hint:Multiplication by A should transform a vector
x into its coordinate vector Œ x �B.]

26. LetB D fb1; : : : ; bng be a basis forRn. Produce a description
of an n � nmatrixA that implements the coordinate mapping
x 7! Œ x �B. (See Exercise 25.)

Exercises 27–30 concern a vector space V , a basis B D
fb1; : : : ; bng, and the coordinate mapping x 7! Œ x �B.

27. Show that the coordinate mapping is one-to-one. [Hint: Sup-
pose Œ u �B D Œ w �B for some u and w in V , and show that
u D w.]

28. Show that the coordinate mapping is onto Rn. That is, given
any y inRn, with entries y1; : : : ; yn, produce u in V such that
Œ u �B D y.

29. Show that a subset fu1; : : : ; upg inV is linearly independent if
and only if the set of coordinate vectors fŒ u1 �B; : : : ; Œ up �Bg

is linearly independent in Rn. [Hint: Since the coordinate
mapping is one-to-one, the following equations have the same
solutions, c1; : : : ; cp .]

c1u1 C � � � C cpup D 0 The zero vector in V

Œ c1u1 C � � � C cpup �B D Œ 0 �B The zero vector in Rn

30. Given vectors u1; : : : ; up , and w in V , show that w is a linear
combination of u1; : : : ; up if and only if Œ w �B is a linear
combination of the coordinate vectors Œ u1 �B; : : : ; Œ up �B.

In Exercises 31–34, use coordinate vectors to test the linear inde-
pendence of the sets of polynomials. Explain your work.

31. f1C 2t3; 2C t � 3t2; �t C 2t2 � t3g

32. f1 � 2t2 � t3; t C 2t3; 1C t � 2t2g

33. f.1 � t /2; t � 2t2 C t3; .1 � t /3g

34. f.2 � t /3; .3 � t /2; 1C 6t � 5t2 C t3g

35. Use coordinate vectors to test whether the following sets of
polynomials span P2. Justify your conclusions.

a. f1 � 3t C 5t2;�3C 5t � 7t2;�4C 5t � 6t2; 1 � t2g

b. f5t C t2; 1 � 8t � 2t2;�3C 4t C 2t2; 2 � 3tg

36. Let p1.t/ D 1C t2, p2.t/ D t � 3t2, p3.t/ D 1C t � 3t2.

a. Use coordinate vectors to show that these polynomials
form a basis for P2.

b. Consider the basis B D fp1; p2; p3g for P2. Find q in P2,

given that Œq�B D

24�1

1

2

35.
In Exercises 37 and 38, determine whether the sets of polynomials
form a basis for P3. Justify your conclusions.

T 37. 3C 7t; 5C t � 2t3; t � 2t2; 1C 16t � 6t2 C 2t3

T 38. 5 � 3t C 4t2 C 2t3; 9C t C 8t2 � 6t3; 6 � 2t C 5t2; t3

T 39. Let H D Span fv1; v2g and B D fv1; v2g. Show that x is in
H and find the B-coordinate vector of x, for

v1 D

2664
11

�5

10

7

3775; v2 D

2664
14

�8

13

10

3775; x D

2664
19

�13

18

15

3775
T 40. LetH D Span fv1; v2; v3g and B D fv1; v2; v3g. Show that B

is a basis forH and x is inH , and find theB-coordinate vector
of x, for

v1 D

2664
�6

4

�9

4

3775; v2 D

2664
8

�3

7

�3

3775; v3 D

2664
�9

5

�8

3

3775; x D

2664
4

7

�8

3

3775
Exercises 41 and 42 concern the crystal lattice for titanium, which
has the hexagonal structure shown on the left in the accompany-

ing figure. The vectors

24 2:6

�1:5

0

35, 24 0

3

0

35, 24 0

0

4:8

35 in R3 form a

basis for the unit cell shown on the right. The numbers here are
Ångstrom units (1 Å D 10�8 cm). In alloys of titanium, some
additional atoms may be in the unit cell at the octahedral and
tetrahedral sites (so named because of the geometric objects
formed by atoms at these locations).
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u

w

v0

The hexagonal close-packed lattice and its unit cell.

41. One of the octahedral sites is

24 1=2

1=4

1=6

35, relative to the lattice
basis. Determine the coordinates of this site relative to the
standard basis of R3.

42. One of the tetrahedral sites is

24 1=2

1=2

1=3

35. Determine the coor-
dinates of this site relative to the standard basis of R3.

Solutions to Practice Problems

1. a. It is evident that the matrixPB D Œ b1 b2 b3 � is row-equivalent to the identity
matrix. By the Invertible Matrix Theorem, PB is invertible and its columns form
a basis for R3.

b. From part (a), the change-of-coordinates matrix is PB D

24 1 �3 3

0 4 �6

0 0 3

35.
c. x D PBŒ x �B
d. To solve the equation in (c), it is probably easier to row reduce an augmented

matrix than to compute P�1
B :24 1 �3 3 �8

0 4 �6 2

0 0 3 3

35
PB x

�

24 1 0 0 �5

0 1 0 2

0 0 1 1

35
I Œ x �B

Hence

Œ x �B D

24�5

2

1

35
2. The coordinates of p.t/ D 6C 3t � t2 with respect to B satisfy

c1.1C t /C c2.1C t2/C c3.t C t2/ D 6C 3t � t2

Equating coefficients of like powers of t , we have

c1 C c2 D 6

c1 C c3 D 3

c2 C c3 D �1

Solving, we find that c1 D 5, c2 D 1, c3 D �2, and Œ p �B D

24 5

1

�2

35.
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4.5 The Dimension of a Vector Space
Theorem 9 in Section 4.4 implies that a vector space V with a basis B containing n

vectors is isomorphic toRn. This section shows that this number n is an intrinsic property
(called the dimension) of the space V that does not depend on the particular choice of
basis. The discussion of dimension will give additional insight into properties of bases.

The first theorem generalizes a well-known result about the vector space Rn.

THEOREM 10 If a vector space V has a basis B D fb1; : : : ; bng, then any set in V containing
more than n vectors must be linearly dependent.

PROOF Let fu1; : : : ; upg be a set in V with more than n vectors. The coordinate vectors
Œ u1 �B; : : : ; Œ up �B form a linearly dependent set in Rn, because there are more vectors
(p) than entries (n) in each vector. So there exist scalars c1; : : : ; cp , not all zero, such
that

c1Œ u1 �B C � � � C cpŒ up �B D

264 0
:::

0

375 The zero vector in Rn

Since the coordinate mapping is a linear transformation,

�
c1u1 C � � � C cpup

�
B D

264 0
:::

0

375
The zero vector on the right displays the n weights needed to build the vector c1u1

C � � � C cpup from the basis vectors in B. That is, c1u1 C � � � C cpup D 0b1 C � � � C

0bn D 0. Since the ci are not all zero, fu1; : : : ; upg is linearly dependent.1

Theorem 10 implies that if a vector space V has a basis B D fb1; : : : ; bng, then each
linearly independent set in V has no more than n vectors.

THEOREM 11 If a vector space V has a basis of n vectors, then every basis of V must consist of
exactly n vectors.

PROOF Let B1 be a basis of n vectors and B2 be any other basis (of V ). Since B1 is
a basis and B2 is linearly independent, B2 has no more than n vectors, by Theorem 10.
Also, since B2 is a basis and B1 is linearly independent, B2 has at least n vectors. Thus
B2 consists of exactly n vectors.

1 Theorem 10 also applies to infinite sets in V . An infinite set is said to be linearly dependent if some finite
subset is linearly dependent; otherwise, the set is linearly independent. If S is an infinite set in V , take any
subset fu1; : : : ;upg of S , with p > n. The proof above shows that this subset is linearly dependent and
hence so is S .
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If a nonzero vector space V is spanned by a finite set S , then a subset of S is a basis
for V , by the Spanning Set Theorem. In this case, Theorem 11 ensures that the following
definition makes sense.

DEFINITION If a vector spaceV is spanned by a finite set, thenV is said to be finite-dimensional,
and the dimension of V , written as dimV , is the number of vectors in a basis for
V . The dimension of the zero vector space f0g is defined to be zero. If V is not
spanned by a finite set, then V is said to be infinite-dimensional.

EXAMPLE 1 The standard basis for Rn contains n vectors, so dimRn D n. The
standard polynomial basis f1; t; t2g shows that dimP2 D 3. In general, dimPn D nC 1.
The space P of all polynomials is infinite-dimensional.

EXAMPLE 2 LetH D Span fv1; v2g, where v1 D

24 3

6

2

35 and v2 D

24�1

0

1

35. ThenH

is the plane studied in Example 7 in Section 4.4. A basis for H is fv1; v2g, since v1 and
v2 are not multiples and hence are linearly independent. Thus dimH D 2.

EXAMPLE 3 Find the dimension of the subspace
x2

0

x3

x1

2v1

v1

3v2

2v2

v2

H D

8̂̂<̂
:̂
2664

a � 3b C 6c

5aC 4d

b � 2c � d

5d

3775 W a, b, c, d in R

9>>=>>;
SOLUTION It is easy to see that H is the set of all linear combinations of the vectors

v1 D

2664
1

5

0

0

3775; v2 D

2664
�3

0

1

0

3775; v3 D

2664
6

0

�2

0

3775; v4 D

2664
0

4

�1

5

3775
Clearly, v1 ¤ 0, v2 is not a multiple of v1, but v3 is a multiple of v2. By the Spanning
Set Theorem, we may discard v3 and still have a set that spans H . Finally, v4 is not a
linear combination of v1 and v2. So fv1; v2; v4g is linearly independent (by Theorem 4
in Section 4.3) and hence is a basis for H . Thus dimH D 3.

EXAMPLE 4 The subspaces of R3 can be classified by dimension. See Figure 1.

0-dimensional subspaces. Only the zero subspace.

1-dimensional subspaces. Any subspace spanned by a single nonzero vector. Such
subspaces are lines through the origin.

2-dimensional subspaces. Any subspace spanned by two linearly independent
vectors. Such subspaces are planes through the origin.

3-dimensional subspaces. Only R3 itself. Any three linearly independent vectors
in R3 span all of R3, by the Invertible Matrix Theorem.
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x2

x1

(a)

0-dim

1-dim

x2

x1

(b) (c)

3-dim

2-dim2-dim

x1

x2

x3x3x3

FIGURE 1 Sample subspaces of R3.

Subspaces of a Finite-Dimensional Space
The next theorem is a natural counterpart to the Spanning Set Theorem.

THEOREM 12 Let H be a subspace of a finite-dimensional vector space V . Any linearly inde-
pendent set in H can be expanded, if necessary, to a basis for H . Also, H is
finite-dimensional and

dimH � dimV

PROOF If H D f0g, then certainly dimH D 0 � dimV . Otherwise, let S D fu1; : : : ;

ukg be any linearly independent set in H . If S spans H , then S is a basis for H .
Otherwise, there is some ukC1 in H that is not in SpanS . But then fu1; : : : ; uk ; ukC1g

will be linearly independent, because no vector in the set can be a linear combination of
vectors that precede it (by Theorem 4).

So long as the new set does not span H , we can continue this process of expanding
S to a larger linearly independent set in H . But the number of vectors in a linearly
independent expansion of S can never exceed the dimension of V , by Theorem 10.
So eventually the expansion of S will span H and hence will be a basis for H , and
dimH � dimV .

When the dimension of a vector space or subspace is known, the search for a basis
is simplified by the next theorem. It says that if a set has the right number of elements,
then one has only to show either that the set is linearly independent or that it spans the
space. The theorem is of critical importance in numerous applied problems (involving
differential equations or difference equations, for example) where linear independence
is much easier to verify than spanning.

THEOREM 13 The Basis Theorem

Let V be a p-dimensional vector space, p � 1. Any linearly independent set of
exactly p elements in V is automatically a basis for V . Any set of exactly p

elements that spans V is automatically a basis for V .

PROOF By Theorem 12, a linearly independent set S of p elements can be extended
to a basis for V . But that basis must contain exactly p elements, since dimV D p. So S

must already be a basis for V . Now suppose that S has p elements and spans V . Since
V is nonzero, the Spanning Set Theorem implies that a subset S 0 of S is a basis of V .
Since dimV D p, S 0 must contain p vectors. Hence S D S 0.
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The Dimensions of Nul A, Col A, and Row A
Since the dimensions of the null space and column space of anm � nmatrix are referred
to frequently, they have specific names:

DEFINITION The rank of anm � nmatrixA is the dimension of the column space and the nullity
of A is the dimension of the null space.

The pivot columns of a matrix A form a basis for Col A, so the rank of A is just
the number of pivot columns. Since a basis for Row A can be found by taking the pivot
rows from the row reduced echelon form of A, the dimension of Row A is also equal to
the rank of A.

The nullity of A might seem to require more work, since finding a basis for Nul A

usually takes more time than finding a basis for Col A. There is a shortcut: Let A be
an m � n matrix, and suppose the equation Ax D 0 has k free variables. From Section
4.2, we know that the standard method of finding a spanning set for Nul A will produce
exactly k linearly independent vectors—say, u1; : : : ; uk – one for each free variable. So
u1; : : : ; uk is a basis for Nul A, and the number of free variables determines the size of
the basis.

To summarize these facts for future reference:

The rank of an m � n matrix A is the number of pivot columns and the nullity of A

is the number of free variables. Since the dimension of the row space is the number
of pivot rows, it is also equal to the rank of A.

Putting these observations together results in the rank theorem.

THEOREM 14 The Rank Theorem

The dimensions of the column space and the null space of an m � n matrix A

satisfy the equation

rank AC nullity A D number of columns in A

PROOF By Theorem 6 in Section 4.3, rank A is the number of pivot columns in A.
The nullity of A equals the number of free variables in the equation Ax D 0. Expressed
another way, the nullity of A is the number of columns of A that are not pivot columns.
(It is the number of these columns, not the columns themselves, that is related to NulA.)
Obviously, �

number of
pivot columns

�
C

�
number of

nonpivot columns

�
D

�
number of
columns

�
This proves the theorem.
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EXAMPLE 5 Find the nullity and rank of

A D

24 �3 6 �1 1 �7

1 �2 2 3 �1

2 �4 5 8 �4

35
SOLUTION Row reduce the augmented matrix ŒA 0� to echelon form:

B D

24 1 �2 2 3 �1 0

0 0 1 2 �2 0

0 0 0 0 0 0

35
There are three free variables: x2; x4, and x5. Hence the nullity of A is 3. Also, the rank
of A is 2 because A has two pivot columns.

The ideas behind Theorem 14 are visible in the calculations in Example 5. The two
pivot positions in B , an echelon form of A, determine the basic variables and identify
the basis vectors for Col A and those for Row A.

EXAMPLE 6

a. If A is a 7 � 9 matrix with nullity 2, what is the rank of A?

b. Could a 6 � 9 matrix have nullity 2?

SOLUTION

a. Since A has 9 columns, .rank A/C 2 D 9, and hence rank A D 7.

b. No. If a 6 � 9 matrix, call it B , had a two-dimensional null space, it would have to
have rank 7, by the Rank Theorem. But the columns of B are vectors in R6, and so
the dimension of Col B cannot exceed 6; that is, rank B cannot exceed 6.

The next example provides a nice way to visualize the subspaces we have been
studying. In Chapter 6, we will learn that Row A and Nul A have only the zero vector in
common and are actually perpendicular to each other. The same fact applies to Row AT

.D ColA/ and Nul AT . So Figure 2, which accompanies Example 7, creates a good
mental image for the general case.

EXAMPLE 7 Let A D

24 3 0 �1

3 0 �1

4 0 5

35. It is readily checked that Nul A is the

x2-axis, Row A is the x1x3-plane, Col A is the plane whose equation is x1 � x2 D 0,
and Nul AT is the set of all multiples of .1;�1; 0/. Figure 2 shows Nul A and Row A

in the domain of the linear transformation x 7! Ax; the range of this mapping, Col A, is
shown in a separate copy of R3, along with Nul AT .

A

00

x3

x1

x2

x1

x2

x3

3 3

Nul A Nul A
T

Row A Col A

FIGURE 2 Subspaces determined by a
matrix A.
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Applications to Systems of Equations
The Rank Theorem is a powerful tool for processing information about systems of
linear equations. The next example simulates the way a real-life problem using linear
equations might be stated, without explicit mention of linear algebra terms such as
matrix, subspace, and dimension.

EXAMPLE 8 A scientist has found two solutions to a homogeneous system of 40
equations in 42 variables. The two solutions are not multiples, and all other solutions
can be constructed by adding together appropriate multiples of these two solutions.
Can the scientist be certain that an associated nonhomogeneous system (with the same
coefficients) has a solution?

SOLUTION Yes. Let A be the 40 � 42 coefficient matrix of the system. The given
information implies that the two solutions are linearly independent and span Nul A.
So nullity A D 2. By the Rank Theorem, rank A D 42 � 2 D 40. Since R40 is the only
subspace ofR40 whose dimension is 40, ColAmust be all ofR40. This means that every
nonhomogeneous equation Ax D b has a solution.

Rank and the Invertible Matrix Theorem
The various vector space concepts associated with a matrix provide several more
statements for the Invertible Matrix Theorem. The new statements listed here follow
those in the original Invertible Matrix Theorem in Section 2.3 and other theorems in the
text where statements have been added to it.

THEOREM The Invertible Matrix Theorem (continued)

Let A be an n � n matrix. Then the following statements are each equivalent to
the statement that A is an invertible matrix.

m. The columns of A form a basis of Rn.

n. Col A D Rn

o. rankA D n

p. nullity A D 0

q. Nul A D f0g

PROOF Statement (m) is logically equivalent to statements (e) and (h) regarding linear
independence and spanning. The other five statements are linked to the earlier ones of
the theorem by the following chain of almost trivial implications:

.g/) .n/) .o/) .p/) .q/) .d/

Statement (g), which says that the equationAx D b has at least one solution for each b in
Rn, implies (n), because ColA is precisely the set of all b such that the equationAx D b
is consistent. The implication .n/) .o/ follows from the definitions of dimension and
rank. If the rank of A is n, the number of columns of A, then nullity A D 0, by the
Rank Theorem, and so Nul A D f0g. Thus .o/) .p/) .q/. Also, (q) implies that the
equation Ax D 0 has only the trivial solution, which is statement (d). Since statements
(d) and (g) are already known to be equivalent to the statement that A is invertible, the
proof is complete.
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We have refrained from adding to the InvertibleMatrix Theorem obvious statements
about the row space of A, because the row space is the column space of AT . Recall from
statement (1) of the Invertible Matrix Theorem that A is invertible if and only if AT is
invertible. Hence every statement in the Invertible Matrix Theorem can also be stated
for AT . To do so would double the length of the theorem and produce a list of more than
30 statements!

Numerical Notes

Many algorithms discussed in this text are useful for understanding concepts
and making simple computations by hand. However, the algorithms are often
unsuitable for large-scale problems in real life.

Rank determination is a good example. It would seem easy to reduce a matrix
to echelon form and count the pivots. But unless exact arithmetic is performed
on a matrix whose entries are specified exactly, row operations can change the

apparent rank of a matrix. For instance, if the value of x in the matrix
�

5 7

5 x

�
is not stored exactly as 7 in a computer, then the rank may be 1 or 2, depending
on whether the computer treats x � 7 as zero.

In practical applications, the effective rank of a matrix A is often determined
from the singular value decomposition of A, to be discussed in Section 7.4. This
decomposition is also a reliable source of bases for Col A, Row A, Nul A, and
Nul AT.

Practice Problems

1. Decide whether each statement is True or False, and give a reason for each answer.
Here V is a nonzero finite-dimensional vector space.
a. If dimV D p and if S is a linearly dependent subset of V , then S contains more

than p vectors.

b. If S spans V and if T is a subset of V that contains more vectors than S , then T

is linearly dependent.

2. Let H and K be subspaces of a vector space V . In Section 4.1, Exercise 40, it is
established that H \K is also a subspace of V . Prove dim (H \K) ≤ dim H .

4.5 Exercises
For each subspace in Exercises 1–8, (a) find a basis, and (b) state
the dimension.

1.

8<:
24 s � 2t

s C t

3t

35 W s; t in R

9=; 2.

8<:
24 5s

�t

�7s

35 W s; t 2 R

9=;
3.

8̂̂<̂
:̂
2664

2c

a � b

b � 3c

aC 2b

3775 W a; b; c in R

9>>=>>; 4.

8̂̂<̂
:̂
2664

aC b

2a

3a � b

�b

3775 W a; b inR

9>>=>>;
5.

8̂̂<̂
:̂
2664

a � 4b � 2c

2aC 5b � 4c

�aC 2c

�3aC 7b C 6c

3775 W a; b; c in R

9>>=>>;

6.

8̂̂<̂
:̂
2664

3aC 6b � c

6a � 2b � 2c

�9aC 5b C 3c

�3aC b C c

3775 W a; b; c in R

9>>=>>;
7. f.a; b; c/ W a � 3b C c D 0; b � 2c D 0; 2b � c D 0g

8. f.a; b; c; d/ W a � 3b C c D 0g

In Exercises 9 and 10, find the dimension of the subspace spanned
by the given vectors.

9.

241

0

2

35, 243

1

1

35, 24 9

4

�2

35, 24�7

�3

1

35
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10.

24 1

�2

0

35, 24�3

4

1

35, 24�8

6

5

35, 24�3

0

7

35
Determine the dimensions of NulA, ColA, and RowA for the
matrices shown in Exercises 11–16.

11. A D

2664
1 �6 9 0 �2

0 1 2 �4 5

0 0 0 5 1

0 0 0 0 0

3775
12. A D

2664
1 3 �4 2 �1 6

0 0 1 �3 7 0

0 0 0 1 4 �3

0 0 0 0 0 0

3775
13. A D

�
1 2 3 4 5

0 0 0 1 �6

�
14. A D

�
3 4

�6 10

�
15. A D

24 1 �1 0

0 4 7

0 0 5

35 16. A D

24 1 4 �1

0 7 0

0 0 0

35
In Exercises 17–26, V is a vector space and A is an m � n matrix.
Mark each statement True or False (T/F). Justify each answer.

17. (T/F) The number of pivot columns of a matrix equals the
dimension of its column space.

18. (T/F) The number of variables in the equationAx D 0 equals
the nullity A.

19. (T/F) A plane in R3 is a two-dimensional subspace of R3.

20. (T/F) The dimension of the vector space P4 is 4.

21. (T/F) The dimension of the vector space of signals, S, is 10.

22. (T/F) The dimensions of the row space and the column space
of A are the same, even if A is not square.

23. (T/F) If B is any echelon form of A, then the pivot columns
of B form a basis for the column space of A.

24. (T/F) The nullity of A is the number of columns of A that are
not pivot columns.

25. (T/F) If a set fv1; : : : ; vpg spans a finite-dimensional vector
space V and if T is a set of more than p vectors in V, then T

is linearly dependent.

26. (T/F) A vector space is infinite-dimensional if it is spanned
by an infinite set.

27. The first four Hermite polynomials are 1, 2t , �2C 4t2, and
�12t C 8t3. These polynomials arise naturally in the study
of certain important differential equations in mathematical

physics.2 Show that the first four Hermite polynomials form
a basis of P3.

28. The first four Laguerre polynomials are 1, 1 � t , 2 � 4t C t2,
and 6 � 18t C 9t2 � t3. Show that these polynomials form a
basis of P3.

29. Let B be the basis of P3 consisting of the Hermite polyno-
mials in Exercise 27, and let p.t/ D 7 � 12t � 8t2 C 12t3.
Find the coordinate vector of p relative to B.

30. Let B be the basis of P2 consisting of the first three
Laguerre polynomials listed in Exercise 28, and let
p.t/ D 7 � 8t C 3t2. Find the coordinate vector of p relative
to B.

31. Let S be a subset of an n-dimensional vector space V , and
suppose S contains fewer than n vectors. Explain why S

cannot span V .

32. Let H be an n-dimensional subspace of an n-dimensional
vector space V . Show that H D V .

33. If a 4 � 7 matrix A has rank 4, find nullity A, rank A, and
rank AT .

34. If a 6 � 3 matrix A has rank 3, find nullity A, rank A, and
rank AT .

35. Suppose a 5 � 9 matrix A has four pivot columns. Is Col
A D R5? Is Nul A D R4? Explain your answers.

36. Suppose a 5 � 6 matrix A has four pivot columns. What is
nullity A? Is Col A D R4? Why or why not?

37. If the nullity of a 5 � 6matrixA is 4, what are the dimensions
of the column and row spaces of A?

38. If the nullity of a 7 � 6matrixA is 5, what are the dimensions
of the column and row spaces of A?

39. If A is a 7 � 5 matrix, what is the largest possible rank of A?
If A is a 5 � 7 matrix, what is the largest possible rank of A?
Explain your answers.

40. If A is a 4 � 3 matrix, what is the largest possible dimension
of the row space of A? If A is a 3 � 4 matrix, what is the
largest possible dimension of the row space of A? Explain.

41. Explain why the space P of all polynomials is an infinite-
dimensional space.

42. Show that the spaceC.R/ of all continuous functions defined
on the real line is an infinite-dimensional space.

In Exercises 43–48, V is a nonzero finite-dimensional vector
space, and the vectors listed belong to V . Mark each statement
True or False (T/F). Justify each answer. (These questions are
more difficult than those in Exercises 17–26.)

2 See Introduction to Functional Analysis, 2nd ed., by A. E. Taylor and David C. Lay (New York: John Wiley
& Sons, 1980), pp. 92–93. Other sets of polynomials are discussed there, too.
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43. (T/F) If there exists a set fv1; : : : ; vpg that spans V , then
dimV � p.

44. (T/F) If there exists a linearly dependent set fv1; : : : ; vpg in
V , then dimV � p.

45. (T/F) If there exists a linearly independent set fv1; : : : ; vpg in
V , then dimV � p.

46. (T/F) If dimV D p, then there exists a spanning set of p C 1

vectors in V.

47. (T/F) If every set of p elements in V fails to span V, then
dimV > p.

48. (T/F) If p � 2 and dimV D p, then every set of p � 1

nonzero vectors is linearly independent.

49. Justify the following equality: dim Row AC nullity A D n,
the number of columns of A

50. Justify the following equality: dim Row AC nullity AT D m,
the number of rows of A

Exercises 51 and 52 concern finite-dimensional vector spaces V

and W and a linear transformation T W V ! W .

51. LetH be a nonzero subspace of V , and let T .H/ be the set of
images of vectors in H . Then T .H/ is a subspace of W , by
Exercise 47 in Section 4.2. Prove that dimT .H/ � dimH .

52. Let H be a nonzero subspace of V , and suppose T is
a one-to-one (linear) mapping of V into W . Prove that
dimT .H/ D dimH . If T happens to be a one-to-one map-
ping of V onto W , then dimV D dimW . Isomorphic finite-
dimensional vector spaces have the same dimension.

T 53. According to Theorem 12, a linearly independent set
fv1; : : : ; vkg in Rn can be expanded to a basis for Rn. One
way to do this is to createA D Œ v1 � � � vk e1 � � � en �,
with e1; : : : ; en the columns of the identity matrix; the pivot
columns of A form a basis for Rn.

a. Use the method described to extend the following vectors
to a basis for R5:

v1 D

266664
�9

�7

8

�5

7

377775; v2 D

266664
9

4

1

6

�7

377775; v3 D

266664
6

7

�8

5

�7

377775
b. Explain why the method works in general: Why are the

original vectors v1; : : : ; vk included in the basis found for
ColA? Why is ColA D Rn?

T 54. Let B D f1; cos t; cos2 t; : : : ; cos6 tg and C D f1; cos t;

cos 2t; : : : ; cos 6tg. Assume the following trigonometric
identities (see Exercise 45 in Section 4.1).

cos 2t D �1C 2 cos2 t

cos 3t D �3 cos t C 4 cos3 t

cos 4t D 1 � 8 cos2 t C 8 cos4 t

cos 5t D 5 cos t � 20 cos3 t C 16 cos5 t

cos 6t D �1C 18 cos2 t � 48 cos4 t C 32 cos6 t

Let H be the subspace of functions spanned by the functions
in B. Then B is a basis for H, by Exercise 48 in Section 4.3.

a. Write theB-coordinate vectors of the vectors in C, and use
them to show that C is a linearly independent set in H .

b. Explain why C is a basis for H .

Solutions to Practice Problems

1. a. False. Consider the set f0g.

b. True. By the Spanning Set Theorem, S contains a basis for V ; call that basis
S 0. Then T will contain more vectors than S 0. By Theorem 10, T is linearly
dependent.

2. Let fv1;…; vpg be a basis for H \K. Notice fv1;…; vpg is a linearly independent
subset of H , hence by Theorem 12, fv1;…; vpg can be expanded, if necessary, to
a basis for H . Since the dimension of a subspace is just the number of vectors in a
basis, it follows that dim .H \K/ D p � dim H .

4.6 Change of Basis
When a basisB is chosen for an n-dimensional vector space V , the associated coordinate
mapping onto Rn provides a coordinate system for V . Each x in V is identified uniquely
by its B-coordinate vector Œ x �B.

1

1 Think of Œ x �B as a name for x that lists the weights used to build x as a linear combination of the basis
vectors in B.
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In some applications, a problem is described initially using a basis B, but the
problem’s solution is aided by changing B to a new basis C. (Examples will be given
in Chapters 5 and 7.) Each vector is assigned a new C-coordinate vector. In this section,
we study how Œ x �C and Œ x �B are related for each x in V .

To visualize the problem, consider the two coordinate systems in Figure 1. In
Figure 1(a), x D 3b1 C b2, while in Figure 1(b), the same x is shown as x D 6c1 C 4c2.
That is,

Œ x �B D

�
3

1

�
and Œ x �C D

�
6

4

�
Our problem is to find the connection between the two coordinate vectors. Example 1
shows how to do this, provided we know how b1 and b2 are formed from c1 and c2.

b2

b1

3b1

x0

(a) (b)

c2

4c2

6c1

c1
x0

FIGURE 1 Two coordinate systems for the same vector space.

EXAMPLE 1 Consider two bases B D fb1; b2g and C D fc1; c2g for a vector space
V , such that

b1 D 4c1 C c2 and b2 D �6c1 C c2 (1)

Suppose
x D 3b1 C b2 (2)

That is, suppose Œ x �B D

�
3

1

�
. Find Œ x �C .

SOLUTION Apply the coordinate mapping determined by C to x in (2). Since the
coordinate mapping is a linear transformation,

Œ x �C D Œ 3b1 C b2 �C

D 3Œ b1 �C C Œ b2 �C

We can write this vector equation as a matrix equation, using the vectors in the linear
combination as the columns of a matrix:

Œ x �C D
�

Œ b1 �C Œ b2 �C
�� 3

1

�
(3)

This formula gives Œ x �C , once we know the columns of the matrix. From (1),

Œ b1 �C D

�
4

1

�
and Œ b2 �C D

�
�6

1

�
Thus (3) provides the solution:

Œ x �C D

�
4 �6

1 1

��
3

1

�
D

�
6

4

�
The C-coordinates of x match those of the x in Figure 1.

The argument used to derive formula (3) can be generalized to yield the following
result. (See Exercises 17 and 18.)
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THEOREM 15 Let B D fb1; : : : ; bng and C D fc1; : : : ; cng be bases of a vector space V . Then

there is a unique n � n matrix P
C B such that

Œ x �C D
P

C B Œ x �B (4)

The columns of P
C B are the C-coordinate vectors of the vectors in the basis B.

That is,
P

C B D
�

Œb1�C Œb2�C � � � Œbn�C
�

(5)

The matrix P
C B in Theorem 15 is called the change-of-coordinates matrix from

B to C. Multiplication by P
C B converts B-coordinates into C-coordinates.2 Figure 2

illustrates the change-of-coordinates equation (4).

Rn Rn

[  ]

[x]

x

[  ]

multiplication

by     P [x]

V

FIGURE 2 Two coordinate systems for V .

The columns of P
C B are linearly independent because they are the coordinate

vectors of the linearly independent set B. (See Exercise 29 in Section 4.4.) Since P
C B

is square, it must be invertible, by the Invertible Matrix Theorem. Left-multiplying both

sides of equation (4) by . P
C B /�1 yields

. P
C B /�1Œ x �C D Œ x �B

Thus . P
C B /�1 is the matrix that converts C-coordinates into B-coordinates. That is,

. P
C B /�1 D P

B C (6)

Change of Basis in Rn

If B D fb1; : : : ; bng and E is the standard basis fe1; : : : ; eng in Rn, then Œb1�E D b1,

and likewise for the other vectors in B. In this case, P
E B is the same as the change-of-

coordinates matrix PB introduced in Section 4.4, namely

PB D Œ b1 b2 � � � bn �

2 To remember how to construct the matrix, think of P
C B Œ x �B as a linear combination of the columns of

P
C B . The matrix-vector product is a C-coordinate vector, so the columns of P

C B should be C-coordinate
vectors, too.
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To change coordinates between two nonstandard bases inRn, we need Theorem 15.
The theorem shows that to solve the change-of-basis problem, we need the coordinate
vectors of the old basis relative to the new basis.

EXAMPLE 2 Let b1 D

�
�9

1

�
, b2 D

�
�5

�1

�
, c1 D

�
1

�4

�
, c2 D

�
3

�5

�
, and con-

sider the bases for R2 given by B D fb1; b2g and C D fc1; c2g. Find the change-of-
coordinates matrix from B to C.

SOLUTION The matrix P
C B involves the C-coordinate vectors of b1 and b2. Let

Œ b1 �C D

�
x1

x2

�
and Œ b2 �C D

�
y1

y2

�
. Then, by definition,

�
c1 c2

�� x1

x2

�
D b1 and

�
c1 c2

�� y1

y2

�
D b2

To solve both systems simultaneously, augment the coefficient matrix with b1 and b2,
and row reduce:�

c1 c2 b1 b2

�
D

�
1 3 �9 �5

�4 �5 1 �1

�
�

�
1 0 6 4

0 1 �5 �3

�
(7)

Thus

Œ b1 �C D

�
6

�5

�
and Œ b2 �C D

�
4

�3

�
The desired change-of-coordinates matrix is therefore

P
C B D

�
Œ b1 �C Œ b2 �C

�
D

�
6 4

�5 �3

�
Observe that the matrix P

C B in Example 2 already appeared in (7). This is not

surprising because the first column of P
C B results from row reducing Œ c1 c2 b1 � to

Œ I Œ b1 �C �, and similarly for the second column of P
C B . Thus

Œ c1 c2 b1 b2 � � Œ I P
C B �

An analogous procedure works for finding the change-of-coordinates matrix between
any two bases in Rn.

EXAMPLE 3 Let b1 D

�
1

�3

�
, b2 D

�
�2

4

�
, c1 D

�
�7

9

�
, c2 D

�
�5

7

�
, and con-

sider the bases for R2 given by B D fb1; b2g and C D fc1; c2g.

a. Find the change-of-coordinates matrix from C to B.
b. Find the change-of-coordinates matrix from B to C.

SOLUTION

a. Notice that P
B C is needed rather than P

C B , and compute�
b1 b2 c1 c2

�
D

�
1 �2 �7 �5

�3 4 9 7

�
�

�
1 0 5 3

0 1 6 4

�



4.6 Change of Basis 277

So
P

B C D

�
5 3

6 4

�
b. By part (a) and property (6) (with B and C interchanged),

P
C B D . P

B C /�1
D

1

2

�
4 �3

�6 5

�
D

�
2 �3=2

�3 5=2

�
Another description of the change-of-coordinates matrix P

C B uses the change-of-
coordinate matrices PB and PC that convert B-coordinates and C-coordinates, respec-
tively, into standard coordinates. Recall that for each x in Rn,

PBŒx�B D x; PCŒx�C D x; and Œx�C D P�1
C x

Thus
Œx�C D P�1

C x D P�1
C PBŒx�B

In Rn, the change-of-coordinates matrix P
C B may be computed as P�1

C PB. Actually,
for matrices larger than 2 � 2, an algorithm analogous to the one in Example 3 is faster
than computing P�1

C and then P�1
C PB. See Exercise 22 in Section 2.2.

Practice Problems

1. Let F D ff1; f2g and G D fg1; g2g be bases for a vector space V , and let P be a
matrix whose columns are Œ f1 �G and Œ f2 �G . Which of the following equations is
satisfied by P for all v in V ?
(i) Œ v �F D P Œ v �G (ii) Œ v �G D PŒ v �F

2. Let B and C be as in Example 1. Use the results of that example to find the change-
of-coordinates matrix from C to B.

4.6 Exercises
1. LetB D fb1; b2g and C D fc1; c2g be bases for a vector space

V , and suppose b1 D 6c1 � 2c2 and b2 D 9c1 � 4c2.

a. Find the change-of-coordinates matrix from B to C.
b. Find Œ x �C for x D �3b1 C 2b2. Use part (a).

2. LetB D fb1; b2g and C D fc1; c2g be bases for a vector space
V , and suppose b1 D �c1 C 4c2 and b2 D 5c1 � 3c2.

a. Find the change-of-coordinates matrix from B to C.
b. Find Œ x �C for x D 5b1 C 3b2.

3. Let U D fu1; u2g andW D fw1;w2g be bases for V , and let
P be a matrix whose columns are Œu1�W and Œu2�W . Which
of the following equations is satisfied by P for all x in V ?

(i) Œ x �U D P Œ x �W (ii) Œ x �W D P Œ x �U

4. Let A D fa1; a2; a3g and D D fd1; d2; d3g be bases for V ,
and let P D Œ Œd1�A Œd2�A Œd3�A �. Which of the follow-
ing equations is satisfied by P for all x in V ?

(i) Œ x �A D P Œ x �D (ii) Œ x �D D P Œ x �A

5. Let A D fa1; a2; a3g and B D fb1; b2; b3g be bases
for a vector space V , and suppose a1 D 4b1 � b2,
a2 D �b1 C b2 C b3, and a3 D b2 � 2b3.

a. Find the change-of-coordinates matrix from A to B.
b. Find Œ x �B for x D 3a1 C 4a2 C a3.

6. Let D D fd1; d2; d3g and F D ff1; f2; f3g be bases for
a vector space V , and suppose f1 D 2d1 � d2 C d3,
f2 D 3d2 C d3, and f3 D �3d1 C 2d3.

a. Find the change-of-coordinates matrix from F to D.
b. Find Œ x �D for x D f1 � 2f2 C 2f3.

In Exercises 7–10, let B D fb1; b2g and C D fc1; c2g be bases for
R2. In each exercise, find the change-of-coordinates matrix from
B to C and the change-of-coordinates matrix from C to B.

7. b1 D

�
7

5

�
, b2 D

�
�3

�1

�
, c1 D

�
1

�5

�
, c2 D

�
�2

2

�

8. b1 D

�
�3

1

�
, b2 D

�
�4

1

�
, c1 D

�
5

1

�
, c2 D

�
4

1

�
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9. b1 D

�
�6

�1

�
, b2 D

�
2

0

�
, c1 D

�
2

�1

�
, c2 D

�
6

�2

�
10. b1 D

�
8

�3

�
, b2 D

�
3

�1

�
, c1 D

�
2

1

�
, c2 D

�
7

3

�
In Exercises 11–14, B and C are bases for a vector space V. Mark
each statement True or False (T/F). Justify each answer.

11. (T/F)The columns of the change-of-coordinatesmatrix P
C B

are B-coordinate vectors of the vectors in C.

12. (T/F) The columns of P
C B are linearly independent.

13. (T/F) If V D Rn and C is the standard basis for V , then
P

C B is the same as the change-of-coordinates matrix PB

introduced in Section 4.4.

14. (T/F) If V D R2, B D fb1; b2g, and C D fc1; c2g, then row
reduction of Œ c1 c2 b1 b2 � to Œ I P � produces a ma-
trix P that satisfies Œ x �B D P Œ x �C for all x in V .

15. In P2, find the change-of-coordinates matrix from the basis
B D f1 � 2t C t2; 3 � 5t C 4t2; 2t C 3t2g to the standard
basis C D f1; t; t2g. Then find the B-coordinate vector for
�1C 2t .

16. In P2, find the change-of-coordinates matrix from the ba-
sis B D f1 � 3t2; 2C t � 5t2; 1C 2tg to the standard basis.
Then write t2 as a linear combination of the polynomials inB.

Exercises 17 and 18 provide a proof of Theorem 15. Fill in a
justification for each step.

17. Given v in V , there exist scalars x1; : : : ; xn, such that

v D x1b1 C x2b2 C � � � C xnbn

because (a) . Apply the coordinate mapping deter-
mined by the basis C, and obtain

Œv�C D x1Œb1�C C x2Œb2�C C � � � C xnŒbn�C

because (b) . This equation may be written in the form

Œ v �C D
�
Œ b1 �C Œ b2 �C � � � Œ bn �C

�264 x1
:::

xn

375 .8/

by the definition of (c) . This shows that the matrix
P

C B shown in (5) satisfies Œv�C D P
C B Œv�B for each v in

V , because the vector on the right side of (8) is (d) .

18. Suppose Q is any matrix such that

Œv�C D QŒv�B for each v in V .9/

Set v D b1 in (9). Then (9) shows that Œb1�C is the first column
of Q because (a) . Similarly, for k D 2; : : : ; n, the kth
column of Q is (b) because (c) . This shows

that the matrix P
C B defined by (5) in Theorem 15 is the only

matrix that satisfies condition (4).

T 19. Let B D fx0; : : : ; x6g and C D fy0; : : : ; y6g, where xk is the
function cosk t and yk is the function cos kt . Exercise 54 in
Section 4.5 showed that both B and C are bases for the vector
space H D Span fx0; : : : ; x6g.

a. Set P D
�

Œ y0 �B � � � Œ y6 �B

�
, and calculate P�1.

b. Explain why the columns of P�1 are the C-coordinate
vectors of x0; : : : ; x6. Then use these coordinate vectors to
write trigonometric identities that express powers of cos t

in terms of the functions in C.
See the Study Guide.

T 20. (Calculus required)3 Recall from calculus that integrals
such asZ

.5 cos3 t � 6 cos4 t C 5 cos5 t � 12 cos6 t / dt .10/

are tedious to compute. (The usual method is to apply inte-
gration by parts repeatedly and use the half-angle formula.)
Use the matrixP orP�1 from Exercise 19 to transform (10);
then compute the integral.

T 21. Let

P D

24 1 2 �1

�3 �5 0

4 6 1

35,
v1 D

24�2

2

3

35, v2 D

24�8

5

2

35, v3 D

24�7

2

6

35
a. Find a basis fu1; u2; u3g for R3 such that P is the

change-of-coordinates matrix from fu1; u2; u3g to the ba-

sis fv1; v2; v3g. [Hint: What do the columns of P
C B

represent?]

b. Find a basis fw1;w2;w3g forR3 such thatP is the change-
of-coordinates matrix from fv1; v2; v3g to fw1;w2;w3g.

T 22. Let B D fb1; b2g, C D fc1; c2g, and D D fd1; d2g be bases
for a two-dimensional vector space.

a. Write an equation that relates the matrices P
C B ,

P
D C ,

and P
D B . Justify your result.

b. Use a matrix program either to help you find the equation
or to check the equation you write. Work with three bases
for R2. (See Exercises 7–10.)

3 The idea for Exercises 19 and 20 and five related exercises in earlier
sections came from a paper by Jack W. Rogers, Jr., of Auburn University,
presented at a meeting of the International Linear Algebra Society,
August 1995. See “Applications of Linear Algebra in Calculus,” American
Mathematical Monthly 104 (1), 1997.
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Solutions to Practice Problems

1. Since the columns of P are G-coordinate vectors, a vector of the form P x must be
a G-coordinate vector. Thus P satisfies equation (ii).

2. The coordinate vectors found in Example 1 show that

P
C B D

�
Œ b1 �C Œ b2 �C

�
D

�
4 �6

1 1

�
Hence

P
B C D . P

C B /�1
D

1

10

�
1 6

�1 4

�
D

�
:1 :6

�:1 :4

�

4.7 Digital Signal Processing

Introduction
In the space of just a few decades, digital signal processing (DSP) has led to a dramatic
shift in how data is collected, processed, and synthesized. DSP models unify the
approach to dealing with data that was previously viewed as unrelated. From stock
market analysis to telecommunications and computer science, the data collected over
time can be viewed as discrete-time signals and DSP used to store and process the data
for more efficient and effective use. Not only do digital signals arise in electrical and
control systems engineering, but discrete-data sequences are also generated in biology,
physics, economics, demography, andmany other areas, wherever a process is measured,
or sampled, at discrete time intervals. In this section, we will explore the properties of
the discrete-time signal space, S, and some of its subspaces, as well as how linear trans-
formations can be used to process, filter, and synthesize the data contained in signals.

Discrete-Time Signals
The vector space S of discrete-time signals was introduced in Section 4.1. A signal in S
is an infinite sequence of numbers, fykg, where the subscripts k range over all integers.
Table 1 shows several examples of signals.

TABLE 1 Examples of Signals

Signals

Name Symbol Vector Formal Description

delta ı .: : : ; 0; 0; 0; 1; 0; 0; 0; : : :/ fdkg, where dk D

(
1 if k D 0

0 if k ¤ 0

unit step � .: : : ; 0; 0; 0; 1; 1; 1; 1; : : :/ fukg, where uk D

(
1 if k � 0

0 if k < 0

constant � .: : : ; 1; 1; 1; 1; 1; 1; 1; : : :/ fckg, where ck D 1

alternating ˛ .: : : ;�1; 1;�1; 1;�1; 1;�1; : : :/ fakg, where ak D .�1/k

Fibonacci F .: : : ; 2;�1; 1; 0; 1; 1; 2; : : :/ ffkg, where fk D

8̂̂̂̂
<̂
ˆ̂̂:

0 if k D 0

1 if k D 1

fk�1 C fk�2 if k > 1

fkC2 � fkC1 if k < 0

exponential �c .: : : ; c�2; c�1; c0; c1; c2; : : :/ fekg, where ek D ck

"

k D 0



298 CHAPTER 5 Eigenvalues and Eigenvectors

system) because it describes the changes in a system as
time passes.

The 18% juvenile survival rate in the Lamberson stage
matrix is the entry affected most by the amount of old-
growth forest available. Actually, 60% of the juveniles
normally survive to leave the nest, but in the Willow
Creek region of California studied by Lamberson and his
colleagues, only 30% of the juveniles that left the nest were
able to find new home ranges. The rest perished during the
search process.

A significant reason for the failure of owls to find new
home ranges is the increasing fragmentation of old-growth
timber stands due to clear-cutting of scattered areas on
the old-growth land. When an owl leaves the protective
canopy of the forest and crosses a clear-cut area, the risk of
attack by predators increases dramatically. Section 5.6 will
show that the model described in the chapter introduction
predicts the eventual demise of the spotted owl, but that if
50% of the juveniles who survive to leave the nest also find
new home ranges, then the owl population will thrive.

The goal of this chapter is to dissect the action of a linear transformation x 7!Ax into
elements that are easily visualized. All matrices in the chapter are square. The main
applications described here are to discrete dynamical systems, differential equations, and
Markov chains. However, the basic concepts—eigenvectors and eigenvalues—are useful
throughout pure and applied mathematics, and they appear in settings far more general
than we consider here. Eigenvalues are also used to study differential equations and
continuous dynamical systems, they provide critical information in engineering design,
and they arise naturally in fields such as physics and chemistry.

5.1 Eigenvectors and Eigenvalues
Although a transformation x 7!Ax may move vectors in a variety of directions, it often
happens that there are special vectors on which the action of A is quite simple.

EXAMPLE 1 Let A D

�
3 �2

1 0

�
, u D

�
�1

1

�
, and v D

�
2

1

�
. The images of u and

v under multiplication by A are shown in Figure 1. In fact, Av is just 2v. So A only
“stretches” or dilates v.

v

x1

x2

Av

Au

u 1

1

FIGURE 1 Effects of multiplication by A.
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This section studies equations such as

Ax D 2x or Ax D �4x

where special vectors are transformed by A into scalar multiples of themselves.

DEFINITION An eigenvector of an n � n matrix A is a nonzero vector x such that Ax D �x for
some scalar �. A scalar � is called an eigenvalue ofA if there is a nontrivial solution
x of Ax D �x; such an x is called an eigenvector corresponding to �.1

It is easy to determine if a given vector is an eigenvector of a matrix. See Example
2. It is also easy to decide if a specified scalar is an eigenvalue. See Example 3.

EXAMPLE 2 Let A D

�
1 6

5 2

�
, u D

�
6

�5

�
, and v D

�
3

�2

�
. Are u and v eigen-

vectors of A?

SOLUTION

Au D
�

1 6

5 2

��
6

�5

�
D

�
�24

20

�
D �4

�
6

�5

�
D �4u

Av D
�

1 6

5 2

��
3

�2

�
D

�
�9

11

�
¤ �

�
3

�2

�
Thus u is an eigenvector corresponding to an eigenvalue .�4/, but v is not an eigenvector
of A, because Av is not a multiple of v.

Au

Av

v

u

20

230 30

210

220

x1

x2

Au D �4u, but Av ¤ �v .

EXAMPLE 3 Show that 7 is an eigenvalue of matrix A in Example 2, and find the
corresponding eigenvectors.

SOLUTION The scalar 7 is an eigenvalue of A if and only if the equation

Ax D 7x (1)

has a nontrivial solution. But (1) is equivalent to Ax � 7x D 0, or

.A � 7I /x D 0 (2)

To solve this homogeneous equation, form the matrix

A � 7I D

�
1 6

5 2

�
�

�
7 0

0 7

�
D

�
�6 6

5 �5

�
The columns ofA � 7I are obviously linearly dependent, so (2) has nontrivial solutions.
Thus 7 is an eigenvalue ofA. To find the corresponding eigenvectors, use row operations:�

�6 6 0

5 �5 0

�
�

�
1 �1 0

0 0 0

�
The general solution has the form x2

�
1

1

�
. Each vector of this form with x2 ¤ 0 is an

eigenvector corresponding to � D 7.

1Note that an eigenvector must be nonzero, by definition, but an eigenvalue may be zero. The case in which
the number 0 is an eigenvalue is discussed after Example 5.
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Warning: Although row reduction was used in Example 3 to find eigenvectors, it
cannot be used to find eigenvalues. An echelon form of a matrix A usually does not
display the eigenvalues of A.

The equivalence of equations (1) and (2) obviously holds for any� in place of� D 7.
Thus � is an eigenvalue of an n � n matrix A if and only if the equation

.A � �I/x D 0 (3)

has a nontrivial solution. The set of all solutions of (3) is just the null space of the matrix
A � �I . So this set is a subspace of Rn and is called the eigenspace of A corresponding
to �. The eigenspace consists of the zero vector and all the eigenvectors corresponding
to �.

Example 3 shows that for matrix A in Example 2, the eigenspace corresponding to
� D 7 consists of all multiples of .1; 1/, which is the line through .1; 1/ and the origin.
From Example 2, you can check that the eigenspace corresponding to � D �4 is the
line through .6;�5/. These eigenspaces are shown in Figure 2, along with eigenvectors
.1; 1/ and .3=2;�5=4/ and the geometric action of the transformation x 7!Ax on each
eigenspace.

x1

x2

Eigenspace
for l 5 7

Multiplication
by 7

Eigenspace
for l 5 24

Multiplication
by 24

2

2

(6, 25)

FIGURE 2 Eigenspaces for � D �4 and � D 7.

EXAMPLE 4 LetA D

24 4 �1 6

2 1 6

2 �1 8

35. An eigenvalue ofA is 2. Find a basis for the

corresponding eigenspace.

SOLUTION Form

A � 2I D

24 4 �1 6

2 1 6

2 �1 8

35 � 24 2 0 0

0 2 0

0 0 2

35 D 24 2 �1 6

2 �1 6

2 �1 6

35
and row reduce the augmented matrix for .A � 2I /x D 0:24 2 �1 6 0

2 �1 6 0

2 �1 6 0

35 � 24 2 �1 6 0

0 0 0 0

0 0 0 0

35
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At this point, it is clear that 2 is indeed an eigenvalue of A because the equation
.A � 2I /x D 0 has free variables. The general solution is24 x1

x2

x3

35 D x2

24 1=2

1

0

35C x3

24�3

0

1

35; x2 and x3 free

The eigenspace, shown in Figure 3, is a two-dimensional subspace of R3. A basis is8<:
24 1

2

0

35;

24�3

0

1

359=;

Eigenspace for l5 2

Multiplication by A

x2

x1

x3

Eigenspace for l5 2

x2

x1

x3

FIGURE 3 A acts as a dilation on the eigenspace.

Reasonable Answers

Remember that once you find a potential eigenvector v, you can easily check your
answer: just find Av and see if it is a multiple of v. For example, to check whether

v D
�

1

1

�
is an eigenvector ofA D

�
1 2

�1 �2

�
, noticeAv D

�
3

�3

�
, which

is not a multiple of v D
�

1

1

�
, establishing that v is not an eigenvector. It turns

out we had a sign error. The vector u D
�

1

�1

�
is a correct eigenvector for A

since Au D
�
�1

1

�
D �1

�
1

�1

�
D �1 u.

Numerical Notes

Example 4 shows a good method for manual computation of eigenvectors in
simple cases when an eigenvalue is known. Using a matrix program and row
reduction to find an eigenspace (for a specified eigenvalue) usually works, too, but
this is not entirely reliable. Roundoff error can lead occasionally to a reduced ech-
elon formwith the wrong number of pivots. The best computer programs compute
approximations for eigenvalues and eigenvectors simultaneously, to any desired
degree of accuracy, for matrices that are not too large. The size of matrices that
can be analyzed increases each year as computing power and software improve.
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The following theorem describes one of the few special cases in which eigenvalues
can be found precisely. Calculation of eigenvalues will also be discussed in Section 5.2.

THEOREM 1 The eigenvalues of a triangular matrix are the entries on its main diagonal.

PROOF For simplicity, consider the 3 � 3 case. If A is upper triangular, then A � �I

has the form

A � �I D

24 a11 a12 a13

0 a22 a23

0 0 a33

35 � 24 � 0 0

0 � 0

0 0 �

35
D

24 a11 � � a12 a13

0 a22 � � a23

0 0 a33 � �

35
The scalar � is an eigenvalue of A if and only if the equation .A � �I/x D 0 has a
nontrivial solution, that is, if and only if the equation has a free variable. Because of the
zero entries in A � �I , it is easy to see that .A � �I/x D 0 has a free variable if and
only if at least one of the entries on the diagonal of A � �I is zero. This happens if and
only if � equals one of the entries a11, a22, a33 in A. For the case in which A is lower
triangular, see Exercise 36.

EXAMPLE 5 Let A D

24 3 6 �8

0 0 6

0 0 2

35 and B D

24 4 0 0

�2 1 0

5 3 4

35. The eigenval-
ues of A are 3, 0, and 2. The eigenvalues of B are 4 and 1.

What does it mean for a matrix A to have an eigenvalue of 0, such as in Example 5?
This happens if and only if the equation

Ax D 0x (4)

has a nontrivial solution. But (4) is equivalent toAx D 0, which has a nontrivial solution
if and only if A is not invertible. Thus 0 is an eigenvalue of A if and only if A is not
invertible. This fact will be added to the Invertible Matrix Theorem in Section 5.2.

The following important theorem will be needed later. Its proof illustrates a typical
calculation with eigenvectors. One way to prove the statement “If P then Q” is to show
that P and the negation of Q leads to a contradiction. This strategy is used in the proof
of the theorem.

THEOREM 2 If v1; : : : ; vr are eigenvectors that correspond to distinct eigenvalues �1; : : : ; �r of
an n � n matrix A, then the set fv1; : : : ; vrg is linearly independent.

PROOF Suppose fv1; : : : ; vrg is linearly dependent. Since v1 is nonzero, Theorem 7 in
Section 1.7 says that one of the vectors in the set is a linear combination of the preceding
vectors. Let p be the least index such that vpC1 is a linear combination of the preceding
(linearly independent) vectors. Then there exist scalars c1; : : : ; cp such that

c1v1 C � � � C cpvp D vpC1 (5)
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Multiplying both sides of (5) by A and using the fact that Avk D �kvk for each k, we
obtain

c1Av1 C � � � C cpAvp D AvpC1

c1�1v1 C � � � C cp�pvp D �pC1vpC1 (6)

Multiplying both sides of (5) by �pC1 and subtracting the result from (6), we have

c1.�1 � �pC1/v1 C � � � C cp.�p � �pC1/vp D 0 (7)

Since fv1; : : : ; vpg is linearly independent, the weights in (7) are all zero. But none of
the factors �i � �pC1 are zero, because the eigenvalues are distinct. Hence ci D 0 for
i D 1; : : : ; p. But then (5) says that vpC1 D 0, which is impossible. Hence fv1; : : : ; vrg

cannot be linearly dependent and therefore must be linearly independent.

Eigenvectors and Difference Equations
This section concludes by showing how to construct solutions of the first-order difference
equation discussed in the chapter introductory example:

xkC1 D Axk .k D 0; 1; 2; : : :/ (8)

If A is an n � n matrix, then (8) is a recursive description of a sequence fxkg in Rn.
A solution of (8) is an explicit description of fxkg whose formula for each xk does not
depend directly on A or on the preceding terms in the sequence other than the initial
term x0.

The simplest way to build a solution of (8) is to take an eigenvector x0 and its
corresponding eigenvalue � and let

xk D �kx0 .k D 1; 2; : : :/ (9)

This sequence is a solution because

Axk D A.�kx0/ D �k.Ax0/ D �k.�x0/ D �kC1x0 D xkC1

Linear combinations of solutions in the form of equation (9) are solutions, too! See
Exercise 41.

Practice Problems

1. Is 5 an eigenvalue of A D

24 6 �3 1

3 0 5

2 2 6

35?
2. If x is an eigenvector of A corresponding to �, what is A3x?

3. Suppose that b1 and b2 are eigenvectors corresponding to distinct eigenvalues �1

and �2, respectively, and suppose that b3 and b4 are linearly independent eigen-
vectors corresponding to a third distinct eigenvalue �3. Does it necessarily follow
that fb1; b2; b3; b4g is a linearly independent set? [Hint: Consider the equation
c1b1 C c2b2 C .c3b3 C c4b4/ D 0.]

4. If A is an n�n matrix and � is an eigenvalue of A, show that 2� is an eigenvalue
of 2A.
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5.1 Exercises

1. Is � D 2 an eigenvalue of
�

3 2

3 8

�
? Why or why not?

2. Is � D �2 an eigenvalue of
�

7 3

3 �1

�
? Why or why not?

3. Is
�

1

4

�
an eigenvector of

�
�3 1

�3 8

�
? If so, find the eigen-

value.

4. Is
�
�1

1

�
an eigenvector of

�
4 2

2 4

�
? If so, find the eigen-

value.

5. Is

24 4

�3

1

35 an eigenvector of

24 3 7 9

�4 �5 1

2 4 4

35? If so, find
the eigenvalue.

6. Is

24 1

�2

1

35 an eigenvector of

24 2 6 7

3 2 7

5 6 4

35? If so, find the
eigenvalue.

7. Is � D 4 an eigenvalue of

24 3 0 �1

2 3 1

�3 4 5

35? If so, find one
corresponding eigenvector.

8. Is � D 3 an eigenvalue of

24 1 2 2

3 �2 1

0 1 1

35? If so, find one
corresponding eigenvector.

In Exercises 9–16, find a basis for the eigenspace corresponding
to each listed eigenvalue.

9. A D

�
9 0

2 3

�
, � D 3; 9

10. A D

�
14 �4

16 �2

�
, � D 6

11. A D

�
4 �2

�3 9

�
, � D 10

12. A D

�
1 4

3 2

�
, � D �2; 5

13. A D

24 4 0 1

�2 1 0

�2 0 1

35, � D 1; 2; 3

14. A D

24 3 �1 3

�1 3 3

6 6 2

35, � D �4

15. A D

24 8 3 �4

�1 4 4

2 6 �1

35, � D 7

16. A D

2664
3 0 2 0

1 3 1 0

0 1 1 0

0 0 0 4

3775, � D 4

Find the eigenvalues of the matrices in Exercises 17 and 18.

17.

24 0 0 0

0 2 5

0 0 �1

35 18.

24 8 0 0

�7 0 0

6 �5 �4

35
19. For A D

24 1 2 3

1 2 3

1 2 3

35, find one eigenvalue, with no cal-
culation. Justify your answer.

20. Without calculation, find one eigenvalue and two linearly

independent eigenvectors of A D

24 4 4 �4

4 4 �4

4 4 �4

35. Justify
your answer.

In Exercises 21–30, A is an n � n matrix. Mark each statement
True or False (T/F). Justify each answer.

21. (T/F) If Ax D �x for some vector x, then � is an eigenvalue
of A.

22. (T/F) If Ax D �x for some scalar �, then x is an eigenvector
of A.

23. (T/F)AmatrixA is invertible if and only if 0 is an eigenvalue
of A.

24. (T/F) A number c is an eigenvalue of A if and only if the
equation .A � cI /x D 0 has a nontrivial solution.

25. (T/F) Finding an eigenvector of A may be difficult, but
checking whether a given vector is in fact an eigenvector is
easy.

26. (T/F) To find the eigenvalues ofA, reduceA to echelon form.

27. (T/F) If v1 and v2 are linearly independent eigenvectors, then
they correspond to distinct eigenvalues.

28. (T/F) The eigenvalues of a matrix are on its main diagonal.

29. (T/F) If v is an eigenvector with eigenvalue 2, then 2v is an
eigenvector with eigenvalue 4.

30. (T/F) An eigenspace of A is a null space of a certain matrix.

31. Explain why a 2 � 2 matrix can have at most two distinct
eigenvalues. Explain why an n � n matrix can have at most
n distinct eigenvalues.

32. Construct an example of a 2 � 2matrix with only one distinct
eigenvalue.
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33. Let � be an eigenvalue of an invertible matrix A. Show that
��1 is an eigenvalue of A�1. [Hint: Suppose a nonzero x
satisfies Ax D �x.]

34. Show that if A2 is the zero matrix, then the only eigenvalue
of A is 0.

35. Show that � is an eigenvalue of A if and only if � is an
eigenvalue of AT . [Hint: Find out how A � �I and AT � �I

are related.]

36. Use Exercise 35 to complete the proof of Theorem 1 for the
case when A is lower triangular.

37. Consider an n � n matrix A with the property that the row
sums all equal the same number s. Show that s is an eigen-
value of A. [Hint: Find an eigenvector.]

38. Consider an n � nmatrixAwith the property that the column
sums all equal the same number s. Show that s is an eigen-
value of A. [Hint: Use Exercises 35 and 37.]

In Exercises 39 and 40, let A be the matrix of the linear transfor-
mation T . Without writingA, find an eigenvalue ofA and describe
the eigenspace.

39. T is the transformation onR2 that reflects points across some
line through the origin.

40. T is the transformation on R3 that rotates points about some
line through the origin.

41. Let u and v be eigenvectors of a matrixA, with corresponding
eigenvalues � and �, and let c1 and c2 be scalars. Define

xk D c1�kuC c2�kv .k D 0; 1; 2; : : :/

a. What is xkC1, by definition?

b. Compute Axk from the formula for xk , and show that
Axk D xkC1. This calculation will prove that the se-
quence fxkg defined above satisfies the difference equa-
tion xkC1 D Axk .k D 0; 1; 2; : : :/.

42. Describe how you might try to build a solution of a difference
equation xkC1 D Axk .k D 0; 1; 2; : : :/ if you were given the

initial x0 and this vector did not happen to be an eigenvector
of A. [Hint: How might you relate x0 to eigenvectors of A?]

43. Let u and v be the vectors shown in the figure, and suppose
u and v are eigenvectors of a 2 � 2 matrix A that correspond
to eigenvalues 2 and 3, respectively. Let T W R2 ! R2 be the
linear transformation given by T .x/ D Ax for each x in R2,
and letw D uC v.Make a copy of the figure, and on the same
coordinate system, carefully plot the vectors T .u/, T .v/, and
T .w/.

x1

x2

v

u

44. Repeat Exercise 43, assuming u and v are eigenvectors of A

that correspond to eigenvalues �1 and 3, respectively.

T In Exercises 45–48, use a matrix program to find the eigenval-
ues of the matrix. Then use the method of Example 4 with a row
reduction routine to produce a basis for each eigenspace.

45.

24 8 �10 �5

2 17 2

�9 �18 4

35

46.

2664
9 �4 �2 �4

�56 32 �28 44

�14 �14 6 �14

42 �33 21 �45

3775

47.

266664
4 �9 �7 8 2

�7 �9 0 7 14

5 10 5 �5 �10

�2 3 7 0 4

�3 �13 �7 10 11

377775

48.

266664
�4 �4 20 �8 �1

14 12 46 18 2

6 4 �18 8 1

11 7 �37 17 2

18 12 �60 24 5

377775
Solutions to Practice Problems

1. The number 5 is an eigenvalue of A if and only if the equation .A � 5I /x D 0 has
a nontrivial solution. Form

A � 5I D

24 6 �3 1

3 0 5

2 2 6

35 � 24 5 0 0

0 5 0

0 0 5

35 D 24 1 �3 1

3 �5 5

2 2 1

35
and row reduce the augmented matrix:24 1 �3 1 0

3 �5 5 0

2 2 1 0

35 � 24 1 �3 1 0

0 4 2 0

0 8 �1 0

35 � 24 1 �3 1 0

0 4 2 0

0 0 �5 0

35
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Solutions to Practice Problems (Continued)

At this point, it is clear that the homogeneous system has no free variables. Thus
A � 5I is an invertible matrix, which means that 5 is not an eigenvalue of A.

2. If x is an eigenvector of A corresponding to �, then Ax D �x and so

A2x D A.�x/ D �Ax D �2x

Again, A3x D A.A2x/ D A.�2x/ D �2Ax D �3x. The general pattern, Akx D
�kx, is proved by induction.

3. Yes. Suppose c1b1 C c2b2 C .c3b3 C c4b4/ D 0. Since any linear combination of
eigenvectors corresponding to the same eigenvalue is in the eigenspace for that
eigenvalue, c3b3 C c4b4 is either 0 or an eigenvector for �3. If c3b3 C c4b4 were an
eigenvector for �3, then by Theorem 2, fb1; b2; c3b3 C c4b4g would be a linearly
independent set, which would force c1 D c2 D 0 and c3b3 C c4b4 D 0, contradict-
ing that c3b3 C c4b4 is an eigenvector. Thus c3b3 C c4b4 must be 0, implying that
c1b1 C c2b2 D 0 also. By Theorem 2, fb1; b2g is a linearly independent set so
c1 D c2 D 0. Moreover, fb3; b4g is a linearly independent set so c3 D c4 D 0. Since
all of the coefficients c1, c2, c3, and c4 must be zero, it follows that fb1, b2, b3, b4g

is a linearly independent set.

4. Since � is an eigenvalue of A, there is a nonzero vector x in Rn such that Ax D �x.
Multiplying both sides of this equation by 2 results in the equation 2.Ax/ D 2.�x/.
Thus .2A/x D .2�/x and hence 2� is an eigenvalue of 2A.

5.2 The Characteristic Equation
Useful information about the eigenvalues of a square matrix A is encoded in a special
scalar equation called the characteristic equation of A. A simple example will lead to
the general case.

EXAMPLE 1 Find the eigenvalues of A D

�
2 3

3 �6

�
.

SOLUTION We must find all scalars � such that the matrix equation

.A � �I/x D 0

has a nontrivial solution. By the Invertible Matrix Theorem in Section 2.3, this problem
is equivalent to finding all � such that the matrix A � �I is not invertible, where

A � �I D

�
2 3

3 �6

�
�

�
� 0

0 �

�
D

�
2 � � 3

3 �6 � �

�
By Theorem 4 in Section 2.2, this matrix fails to be invertible precisely when its

determinant is zero. So the eigenvalues of A are the solutions of the equation

det.A � �I/ D det
�

2 � � 3

3 �6 � �

�
D 0

Recall that

det
�

a b

c d

�
D ad � bc
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So

det.A � �I/ D .2 � �/.�6 � �/ � .3/.3/

D �12C 6� � 2�C �2
� 9

D �2
C 4� � 21

D .� � 3/.�C 7/

If det.A � �I/ D 0, then � D 3 or � D �7. So the eigenvalues of A are 3 and �7.

Determinants
The determinant in Example 1 transformed the matrix equation .A � �l/ x D 0, which
involves two unknowns � and x, into the scalar equation �2 C 4� � 21 D 0, which
involves only one unknown. The same idea works for n � n matrices.

Before turning to larger matrices, recall from Section 3.1 that the matrix Aij is
obtained from A by deleting the i th row and j th column. The determinant of an n � n

matrix A can be computed by an expansion across any row or down any column. The
expansion across the i th row is given by

detA D .�1/iC1ai1 detAi1 C .�1/iC2ai2 detAi2 C � � � C .�1/iCnain detAin

The expansion down the j th column is given by

detA D .�1/1Cj a1j detA1j C .�1/2Cj a2j detA2j C � � � C .�1/nCj anj detAnj

EXAMPLE 2 Compute the determinant of

A D

242 3 1

4 0 �1

0 2 1

35
SOLUTION Any row or column can be chosen for the expansion. For example,
expanding down the first column of A results in

detA D a11 detA11 � a21 detA21 C a31 detA31

D 2 det
�

0 �1

2 1

�
� 4 det

�
3 1

2 1

�
C 0 det

�
3 1

0 �1

�
D 2.0 � .�2//�4 .3 � 2/C 0.�3 � 0/D 0

The next theorem lists facts from Sections 3.1 and 3.2 and is included here for
convenient reference.

THEOREM 3 Properties of Determinants

Let A and B be n � n matrices.

a. A is invertible if and only if detA ¤ 0.

b. detAB D .detA/.detB/.

c. detAT D detA.

d. If A is triangular, then detA is the product of the entries on the main diagonal
of A.
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e. A row replacement operation on A does not change the determinant. A row
interchange changes the sign of the determinant. A row scaling also scales the
determinant by the same scalar factor.

Recall that A is invertible if and only if the equation Ax D 0 has only the trivial
solution. Notice that the number 0 is an eigenvalue of A if and only if there is a nonzero
vector x such thatAx D 0x D 0, which happens if and only if 0 D det.A � 0I / D detA.
Hence A is invertible if and only if 0 is not an eigenvalue.

THEOREM The Invertible Matrix Theorem (continued)

Let A be an n � n matrix. Then A is invertible if and only if

r. The number 0 is not an eigenvalue of A.

The Characteristic Equation
Theorem 3(a) shows how to determine when a matrix of the form A � �I is not
invertible. The scalar equation det.A � �I/ D 0 is called the characteristic equation
of A, and the argument in Example 1 justifies the following fact.

A scalar � is an eigenvalue of an n � n matrix A if and only if � satisfies the
characteristic equation

det.A � �I/ D 0

EXAMPLE 3 Find the characteristic equation of

A D

2664
5 �2 6 �1

0 3 �8 0

0 0 5 4

0 0 0 1

3775
SOLUTION Form A � �I , and use Theorem 3(d):

det.A � �I/ D det

2664
5 � � �2 6 �1

0 3 � � �8 0

0 0 5 � � 4

0 0 0 1 � �

3775
D .5 � �/.3 � �/.5 � �/.1 � �/

The characteristic equation is

.5 � �/2.3 � �/.1 � �/ D 0
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or
.� � 5/2.� � 3/.� � 1/ D 0

Expanding the product, we can also write

�4
� 14�3

C 68�2
� 130�C 75 D 0

Reasonable Answers

If you want to verify � is an eigenvalue of A, row reduce A � �I . If you get a
pivot in every column, something is amiss—the scalar � is not an eigenvalue of
A. Looking back at Example 3, notice that A � 5I; A � 3I , and A � I all have at
least one column without a pivot; however, if � is chosen to be any number other
than 5, 3, or 1, the matrix A � �I has a pivot in every column.

In Examples 1 and 3, det .A � �I/ is a polynomial in �. It can be shown that if A is
an n � nmatrix, then det .A � �I/ is a polynomial of degree n called the characteristic
polynomial of A.

The eigenvalue 5 in Example 3 is said to have multiplicity 2 because .� � 5/

occurs two times as a factor of the characteristic polynomial. In general, the (algebraic)
multiplicity of an eigenvalue � is its multiplicity as a root of the characteristic equation.

EXAMPLE 4 The characteristic polynomial of a 6 � 6 matrix is �6 � 4�5 � 12�4.
Find the eigenvalues and their multiplicities.

SOLUTION Factor the polynomial

�6
� 4�5

� 12�4
D �4.�2

� 4� � 12/ D �4.� � 6/.�C 2/

The eigenvalues are 0 (multiplicity 4), 6 (multiplicity 1), and �2 (multiplicity 1).

We could also list the eigenvalues in Example 4 as 0; 0; 0; 0; 6, and �2, so that the
eigenvalues are repeated according to their multiplicities.

Because the characteristic equation for an n � n matrix involves an nth-degree
polynomial, the equation has exactly n roots, counting multiplicities, provided complex
roots are allowed. Such complex roots, called complex eigenvalues, will be discussed in
Section 5.5. Until then, we consider only real eigenvalues, and scalars will continue to
be real numbers.

The characteristic equation is important for theoretical purposes. In practical work,
however, eigenvalues of any matrix larger than 2 � 2 should be found by a computer,
unless the matrix is triangular or has other special properties. Although a 3 � 3 charac-
teristic polynomial is easy to compute by hand, factoring it can be difficult (unless theSTUDY GUIDE has advice on how

to factor a polynomial. matrix is carefully chosen). See the Numerical Notes at the end of this section.

Similarity
The next theorem illustrates one use of the characteristic polynomial, and it provides
the foundation for several iterative methods that approximate eigenvalues. If A and
B are n � n matrices, then A is similar to B if there is an invertible matrix P

such that P�1AP D B , or, equivalently, A D PBP�1. Writing Q for P�1, we have
Q�1BQ D A. So B is also similar to A, and we say simply that A and B are similar.
Changing A into P�1AP is called a similarity transformation.
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THEOREM 4 If n � n matrices A and B are similar, then they have the same characteristic
polynomial and hence the same eigenvalues (with the same multiplicities).

PROOF If B D P�1AP, then

B � �I D P�1AP � �P�1P D P�1.AP � �P / D P�1.A � �I/P

Using the multiplicative property (b) in Theorem 3, we compute

det.B � �I/ D detŒP�1.A � �I/P �

D det.P�1/ � det.A � �I/ � det.P / (1)

Since det.P�1/ � det.P / D det.P�1P / D det I D 1, we see from equation (1) that
det.B � �I/ D det.A � �I/.

Warnings:

1. The matrices �
2 1

0 2

�
and

�
2 0

0 2

�
are not similar even though they have the same eigenvalues.

2. Similarity is not the same as row equivalence. (IfA is row equivalent toB , then
B D EA for some invertible matrix E.) Row operations on a matrix usually
change its eigenvalues.

Application to Dynamical Systems
Eigenvalues and eigenvectors hold the key to the discrete evolution of a dynamical
system, as mentioned in the chapter introduction.

EXAMPLE 5 Let A D

�
:95 :03

:05 :97

�
. Analyze the long-term behavior (as k

increases) of the dynamical system defined by xkC1 D Axk .k D 0; 1; 2; : : :/, with

x0 D

�
:6

:4

�
.

SOLUTION The first step is to find the eigenvalues of A and a basis for each
eigenspace. The characteristic equation for A is

0 D det
�

:95 � � :03

:05 :97 � �

�
D .:95 � �/.:97 � �/ � .:03/.:05/

D �2
� 1:92�C :92

By the quadratic formula

� D
1:92˙

p
.�1:92/2 � 4.:92/

2
D

1:92˙
p

:0064

2

D
1:92˙ :08

2
D 1 or :92
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It is readily checked that eigenvectors corresponding to � D 1 and � D :92 are
multiples of

v1 D

�
3

5

�
and v2 D

�
1

�1

�
respectively.

The next step is to write the given x0 in terms of v1 and v2. This can be done because
fv1; v2g is obviously a basis for R2. (Why?) So there exist weights c1 and c2 such that

x0 D c1v1 C c2v2 D Œ v1 v2 �

�
c1

c2

�
(2)

In fact, �
c1

c2

�
D Œ v1 v2 �

�1
x0 D

�
3 1

5 �1

��1�
:60

:40

�
D

1

�8

�
�1 �1

�5 3

��
:60

:40

�
D

�
:125

:225

�
(3)

Because v1 and v2 in (3) are eigenvectors of A, with Av1 D v1 and Av2 D :92v2, we
easily compute each xk :

x1 D Ax0 D c1Av1 C c2Av2 Using linearity of x 7! Ax

D c1v1 C c2.:92/v2 v1 and v2 are eigenvectors.

x2 D Ax1 D c1Av1 C c2.:92/Av2

D c1v1 C c2.:92/2v2

and so on. In general,

xk D c1v1 C c2.:92/kv2 .k D 0; 1; 2; : : :/

Using c1 and c2 from (4),

xk D :125

�
3

5

�
C :225.:92/k

�
1

�1

�
.k D 0; 1; 2; : : :/ (4)

This explicit formula for xk gives the solution of the difference equation xkC1 D Axk .

As k !1, .:92/k tends to zero and xk tends to
�

:375

:625

�
D :125v1.

The calculations in Example 5 have an interesting application to a Markov chain
discussed in Section 5.9. Those who read that section may recognize that matrix A

in Example 5 above is the same as the migration matrix M in Section 5.9, x0 is the
initial population distribution between city and suburbs, and xk represents the population
distribution after k years.

Numerical Notes

1. Computer software such as Mathematica and Maple can use symbolic calcu-
lations to find the characteristic polynomial of a moderate-sized matrix. But
there is no formula or finite algorithm to solve the characteristic equation of a
general n � n matrix for n � 5.
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Numerical Notes (Continued)

2. The best numerical methods for finding eigenvalues avoid the characteristic
polynomial entirely. In fact, MATLAB finds the characteristic polynomial
of a matrix A by first computing the eigenvalues �1; : : : ; �n of A and then
expanding the product .� � �1/.� � �2/ � � � .� � �n/.

3. Several common algorithms for estimating the eigenvalues of a matrix A

are based on Theorem 4. The powerful QR algorithm is discussed in the
exercises. Another technique, called Jacobi’s method, works when A D AT

and computes a sequence of matrices of the form

A1 D A and AkC1 D P�1
k AkPk .k D 1; 2; : : :/

Each matrix in the sequence is similar to A and so has the same eigenvalues
as A. The nondiagonal entries of AkC1 tend to zero as k increases, and the
diagonal entries tend to approach the eigenvalues of A.

4. Other methods of estimating eigenvalues are discussed in Section 5.8.

Practice Problem

Find the characteristic equation and eigenvalues of A D

�
1 �4

4 2

�
.

5.2 Exercises
Find the characteristic polynomial and the eigenvalues of the
matrices in Exercises 1–8.

1.
�

2 7

7 2

�
2.

�
8 4

4 8

�

3.
�

3 �2

1 �1

�
4.

�
5 �5

�2 3

�

5.
�

2 1

�1 4

�
6.

�
1 �4

4 6

�

7.
�

5 3

�4 4

�
8.

�
7 �2

2 3

�
Exercises 9–14 require techniques from Section 3.1. Find the char-
acteristic polynomial of each matrix using expansion across a row
or down a column. [Note: Finding the characteristic polynomial of
a 3 � 3 matrix is not easy to do with just row operations, because
the variable � is involved.]

9.

24 1 0 �1

2 3 �1

0 6 0

35 10.

24 0 3 1

3 0 2

1 2 0

35

11.

24 6 0 0

5 4 3

1 0 2

35 12.

24 1 0 1

�3 6 1

0 0 4

35

13.

24 6 �2 0

�2 9 0

5 8 3

35 14.

24 3 �2 3

0 �1 0

6 7 �4

35
For the matrices in Exercises 15–17, list the eigenvalues, repeated
according to their multiplicities.

15.

2664
7 �5 3 0

0 3 7 �5

0 0 5 �3

0 0 0 7

3775 16.

2664
5 0 0 0

8 �4 0 0

0 7 1 0

1 �5 2 1

3775

17.

266664
3 0 0 0 0

�5 1 0 0 0

3 8 0 0 0

0 �7 2 1 0

�4 1 9 �2 3

377775
18. It can be shown that the algebraic multiplicity of an eigen-

value � is always greater than or equal to the dimension of the
eigenspace corresponding to �. Find h in the matrix A below
such that the eigenspace for � D 6 is two-dimensional:

A D

2664
6 3 9 �5

0 9 h 2

0 0 6 8

0 0 0 7

3775
19. Let A be an n � n matrix, and suppose A has n real eigenval-

ues, �1; : : : ; �n, repeated according to multiplicities, so that
det.A � �I/ D .�1 � �/.�2 � �/ � � � .�n � �/
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Explain why detA is the product of the n eigenvalues of
A. (This result is true for any square matrix when complex
eigenvalues are considered.)

20. Use a property of determinants to show that A and AT have
the same characteristic polynomial.

In Exercises 21–30, A and B are n � n matrices. Mark each
statement True or False (T/F). Justify each answer.

21. (T/F) If 0 is an eigenvalue of A, then A is invertible.

22. (T/F) The zero vector is in the eigenspace of A associated
with an eigenvalue �.

23. (T/F) The matrix A and its transpose, AT, have different sets
of eigenvalues.

24. (T/F) The matrices A and B�1AB have the same sets of
eigenvalues for every invertible matrix B .

25. (T/F) If 2 is an eigenvalue ofA, thenA � 2I is not invertible.

26. (T/F) If two matrices have the same set of eigenvalues, then
they are similar.

27. (T/F) If �C 5 is a factor of the characteristic polynomial of
A, then 5 is an eigenvalue of A.

28. (T/F) The multiplicity of a root r of the characteristic equa-
tion of A is called the algebraic multiplicity of r as an
eigenvalue of A.

29. (T/F) The eigenvalue of the n � n identity matrix is 1 with
algebraic multiplicity n.

30. (T/F) The matrix A can have more than n eigenvalues.

A widely used method for estimating eigenvalues of a general
matrix A is the QR algorithm. Under suitable conditions, this al-
gorithm produces a sequence of matrices, all similar to A, that be-
come almost upper triangular, with diagonal entries that approach

the eigenvalues of A. The main idea is to factor A (or another
matrix similar to A) in the form A D Q1R1, where QT

1 D Q�1
1

and R1 is upper triangular. The factors are interchanged to form
A1 D R1Q1, which is again factored asA1 D Q2R2; then to form
A2 D R2Q2, and so on. The similarity of A; A1; : : : follows from
the more general result in Exercise 31.

31. Show that if A D QR with Q invertible, then A is similar to
A1 D RQ.

32. Show that if A and B are similar, then detA D detB .

T 33. Construct a random integer-valued 4 � 4matrixA, and verify
that A and AT have the same characteristic polynomial (the
same eigenvalues with the same multiplicities). DoA andAT

have the same eigenvectors? Make the same analysis of a
5 � 5 matrix. Report the matrices and your conclusions.

T 34. Construct a random integer-valued 4 � 4 matrix A.

a. Reduce A to echelon form U with no row scaling, and
compute detA. (If A happens to be singular, start over
with a new random matrix.)

b. Compute the eigenvalues of A and the product of these
eigenvalues (as accurately as possible).

c. List the matrix A, and, to four decimal places, list the
pivots in U and the eigenvalues ofA. Compute detAwith
your matrix program, and compare it with the products
you found in (a) and (b).

T 35. Let A D

24�6 28 21

4 �15 �12

�8 a 25

35. For each value of a in the

set f32; 31:9; 31:8; 32:1; 32:2g, compute the characteristic
polynomial of A and the eigenvalues. In each case, create a
graph of the characteristic polynomial p.t/ D det .A � tI /

for 0 � t � 3. If possible, construct all graphs on one coor-
dinate system. Describe how the graphs reveal the changes in
the eigenvalues as a changes.

Solution to Practice Problem

The characteristic equation is

0 D det.A � �I/ D det
�

1 � � �4

4 2 � �

�
D .1 � �/.2 � �/ � .�4/.4/ D �2

� 3�C 18

From the quadratic formula,

� D
3˙

p
.�3/2 � 4.18/

2
D

3˙
p
�63

2

It is clear that the characteristic equation has no real solutions, so A has no real
eigenvalues. The matrixA is acting on the real vector spaceR2, and there is no nonzero
vector v in R2 such that Av D �v for some scalar �.
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5.3 Diagonalization
In many cases, the eigenvalue–eigenvector information contained within a matrix A can
be displayed in a useful factorization of the form A D PDP�1 where D is a diagonal
matrix. In this section, the factorization enables us to computeAk quickly for large values
of k, a fundamental idea in several applications of linear algebra. Later, in Sections 5.6
and 5.7, the factorization will be used to analyze (and decouple) dynamical systems.

The following example illustrates that powers of a diagonal matrix are easy to
compute.

EXAMPLE 1 If D D

�
5 0

0 3

�
, then D2 D

�
5 0

0 3

��
5 0

0 3

�
D

�
52 0

0 32

�
and

D3
D DD2

D

�
5 0

0 3

� �
52 0

0 32

�
D

�
53 0

0 33

�
In general,

Dk
D

�
5k 0

0 3k

�
for k � 1

If A D PDP�1 for some invertible P and diagonal D, then Ak is also easy to
compute, as the next example shows.

EXAMPLE 2 Let A D

�
7 2

�4 1

�
. Find a formula for Ak , given that A D PDP�1,

where

P D

�
1 1

�1 �2

�
and D D

�
5 0

0 3

�
SOLUTION The standard formula for the inverse of a 2 � 2 matrix yields

P�1
D

�
2 1

�1 �1

�
Then, by associativity of matrix multiplication,

A2
D .PDP�1/.PDP�1/ D PD .P�1P /„ ƒ‚ …

I

DP�1
D PDDP�1

D PD2P�1
D

�
1 1

�1 �2

� �
52 0

0 32

� �
2 1

�1 �1

�
Again,

A3
D .PDP�1/A2

D .PDP�1/P„ƒ‚…
I

D2P�1
D PDD2P�1

D PD3P�1

In general, for k � 1,

Ak
D PDkP�1

D

�
1 1

�1 �2

� �
5k 0

0 3k

� �
2 1

�1 �1

�
D

�
2 � 5k � 3k 5k � 3k

2 � 3k � 2 � 5k 2 � 3k � 5k

�
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A square matrix A is said to be diagonalizable if A is similar to a diagonal matrix,
that is, if A D PDP�1 for some invertible matrix P and some diagonal matrix D.
The next theorem gives a characterization of diagonalizable matrices and tells how to
construct a suitable factorization.

THEOREM 5 The Diagonalization Theorem

An n � n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors.

In fact, A D PDP�1, with D a diagonal matrix, if and only if the columns of
P are n linearly independent eigenvectors of A. In this case, the diagonal entries
of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P .

In other words, A is diagonalizable if and only if there are enough eigenvectors to
form a basis of Rn. We call such a basis an eigenvector basis of Rn.

PROOF First, observe that if P is any n � n matrix with columns v1; : : : ; vn, and if D

is any diagonal matrix with diagonal entries �1; : : : ; �n, then

AP D AŒ v1 v2 � � � vn � D Œ Av1 Av2 � � � Avn � (1)

while

PD D P

26664
�1 0 � � � 0

0 �2 � � � 0
:::

:::
:::

0 0 � � � �n

37775 D Œ �1v1 �2v2 � � � �nvn � (2)

Now suppose A is diagonalizable and A D PDP�1. Then right-multiplying this relation
by P , we have AP D PD. In this case, equations (1) and (2) imply that

Œ Av1 Av2 � � � Avn � D Œ �1v1 �2v2 � � � �nvn � (3)

Equating columns, we find that

Av1 D �1v1; Av2 D �2v2; : : : ; Avn D �nvn (4)

Since P is invertible, its columns v1; : : : ; vn must be linearly independent. Also, since
these columns are nonzero, the equations in (4) show that �1; : : : ; �n are eigenvalues
and v1; : : : ; vn are corresponding eigenvectors. This argument proves the “only if” parts
of the first and second statements, along with the third statement, of the theorem.

Finally, given any n eigenvectors v1; : : : ; vn, use them to construct the columns
of P and use corresponding eigenvalues �1; : : : ; �n to construct D. By equations
(1)–(3), AP D PD. This is true without any condition on the eigenvectors. If, in fact,
the eigenvectors are linearly independent, then P is invertible (by the Invertible Matrix
Theorem), and AP D PD implies that A D PDP�1.

Diagonalizing Matrices
EXAMPLE 3 Diagonalize the following matrix, if possible.

A D

24 1 3 3

�3 �5 �3

3 3 1

35
That is, find an invertible matrix P and a diagonal matrix D such that A D PDP�1.
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SOLUTION There are four steps to implement the description in Theorem 5.

Step 1. Find the eigenvalues of A. As mentioned in Section 5.2, the mechanics of
this step are appropriate for a computer when the matrix is larger than 2 � 2. To avoid
unnecessary distractions, the text will usually supply information needed for this step.
In the present case, the characteristic equation turns out to involve a cubic polynomial
that can be factored:

0 D det .A � �I/ D ��3
� 3�2

C 4

D �.� � 1/.�C 2/2

The eigenvalues are � D 1 and � D �2.

Step 2. Find three linearly independent eigenvectors of A. Three vectors are needed
because A is a 3 � 3 matrix. This is the critical step. If it fails, then Theorem 5 says
that A cannot be diagonalized. The method in Section 5.1 produces a basis for each
eigenspace:

Basis for � D 1W v1 D

24 1

�1

1

35
Basis for � D �2W v2 D

24�1

1

0

35 and v3 D

24�1

0

1

35
You can check that fv1; v2; v3g is a linearly independent set.

Step 3. Construct P from the vectors in step 2. The vectors may be listed in any order.
Using the order chosen in step 2, form

P D
�
v1 v2 v3

�
D

24 1 �1 �1

�1 1 0

1 0 1

35
Step 4. Construct D from the corresponding eigenvalues. In this step, it is essential that
the order of the eigenvalues matches the order chosen for the columns of P . Use the
eigenvalue � D �2 twice, once for each of the eigenvectors corresponding to � D �2:

D D

24 1 0 0

0 �2 0

0 0 �2

35
It is a good idea to check that P and D really work. To avoid computing P�1,

simply verify that AP D PD. This is equivalent to A D PDP�1 when P is invertible.
(However, be sure that P is invertible!) Compute

AP D

24 1 3 3

�3 �5 �3

3 3 1

3524 1 �1 �1

�1 1 0

1 0 1

35 D 24 1 2 2

�1 �2 0

1 0 �2

35
PD D

24 1 �1 �1

�1 1 0

1 0 1

3524 1 0 0

0 �2 0

0 0 �2

35 D 24 1 2 2

�1 �2 0

1 0 �2

35
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EXAMPLE 4 Diagonalize the following matrix, if possible.

A D

24 2 4 3

�4 �6 �3

3 3 1

35
SOLUTION The characteristic equation of A turns out to be exactly the same as that
in Example 3:

0 D det .A � �I/ D ��3
� 3�2

C 4 D �.� � 1/.�C 2/2

The eigenvalues are � D 1 and � D �2. However, it is easy to verify that each
eigenspace is only one-dimensional:

Basis for � D 1W v1 D

24 1

�1

1

35
Basis for � D �2W v2 D

24�1

1

0

35
There are no other eigenvalues, and every eigenvector ofA is a multiple of either v1 or v2.
Hence it is impossible to construct a basis ofR3 using eigenvectors ofA. By Theorem 5,
A is not diagonalizable.

The following theorem provides a sufficient condition for a matrix to be
diagonalizable.

THEOREM 6 An n � n matrix with n distinct eigenvalues is diagonalizable.

PROOF Let v1; : : : ; vn be eigenvectors corresponding to the n distinct eigenvalues of a
matrixA. Then fv1; : : : ; vng is linearly independent, by Theorem 2 in Section 5.1. Hence
A is diagonalizable, by Theorem 5.

It is not necessary for an n � n matrix to have n distinct eigenvalues in order to be
diagonalizable. The 3 � 3 matrix in Example 3 is diagonalizable even though it has only
two distinct eigenvalues.

EXAMPLE 5 Determine if the following matrix is diagonalizable.

A D

24 5 �8 1

0 0 7

0 0 �2

35
SOLUTION This is easy! Since the matrix is triangular, its eigenvalues are obviously 5,
0, and�2. Since A is a 3 � 3 matrix with three distinct eigenvalues, A is diagonalizable.

Matrices Whose Eigenvalues Are Not Distinct
If an n � nmatrixA has n distinct eigenvalues, with corresponding eigenvectors v1; : : : ;

vn, and if P D Œ v1 � � � vn �, then P is automatically invertible because its columns
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are linearly independent, by Theorem 2. When A is diagonalizable but has fewer than n

distinct eigenvalues, it is still possible to build P in a way that makes P automatically
invertible, as the next theorem shows.1

THEOREM 7 Let A be an n � n matrix whose distinct eigenvalues are �1; : : : ; �p .

a. For 1 � k � p, the dimension of the eigenspace for �k is less than or equal to
the multiplicity of the eigenvalue �k .

b. The matrix A is diagonalizable if and only if the sum of the dimensions of
the eigenspaces equals n, and this happens if and only if (i) the characteristic
polynomial factors completely into linear factors and (ii) the dimension of the
eigenspace for each �k equals the multiplicity of �k .

c. If A is diagonalizable and Bk is a basis for the eigenspace corresponding to �k

for each k, then the total collection of vectors in the sets B1; : : : ;Bp forms an
eigenvector basis for Rn.

EXAMPLE 6 Diagonalize the following matrix, if possible.

A D

2664
5 0 0 0

0 5 0 0

1 4 �3 0

�1 �2 0 �3

3775
SOLUTION Since A is a triangular matrix, the eigenvalues are 5 and �3, each
with multiplicity 2. Using the method in Section 5.1, we find a basis for each
eigenspace.

Basis for � D 5W v1 D

2664
�8

4

1

0

3775 and v2 D

2664
�16

4

0

1

3775
Basis for � D �3W v3 D

2664
0

0

1

0

3775 and v4 D

2664
0

0

0

1

3775
The set fv1; : : : ; v4g is linearly independent, by Theorem 7. So the matrix P D

Œ v1 � � � v4 � is invertible, and A D PDP�1, where

P D

2664
�8 �16 0 0

4 4 0 0

1 0 1 0

0 1 0 1

3775 and D D

2664
5 0 0 0

0 5 0 0

0 0 �3 0

0 0 0 �3

3775
1 The proof of Theorem 7 is somewhat lengthy but not difficult. For instance, see S. Friedberg, A. Insel, and
L. Spence, Linear Algebra, 4th ed. (Englewood Cliffs, NJ: Prentice-Hall, 2002), Section 5.2.
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Practice Problems

1. Compute A8, where A D

�
4 �3

2 �1

�
.

2. LetA D
�
�3 12

�2 7

�
, v1 D

�
3

1

�
, and v2 D

�
2

1

�
. Suppose you are told that v1 and

v2 are eigenvectors of A. Use this information to diagonalize A.

3. Let A be a 4 � 4 matrix with eigenvalues 5, 3, and �2, and suppose you know that
the eigenspace for � D 3 is two-dimensional. Do you have enough information to
determine if A is diagonalizable?

5.3 Exercises
In Exercises 1 and 2, let A D PDP�1 and compute A4.

1. P D

�
2 5

1 3

�
, D D

�
3 0

0 1

�
2. P D

�
2 �3

�3 5

�
, D D

�
1 0

0 �1

�
In Exercises 3 and 4, use the factorization A D PDP�1 to com-
pute Ak , where k represents an arbitrary positive integer.

3.
�

a 0

3.a � b/ b

�
D

�
1 0

3 1

��
a 0

0 b

��
1 0

�3 1

�
4.

�
15 �36

6 �15

�
D

�
2 3

1 1

� �
�3 0

0 3

� �
�1 3

1 �2

�
In Exercises 5 and 6, the matrix A is factored in the form PDP�1.
Use the Diagonalization Theorem to find the eigenvalues of A and
a basis for each eigenspace.

5.

24 2 2 1

1 3 1

1 2 2

35 D24 1 1 2

1 0 �1

1 �1 0

3524 5 0 0

0 1 0

0 0 1

3524 1=4 1=2 1=4

1=4 1=2 �3=4

1=4 �1=2 1=4

35
6.

24 7 �1 1

6 2 3

0 0 5

35 D24 2 1 1

5 2 3

1 0 0

3524 5 0 0

0 5 0

0 0 4

3524 0 0 1

3 �1 �1

�2 1 �1

35
Diagonalize the matrices in Exercises 7–20, if possible. The
eigenvalues for Exercises 11–16 are as follows: (11) � D 1; 2; 3;
(12) � D 1; 4; (13) � D 5; 1; (14) � D 3; 4; (15) � D 3; 1; (16)
� D 2; 1. For Exercise 18, one eigenvalue is � D 5 and one eigen-
vector is .�2; 1; 2/.

7.
�

1 0

6 �1

�
8.

�
5 1

0 5

�
9.

�
3 �1

1 5

�
10.

�
3 6

4 1

�

11.

24�1 4 �2

�3 4 0

�3 1 3

35 12.

24 3 �1 �1

�1 3 �1

�1 �1 3

35
13.

24 2 2 �1

1 3 �1

�1 �2 2

35 14.

24 4 0 2

2 3 4

0 0 3

35
15.

24�7 24 �16

�2 7 �4

2 �6 5

35 16.

24 0 �4 �6

�1 0 �3

1 2 5

35
17.

24 4 0 0

1 4 0

0 0 5

35 18.

24�7 �16 4

6 13 �2

12 16 1

35

19.

2664
5 �3 0 9

0 3 1 �2

0 0 2 0

0 0 0 2

3775 20.

2664
2 0 0 0

0 2 0 0

0 0 2 0

1 0 0 2

3775
In Exercises 21–28, A; P , and D are n � n matrices. Mark each
statement True or False (T/F). Justify each answer. (Study Theo-
rems 5 and 6 and the examples in this section carefully before you
try these exercises.)

21. (T/F)A is diagonalizable ifA D PDP�1 for some matrixD

and some invertible matrix P .

22. (T/F) If Rn has a basis of eigenvectors of A, then A is
diagonalizable.

23. (T/F) A is diagonalizable if and only if A has n eigenvalues,
counting multiplicities.

24. (T/F) If A is diagonalizable, then A is invertible.

25. (T/F) A is diagonalizable if A has n eigenvectors.

26. (T/F) If A is diagonalizable, then A has n distinct
eigenvalues.

27. (T/F) If AP D PD, with D diagonal, then the nonzero
columns of P must be eigenvectors of A.

28. (T/F) If A is invertible, then A is diagonalizable.
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29. A is a 5 � 5 matrix with two eigenvalues. One eigenspace
is three-dimensional, and the other eigenspace is two-
dimensional. Is A diagonalizable? Why?

30. A is a 3 � 3 matrix with two eigenvalues. Each eigenspace is
one-dimensional. Is A diagonalizable? Why?

31. A is a 4 � 4 matrix with three eigenvalues. One eigenspace
is one-dimensional, and one of the other eigenspaces is two-
dimensional. Is it possible that A is not diagonalizable? Jus-
tify your answer.

32. A is a 7 � 7 matrix with three eigenvalues. One eigenspace is
two-dimensional, and one of the other eigenspaces is three-
dimensional. Is it possible that A is not diagonalizable? Jus-
tify your answer.

33. Show that if A is both diagonalizable and invertible, then so
is A�1.

34. Show that if A has n linearly independent eigenvectors, then
so does AT . [Hint: Use the Diagonalization Theorem.]

35. A factorization A D PDP�1 is not unique. Demonstrate this

for the matrix A in Example 2. With D1 D

�
3 0

0 5

�
, use

the information in Example 2 to find a matrix P1 such that
A D P1D1P�1

1 .

36. With A and D as in Example 2, find an invertible P2 unequal
to the P in Example 2, such that A D P2DP�1

2 .

37. Construct a nonzero 2 � 2 matrix that is invertible but not
diagonalizable.

38. Construct a nondiagonal 2 � 2 matrix that is diagonalizable
but not invertible.

Diagonalize the matrices in Exercises 39–42. Use your matrix
program’s eigenvalue command to find the eigenvalues, and then
compute bases for the eigenspaces as in Section 5.1.

T 39.

2664
�6 4 0 9

�3 0 1 6

�1 �2 1 0

�4 4 0 7

3775 40.T

2664
0 13 8 4

4 9 8 4

8 6 12 8

0 5 0 �4

3775

T 41.

266664
11 �6 4 �10 �4

�3 5 �2 4 1

�8 12 �3 12 4

1 6 �2 3 �1

8 �18 8 �14 �1

377775

T 42.

266664
4 4 2 3 �2

0 1 �2 �2 2

6 12 11 2 �4

9 20 10 10 �6

15 28 14 5 �3

377775
Solutions to Practice Problems

1. det .A � �I/ D �2 � 3�C 2 D .� � 2/.� � 1/. The eigenvalues are 2 and 1, and

the corresponding eigenvectors are v1 D

�
3

2

�
and v2 D

�
1

1

�
. Next, form

P D

�
3 1

2 1

�
; D D

�
2 0

0 1

�
; and P�1

D

�
1 �1

�2 3

�
Since A D PDP�1,

A8
D PD8P�1

D

�
3 1

2 1

��
28 0

0 18

��
1 �1

�2 3

�
D

�
3 1

2 1

��
256 0

0 1

��
1 �1

�2 3

�
D

�
766 �765

510 �509

�
2. Compute Av1 D

�
�3 12

�2 7

��
3

1

�
D

�
3

1

�
D 1 � v1, and

Av2 D

�
�3 12

�2 7

��
2

1

�
D

�
6

3

�
D 3 � v2

So, v1 and v2 are eigenvectors for the eigenvalues 1 and 3, respectively. Thus

A D PDP�1; where P D

�
3 2

1 1

�
and D D

�
1 0

0 3

�
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3. Yes, A is diagonalizable. There is a basis fv1; v2g for the eigenspace corresponding
to � D 3. In addition, there will be at least one eigenvector for � D 5 and one
for � D �2. Call them v3 and v4. Then fv1; v2; v3; v4g is linearly independent by
Theorem 2 and Practice Problem 3 in Section 5.1. There can be no additional eigen-
vectors that are linearly independent from v1, v2, v3, v4, because the vectors are allSTUDY GUIDE has advice on

mastering eigenvalues and
eigenspaces.

in R4. Hence the eigenspaces for � D 5 and � D �2 are both one-dimensional. It
follows that A is diagonalizable by Theorem 7(b).

5.4 Eigenvectors and Linear Transformations
In this section, we will look at eigenvalues and eigenvectors of linear transformations
T W V ! V, where V is any vector space. In the case where V is a finite dimensional
vector space and there is a basis for V consisting of eigenvectors of T, we will see how
to represent the transformation T as left multiplication by a diagonal matrix.

Eigenvectors of Linear Transformations
Previously, we looked at a variety of vector spaces including the discrete-time signal
space, S, and the set of polynomials, P . Eigenvalues and eigenvectors can be defined for
linear transformations from any vector space to itself.

DEFINITION Let V be a vector space. An eigenvector of a linear transformation T W V ! V is
a nonzero vector x in V such that T .x/ D �x for some scalar �. A scalar � is called
an eigenvalue of T if there is a nontrivial solution x of T .x/ D �x; such an x is
called an eigenvector corresponding to �.

EXAMPLE 1 The sinusoidal signals were studied in detail in Sections 4.7 and 4.8.

Consider the signal defined by fskg D

�
cos

�
k�

2

��
, where k ranges over all integers.

The left double-shift linear transformation D is defined by D.fxkg/ D fxkC2g. Show
that fskg is an eigenvector of D and determine the associated eigenvalue.

SOLUTION The trigonometric formula cos.� C �/ D � cos.�/ is useful here. Set
fykg D D.fskg/ and observe that

yk D skC2 D cos
�

.k C 2/�

2

�
D cos

�
k�

2
C �

�
D � cos

�
k�

2

�
D �sk

and soD.fskg/ D f�skg D �fskg. This establishes that fskg is an eigenvector ofD with
eigenvalue �1.

In Figure 1, different values for the frequency, f, are chosen to graph a section of the

sinusoidal signals
�
cos

�
f k�

4

��
and D

��
cos

�
f k�

4

���
. Setting f D 2 illustrates

the eigenvector for D established in Example 1. What is the relationship in the patterns
of the dots that signifies an eigenvector relationship between the original signal and the
transformed signal? Which other choices of the frequency, f, create a signal that is an
eigenvector for D? What are the associated eigenvalues? In Figure 1, the graph on the
left illustrates the sinusoidal signal with f D 1 and the graph on the right illustrates the
sinusoidal signal with f D 2.
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5.7 Applications to Differential Equations
This section describes continuous analogues of the difference equations studied in
Section 5.6. In many applied problems, several quantities are varying continuously in
time, and they are related by a system of differential equations:

x01 D a11x1 C � � � C a1nxn

x02 D a21x1 C � � � C a2nxn

:::

x0n D an1x1 C � � � C annxn

Here x1; : : : ; xn are differentiable functions of t , with derivatives x01; : : : ; x0n, and the aij

are constants. The crucial feature of this system is that it is linear. To see this, write the
system as a matrix differential equation

x0.t/ D Ax.t/ (1)

where

x.t/ D

264 x1.t/
:::

xn.t/

375 ; x0.t/ D

264 x01.t/
:::

x0n.t/

375 ; and A D

264 a11 � � � a1n
:::

:::

an1 � � � ann

375
A solution of equation (1) is a vector-valued function that satisfies (1) for all t in some
interval of real numbers, such as t � 0.

Equation (1) is linear because both differentiation of functions and multiplication of
vectors by a matrix are linear transformations. Thus, if u and v are solutions of x0 D Ax,
then cuC dv is also a solution, because

.cuC dv/0 D cu0 C dv0

D cAuC dAv D A.cuC dv/

(Engineers call this property superposition of solutions.) Also, the identically zero
function is a (trivial) solution of (1). In the terminology of Chapter 4, the set of all
solutions of (1) is a subspace of the set of all continuous functions with values in Rn.

Standard texts on differential equations show that there always exists what is called
a fundamental set of solutions to (1). IfA is n � n, then there are n linearly independent
functions in a fundamental set, and each solution of (1) is a unique linear combination
of these n functions. That is, a fundamental set of solutions is a basis for the set of all
solutions of (1), and the solution set is an n-dimensional vector space of functions. If a
vector x0 is specified, then the initial value problem is to construct the (unique) function
x such that x0 D Ax and x.0/ D x0.

When A is a diagonal matrix, the solutions of (1) can be produced by elementary
calculus. For instance, consider"

x01.t/

x02.t/

#
D

"
3 0

0 �5

#"
x1.t/

x2.t/

#
(2)

that is,
x01.t/ D 3x1.t/

x02.t/ D �5x2.t/
(3)
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The system (2) is said to be decoupled because each derivative of a function depends
only on the function itself, not on some combination or “coupling” of both x1.t/ and
x2.t/. From calculus, the solutions of (3) are x1.t/ D c1e3t and x2.t/ D c2e�5t , for any
constants c1 and c2. Each solution of equation (2) can be written in the form�

x1.t/

x2.t/

�
D

�
c1e3t

c2e�5t

�
D c1

�
1

0

�
e3t
C c2

�
0

1

�
e�5t

This example suggests that for the general equation x0 D Ax, a solution might be a
linear combination of functions of the form

x.t/ D ve�t (4)

for some scalar � and some fixed nonzero vector v. [If v D 0, the function x.t/ is
identically zero and hence satisfies x0 D Ax.] Observe that

x0.t/ D �ve�t By calculus, since v is a constant vector

Ax.t/ D Ave�t Multiplying both sides of (4) by A

Since e�t is never zero, x0.t/ will equal Ax.t/ if and only if �v D Av, that is, if and only
if � is an eigenvalue of A and v is a corresponding eigenvector. Thus each eigenvalue–
eigenvector pair provides a solution (4) of x0 D Ax. Such solutions are sometimes called
eigenfunctions of the differential equation. Eigenfunctions provide the key to solving
systems of differential equations.

EXAMPLE 1 The circuit in Figure 1 can be described by the differential equation
R1

R2

C1

C2

1

1

FIGURE 1

"
x01.t/

x02.t/

#
D

"
�.1=R1 C 1=R2/=C1 1=.R2C1/

1=.R2C2/ �1=.R2C2/

#"
x1.t/

x2.t/

#
where x1.t/ and x2.t/ are the voltages across the two capacitors at time t . Suppose
resistor R1 is 1 ohm, R2 is 2 ohms, capacitor C1 is 1 farad, and C2 is .5 farad, and
suppose there is an initial charge of 5 volts on capacitor C1 and 4 volts on capacitor C2.
Find formulas for x1.t/ and x2.t/ that describe how the voltages change over time.

SOLUTION LetA denote the matrix displayed above, and let x.t/ D

�
x1.t/

x2.t/

�
. For the

data given, A D

�
�1:5 :5

1 �1

�
, and x.0/ D

�
5

4

�
. The eigenvalues of A are �1 D �:5

and �2 D �2, with corresponding eigenvectors

v1 D

�
1

2

�
and v2 D

�
�1

1

�
The eigenfunctions x1.t/ D v1e�1t and x2.t/ D v2e�2t both satisfy x0 D Ax, and so does
any linear combination of x1 and x2. Set

x.t/ D c1v1e�1t
C c2v2e�2t

D c1

�
1

2

�
e�:5t

C c2

�
�1

1

�
e�2t

and note that x.0/ D c1v1 C c2v2. Since v1 and v2 are obviously linearly independent
and hence spanR2, c1 and c2 can be found to make x.0/ equal to x0. In fact, the equation

c1

�
1

2

�
6
v1

C c2

�
�1

1

�
6
v2

D

�
5

4

�
6
x0
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leads easily to c1 D 3 and c2 D �2. Thus the desired solution of the differential equation
x0 D Ax is

x.t/ D 3

�
1

2

�
e�:5t

� 2

�
�1

1

�
e�2t

or �
x1.t/

x2.t/

�
D

"
3e�:5t C 2e�2t

6e�:5t � 2e�2t

#
Figure 2 shows the graph, or trajectory, of x.t/, for t � 0, along with trajectories for
some other initial points. The trajectories of the two eigenfunctions x1 and x2 lie in the
eigenspaces of A.

The functions x1 and x2 both decay to zero as t !1, but the values of x2

decay faster because its exponent is more negative. The entries in the corresponding
eigenvector v2 show that the voltages across the capacitors will decay to zero as rapidly
as possible if the initial voltages are equal in magnitude but opposite in sign.

5

4 x0

v2

v1

FIGURE 2 The origin as an attractor.

In Figure 2, the origin is called an attractor, or sink, of the dynamical system
because all trajectories are drawn into the origin. The direction of greatest attraction
is along the trajectory of the eigenfunction x2 (along the line through 0 and v2/

corresponding to the more negative eigenvalue, � D �2. Trajectories that begin at points
not on this line become asymptotic to the line through 0 and v1 because their components
in the v2 direction decay so rapidly.

If the eigenvalues in Example 1 were positive instead of negative, the corresponding
trajectories would be similar in shape, but the trajectories would be traversed away from
the origin. In such a case, the origin is called a repeller, or source, of the dynamical
system, and the direction of greatest repulsion is the line containing the trajectory of the
eigenfunction corresponding to the more positive eigenvalue.

EXAMPLE 2 Suppose a particle is moving in a planar force field and its position
vector x satisfies x0 D Ax and x.0/ D x0, where

A D

�
4 �5

�2 1

�
; x0 D

�
2:9

2:6

�
Solve this initial value problem for t � 0, and sketch the trajectory of the particle.
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SOLUTION The eigenvalues of A turn out to be �1 D 6 and �2 D �1, with corre-
sponding eigenvectors v1 D .�5; 2/ and v2 D .1; 1/. For any constants c1 and c2, the
function

x.t/ D c1v1e�1t
C c2v2e�2t

D c1

�
�5

2

�
e6t
C c2

�
1

1

�
e�t

is a solution of x0 D Ax. We want c1 and c2 to satisfy x.0/ D x0, that is,

c1

�
�5

2

�
C c2

�
1

1

�
D

�
2:9

2:6

�
or

�
�5 1

2 1

��
c1

c2

�
D

�
2:9

2:6

�
Calculations show that c1 D �3=70 and c2 D 188=70, and so the desired function is

x.t/ D
�3

70

�
�5

2

�
e6t
C

188

70

�
1

1

�
e�t

Trajectories of x and other solutions are shown in Figure 3.

x0

v2
v1

FIGURE 3 The origin as a saddle point.

In Figure 3, the origin is called a saddle point of the dynamical system because
some trajectories approach the origin at first and then change direction and move away
from the origin. A saddle point arises whenever the matrix A has both positive and
negative eigenvalues. The direction of greatest repulsion is the line through v1 and 0,
corresponding to the positive eigenvalue. The direction of greatest attraction is the line
through v2 and 0, corresponding to the negative eigenvalue.

Decoupling a Dynamical System
The following discussion shows that the method of Examples 1 and 2 produces a
fundamental set of solutions for any dynamical system described by x0 D Ax when A

is n � n and has n linearly independent eigenvectors, that is, when A is diagonalizable.
Suppose the eigenfunctions for A are

v1e�1t ; : : : ; vne�nt

with v1; : : : ; vn linearly independent eigenvectors. LetP D Œ v1 � � � vn �, and letD be
the diagonal matrix with entries �1; : : : ; �n, so that A D PDP�1. Now make a change
of variable, defining a new function y by

y.t/ D P�1x.t/ or, equivalently; x.t/ D P y.t/
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The equation x.t/ D P y.t/ says that y.t/ is the coordinate vector of x.t/ relative to the
eigenvector basis. Substitution of P y for x in the equation x0 D Ax gives

d

dt
.P y/ D A.P y/ D .PDP�1/P y D PDy (5)

Since P is a constant matrix, the left side of (5) is P y0. Left-multiply both sides of (5)
by P�1 and obtain y0 D Dy, or266664

y01.t/

y02.t/
:::

y0n.t/

377775 D
266664

�1 0 � � � 0

0 �2

:::
:::

: : : 0

0 � � � 0 �n

377775
266664

y1.t/

y2.t/
:::

yn.t/

377775
The change of variable from x to y has decoupled the system of differential equations,
because the derivative of each scalar function yk depends only on yk . (Review the
analogous change of variables in Section 5.6.) Since y01 D �1y1, we have y1.t/ D c1e�1t ,
with similar formulas for y2; : : : ; yn. Thus

y.t/ D

264 c1e�1t

:::

cne�nt

375 ; where

264 c1
:::

cn

375 D y.0/ D P�1x.0/ D P�1x0

To obtain the general solution x of the original system, compute

x.t/ D P y.t/ D Œ v1 � � � vn � y.t/

D c1v1e�1t
C � � � C cnvne�nt

This is the eigenfunction expansion constructed as in Example 1.

Complex Eigenvalues

In the next example, a real matrix A has a pair of complex eigenvalues � and �, with
associated complex eigenvectors v and v. (Recall from Section 5.5 that for a real matrix,
complex eigenvalues and associated eigenvectors come in conjugate pairs.) So two
solutions of x0 D Ax are

x1.t/ D ve�t and x2.t/ D ve�t (6)

It can be shown that x2.t/ D x1.t/ by using a power series representation for the complex
exponential function. Although the complex eigenfunctions x1 and x2 are convenient
for some calculations (particularly in electrical engineering), real functions are more
appropriate for many purposes. Fortunately, the real and imaginary parts of x1 are (real)
solutions of x0 D Ax, because they are linear combinations of the solutions in (6):

Re.ve�t / D
1

2
Œ x1.t/C x1.t/ �; Im.ve�t / D

1

2i
Œ x1.t/ � x1.t/ �

To understand the nature of Re.ve�t /, recall from calculus that for any number x,
the exponential function ex can be computed from the power series:

ex
D 1C x C

1

2Š
x2
C � � � C

1

nŠ
xn
C � � �
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This series can be used to define e�t when � is complex:

e�t
D 1C .�t/C

1

2Š
.�t/2

C � � � C
1

nŠ
.�t/n

C � � �

By writing � D aC bi (with a and b real), and using similar power series for the cosine
and sine functions, one can show that

e.aCbi/t
D eat eibt

D eat .cos bt C i sin bt/ (7)

Hence

ve�t
D .Re vC i Im v/ .eat /.cos bt C i sin bt/

D Œ .Re v/ cos bt � .Im v/ sin bt �eat

C i Œ .Re v/ sin bt C .Im v/ cos bt �eat

So two real solutions of x0 D Ax are

y1.t/ D Re x1.t/ D Œ .Re v/ cos bt � .Im v/ sin bt � eat

y2.t/ D Im x1.t/ D Œ .Re v/ sin bt C .Im v/ cos bt � eat

It can be shown that y1 and y2 are linearly independent functions (when b ¤ 0).1

EXAMPLE 3 The circuit in Figure 4 can be described by the equation
R1

R2

C

L

1

iL

FIGURE 4

"
i 0L

v0C

#
D

"
�R2=L �1=L

1=C �1=.R1C /

#"
iL

vC

#
where iL is the current passing through the inductor L and vC is the voltage drop across
the capacitor C . Suppose R1 is 5 ohms, R2 is .8 ohm, C is .1 farad, and L is .4 henry.
Find formulas for iL and vC , if the initial current through the inductor is 3 amperes and
the initial voltage across the capacitor is 3 volts.

SOLUTION For the data given, A D

�
�2 �2:5

10 �2

�
and x0 D

�
3

3

�
. The method dis-

cussed in Section 5.5 produces the eigenvalue � D �2C 5i and the corresponding

eigenvector v1 D

�
i

2

�
. The complex solutions of x0 D Ax are complex linear combina-

tions of

x1.t/ D

�
i

2

�
e.�2C5i/t and x2.t/ D

�
�i

2

�
e.�2�5i/t

Next, use equation (7) to write

x1.t/ D

�
i

2

�
e�2t .cos 5t C i sin 5t/

The real and imaginary parts of x1 provide real solutions:

y1.t/ D

�
� sin 5t

2 cos 5t

�
e�2t ; y2.t/ D

�
cos 5t

2 sin 5t

�
e�2t

1 Since x2.t/ is the complex conjugate of x1.t/, the real and imaginary parts of x2.t/ are y1.t/ and �y2.t/,
respectively. Thus one can use either x1.t/ or x2.t/, but not both, to produce two real linearly independent
solutions of x0 D Ax.
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Since y1 and y2 are linearly independent functions, they form a basis for the two-
dimensional real vector space of solutions of x0 D Ax. Thus the general solution is

x.t/ D c1

�
� sin 5t

2 cos 5t

�
e�2t
C c2

�
cos 5t

2 sin 5t

�
e�2t

To satisfy x.0/ D

�
3

3

�
, we need c1

�
0

2

�
C c2

�
1

0

�
D

�
3

3

�
, which leads to c1 D 1:5 and

c2 D 3. Thus

x.t/ D 1:5

�
� sin 5t

2 cos 5t

�
e�2t
C 3

�
cos 5t

2 sin 5t

�
e�2t

or �
iL.t/

vC .t/

�
D

�
�1:5 sin 5t C 3 cos 5t

3 cos 5t C 6 sin 5t

�
e�2t

See Figure 5.

x0

FIGURE 5

The origin as a spiral point.

In Figure 5, the origin is called a spiral point of the dynamical system. The rotation
is caused by the sine and cosine functions that arise from a complex eigenvalue. The
trajectories spiral inward because the factor e�2t tends to zero. Recall that �2 is the real
part of the eigenvalue in Example 3. When A has a complex eigenvalue with positive
real part, the trajectories spiral outward. If the real part of the eigenvalue is zero, the
trajectories form ellipses around the origin.

Practice Problems

A real 3 � 3 matrix A has eigenvalues �:5, :2C :3i , and :2 � :3i , with corresponding
eigenvectors

v1 D

24 1

�2

1

35; v2 D

24 1C 2i

4i

2

35 ; and v3 D

24 1 � 2i

�4i

2

35
1. Is A diagonalizable as A D PDP�1, using complex matrices?

2. Write the general solution of x0 D Ax using complex eigenfunctions, and then find
the general real solution.

3. Describe the shapes of typical trajectories.

5.7 Exercises
1. A particle moving in a planar force field has a position vector

x that satisfies x0 D Ax. The 2 � 2 matrix A has eigenvalues

4 and 2, with corresponding eigenvectors v1 D

�
�3

1

�
and

v2 D

�
�1

1

�
. Find the position of the particle at time t ,

assuming that x.0/ D

�
�6

1

�
.

2. Let A be a 2 � 2 matrix with eigenvalues �3 and �1 and

corresponding eigenvectors v1 D

�
�1

1

�
and v2 D

�
1

1

�
. Let

x.t/ be the position of a particle at time t . Solve the initial

value problem x0 D Ax, x.0/ D

�
2

3

�
.

In Exercises 3–6, solve the initial value problem x0.t/ D Ax.t/

for t � 0, with x.0/ D .3; 2/. Classify the nature of the origin
as an attractor, repeller, or saddle point of the dynamical system
described by x0 D Ax. Find the directions of greatest attraction
and/or repulsion. When the origin is a saddle point, sketch typical
trajectories.

3. A D

�
2 3

�1 �2

�
4. A D

�
�2 �5

1 4

�
5. A D

�
2 �4

5 �7

�
6. A D

�
7 �3

5 �1

�
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In Exercises 7 and 8, make a change of variable that decouples the
equation x0 D Ax. Write the equation x.t/ D P y.t/ and show the
calculation that leads to the uncoupled system y0 D Dy, specify-
ing P and D.

7. A as in Exercise 5 8. A as in Exercise 6

In Exercises 9–18, construct the general solution of x0 D Ax
involving complex eigenfunctions and then obtain the general real
solution. Describe the shapes of typical trajectories.

9. A D

�
�3 2

�1 �1

�
10. A D

�
3 1

�2 1

�
11. A D

�
�3 �9

2 3

�
12. A D

�
�7 10

�4 5

�
13. A D

�
4 �3

6 �2

�
14. A D

�
�3 2

�9 3

�

T 15. A D

24�8 �12 �6

2 1 2

7 12 5

35
T 16. A D

24�6 �11 16

2 5 �4

�4 �5 10

35
T 17. A D

24 30 64 23

�11 �23 �9

6 15 4

35
T 18. A D

24 53 �30 �2

90 �52 �3

20 �10 2

35

T 19. Find formulas for the voltages v1 and v2 (as functions of time
t ) for the circuit in Example 1, assuming thatR1 D 1=5 ohm,
R2 D 1=3 ohm, C1 D 4 farads, C2 D 3 farads, and the initial
charge on each capacitor is 4 volts.

T 20. Find formulas for the voltages v1 and v2 for the circuit in
Example 1, assuming that R1 D 1=15 ohm, R2 D 1=3 ohm,
C1 D 9 farads, C2 D 2 farads, and the initial charge on each
capacitor is 3 volts.

T 21. Find formulas for the current iL and the voltage vC for the
circuit in Example 3, assuming that R1 D 1 ohm, R2 D :125

ohm, C D :2 farad, L D :125 henry, the initial current is
0 amp, and the initial voltage is 15 volts.

T 22. The circuit in the figure is described by the equation"
i 0L

v0C

#
D

"
0 1=L

�1=C �1=.RC /

#"
iL

vC

#

where iL is the current through the inductor L and vC is the
voltage drop across the capacitor C . Find formulas for iL and
vC when R D :5 ohm, C D 2:5 farads, L D :5 henry, the
initial current is 0 amp, and the initial voltage is 12 volts.

R

C

1

L

Solutions to Practice Problems

1. Yes, the 3 � 3 matrix is diagonalizable because it has three distinct eigenvalues.
Theorem 2 in Section 5.1 and Theorem 6 in Section 5.3 are valid when complex
scalars are used. (The proofs are essentially the same as for real scalars.)

2. The general solution has the form

x.t/ D c1

24 1

�2

1

35e�:5t
C c2

24 1C 2i

4i

2

35 e.:2C:3i/t
C c3

24 1 � 2i

�4i

2

35 e.:2�:3i/t

The scalars c1, c2, and c3 here can be any complex numbers. The first term in x.t/

is real, provided c1 is real. Two more real solutions can be produced using the real
and imaginary parts of the second term in x.t/:24 1C 2i

4i

2

35 e:2t .cos :3t C i sin :3t/

The general real solution has the following form, with real scalars c1, c2, and c3:

c1

24 1

�2

1

35e�:5t
C c2

24 cos :3t � 2 sin :3t

�4 sin :3t

2 cos :3t

35 e:2t
C c3

24 sin :3t C 2 cos :3t

4 cos :3t

2 sin :3t

35 e:2t
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3. Any solution with c2 D c3 D 0 is attracted to the origin because of the negative
exponential factor. Other solutions have components that grow without bound, and
the trajectories spiral outward.
Be careful not to mistake this problem for one in Section 5.6. There the condition

for attraction toward 0 was that an eigenvalue be less than 1 in magnitude, to make
j�jk ! 0. Here the real part of the eigenvalue must be negative, to make e�t ! 0.

5.8 Iterative Estimates for Eigenvalues
In scientific applications of linear algebra, eigenvalues are seldom known precisely.
Fortunately, a close numerical approximation is usually quite satisfactory. In fact, some
applications require only a rough approximation to the largest eigenvalue. The first
algorithm described below can work well for this case. Also, it provides a foundation
for a more powerful method that can give fast estimates for other eigenvalues as well.

The Power Method
The power method applies to an n � nmatrixAwith a strictly dominant eigenvalue �1,
which means that �1 must be larger in absolute value than all the other eigenvalues. In
this case, the power method produces a scalar sequence that approaches �1 and a vector
sequence that approaches a corresponding eigenvector. The background for the method
rests on the eigenvector decomposition used at the beginning of Section 5.6.

Assume for simplicity that A is diagonalizable and Rn has a basis of eigenvectors
v1; : : : ; vn, arranged so their corresponding eigenvalues �1; : : : ; �n decrease in size, with
the strictly dominant eigenvalue first. That is,

j�1j > j�2j � j�3j � � � � � j�nj

Strictly larger-

(1)

As we saw in equation (2) of Section 5.6, if x in Rn is written as x D c1v1 C � � � C cnvn,
then

Akx D c1.�1/kv1 C c2.�2/kv2 C � � � C cn.�n/kvn .k D 1; 2; : : :/

Assume c1 ¤ 0. Then, dividing by .�1/k ,

1

.�1/k
Akx D c1v1 C c2

�
�2

�1

�k

v2 C � � � C cn

�
�n

�1

�k

vn .k D 1; 2; : : :/ (2)

From inequality (1), the fractions �2=�1; : : : ; �n=�1 are all less than 1 in magnitude and
so their powers go to zero. Hence

.�1/�kAkx! c1v1 as k !1 (3)

Thus, for large k, a scalar multiple of Akx determines almost the same direction as the
eigenvector c1v1. Since positive scalar multiples do not change the direction of a vector,
Akx itself points almost in the same direction as v1 or �v1, provided c1 ¤ 0.

EXAMPLE 1 Let A D

�
1:8 :8

:2 1:2

�
, v1 D

�
4

1

�
, and x D

�
�:5

1

�
. Then A has

eigenvalues 2 and 1, and the eigenspace for �1 D 2 is the line through 0 and v1. For
k D 0; : : : ; 8, compute Akx and construct the line through 0 and Akx. What happens as
k increases?
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In order to find an approximate solution to an inconsistent system of equations that has
no actual solution, a well-defined notion of nearness is needed. Section 6.1 introduces
the concepts of distance and orthogonality in a vector space. Sections 6.2 and 6.3 show
how orthogonality can be used to identify the point within a subspace W that is nearest
to a point y lying outside of W. By taking W to be the column space of a matrix,
Section 6.5 develops a method for producing approximate (“least-squares”) solutions
for inconsistent linear systems, an important technique in machine learning, which is
discussed in Sections 6.6 and 6.8.

Section 6.4 provides another opportunity to see orthogonal projections at work,
creating a matrix factorization widely used in numerical linear algebra. The remaining
sections examine some of the many least-squares problems that arise in applications,
including those in vector spaces more general than Rn.

6.1 Inner Product, Length, and Orthogonality
Geometric concepts of length, distance, and perpendicularity, which are well known for
R2 andR3, are defined here forRn. These concepts provide powerful geometric tools for
solving many applied problems, including the least-squares problems mentioned above.
All three notions are defined in terms of the inner product of two vectors.

The Inner Product
If u and v are vectors in Rn, then we regard u and v as n � 1 matrices. The transpose
uT is a 1 � n matrix, and the matrix product uT v is a 1 � 1 matrix, which we write as
a single real number (a scalar) without brackets. The number uT v is called the inner
product of u and v, and often it is written as u�v. This inner product, mentioned in the
exercises for Section 2.1, is also referred to as a dot product. If

u D

26664
u1

u2

:::

un

37775 and v D

26664
v1

v2

:::

vn

37775
then the inner product of u and v is

Œ u1 u2 � � � un �

26664
v1

v2

:::

vn

37775 D u1v1 C u2v2 C � � � C unvn

EXAMPLE 1 Compute u�v and v�u for u D

24 2

�5

�1

35 and v D

24 3

2

�3

35.
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SOLUTION

u�v D uT v D Œ 2 �5 �1 �

24 3

2

�3

35 D .2/.3/C .�5/.2/C .�1/.�3/ D �1

v�u D vT u D Œ 3 2 �3 �

24 2

�5

�1

35 D .3/.2/C .2/.�5/C .�3/.�1/ D �1

It is clear from the calculations in Example 1why u�v D v�u. This commutativity of
the inner product holds in general. The following properties of the inner product are eas-
ily deduced from properties of the transpose operation in Section 2.1. (See Exercises 29
and 30 at the end of this section.)

THEOREM 1 Let u, v, and w be vectors in Rn, and let c be a scalar. Then

a. u�v D v�u

b. .uC v/�w D u�wC v�w

c. .cu/�v D c.u�v/ D u�.cv/

d. u�u � 0, and u�u D 0 if and only if u D 0

Properties (b) and (c) can be combined several times to produce the following useful
rule:

.c1u1 C � � � C cpup/�w D c1.u1 �w/C � � � C cp.up �w/

The Length of a Vector
If v is in Rn, with entries v1; : : : ; vn, then the square root of v�v is defined because v�v
is nonnegative.

DEFINITION The length (or norm) of v is the nonnegative scalar kvk defined by

kvk D
p
v�v D

q
v2

1 C v2
2 C � � � C v2

n; and kvk2 D v�v

Suppose v is in R2, say, v D
�

a

b

�
. If we identify v with a geometric point in the

plane, as usual, then kvk coincides with the standard notion of the length of the line
segment from the origin to v. This follows from the Pythagorean Theorem applied to a
triangle such as the one in Figure 1.

A similar calculation with the diagonal of a rectangular box shows that the definition
of length of a vector v in R3 coincides with the usual notion of length.

|a|

|b|

x1

x2

(a, b)

!a2 1 b2

0

FIGURE 1

Interpretation of kvk as length.
For any scalar c, the length of cv is jcj times the length of v. That is,

kcvk D jcjkvk

(To see this, compute kcvk2 D .cv/� .cv/ D c2v�v D c2kvk2 and take square roots.)
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A vector whose length is 1 is called a unit vector. If we divide a nonzero vector v
by its length—that is, multiply by 1=kvk—we obtain a unit vector u because the length
of u is .1=kvk/kvk. The process of creating u from v is sometimes called normalizing
v, and we say that u is in the same direction as v.

Several examples that follow use the space-saving notation for (column) vectors.

EXAMPLE 2 Let v D .1;�2; 2; 0/. Find a unit vector u in the same direction as v.

SOLUTION First, compute the length of v:

kvk2 D v�v D .1/2
C .�2/2

C .2/2
C .0/2

D 9

kvk D
p

9 D 3

Then, multiply v by 1=kvk to obtain

u D
1

kvk
v D

1

3
v D

1

3

2664
1

�2

2

0

3775 D
2664

1=3

�2=3

2=3

0

3775
To check that kuk D 1, it suffices to show that kuk2 D 1.

kuk2 D u�u D
�

1
3

�2
C
�
�

2
3

�2
C
�

2
3

�2
C .0/2

D
1
9
C

4
9
C

4
9
C 0 D 1

EXAMPLE 3 LetW be the subspace ofR2 spanned by x D . 2
3
; 1/. Find a unit vector

z that is a basis for W .

SOLUTION W consists of all multiples of x, as in Figure 2(a). Any nonzero vector in
W is a basis for W . To simplify the calculation, “scale” x to eliminate fractions. That is,
multiply x by 3 to get

y D
�

2

3

�
Now compute kyk2 D 22 C 32 D 13, kyk D

p
13, and normalize y to get

z D
1
p

13

�
2

3

�
D

�
2=
p

13

3=
p

13

�
See Figure 2(b). Another unit vector is .�2=

p
13;�3=

p
13/.

(a)

x1

x2

x

W

1

1

(b)

x1

x2

y

z

1

1

FIGURE 2

Normalizing a vector to produce a
unit vector.

Distance in Rn

We are ready now to describe how close one vector is to another. Recall that if a and
b are real numbers, the distance on the number line between a and b is the number
ja � bj. Two examples are shown in Figure 3. This definition of distance in R has a
direct analogue in Rn.

|2 2 8| 5 |26| 5 6   or   |8 2 2| 5 |6| 5 6 |(23) 2 4| 5 |27| 5 7   or   |4 2 (23)| 5 |7| 5 7

6 units apart

a b a b

7 units apart
1 32 4 5 6 7 8 9 1 30 22123 22 4 5

FIGURE 3 Distances in R.
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DEFINITION For u and v inRn, the distance between u and v, written as dist.u; v/, is the length
of the vector u � v. That is,

dist.u; v/ D ku � vk

In R2 and R3, this definition of distance coincides with the usual formulas for the
Euclidean distance between two points, as the next two examples show.

EXAMPLE 4 Compute the distance between the vectors u D .7; 1/ and v D .3; 2/.

SOLUTION Calculate

u � v D
�

7

1

�
�

�
3

2

�
D

�
4

�1

�
ku � vk D

p
42 C .�1/2 D

p
17

The vectors u, v, and u � v are shown in Figure 4. When the vector u � v is added
to v, the result is u. Notice that the parallelogram in Figure 4 shows that the distance
from u to v is the same as the distance from u � v to 0.

||u 2 v||

x1

x2

v

u

u v

2v

1

1

2

FIGURE 4 The distance between u and v is
the length of u � v.

EXAMPLE 5 If u D .u1; u2; u3/ and v D .v1; v2; v3/, then

dist.u; v/ D ku � vk D
p

.u � v/�.u � v/

D
p

.u1 � v1/2 C .u2 � v2/2 C .u3 � v3/2

Orthogonal Vectors
The rest of this chapter depends on the fact that the concept of perpendicular lines in

||u 2(2 v)||

||u 2 v||

v

0

u

2v

FIGURE 5

ordinary Euclidean geometry has an analogue in Rn.
Consider R2 or R3 and two lines through the origin determined by vectors u and

v. The two lines shown in Figure 5 are geometrically perpendicular if and only if the
distance from u to v is the same as the distance from u to�v. This is the same as requiring
the squares of the distances to be the same. Now

Œ dist.u;�v/ �
2
D ku � .�v/k2 D kuC vk2

D .uC v/� .uC v/

D u�.uC v/C v� .uC v/ Theorem 1(b)

D u�uC u�vC v�uC v�v Theorem 1(a), (b)

D kuk2 C kvk2 C 2u�v Theorem 1(a) (1)
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The same calculations with v and �v interchanged show that

Œdist.u; v/�2 D kuk2 C k � vk2 C 2u� .�v/

D kuk2 C kvk2 � 2u�v

The two squared distances are equal if and only if 2u�v D �2u�v, which happens if and
only if u�v D 0.

This calculation shows that when vectors u and v are identified with geometric
points, the corresponding lines through the points and the origin are perpendicular if
and only if u�v D 0. The following definition generalizes to Rn this notion of perpen-
dicularity (or orthogonality, as it is commonly called in linear algebra).

DEFINITION Two vectors u and v in Rn are orthogonal (to each other) if u�v D 0.

Observe that the zero vector is orthogonal to every vector in Rn because 0T v D 0

for all v.
The next theorem provides a useful fact about orthogonal vectors. The proof follows

immediately from the calculation in (1) and the definition of orthogonality. The right
triangle shown in Figure 6 provides a visualization of the lengths that appear in the
theorem.

THEOREM 2 The Pythagorean Theorem

Two vectors u and v are orthogonal if and only if kuC vk2 D kuk2 C kvk2.

Orthogonal Complements
To provide practice using inner products, we introduce a concept here that will be of use
in Section 6.3 and elsewhere in the chapter. If a vector z is orthogonal to every vector in
a subspace W of Rn, then z is said to be orthogonal to W . The set of all vectors z that
are orthogonal to W is called the orthogonal complement of W and is denoted by W ?

(and read as “W perpendicular” or simply “W perp”).

v

u 1 v

||u 1 v|| u

||v||

||u||

0

FIGURE 6

EXAMPLE 6 LetW be a plane through the origin inR3, and letL be the line through
the origin and perpendicular to W . If z and w are nonzero, z is on L, and w is in W ,
then the line segment from 0 to z is perpendicular to the line segment from 0 to w; that
is, z�w D 0. See Figure 7. So each vector on L is orthogonal to every w in W . In fact, L
consists of all vectors that are orthogonal to the w’s in W , and W consists of all vectors
orthogonal to the z’s in L. That is,

z
L

w

0

W

FIGURE 7

A plane and line through 0 as
orthogonal complements.

L D W ? and W D L?

The following two facts aboutW ?, withW a subspace ofRn, are needed later in the
chapter. Proofs are suggested in Exercises 37 and 38. Exercises 35–39 provide excellent
practice using properties of the inner product.

1. A vector x is in W ? if and only if x is orthogonal to every vector in a set that
spans W .

2. W ? is a subspace of Rn.
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The next theorem and Exercise 39 verify the claims made in Section 4.5 concerning
the subspaces shown in Figure 8.

A

0 0

Row A

Nul A

Col A

Nul A
T

FIGURE 8 The fundamental subspaces determined
by an m � n matrix A.

Remark: A common way to prove that two sets, say S and T , are equal is to show that
S is a subset of T and T is a subset of S . The proof of the next theorem that Nul A D

(Row A)? is established by showing that Nul A is a subset of (Row A)? and (Row A)?

is a subset of Nul A. That is, an arbitrary element x in Nul A is shown to be in (Row
A)?, and then an arbitrary element x in (Row A)? is shown to be in Nul A.

THEOREM 3 Let A be an m � n matrix. The orthogonal complement of the row space of A is
the null space of A, and the orthogonal complement of the column space of A is
the null space of AT :

.RowA/? D NulA and .ColA/? D NulAT

PROOF The row–column rule for computing Ax shows that if x is in NulA, then x is
orthogonal to each row ofA (with the rows treated as vectors inRn/. Since the rows ofA

span the row space, x is orthogonal to RowA. Conversely, if x is orthogonal to RowA,
then x is certainly orthogonal to each row of A, and hence Ax D 0. This proves the first
statement of the theorem. Since this statement is true for any matrix, it is true for AT .
That is, the orthogonal complement of the row space of AT is the null space of AT . This
proves the second statement, because RowAT D ColA.

Angles in R2 and R3 (Optional)
If u and v are nonzero vectors in eitherR2 orR3, then there is a nice connection between
their inner product and the angle # between the two line segments from the origin to the
points identified with u and v. The formula is

u�v D kuk kvk cos# (2)

To verify this formula for vectors in R2, consider the triangle shown in Figure 9, with
sides of lengths kuk, kvk, and ku � vk. By the law of cosines,

ku � vk2 D kuk2 C kvk2 � 2kuk kvk cos#

(u1, u2)

(v1, v2)

||u 2 v||

||v||

||u|| q

FIGURE 9 The angle between two vectors.
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which can be rearranged to produce

kuk kvk cos# D
1

2

�
kuk2 C kvk2 � ku � vk2

�
D

1

2

�
u2

1 C u2
2 C v2

1 C v2
2 � .u1 � v1/2

� .u2 � v2/2
�

D u1v1 C u2v2

D u�v

The verification for R3 is similar. When n > 3, formula (2) may be used to define the
angle between two vectors in Rn. In statistics, for instance, the value of cos# defined
by (2) for suitable vectors u and v is what statisticians call a correlation coefficient.

Practice Problems

1. Let a D
�
�2

1

�
and b D

�
�3

1

�
. Compute

a�b
a�a

and
�
a�b
a�a

�
a.

2. Let c D

24 4=3

�1

2=3

35 and d D

24 5

6

�1

35.
a. Find a unit vector u in the direction of c.

b. Show that d is orthogonal to c.

c. Use the results of (a) and (b) to explain why d must be orthogonal to the unit
vector u.

3. Let W be a subspace of Rn. Exercise 38 establishes that W ? is also a subspace of
Rn. Prove that dim WC dim W ? D n.

6.1 Exercises
Compute the quantities in Exercises 1–8 using the vectors

u D
�
�1

2

�
, v D

�
2

3

�
, w D

24 3

�1

�5

35, x D

24 6

�2

3

35
1. u�u, v�u, and

v�u
u�u

2. w�w, x�w, and
x�w
w�w

3.
1

w�w
w 4.

1

u�u
u

5.
�u�v
v�v

�
v 6.

�x �w
x � x

�
x

7. kwk 8. kxk

In Exercises 9–12, find a unit vector in the direction of the given
vector.

9.
�
�30

40

�
10.

24 3

6

�3

35

11.

24 2=9

1=3

1

35 12.
�

8=3

1

�

13. Find the distance between x D
�

10

�3

�
and y D

�
�1

�5

�
.

14. Find the distance between u D

24 0

�1

3

35 and z D

24�7

�5

7

35.
Determine which pairs of vectors in Exercises 15–18 are
orthogonal.

15. a D
�

8

�5

�
, b D

�
�2

�3

�
16. x D

24 4

�2

5

35, y D 24 11

�1

�9

35

17. u D

2664
3

2

�5

0

3775, v D
2664
�4

1

�2

6

3775 18. w D

2664
3

�6

7

8

3775, z D
2664
�9

6

17

�7

3775
In Exercises 19–28, all vectors are in Rn. Mark each statement
True or False (T/F). Justify each answer.

19. (T/F) v � v D kvk2.

20. (T/F) u � v � v � u D 0.
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21. (T/F) If the distance from u to v equals the distance from u
to �v, then u and v are orthogonal.

22. (T/F) If kuk2 C kvk2 D kuC vk2, then u and v are
orthogonal.

23. (T/F) If vectors v1; : : : ; vp span a subspace W and if x is
orthogonal to each vj for j D 1; : : : ; p, then x is in W ?.

24. (T/F) If x is orthogonal to every vector in a subspace W then
x is in W ?.

25. (T/F) For any scalar c; kcvk D ckvk.

26. (T/F) For any scalar c; u � .cv/ D c.u � v/.

27. (T/F) For a square matrix A, vectors in Col A are orthogonal
to vectors in Nul A.

28. (T/F) For an m � n matrix A, vectors in the null space of A

are orthogonal to vectors in the row space of A.

29. Use the transpose definition of the inner product to verify
parts (b) and (c) of Theorem 1. Mention the appropriate facts
from Chapter 2.

30. Let u D .u1; u2; u3/. Explain why u�u � 0. When is
u�u D 0?

31. Let u D

24 3

�4

�1

35 and v D

24�8

�7

4

35. Compute and compare

u�v, kuk2, kvk2, and kuC vk2. Do not use the Pythagorean
Theorem.

32. Verify the parallelogram law for vectors u and v in Rn:

kuC vk2 C ku � vk2 D 2kuk2 C 2kvk2

33. Let v D
�

a

b

�
. Describe the set H of vectors

�
x

y

�
that are

orthogonal to v. [Hint: Consider v D 0 and v ¤ 0.]

34. Let u D

24 5

�6

7

35, and let W be the set of all x in R3 such that

u�x D 0. What theorem in Chapter 4 can be used to show that
W is a subspace of R3? Describe W in geometric language.

35. Suppose a vector y is orthogonal to vectors u and v. Show
that y is orthogonal to the vector uC v.

36. Suppose y is orthogonal to u and v. Show that y is orthogonal
to everyw in Span fu; vg. [Hint:An arbitraryw in Span fu; vg
has the form w D c1uC c2v. Show that y is orthogonal to
such a vector w.]

w

0

yv

u

Span{u, v}

37. Let W D Span fv1; : : : ; vpg. Show that if x is orthogonal to
each vj , for 1 � j � p, then x is orthogonal to every vector
in W .

38. Let W be a subspace of Rn, and let W ? be the set of all
vectors orthogonal to W . Show that W ? is a subspace of Rn

using the following steps.

a. Take z inW ?, and let u represent any element ofW . Then
z�u D 0. Take any scalar c and show that cz is orthogonal
to u. (Since u was an arbitrary element of W , this will
show that cz is in W ?.)

b. Take z1 and z2 in W ?, and let u be any element of
W . Show that z1 C z2 is orthogonal to u. What can you
conclude about z1 C z2? Why?

c. Finish the proof that W ? is a subspace of Rn.

39. Show that if x is in both W and W ?, then x D 0.

T 40. Construct a pair u, v of random vectors in R4, and let

A D

2664
:5 :5 :5 :5

:5 :5 �:5 �:5

:5 �:5 :5 �:5

:5 �:5 �:5 :5

3775
a. Denote the columns of A by a1; : : : ; a4. Compute

the length of each column, and compute a1 �a2,
a1 �a3; a1 �a4; a2 �a3; a2 �a4, and a3 �a4.

b. Compute and compare the lengths of u, Au, v, and Av.

c. Use equation (2) in this section to compute the cosine of
the angle between u and v. Compare this with the cosine
of the angle between Au and Av.

d. Repeat parts (b) and (c) for two other pairs of random
vectors. What do you conjecture about the effect of A on
vectors?

T 41. Generate random vectors x, y, and v inR4 with integer entries
(and v ¤ 0), and compute the quantities�x�v
v�v

�
v;
�y�v
v�v

�
v;

.xC y/�v
v�v

v;
.10x/�v
v�v

v

Repeat the computations with new random vectors x and y.
What do you conjecture about the mapping x 7! T .x/ D�x�v
v�v

�
v (for v ¤ 0)? Verify your conjecture algebraically.

T 42. Let A D

266664
�6 3 �27 �33 �13

6 �5 25 28 14

8 �6 34 38 18

12 �10 50 41 23

14 �21 49 29 33

377775. Construct a

matrix N whose columns form a basis for NulA, and con-
struct a matrix R whose rows form a basis for RowA (see
Section 4.6 for details). Perform a matrix computation with
N and R that illustrates a fact from Theorem 3.
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Solutions to Practice Problems

1. a�b D 7, a�a D 5. Hence
a�b
a�a
D

7

5
, and

�
a�b
a�a

�
a D

7

5
a D

�
�14=5

7=5

�
.

2. a. Scale c, multiplying by 3 to get y D

24 4

�3

2

35. Compute kyk2 D 29

and kyk D
p

29. The unit vector in the direction of both c and y is

u D
1

kyk
y D

24 4=
p

29

�3=
p

29

2=
p

29

35.
b. d is orthogonal to c, because

d�c D

24 5

6

�1

35�

24 4=3

�1

2=3

35 D 20

3
� 6 �

2

3
D 0

c. d is orthogonal to u, because u has the form kc for some k, and

d�u D d� .kc/ D k.d�c/ D k.0/ D 0

3. IfW ¤ f0g, let fb1; : : : ; bpg be a basis forW , where 1 � p � n. LetA be thep � n

matrix having rows bT
1 ; : : : ; bT

p . It follows that W is the row space of A. Theorem
3 implies that W ? D (Row A/? D Nul A and hence dim W ? D dim Nul A. Thus,
dimW C dimW ? D dim RowAC dim Nul A D rankAC dim Nul A D n, by the
Rank Theorem. If W D f0g, then W ? D Rn, and the result follows.

6.2 Orthogonal Sets
A set of vectors fu1; : : : ; upg inRn is said to be an orthogonal set if each pair of distinct
vectors from the set is orthogonal, that is, if ui �uj D 0 whenever i ¤ j .

EXAMPLE 1 Show that fu1; u2; u3g is an orthogonal set, where

u1 D

24 3

1

1

35; u2 D

24�1

2

1

35; u3 D

24�1=2

�2

7=2

35
SOLUTION Consider the three possible pairs of distinct vectors, namely fu1; u2g,
fu1; u3g, and fu2; u3g.

u1 �u2 D 3.�1/C 1.2/C 1.1/ D 0

u1 �u3 D 3
�
�

1
2

�
C 1.�2/C 1

�
7
2

�
D 0

u2 �u3 D �1
�
�

1
2

�
C 2.�2/C 1

�
7
2

�
D 0

Each pair of distinct vectors is orthogonal, and so fu1; u2; u3g is an orthogonal set. See
Figure 1; the three line segments are mutually perpendicular.

u1

u2

u3

x2

x1

x3

FIGURE 1

THEOREM 4 If S D fu1; : : : ; upg is an orthogonal set of nonzero vectors in Rn, then S is
linearly independent and hence is a basis for the subspace spanned by S .
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PROOF If 0 D c1u1 C � � � C cpup for some scalars c1; : : : ; cp , then

0 D 0�u1 D .c1u1 C c2u2 C � � � C cpup/�u1

D .c1u1/�u1 C .c2u2/�u1 C � � � C .cpup/�u1

D c1.u1 � u1/C c2.u2 � u1/C � � � C cp.up � u1/

D c1.u1 � u1/

because u1 is orthogonal to u2; : : : ; up . Since u1 is nonzero, u1 �u1 is not zero and so
c1 D 0. Similarly, c2; : : : ; cp must be zero. Thus S is linearly independent.

DEFINITION An orthogonal basis for a subspace W of Rn is a basis for W that is also an
orthogonal set.

The next theorem suggests why an orthogonal basis is much nicer than other bases.
The weights in a linear combination can be computed easily.

THEOREM 5 Let fu1; : : : ; upg be an orthogonal basis for a subspace W of Rn. For each y in W ,
the weights in the linear combination

y D c1u1 C � � � C cpup

are given by

cj D
y�uj

uj � uj

.j D 1; : : : ; p/

PROOF As in the preceding proof, the orthogonality of fu1; : : : ; upg shows that

y�u1 D .c1u1 C c2u2 C � � � C cpup/�u1 D c1.u1 � u1/

Since u1 �u1 is not zero, the equation above can be solved for c1. To find cj for j D

2; : : : ; p, compute y�uj and solve for cj .

EXAMPLE 2 The set S D fu1; u2; u3g in Example 1 is an orthogonal basis for R3.

Express the vector y D

24 6

1

�8

35 as a linear combination of the vectors in S .

SOLUTION Compute

y�u1 D 11; y�u2 D �12; y�u3 D �33

u1 � u1 D 11; u2 � u2 D 6; u3 � u3 D 33=2

By Theorem 5,

y D
y�u1

u1 � u1

u1 C
y�u2

u2 � u2

u2 C
y�u3

u3 � u3

u3

D
11

11
u1 C

�12

6
u2 C

�33

33=2
u3

D u1 � 2u2 � 2u3

Notice how easy it is to compute the weights needed to build y from an orthogonal
basis. If the basis were not orthogonal, it would be necessary to solve a system of linear
equations in order to find the weights, as in Chapter 1.

We turn next to a construction that will become a key step in many calculations
involving orthogonality, and it will lead to a geometric interpretation of Theorem 5.
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An Orthogonal Projection
Given a nonzero vector u in Rn, consider the problem of decomposing a vector y in Rn

into the sum of two vectors, one a multiple of u and the other orthogonal to u. We wish
to write

y D OyC z (1)

where Oy D ˛u for some scalar ˛ and z is some vector orthogonal to u. See Figure 2.
Given any scalar ˛, let z D y � ˛u, so that (1) is satisfied. Then y � Oy is orthogonal to
u if and only if

0 D .y � ˛u/�u D y�u � .˛u/�u D y�u � ˛.u�u/

y

ˆz 5 y 2 y

ŷ 5 projW y

0

W

FIGURE 2

Finding ˛ to make y � Oy
orthogonal to u.

That is, (1) is satisfied with z orthogonal to u if and only if ˛ D
y�u
u�u

and Oy D
y�u
u�u

u.

The vector Oy is called the orthogonal projection of y onto u, and the vector z is called
the component of y orthogonal to u.

If c is any nonzero scalar and if u is replaced by cu in the definition of Oy, then the
orthogonal projection of y onto cu is exactly the same as the orthogonal projection of
y onto u (Exercise 39). Hence this projection is determined by the subspace L spanned
by u (the line through u and 0). Sometimes Oy is denoted by projL y and is called the
orthogonal projection of y onto L. That is,

Oy D projL y D
y�u
u�u

u (2)

EXAMPLE 3 Let y D
�

7

6

�
and u D

�
4

2

�
. Find the orthogonal projection of y onto

u. Then write y as the sum of two orthogonal vectors, one in Span fug and one orthogonal
to u.

SOLUTION Compute

y�u D
�

7

6

�
�

�
4

2

�
D 40

u�u D
�

4

2

�
�

�
4

2

�
D 20

The orthogonal projection of y onto u is

Oy D
y�u
u�u

u D
40

20
u D 2

�
4

2

�
D

�
8

4

�
and the component of y orthogonal to u is

y � Oy D
�

7

6

�
�

�
8

4

�
D

�
�1

2

�
The sum of these two vectors is y. That is,�

7

6

�
"

y

D

�
8

4

�
"

Oy

C

�
�1

2

�
"

.y � Oy/

This decomposition of y is illustrated in Figure 3. Note: If the calculations above are
correct, then fOy; y � Oyg will be an orthogonal set. As a check, compute

Oy�.y � Oy/ D

�
8

4

�
�

�
�1

2

�
D �8C 8 D 0
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x1

x2
y

u

ŷ

L 5 Span{u}

3

1 8

6

yy 2 ˆ

FIGURE 3 The orthogonal projection of y onto a
line L through the origin.

Since the line segment in Figure 3 between y and Oy is perpendicular to L, by con-
struction of Oy, the point identified with Oy is the closest point ofL to y. (This can be proved
from geometry. We will assume this for R2 now and prove it for Rn in Section 6.3.)

EXAMPLE 4 Find the distance in Figure 3 from y to L.

SOLUTION The distance from y to L is the length of the perpendicular line segment
from y to the orthogonal projection Oy. This length equals the length of y � Oy. Thus the
distance is

ky � Oyk D
p

.�1/2 C 22 D
p

5

A Geometric Interpretation of Theorem 5
The formula for the orthogonal projection Oy in (2) has the same appearance as each of the
terms in Theorem 5. Thus Theorem 5 decomposes a vector y into a sum of orthogonal
projections onto one-dimensional subspaces.

It is easy to visualize the case in which W D R2 D Span fu1; u2g, with u1 and u2

orthogonal. Any y in R2 can be written in the form

y D
y�u1

u1 � u1

u1 C
y�u2

u2 � u2

u2 (3)

The first term in (3) is the projection of y onto the subspace spanned by u1 (the line
through u1 and the origin), and the second term is the projection of y onto the subspace
spanned by u2. Thus (3) expresses y as the sum of its projections onto the (orthogonal)
axes determined by u1 and u2. See Figure 4.

0

y

u1

u2

ŷ2 5 projection of y onto u2

ŷ1 5 projection of y onto u1

FIGURE 4 A vector decomposed into the
sum of two projections.
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Theorem 5 decomposes each y in Span fu1; : : : ; upg into the sum of p projections
onto one-dimensional subspaces that are mutually orthogonal.

Decomposing a Force into Component Forces
The decomposition in Figure 4 can occur in physics when some sort of force is applied to
an object. Choosing an appropriate coordinate system allows the force to be represented
by a vector y in R2 or R3. Often the problem involves some particular direction of
interest, which is represented by another vector u. For instance, if the object is moving
in a straight line when the force is applied, the vector u might point in the direction of
movement, as in Figure 5. A key step in the problem is to decompose the force into
a component in the direction of u and a component orthogonal to u. The calculations
would be analogous to those previously made in Example 3.

u

y

FIGURE 5

Orthonormal Sets
A set fu1; : : : ; upg is an orthonormal set if it is an orthogonal set of unit vectors. If W

is the subspace spanned by such a set, then fu1; : : : ; upg is an orthonormal basis for
W , since the set is automatically linearly independent, by Theorem 4.

The simplest example of an orthonormal set is the standard basis fe1; : : : ; eng forRn.
Any nonempty subset of fe1; : : : ; eng is orthonormal, too. Here is a more complicated
example.

EXAMPLE 5 Show that fv1; v2; v3g is an orthonormal basis of R3, where

v1 D

264 3=
p

11

1=
p

11

1=
p

11

375; v2 D

264�1=
p

6

2=
p

6

1=
p

6

375; v3 D

264 �1=
p

66

�4=
p

66

7=
p

66

375
SOLUTION Compute

v1 �v2 D �3=
p

66C 2=
p

66C 1=
p

66 D 0

v1 �v3 D �3=
p

726 � 4=
p

726C 7=
p

726 D 0

v2 �v3 D 1=
p

396 � 8=
p

396C 7=
p

396 D 0

Thus fv1; v2; v3g is an orthogonal set. Also,

v1 �v1 D 9=11C 1=11C 1=11 D 1

v2 �v2 D 1=6C 4=6C 1=6 D 1

v3 �v3 D 1=66C 16=66C 49=66 D 1

which shows that v1, v2, and v3 are unit vectors. Thus fv1; v2; v3g is an orthonormal set.
Since the set is linearly independent, its three vectors form a basis for R3. See Figure 6.

v3

v2

x1

v1

x3

x2

FIGURE 6
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When the vectors in an orthogonal set of nonzero vectors are normalized to have
unit length, the new vectors will still be orthogonal, and hence the new set will be
an orthonormal set. See Exercise 40. It is easy to check that the vectors in Figure 6
(Example 5) are simply the unit vectors in the directions of the vectors in Figure 1
(Example 1).

Matrices whose columns form an orthonormal set are important in applications
and in computer algorithms for matrix computations. Their main properties are given
in Theorems 6 and 7.

THEOREM 6 An m � n matrix U has orthonormal columns if and only if U TU D I .

PROOF To simplify notation, we suppose that U has only three columns, each a vector
inRm. The proof of the general case is essentially the same. LetU D Œ u1 u2 u3 � and
compute

U TU D

264 uT
1

uT
2

uT
3

375�u1 u2 u3

�
D

264uT
1 u1 uT

1 u2 uT
1 u3

uT
2 u1 uT

2 u2 uT
2 u3

uT
3 u1 uT

3 u2 uT
3 u3

375 (4)

The entries in the matrix at the right are inner products, using transpose notation. The
columns of U are orthogonal if and only if

uT
1 u2 D uT

2 u1 D 0; uT
1 u3 D uT

3 u1 D 0; uT
2 u3 D uT

3 u2 D 0 (5)

The columns of U all have unit length if and only if

uT
1 u1 D 1; uT

2 u2 D 1; uT
3 u3 D 1 (6)

The theorem follows immediately from (4)–(6).

THEOREM 7 Let U be an m � n matrix with orthonormal columns, and let x and y be in Rn.
Then

a. kU xk D kxk

b. .U x/�.U y/ D x�y

c. .U x/� .U y/ D 0 if and only if x�y D 0

Properties (a) and (c) say that the linear mapping x 7! U x preserves lengths and or-
thogonality. These properties are crucial for many computer algorithms. See Exercise 33
for the proof of Theorem 7.

EXAMPLE 6 Let U D

264 1=
p

2 2=3

1=
p

2 �2=3

0 1=3

375 and x D
�p

2

3

�
. Notice that U has or-

thonormal columns and

U TU D

�
1=
p

2 1=
p

2 0

2=3 �2=3 1=3

�24 1=
p

2 2=3

1=
p

2 �2=3

0 1=3

35 D � 1 0

0 1

�
Verify that kU xk D kxk.
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SOLUTION

U x D

24 1=
p

2 2=3

1=
p

2 �2=3

0 1=3

35�p2

3

�
D

24 3

�1

1

35
kU xk D

p
9C 1C 1 D

p
11

kxk D
p

2C 9 D
p

11

Theorems 6 and 7 are particularly useful when applied to square matrices. An
orthogonal matrix is a square invertible matrix U such that U�1 D U T . By Theo-
rem 6, such a matrix has orthonormal columns.1 It is easy to see that any square matrix
with orthonormal columns is an orthogonal matrix. Surprisingly, such a matrix must
have orthonormal rows, too. See Exercises 35 and 36. Orthogonal matrices will appear
frequently in Chapter 7.

EXAMPLE 7 The matrix

U D

264 3=
p

11 �1=
p

6 �1=
p

66

1=
p

11 2=
p

6 �4=
p

66

1=
p

11 1=
p

6 7=
p

66

375
is an orthogonal matrix because it is square and because its columns are orthonormal,
by Example 5. Verify that the rows are orthonormal, too!

Practice Problems

1. Let u1 D

�
�1=
p

5

2=
p

5

�
and u2 D

�
2=
p

5

1=
p

5

�
. Show that fu1; u2g is an orthonormal

basis for R2.

2. Let y and L be as in Example 3 and Figure 3. Compute the orthogonal projection Oy

of y onto L using u D
�

2

1

�
instead of the u in Example 3.

3. Let U and x be as in Example 6, and let y D
�
�3
p

2

6

�
. Verify that U x�U y D x�y.

4. Let U be an n � n matrix with orthonormal columns. Show that det U D ±1.

6.2 Exercises
In Exercises 1–6, determine which sets of vectors are orthogonal.

1.

24�1

4

�3

35, 24 5

2

1

35, 24 3

�4

�7

35 2.

24 1

�2

1

35, 24 0

1

2

35, 24�5

�2

1

35

3.

24 2

�7

�1

35, 24�6

�3

9

35, 24 3

1

�1

35 4.

24 2

�5

�3

35, 24 0

0

0

35, 24 4

2

6

35

5.

2664
3

�2

1

3

3775,
2664
�1

3

�3

4

3775,
2664

3

8

7

0

3775 6.

2664
5

�4

0

3

3775,
2664
�4

1

�3

8

3775,
2664

3

3

5

�1

3775
In Exercises 7–10, show that fu1; u2g or fu1; u2; u3g is an orthog-
onal basis for R2 or R3, respectively. Then express x as a linear
combination of the u’s.

7. u1 D

�
2

�3

�
, u2 D

�
6

4

�
, and x D

�
9

�7

�
1A better name might be orthonormal matrix, and this term is found in some statistics texts. However,
orthogonal matrix is the standard term in linear algebra.
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8. u1 D

�
3

1

�
, u2 D

�
�2

6

�
, and x D

�
�4

3

�

9. u1 D

24 1

0

�1

35, u2 D

24 1

�4

1

35, u3 D

24 4

2

4

35, and x D 24 6

4

�2

35
10. u1 D

24 4

�4

0

35, u2 D

24 2

2

�1

35, u3 D

24 1

1

4

35, and x D 24 3

�4

7

35
11. Compute the orthogonal projection of

�
1

7

�
onto the line

through
�
�4

2

�
and the origin.

12. Compute the orthogonal projection of
�
�3

4

�
onto the line

through
�

1

�3

�
and the origin.

13. Let y D
�

2

3

�
and u D

�
4

�7

�
. Write y as the sum of two

orthogonal vectors, one in Span fug and one orthogonal to u.

14. Let y D
�

2

6

�
and u D

�
6

1

�
. Write y as the sum of a vector

in Span fug and a vector orthogonal to u.

15. Let y D
�

3

1

�
and u D

�
8

6

�
. Compute the distance from y to

the line through u and the origin.

16. Let y D
�
�1

7

�
and u D

�
1

3

�
. Compute the distance from y

to the line through u and the origin.

In Exercises 17–22, determine which sets of vectors are orthonor-
mal. If a set is only orthogonal, normalize the vectors to produce
an orthonormal set.

17.

24 1=3

1=3

1=3

35, 24�1=2

0

1=2

35 18.

24 0

0

1

35, 24 0

�1

0

35
19.

�
�:6

:8

�
,
�

:8

:6

�
20.

24 4=3

7=3

4=3

35, 24 7=3

�4=3

0

35
21.

24 1=
p

10

3=
p

20

3=
p

20

35, 24 3=
p

10

�1=
p

20

�1=
p

20

35, 24 0

�1=
p

2

1=
p

2

35
22.

24 1=
p

18

4=
p

18

1=
p

18

35, 24 1=
p

2

0

�1=
p

2

35, 24�2=3

1=3

�2=3

35
In Exercises 23–32, all vectors are in Rn. Mark each statement
True or False (T/F). Justify each answer.

23. (T/F) Not every linearly independent set in Rn is an orthog-
onal set.

24. (T/F) Not every orthogonal set in Rn is linearly independent.

25. (T/F) If y is a linear combination of nonzero vectors from an
orthogonal set, then the weights in the linear combination can
be computed without row operations on a matrix.

26. (T/F) If a set S D fu1; : : : ; upg has the property that
ui � uj D 0 whenever i ¤ j , then S is an orthonormal set.

27. (T/F) If the vectors in an orthogonal set of nonzero vectors
are normalized, then some of the new vectors may not be
orthogonal.

28. (T/F) If the columns of an m � n matrix A are orthonormal,
then the linear mapping x 7! Ax preserves lengths.

29. (T/F) A matrix with orthonormal columns is an orthogonal
matrix.

30. (T/F) The orthogonal projection of y onto v is the same as the
orthogonal projection of y onto cv whenever c ¤ 0.

31. (T/F) If L is a line through 0 and if Oy is the orthogonal
projection of y onto L, then kOyk gives the distance from y
to L.

32. (T/F) An orthogonal matrix is invertible.

33. Prove Theorem 7. [Hint: For (a), compute kU xk2, or prove
(b) first.]

34. Suppose W is a subspace of Rn spanned by n nonzero
orthogonal vectors. Explain why W D Rn.

35. Let U be a square matrix with orthonormal columns. Explain
why U is invertible. (Mention the theorems you use.)

36. Let U be an n � n orthogonal matrix. Show that the rows of
U form an orthonormal basis of Rn.

37. Let U and V be n � n orthogonal matrices. Explain why
UV is an orthogonal matrix. [That is, explain why UV is
invertible and its inverse is .UV /T .]

38. Let U be an orthogonal matrix, and construct V by inter-
changing some of the columns of U . Explain why V is an
orthogonal matrix.

39. Show that the orthogonal projection of a vector y onto a lineL

through the origin in R2 does not depend on the choice of the
nonzero u in L used in the formula for Oy. To do this, suppose
y and u are given and Oy has been computed by formula (2) in
this section. Replace u in that formula by cu, where c is an
unspecified nonzero scalar. Show that the new formula gives
the same Oy.

40. Let fv1; v2g be an orthogonal set of nonzero vectors, and let
c1, c2 be any nonzero scalars. Show that fc1v1; c2v2g is also
an orthogonal set. Since orthogonality of a set is defined in
terms of pairs of vectors, this shows that if the vectors in
an orthogonal set are normalized, the new set will still be
orthogonal.
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41. Given u ¤ 0 inRn, letL D Span fug. Show that the mapping
x 7! projL x is a linear transformation.

42. Given u ¤ 0 in Rn, let L D Span fug. For y in Rn, the
reflection of y in L is the point reflL y defined by

reflL y D 2 projL y � y

See the figure, which shows that reflL y is the sum of
Oy D projL y and Oy � y. Show that the mapping y 7! reflL y
is a linear transformation.

x1

x2 y

u

ŷ

L 5 Span{u}

yy 2 ˆ ref lL y

yy 2ˆ

The reflection of y in a line through the origin.

T 43. Show that the columns of the matrix A are orthogonal by
making an appropriate matrix calculation. State the calcula-
tion you use.

A D

266666666664

�6 �3 6 1

�1 2 1 �6

3 6 3 �2

6 �3 6 �1

2 �1 2 3

�3 6 3 2

�2 �1 2 �3

1 2 1 6

377777777775
T 44. In parts (a)–(d), let U be the matrix formed by normalizing

each column of the matrix A in Exercise 43.

a. Compute U TU and U U T . How do they differ?

b. Generate a random vector y in R8, and compute
p D U U Ty and z D y � p. Explain why p is in ColA.
Verify that z is orthogonal to p.

c. Verify that z is orthogonal to each column of U .

d. Notice that y D pC z, with p in ColA. Explain why z is
in .ColA/?. (The significance of this decomposition of y
will be explained in the next section.)

Solutions to Practice Problems

1. The vectors are orthogonal because

u1 � u2 D �2=5C 2=5 D 0

They are unit vectors because

ku1k
2
D .�1=

p
5/2
C .2=

p
5/2
D 1=5C 4=5 D 1

ku2k
2
D .2=

p
5/2
C .1=

p
5/2
D 4=5C 1=5 D 1

In particular, the set fu1; u2g is linearly independent, and hence is a basis for R2

since there are two vectors in the set.

2. When y D
�

7

6

�
and u D

�
2

1

�
,

Oy D
y�u
u�u

u D
20

5

�
2

1

�
D 4

�
2

1

�
D

�
8

4

�
This is the same Oy found in Example 3. The orthogonal projection does not depend
on the u chosen on the line. See Exercise 39.

3. U y D

24 1=
p

2 2=3

1=
p

2 �2=3

0 1=3

35��3
p

2

6

�
D

24 1

�7

2

35
Also, from Example 6, x D

�p
2

3

�
and U x D

24 3

�1

1

35. Hence
U x�U y D 3C 7C 2 D 12; and x�y D �6C 18 D 12
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4. Since U is an n � n matrix with orthonormal columns, by Theorem 6, U T U D I .STUDY GUIDE offers additional
resources for mastering the
concepts around an orthogonal
basis.

Taking the determinant of the left side of this equation, and applying Theorems 5
and 6 from Section 3.2 results in detU T U D .detU T /.detU / D .detU /.detU / D

.detU /2. Recall det I D 1. Putting the two sides of the equation back together
results in (det U )2 D 1 and hence det U D ±1.

6.3 Orthogonal Projections
The orthogonal projection of a point inR2 onto a line through the origin has an important
analogue in Rn. Given a vector y and a subspace W in Rn, there is a vector Oy in W such
that (1) Oy is the unique vector in W for which y � Oy is orthogonal to W , and (2) Oy is the
unique vector in W closest to y. See Figure 1. These two properties of Oy provide the key
to finding least-squares solutions of linear systems.

To prepare for the first theorem, observe that whenever a vector y is written as a
linear combination of vectors u1; : : : ; un inRn, the terms in the sum for y can be grouped
into two parts so that y can be written as

y D z1 C z2

where z1 is a linear combination of some of the ui and z2 is a linear combination of
the rest of the ui . This idea is particularly useful when fu1; : : : ; ung is an orthogonal
basis. Recall from Section 6.1 that W ? denotes the set of all vectors orthogonal to a

y

ŷ 5 projW y0

W

FIGURE 1

subspace W .

EXAMPLE 1 Let fu1; : : : ; u5g be an orthogonal basis for R5 and let

y D c1u1 C � � � C c5u5

Consider the subspace W D Span fu1; u2g, and write y as the sum of a vector z1 in W

and a vector z2 in W ?.

SOLUTION Write

y D c1u1 C c2u2„ ƒ‚ …
z1

C c3u3 C c4u4 C c5u5„ ƒ‚ …
z2

z1 D c1u1 C c2u2 is in Span fu1; u2gwhere

z2 D c3u3 C c4u4 C c5u5 is in Span fu3; u4; u5g:and

To show that z2 is in W ?, it suffices to show that z2 is orthogonal to the vectors in the
basis fu1; u2g for W . (See Section 6.1.) Using properties of the inner product, compute

z2 �u1 D .c3u3 C c4u4 C c5u5/�u1

D c3u3 � u1 C c4u4 � u1 C c5u5 � u1

D 0

because u1 is orthogonal to u3, u4, and u5. A similar calculation shows that z2 �u2 D 0.
Thus z2 is in W ?.

The next theorem shows that the decomposition y D z1 C z2 in Example 1 can be
computed without having an orthogonal basis for Rn. It is enough to have an orthogonal
basis only for W .
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THEOREM 8 The Orthogonal Decomposition Theorem

LetW be a subspace ofRn. Then each y inRn can be written uniquely in the form

y D OyC z (1)

where Oy is in W and z is in W ?. In fact, if fu1; : : : ; upg is any orthogonal basis of
W , then

Oy D
y�u1

u1 � u1

u1 C � � � C
y�up

up � up

up (2)

and z D y � Oy.

The vector Oy in (2) is called the orthogonal projection of y onto W and often is
written as projW y. See Figure 2. When W is a one-dimensional subspace, the formula
for Oy matches the formula given in Section 6.2.

y

ˆz 5 y 2 y

ŷ 5 projW y

0

W

FIGURE 2 The orthogonal projection
of y onto W .

PROOF Let fu1; : : : ; upg be any orthogonal basis for W , and define Oy by (2).1 Then Oy
is in W because Oy is a linear combination of the basis u1; : : : ; up . Let z D y � Oy. Since
u1 is orthogonal to u2; : : : ; up , it follows from (2) that

z�u1 D .y � Oy/�u1 D y�u1 �

�
y�u1

u1 � u1

�
u1 � u1 � 0 � � � � � 0

D y�u1 � y�u1 D 0

Thus z is orthogonal to u1. Similarly, z is orthogonal to each uj in the basis forW . Hence
z is orthogonal to every vector in W . That is, z is in W ?.

To show that the decomposition in (1) is unique, suppose y can also be written as
y D Oy1 C z1, with Oy1 in W and z1 in W ?. Then OyC z D Oy1 C z1 (since both sides equal
y/, and so

Oy � Oy1 D z1 � z

This equality shows that the vector v D Oy � Oy1 is in W and in W ? (because z1 and z
are both in W ?, and W ? is a subspace). Hence v�v D 0, which shows that v D 0. This
proves that Oy D Oy1 and also z1 D z.

The uniqueness of the decomposition (1) shows that the orthogonal projection Oy
depends only on W and not on the particular basis used in (2).

1We may assume that W is not the zero subspace, for otherwise W ? D Rn and (1) is simply y D 0C y.
The next section will show that any nonzero subspace of Rn has an orthogonal basis.
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EXAMPLE 2 Let u1 D

24 2

5

�1

35, u2 D

24�2

1

1

35, and y D24 1

2

3

35. Observe that fu1; u2g

is an orthogonal basis for W D Span fu1; u2g. Write y as the sum of a vector in W and
a vector orthogonal to W .

SOLUTION The orthogonal projection of y onto W is

Oy D
y�u1

u1 � u1

u1 C
y�u2

u2 � u2

u2

D
9

30

24 2

5

�1

35C 3

6

24�2

1

1

35 D 9

30

24 2

5

�1

35C 15

30

24�2

1

1

35 D 24�2=5

2

1=5

35
Also

y � Oy D

24 1

2

3

35 � 24�2=5

2

1=5

35 D 24 7=5

0

14=5

35
Theorem 8 ensures that y � Oy is in W ?. To check the calculations, however, it is a good
idea to verify that y � Oy is orthogonal to both u1 and u2 and hence to all of W . The
desired decomposition of y is

y D

24 1

2

3

35 D 24�2=5

2

1=5

35C 24 7=5

0

14=5

35

A Geometric Interpretation of the Orthogonal
Projection
When W is a one-dimensional subspace, the formula (2) for projW y contains just one
term. Thus, when dimW > 1, each term in (2) is itself an orthogonal projection of y
onto a one-dimensional subspace spanned by one of the u’s in the basis for W . Figure 3
illustrates this whenW is a subspace ofR3 spanned by u1 and u2. Here Oy1 and Oy2 denote
the projections of y onto the lines spanned by u1 and u2, respectively. The orthogonal
projection Oy of y onto W is the sum of the projections of y onto one-dimensional sub-
spaces that are orthogonal to each other. The vector Oy in Figure 3 corresponds to the
vector y in Figure 4 of Section 6.2, because now it is Oy that is in W .

y2

x3 x2

0

ˆ

y 5 u1 1ˆ ˆ ˆ

y1 u1

u2

y . u1
u1 . u1

ˆ

––––– u2 5 y1 1 y2

y . u2
u2 . u2
–––––

x1

FIGURE 3 The orthogonal projection of y is the
sum of its projections onto one-dimensional
subspaces that are mutually orthogonal.
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Properties of Orthogonal Projections
If fu1; : : : ; upg is an orthogonal basis for W and if y happens to be in W , then the
formula for projW y is exactly the same as the representation of y given in Theorem 5 in
Section 6.2. In this case, projW y D y.

If y is in W D Span fu1; : : : ; upg, then projW y D y.

This fact also follows from the next theorem.

THEOREM 9 The Best Approximation Theorem

Let W be a subspace of Rn, let y be any vector in Rn, and let Oy be the orthogonal
projection of y onto W . Then Oy is the closest point in W to y, in the sense that

ky � Oyk < ky � vk (3)

for all v in W distinct from Oy.

The vector Oy in Theorem 9 is called the best approximation to y by elements ofW .
Later sections in the text will examine problems where a given y must be replaced, or
approximated, by a vector v in some fixed subspace W . The distance from y to v, given
by ky � vk, can be regarded as the “error” of using v in place of y. Theorem 9 says that
this error is minimized when v D Oy.

Inequality (3) leads to a new proof that Oy does not depend on the particular orthogo-
nal basis used to compute it. If a different orthogonal basis for W was used to construct
an orthogonal projection of y, then this projection would also be the closest point in W

to y, namely Oy.

PROOF Take v inW distinct from Oy. See Figure 4. Then Oy � v is inW . By the Orthogo-
nal Decomposition Theorem, y � Oy is orthogonal toW . In particular, y � Oy is orthogonal
to Oy � v (which is in W ). Since

y � v D .y � Oy/C .Oy � v/

the Pythagorean Theorem gives

ky � vk2 D ky � Oyk2 C kOy � vk2

(See the right triangle outlined in teal in Figure 4. The length of each side is labeled.)
Now kOy � vk2 > 0 because Oy � v ¤ 0, and so inequality (3) follows immediately.

y

v
|| ||y 2 vˆ

0
||y 2 y||ˆ

ŷ ||y 2 v||

W

FIGURE 4 The orthogonal projection
of y onto W is the closest point in W

to y.
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EXAMPLE 3 If u1 D

24 2

5

�1

35, u2 D

24�2

1

1

35, y D 24 1

2

3

35, and W D Span fu1; u2g,

as in Example 2, then the closest point in W to y is

Oy D
y�u1

u1 � u1

u1 C
y�u2

u2 � u2

u2 D

24�2=5

2

1=5

35
EXAMPLE 4 The distance from a point y in Rn to a subspace W is defined as the
distance from y to the nearest point inW . Find the distance from y toW D Span fu1; u2g,
where

y D

24�1

�5

10

35; u1 D

24 5

�2

1

35; u2 D

24 1

2

�1

35
SOLUTION By the Best Approximation Theorem, the distance from y toW is ky � Oyk,
where Oy D projW y. Since fu1; u2g is an orthogonal basis for W ,

Oy D
15

30
u1 C

�21

6
u2 D

1

2

24 5

�2

1

35 � 7

2

24 1

2

�1

35 D 24�1

�8

4

35
y � Oy D

24�1

�5

10

35 � 24�1

�8

4

35 D 24 0

3

6

35
ky � Oyk2 D 32

C 62
D 45

The distance from y to W is
p

45 D 3
p

5.

The final theorem in this section shows how formula (2) for projW y is simplified
when the basis for W is an orthonormal set.

THEOREM 10 If fu1; : : : ; upg is an orthonormal basis for a subspace W of Rn, then

projW y D .y�u1/u1 C .y�u2/u2 C � � � C .y�up/up (4)

If U D Œ u1 u2 � � � up �, then

projW y D U U Ty for all y in Rn (5)

PROOF Formula (4) follows immediately from (2) in Theorem 8. Also, (4) shows
that projW y is a linear combination of the columns of U using the weights y�u1,
y�u2; : : : ; y�up . The weights can be written as uT

1 y; uT
2 y; : : : ; uT

py, showing that they
are the entries in U Ty and justifying (5).

Suppose U is an n � p matrix with orthonormal columns, and let W be the column
space of U . Then

U TU x D Ipx D x for all x in Rp Theorem 6

U U Ty D projW y for all y in Rn Theorem 10

If U is an n � n (square) matrix with orthonormal columns, then U is an orthogonal
matrix, the column space W is all of Rn, and U U Ty D Iy D y for all y in Rn.
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Although formula (4) is important for theoretical purposes, in practice it usually
involves calculations with square roots of numbers (in the entries of the ui /. Formula (2)
is recommended for hand calculations.

Example 9 of Section 2.1 illustrates how matrix multiplication and transposition
are used to detect a specified pattern illustrated using blue and white squares. Now
that we have more experience working with bases for W and W ?, we are ready to
discuss how to set up the matrix M in Figure 6. Let w be the vector generated from
a pattern of blue and white squares by turning each blue square into a 1 and each
white square into a 0, and then lining up each column below the column before it. See
Figure 5.

0 1 0

0 1 0

1 1 1

w 5

0

0

1

1

1

1

0

0

1

FIGURE 5 Creating a vector from colored squares.

Let W D span fwg. Choose a basis fv1; v2; : : : ; vn�1g for W ?. Create the matrix

B D

26664
v1

T

v2
T

:::

vn�1
T

37775. Notice Bu D 0 if and only if u is orthogonal to a set of basis vectors

for W ?, which happens if and only if u is in W. Set M D BT B . Then uT Mu D
uT BT Bu D .Bu/T Bu. By Theorem 1, .Bu/T Bu D 0 if and only ifBu D 0, and hence
uT Mu D 0 if and only if u 2 W. But there are only two vectors inW consisting of zeros
and ones: 1w D w and 0w D 0. Thus we can conclude that if uT Mu D 0, but uT u ¤ 0,
then u D w. See Figure 6.

EXAMPLE 5 Find a matrix M that can be used in Figure 6 to identify the perp
symbol.

SOLUTION First change the symbol into a vector. Set w D Œ0 0 1 1 1 1 0 0 1�T .
Next set W D span fwg and find a basis for W ?: solving xTw D 0 creates the homoge-
neous system of equations:

x3 C x4 C x5 C x6 C x9 D 0

Treating x3 as the basic variable and the remaining variables as free variables we get
a basis for W ?. Transposing each vector in the basis and inserting it as a row of B

we get
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w 5

1
0
1
1
1
1
1
0
1

wTMw 5 2 and wTw 5 7

This pattern is not the perpendicular symbol since wTMw Þ 0.

w 5

0
0
1
1
1
1
0
0
1

wTMw 5 0 and wTw 5 5

This pattern is the perpendicular symbol since wTMw 5 0, but wTw Þ 0.

FIGURE 6 How AI detects the perp symbol.

B D

266666666664

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 �1 1 0 0 0 0 0

0 0 �1 0 1 0 0 0 0

0 0 �1 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 �1 0 0 0 0 0 1

377777777775
and M D BT B D

26666666666664

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 4 �1 �1 �1 0 0 �1

0 0 �1 1 0 0 0 0 0

0 0 �1 0 1 0 0 0 0

0 0 �1 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 �1 0 0 0 0 0 1

37777777777775
Notice wT Mw D 0, but wTw ¤ 0.

Practice Problems

1. Let u1 D

24�7

1

4

35, u2 D

24�1

1

�2

35, y D 24�9

1

6

35, andW D Span fu1; u2g. Use the fact

that u1 and u2 are orthogonal to compute projW y.

2. Let W be a subspace of Rn. Let x and y be vectors in Rn and let z D xC y. If u is
the projection of x onto W and v is the projection of y onto W , show that uC v is
the projection of z onto W .
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6.3 Exercises
In Exercises 1 and 2, you may assume that fu1; : : : ; u4g is an
orthogonal basis for R4.

1. u1 D

2664
0

1

�4

�1

3775, u2 D

2664
3

5

1

1

3775, u3 D

2664
1

0

1

�4

3775, u4 D

2664
5

�3

�1

1

3775,
x D

2664
10

�8

2

0

3775. Write x as the sum of two vectors, one in

Span fu1; u2; u3g and the other in Span fu4g.

2. u1 D

2664
1

2

1

1

3775, u2 D

2664
�2

1

�1

1

3775, u3 D

2664
1

1

�2

�1

3775, u4 D

2664
�1

1

1

�2

3775,

v D

2664
4

5

�2

2

3775. Write v as the sum of two vectors, one in

Span fu1g and the other in Span fu2; u3; u4g.

In Exercises 3–6, verify that fu1; u2g is an orthogonal set, and then
find the orthogonal projection of y onto Span fu1; u2g.

3. y D

24�1

4

3

35, u1 D

24 1

1

0

35, u2 D

24�1

1

0

35
4. y D

24 4

3

�2

35, u1 D

24 3

4

0

35, u2 D

24�4

3

0

35
5. y D

24�1

2

6

35, u1 D

24 3

�1

2

35, u2 D

24 1

�1

�2

35
6. y D

24�1

5

3

35, u1 D

24 4

�1

1

35, u2 D

24 1

�1

�5

35
In Exercises 7–10, let W be the subspace spanned by the u’s, and
write y as the sum of a vector in W and a vector orthogonal to W .

7. y D

24 1

3

5

35, u1 D

24 1

3

�2

35, u2 D

24 5

1

4

35
8. y D

24�1

6

4

35, u1 D

24 1

1

1

35, u2 D

24�1

4

�3

35

9. y D

2664
4

3

3

�1

3775, u1 D

2664
1

1

0

1

3775, u2 D

2664
�1

3

1

�2

3775, u3 D

2664
�1

0

1

1

3775

10. y D

2664
3

4

5

4

3775, u1 D

2664
1

1

0

�1

3775, u2 D

2664
1

0

1

1

3775, u3 D

2664
0

�1

1

�1

3775
In Exercises 11 and 12, find the closest point to y in the subspace
W spanned by v1 and v2.

11. y D

2664
3

1

5

1

3775, v1 D

2664
3

1

�1

1

3775, v2 D

2664
1

�1

1

�1

3775

12. y D

2664
4

3

4

7

3775, v1 D

2664
2

1

�2

1

3775, v2 D

2664
1

1

1

�1

3775
In Exercises 13 and 14, find the best approximation to z by vectors
of the form c1v1 C c2v2.

13. z D

2664
3

�7

2

3

3775, v1 D

2664
2

�1

�3

1

3775, v2 D

2664
1

1

0

�1

3775

14. z D

2664
2

4

0

�1

3775, v1 D

2664
2

0

�1

�3

3775, v2 D

2664
5

�2

4

2

3775
15. Let y D

24 5

�9

5

35, u1 D

24�3

�5

1

35, u2 D

24�3

2

1

35. Find the dis-
tance from y to the plane in R3 spanned by u1 and u2.

16. Let y, v1, and v2 be as in Exercise 12. Find the distance from
y to the subspace of R4 spanned by v1 and v2.

17. Let y D

24 4

8

1

35, u1 D

24 2=3

1=3

2=3

35, u2 D

24�2=3

2=3

1=3

35, and

W D Span fu1; u2g.

a. Let U D Œ u1 u2 �. Compute U TU and U U T .

b. Compute projW y and .U U T /y.

18. Let y D
�

7

9

�
, u1 D

�
1=
p

10

�3=
p

10

�
, and W D Span fu1g.

a. Let U be the 2 � 1 matrix whose only column is u1.
Compute U TU and U U T .

b. Compute projW y and .U U T /y.

19. Let u1 D

24 1

1

1

35, u2 D

24 1

�2

1

35, and u3 D

24 0

0

1

35. Note that
u1 and u2 are orthogonal but that u3 is not orthogonal to u1 or
u2. It can be shown that u3 is not in the subspace W spanned
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by u1 and u2. Use this fact to construct a nonzero vector v in
R3 that is orthogonal to u1 and u2.

20. Let u1 and u2 be as in Exercise 19, and let u3 D

24 1

0

0

35. It can
be shown that u4 is not in the subspace W spanned by u1 and
u2. Use this fact to construct a nonzero vector v in R3 that is
orthogonal to u1 and u2.

In Exercises 21–30, all vectors and subspaces are inRn. Mark each
statement True or False (T/F). Justify each answer.

21. (T/F) If z is orthogonal to u1 and to u2 and if W D

Span fu1; u2g, then z must be in W ?.

22. (T/F) For each y and each subspaceW, the vector y � projW y
is orthogonal to W .

23. (T/F) The orthogonal projection Oy of y onto a subspace W

can sometimes depend on the orthogonal basis for W used to
compute Oy.

24. (T/F) If y is in a subspace W, then the orthogonal projection
of y onto W is y itself.

25. (T/F) The best approximation to y by elements of a subspace
W is given by the vector y � projW y.

26. (T/F) IfW is a subspace ofRn and if v is in bothW andW ?,
then v must be the zero vector.

27. (T/F) In the Orthogonal Decomposition Theorem, each term
in formula (2) for Oy is itself an orthogonal projection of y onto
a subspace of W.

28. (T/F) If y D z1 C z2, where z1 is in a subspaceW and z2 is in
W ?, then z1 must be the orthogonal projection of y onto W.

29. (T/F) If the columns of an n � p matrix U are orthonormal,
thenU U T y is the orthogonal projection of y onto the column

space of U .

30. (T/F) If an n � p matrix U has orthonormal columns, then
U U T x D x for all x in Rn.

31. Let A be an m � n matrix. Prove that every vector x in Rn

can be written in the form x D pC u, where p is in RowA

and u is in NulA. Also, show that if the equation Ax D b
is consistent, then there is a unique p in RowA such that
Ap D b.

32. Let W be a subspace of Rn with an orthogonal basis
fw1; : : : ;wpg, and let fv1; : : : ; vqg be an orthogonal basis for
W ?.

a. Explain why fw1; : : : ;wp; v1; : : : ; vqg is an orthogonal
set.

b. Explain why the set in part (a) spans Rn.

c. Show that dimW C dimW ? D n.

In Exercises 33–36, first change the given pattern into a vector w
of zeros and ones and then use the method illustrated in Example
5 to find a matrix M so that wT Mw D 0, but uT Mu ¤ 0 for all
other nonzero vectors u of zeros and ones.

33. 34.

35. 36.

T 37. Let U be the 8 � 4 matrix in Exercise 43 in Section 6.2. Find
the closest point to y D .1; 1; 1; 1; 1; 1; 1; 1/ in ColU . Write
the keystrokes or commands you use to solve this problem.

T 38. Let U be the matrix in Exercise 37. Find the distance from
b D .1; 1; 1; 1;�1;�1;�1;�1/ to ColU .

Solution to Practice Problems

1. Compute

projW y D
y�u1

u1 � u1

u1 C
y�u2

u2 � u2

u2 D
88

66
u1 C

�2

6
u2

D
4

3

24�7

1

4

35 � 1

3

24�1

1

�2

35 D 24�9

1

6

35 D y

In this case, y happens to be a linear combination of u1 and u2, so y is in W . The
closest point in W to y is y itself.

2. Using Theorem 10, letU be amatrix whose columns consist of an orthonormal basis
for W . Then projW zD U U T zD U U T (xC y)D U U T xC U U T y D projW xC
projW y D uC v.
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6.4 The Gram Schmidt Process
The Gram–Schmidt process is a simple algorithm for producing an orthogonal or
orthonormal basis for any nonzero subspace ofRn. The first two examples of the process
are aimed at hand calculation.

EXAMPLE 1 LetW D Span fx1; x2g, where x1 D

24 3

6

0

35 and x2 D

24 1

2

2

35. Construct
an orthogonal basis fv1; v2g for W .

SOLUTION The subspaceW is shown in Figure 1, alongwith x1, x2, and the projection
p of x2 onto x1. The component of x2 orthogonal to x1 is x2 � p, which is in W because
it is formed from x2 and a multiple of x1. Let v1 D x1 and

v2 D x2 � p D x2 �
x2 � x1

x1 � x1

x1 D

24 1

2

2

35 � 15

45

24 3

6

0

35 D 24 0

0

2

35
Then fv1; v2g is an orthogonal set of nonzero vectors in W . Since dimW D 2, the set

x3

v1 5 x1

0

x2

W

x2

v2

p
x1

FIGURE 1

Construction of an orthogonal
basis fv1; v2g.

fv1; v2g is a basis for W .

The next example fully illustrates the Gram–Schmidt process. Study it carefully.

EXAMPLE 2 Let x1 D

2664
1

1

1

1

3775, x2 D

2664
0

1

1

1

3775, and x3 D

2664
0

0

1

1

3775. Then fx1; x2; x3g is

clearly linearly independent and thus is a basis for a subspace W of R4. Construct an
orthogonal basis for W .

SOLUTION

Step 1. Let v1 D x1 and W1 D Span fx1g D Span fv1g.

Step 2. Let v2 be the vector produced by subtracting from x2 its projection onto the
subspace W1. That is, let

v2 D x2 � projW1
x2

D x2 �
x2 � v1

v1 � v1

v1 Since v1 D x1

D

2664
0

1

1

1

3775 � 3

4

2664
1

1

1

1

3775 D
2664
�3=4

1=4

1=4

1=4

3775
As in Example 1, v2 is the component of x2 orthogonal to x1, and fv1; v2g is an orthogonal
basis for the subspace W2 spanned by x1 and x2.

Step 20 (optional). If appropriate, scale v2 to simplify later computations. Since v2 has
fractional entries, it is convenient to scale it by a factor of 4 and replace fv1; v2g by the
orthogonal basis

v1 D

2664
1

1

1

1

3775; v02 D

2664
�3

1

1

1

3775
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Step 3. Let v3 be the vector produced by subtracting from x3 its projection onto the
subspace W2. Use the orthogonal basis fv1; v02g to compute this projection onto W2:

projW2
x3 D

Projection of
x3 onto v1

?

x3 � v1

v1 � v1

v1 C

Projection of
x3 onto v02

?

x3 � v02
v02 � v02

v02 D
2

4

2664
1

1

1

1

3775C 2

12

2664
�3

1

1

1

3775 D
2664

0

2=3

2=3

2=3

3775
Then v3 is the component of x3 orthogonal to W2, namely

v3 D x3 � projW2
x3 D

2664
0

0

1

1

3775 �
2664

0

2=3

2=3

2=3

3775 D
2664

0

�2=3

1=3

1=3

3775
See Figure 2 for a diagram of this construction. Observe that v3 is in W , because x3

and projW2x3 are both in W . Thus fv1; v02; v3g is an orthogonal set of nonzero vectors
and hence a linearly independent set in W . Note that W is three-dimensional since it
was defined by a basis of three vectors. Hence, by the Basis Theorem in Section 4.5,
fv1; v02; v3g is an orthogonal basis for W .

v3

v1

v92

x3

projW2
x3

0

W2 5 Span{v1, v92}

FIGURE 2 The construction of
v3 from x3 and W2.

The proof of the next theorem shows that this strategy really works. Scaling of
vectors is not mentioned because that is used only to simplify hand calculations.

THEOREM 11 The Gram–Schmidt Process

Given a basis fx1; : : : ; xpg for a nonzero subspace W of Rn, define

v1 D x1

v2 D x2 �
x2 � v1

v1 � v1

v1

v3 D x3 �
x3 � v1

v1 � v1

v1 �
x3 � v2

v2 � v2

v2

:::

vp D xp �
xp � v1

v1 � v1

v1 �
xp � v2

v2 � v2

v2 � � � � �
xp � vp�1

vp�1 � vp�1

vp�1

Then fv1; : : : ; vpg is an orthogonal basis for W . In addition

Span fv1; : : : ; vkg D Span fx1; : : : ; xkg for 1 � k � p (1)
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PROOF For 1 � k � p, let Wk D Span fx1; : : : ; xkg. Set v1 D x1, so that Span fv1g D

Span fx1g. Suppose, for some k < p, we have constructed v1; : : : ; vk so that fv1; : : : ; vkg

is an orthogonal basis for Wk . Define

vkC1 D xkC1 � projWk
xkC1 (2)

By the Orthogonal Decomposition Theorem, vkC1 is orthogonal to Wk . Note that
projWk

xkC1 is inWk and hence also inWkC1. Since xkC1 is inWkC1, so is vkC1 (because
WkC1 is a subspace and is closed under subtraction). Furthermore, vkC1 ¤ 0 because
xkC1 is not in Wk D Span fx1; : : : ; xkg. Hence fv1; : : : ; vkC1g is an orthogonal set of
nonzero vectors in the .k C 1/-dimensional space WkC1. By the Basis Theorem in Sec-
tion 4.5, this set is an orthogonal basis for WkC1. Hence WkC1 D Span fv1; : : : ; vkC1g.
When k C 1 D p, the process stops.

Theorem 11 shows that any nonzero subspaceW ofRn has an orthogonal basis, be-
cause an ordinary basis fx1; : : : ; xpg is always available (by Theorem 12 in Section 4.5),
and the Gram–Schmidt process depends only on the existence of orthogonal projections
onto subspaces of W that already have orthogonal bases.

Orthonormal Bases
An orthonormal basis is constructed easily from an orthogonal basis fv1; : : : ; vpg: simply
normalize (i.e., “scale”) all the vk . When working problems by hand, this is easier than
normalizing each vk as soon as it is found (because it avoids unnecessary writing of
square roots).

EXAMPLE 3 Example 1 constructed the orthogonal basis

v1 D

24 3

6

0

35; v2 D

24 0

0

2

35
An orthonormal basis is

u1 D
1

kv1k
v1 D

1
p

45

24 3

6

0

35 D 24 1=
p

5

2=
p

5

0

35
u2 D

1

kv2k
v2 D

24 0

0

1

35
QR Factorization of Matrices
If an m � n matrix A has linearly independent columns x1; : : : ; xn, then applying the
Gram–Schmidt process (with normalizations) to x1; : : : ; xn amounts to factoring A, as
described in the next theorem. This factorization is widely used in computer algorithms
for various computations, such as solving equations (discussed in Section 6.5) and
finding eigenvalues (mentioned in the exercises for Section 5.2).
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THEOREM 12 The QR Factorization

IfA is anm � nmatrix with linearly independent columns, thenA can be factored
as A D QR, where Q is an m � n matrix whose columns form an orthonormal
basis for ColA and R is an n � n upper triangular invertible matrix with positive
entries on its diagonal.

PROOF The columns of A form a basis fx1; : : : ; xng for ColA. Construct an orthonor-
mal basis fu1; : : : ; ung for W D ColA with property (1) in Theorem 11. This basis may
be constructed by the Gram–Schmidt process or some other means. Let

Q D Œ u1 u2 � � � un �

For k D 1; : : : ; n; xk is in Span fx1; : : : ; xkg D Span fu1; : : : ; ukg. So there are con-
stants, r1k ; : : : ; rkk , such that

xk D r1ku1 C � � � C rkkuk C 0 ukC1 C � � � C 0 un

We may assume that rkk � 0. (If rkk < 0, multiply both rkk and uk by �1.) This shows
that xk is a linear combination of the columns of Q using as weights the entries in the
vector

rk D

266666664

r1k

:::

rkk

0
:::

0

377777775
That is, xk D Qrk for k D 1; : : : ; n. Let R D Œ r1 � � � rn �. Then

A D Œ x1 � � � xn � D Œ Qr1 � � � Qrn � D QR

The fact thatR is invertible follows easily from the fact that the columns ofA are linearly
independent (Exercise 23). Since R is clearly upper triangular, its nonnegative diagonal
entries must be positive.

EXAMPLE 4 Find a QR factorization of A D

2664
1 0 0

1 1 0

1 1 1

1 1 1

3775.
SOLUTION The columns of A are the vectors x1, x2, and x3 in Example 2. An
orthogonal basis for ColA D Span fx1; x2; x3g was found in that example:

v1 D

2664
1

1

1

1

3775; v02 D

2664
�3

1

1

1

3775; v3 D

2664
0

�2=3

1=3

1=3

3775
To simplify the arithmetic that follows, scale v3 by letting v03 D 3v3. Then normalize the
three vectors to obtain u1, u2, and u3, and use these vectors as the columns of Q:

Q D

26664
1=2 �3=

p
12 0

1=2 1=
p

12 �2=
p

6

1=2 1=
p

12 1=
p

6

1=2 1=
p

12 1=
p

6

37775
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By construction, the first k columns ofQ are an orthonormal basis of Span fx1; : : : ; xkg.
From the proof of Theorem 12, A D QR for some R. To find R, observe that QTQ D I ,
because the columns of Q are orthonormal. Hence

QTA D QT .QR/ D IR D R

and

R D

24 1=2 1=2 1=2 1=2

�3=
p

12 1=
p

12 1=
p

12 1=
p

12

0 �2=
p

6 1=
p

6 1=
p

6

35
2664

1 0 0

1 1 0

1 1 1

1 1 1

3775
D

24 2 3=2 1

0 3=
p

12 2=
p

12

0 0 2=
p

6

35
Numerical Notes

1. When the Gram–Schmidt process is run on a computer, roundoff error can
build up as the vectors uk are calculated, one by one. For j and k large but
unequal, the inner products uT

j uk may not be sufficiently close to zero. This
loss of orthogonality can be reduced substantially by rearranging the order
of the calculations.1 However, a different computer-based QR factorization is
usually preferred to this modified Gram–Schmidt method because it yields a
more accurate orthonormal basis, even though the factorization requires about
twice as much arithmetic.

2. To produce a QR factorization of a matrix A, a computer program usually
left-multiplies A by a sequence of orthogonal matrices until A is transformed
into an upper triangular matrix. This construction is analogous to the left-
multiplication by elementary matrices that produces an LU factorization of A.

Practice Problems

1. Let W D Span fx1; x2g, where x1 D

24 1

1

1

35 and x2 D

24 1=3

1=3

�2=3

35. Construct an or-
thonormal basis for W .

2. Suppose A D QR, where Q is an m � n matrix with orthogonal columns and R

is an n � n matrix. Show that if the columns of A are linearly dependent, then R

cannot be invertible.

6.4 Exercises
In Exercises 1–6, the given set is a basis for a subspace W . Use
the Gram–Schmidt process to produce an orthogonal basis for W .

1.

24 3

0

�1

35, 24 8

5

�6

35 2.

24 0

4

2

35, 24 5

6

�7

35
3.

24 2

�5

1

35, 24 4

�1

2

35 4.

24 4

�5

6

35, 24 �8

17

�19

35

5.

2664
1

�4

0

1

3775,
2664

7

�7

�4

1

3775 6.

2664
1

�2

1

�2

3775,
2664

5

�6

7

�8

3775
1 See Fundamentals of Matrix Computations, by David S. Watkins (New York: John Wiley & Sons, 1991),
pp. 167–180.
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7. Find an orthonormal basis of the subspace spanned by the
vectors in Exercise 3.

8. Find an orthonormal basis of the subspace spanned by the
vectors in Exercise 4.

Find an orthogonal basis for the column space of each matrix in
Exercises 9–12.

9.

2664
3 �5 1

1 1 1

�1 5 �2

3 �7 8

3775 10.

2664
�1 6 6

3 �8 3

1 �2 6

1 �4 �3

3775

11.

266664
1 2 5

�1 1 �4

�1 4 �3

1 �4 7

1 2 1

377775 12.

266664
1 2 4

�1 �3 �3

0 1 1

�1 �1 �1

1 2 4

377775
In Exercises 13 and 14, the columns of Q were obtained by
applying the Gram–Schmidt process to the columns of A. Find an
upper triangular matrix R such that A D QR. Check your work.

13. A D

2664
5 9

1 7

�3 �5

1 5

3775, Q D

2664
5=6 �1=6

1=6 5=6

�3=6 1=6

1=6 3=6

3775

14. A D

2664
�2 3

5 7

2 �2

4 6

3775, Q D

2664
�2=7 5=7

5=7 2=7

2=7 �4=7

4=7 2=7

3775
15. Find a QR factorization of the matrix in Exercise 11.

16. Find a QR factorization of the matrix in Exercise 12.

In Exercises 17–22, all vectors and subspaces are inRn. Mark each
statement True or False (T/F). Justify each answer.

17. (T/F) If fv1; v2; v3g is an orthogonal basis for W , then
multiplying v3 by a scalar c gives a new orthogonal basis
fv1; v2; cv3g.

18. (T/F) If W D Span fx1; x2; x3g with fx1; x2; x3g linearly in-
dependent, and if fv1; v2; v3g is an orthogonal set in W , then
fv1; v2; v3g is a basis for W.

19. (T/F) The Gram–Schmidt process produces from a linearly
independent set fx1; : : : ; xpg an orthogonal set fv1; : : : ; vpg

with the property that for each k, the vectors v1; : : : ; vk span
the same subspace as that spanned by x1; : : : ; xk .

20. (T/F) If x is not in a subspaceW, then x � projW x is not zero.

21. (T/F) If A D QR, where Q has orthonormal columns, then
R D QT A.

22. (T/F) In a QR factorization, say A D QR (when A has
linearly independent columns), the columns of Q form an

orthonormal basis for the column space of A.

23. Suppose A D QR, where Q is m � n and R is n � n. Show
that if the columns ofA are linearly independent, thenR must
be invertible. [Hint: Study the equation Rx D 0 and use the
fact that A D QR.]

24. Suppose A D QR, where R is an invertible matrix. Show
that A and Q have the same column space. [Hint: Given y in
ColA, show that y D Qx for some x. Also, given y in ColQ,
show that y D Ax for some x.]

25. Given A D QR as in Theorem 12, describe how to find an
orthogonalm �m (square) matrixQ1 and an invertible n � n

upper triangular matrix R such that

A D Q1

�
R

0

�
The MATLAB qr command supplies this “full” QR factor-
ization when rankA D n.

26. Let u1; : : : ; up be an orthogonal basis for a subspace W of
Rn, and let T W Rn ! Rn be defined by T .x/ D projW x.
Show that T is a linear transformation.

27. Suppose A D QR is a QR factorization of an m � n ma-
trix A (with linearly independent columns). Partition A as
ŒA1 A2�, where A1 has p columns. Show how to obtain a
QR factorization of A1, and explain why your factorization
has the appropriate properties.

T 28. Use the Gram–Schmidt process as in Example 2 to produce
an orthogonal basis for the column space of

A D

266664
�10 13 7 �11

2 1 �5 3

�6 3 13 �3

16 �16 �2 5

2 1 �5 �7

377775
T 29. Use the method in this section to produce a QR factorization

of the matrix in Exercise 28.

T 30. For a matrix program, the Gram–Schmidt process works
better with orthonormal vectors. Starting with x1; : : : ; xp as
in Theorem 11, let A D Œ x1 � � � xp �. Suppose Q is an
n � k matrix whose columns form an orthonormal basis for
the subspace Wk spanned by the first k columns of A. Then
for x in Rn, QQT x is the orthogonal projection of x onto Wk

(Theorem 10 in Section 6.3). If xkC1 is the next column ofA,
then equation (2) in the proof of Theorem 11 becomes

vkC1 D xkC1 �Q.QT xkC1/

(The parentheses above reduce the number of arithmetic
operations.) Let ukC1 D vkC1=kvkC1k. The new Q for the
next step is Œ Q ukC1 �. Use this procedure to compute the
QR factorization of the matrix in Exercise 28. Write the
keystrokes or commands you use.
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Solution to Practice Problems

1. Let v1 D x1 D

24 1

1

1

35 and v2 D x2 �
x2 � v1

v1 � v1

v1 D x2 � 0v1 D x2. So fx1; x2g is al-

ready orthogonal. All that is needed is to normalize the vectors. Let

u1 D
1

kv1k
v1 D

1
p

3

24 1

1

1

35 D 24 1=
p

3

1=
p

3

1=
p

3

35
Instead of normalizing v2 directly, normalize v02 D 3v2 instead:

u2 D
1

kv02k
v02 D

1p
12 C 12 C .�2/2

24 1

1

�2

35 D 24 1=
p

6

1=
p

6

�2=
p

6

35
Then fu1; u2g is an orthonormal basis for W .

2. Since the columns of A are linearly dependent, there is a nontrivial vector x such
that Ax D 0. But then QRx D 0. Applying Theorem 7 from Section 6.2 results in
kRxk D kQRxk D k0k D 0. But kRxk D 0 implies Rx D 0, by Theorem 1 from
Section 6.1. Thus there is a nontrivial vector x such that Rx D 0 and hence, by the
Invertible Matrix Theorem, R cannot be invertible.

6.5 Least-Squares Problems
Inconsistent systems arise often in applications. When a solution is demanded and none
exists, the best one can do is to find an x that makes Ax as close as possible to b.

Think of Ax as an approximation to b. The smaller the distance between b and Ax,
given by kb � Axk, the better the approximation. The general least-squares problem
is to find an x that makes kb � Axk as small as possible. The adjective “least-squares”
arises from the fact that kb � Axk is the square root of a sum of squares.

DEFINITION If A is m � n and b is in Rm, a least-squares solution of Ax D b is an Ox in Rn

such that
kb � AOxk � kb � Axk

for all x in Rn.

The most important aspect of the least-squares problem is that no matter what x we
select, the vector Ax will necessarily be in the column space, ColA. So we seek an x
that makes Ax the closest point in ColA to b. See Figure 1. (Of course, if b happens to
be in ColA, then b is Ax for some x, and such an x is a “least-squares solution.”)

Solution of the General Least-Squares Problem
Given A and b as above, apply the Best Approximation Theorem in Section 6.3 to the
subspace ColA. Let

Ob D projColA b
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Ax̂
0

Ax1
Col A

b

Ax2

FIGURE 1 The vector b is closer to
AOx than to Ax for other x.

Because Ob is in the column space of A, the equation Ax D Ob is consistent, and there is
an Ox in Rn such that

AOx D Ob (1)

Since Ob is the closest point in ColA to b, a vector Ox is a least-squares solution ofAx D b
if and only if Ox satisfies (1). Such an Ox in Rn is a list of weights that will build Ob out of
the columns of A. See Figure 2. [There are many solutions of (1) if the equation has free
variables.]

x̂n
0

subspace of m

b

b 2 Ax̂

b 5 Axˆ

Col A

A

ˆ

FIGURE 2 The least-squares solution Ox is in Rn.

Suppose Ox satisfies AOx D Ob. By the Orthogonal Decomposition Theorem in Sec-
tion 6.3, the projection Ob has the property that b � Ob is orthogonal to ColA, so b � AOx
is orthogonal to each column of A. If aj is any column of A, then aj �.b � AOx/ D 0, and
aT

j .b � AOx/ D 0. Since each aT
j is a row of AT ,

AT .b � AOx/ D 0 (2)

(This equation also follows from Theorem 3 in Section 6.1.) Thus

AT b � ATAOx D 0

ATAOx D AT b

These calculations show that each least-squares solution ofAx D b satisfies the equation

ATAx D AT b (3)

The matrix equation (3) represents a system of equations called the normal equations
for Ax D b. A solution of (3) is often denoted by Ox.

THEOREM 13 The set of least-squares solutions of Ax D b coincides with the nonempty set of
solutions of the normal equations ATAx D AT b.
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PROOF As shown, the set of least-squares solutions is nonempty and each least-squares
solution Ox satisfies the normal equations. Conversely, suppose Ox satisfies ATAOxD AT b.
Then Ox satisfies (2), which shows that b � AOx is orthogonal to the rows of AT and hence
is orthogonal to the columns ofA. Since the columns ofA span ColA, the vector b � AOx
is orthogonal to all of ColA. Hence the equation

b D AOxC .b � AOx/

is a decomposition of b into the sum of a vector in ColA and a vector orthogonal to
ColA. By the uniqueness of the orthogonal decomposition, AOx must be the orthogonal
projection of b onto ColA. That is, AOx D Ob, and Ox is a least-squares solution.

EXAMPLE 1 Find a least-squares solution of the inconsistent system Ax D b for

A D

24 4 0

0 2

1 1

35; b D

24 2

0

11

35
SOLUTION To use normal equations (3), compute:

ATA D

�
4 0 1

0 2 1

�24 4 0

0 2

1 1

35 D � 17 1

1 5

�

AT b D
�

4 0 1

0 2 1

�24 2

0

11

35 D � 19

11

�
Then the equation ATAx D AT b becomes�

17 1

1 5

��
x1

x2

�
D

�
19

11

�
Row operations can be used to solve this system, but since ATA is invertible and 2 � 2,
it is probably faster to compute

.ATA/�1
D

1

84

�
5 �1

�1 17

�
and then to solve ATAx D AT b as

Ox D .ATA/�1AT b

D
1

84

�
5 �1

�1 17

��
19

11

�
D

1

84

�
84

168

�
D

�
1

2

�
In many calculations, ATA is invertible, but this is not always the case. The next

example involves a matrix of the sort that appears in what are called analysis of variance
problems in statistics.

EXAMPLE 2 Find a least-squares solution of Ax D b for

A D

26666664
1 1 0 0

1 1 0 0

1 0 1 0

1 0 1 0

1 0 0 1

1 0 0 1

37777775; b D

26666664
�3

�1

0

2

5

1

37777775
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SOLUTION Compute

ATA D

2664
1 1 1 1 1 1

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

3775
26666664

1 1 0 0

1 1 0 0

1 0 1 0

1 0 1 0

1 0 0 1

1 0 0 1

37777775 D
2664

6 2 2 2

2 2 0 0

2 0 2 0

2 0 0 2

3775

AT b D

2664
1 1 1 1 1 1

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

3775
26666664
�3

�1

0

2

5

1

37777775 D
2664

4

�4

2

6

3775
The augmented matrix for ATAx D AT b is2664

6 2 2 2 4

2 2 0 0 �4

2 0 2 0 2

2 0 0 2 6

3775 �
2664

1 0 0 1 3

0 1 0 �1 �5

0 0 1 �1 �2

0 0 0 0 0

3775
The general solution is x1 D 3 � x4, x2 D �5C x4, x3 D �2C x4, and x4 is free. So
the general least-squares solution of Ax D b has the form

Ox D

2664
3

�5

�2

0

3775C x4

2664
�1

1

1

1

3775
The next theorem gives useful criteria for determining when there is only one least-

squares solution of Ax D b. (Of course, the orthogonal projection Ob is always unique.)

THEOREM 14 Let A be an m � n matrix. The following statements are logically equivalent:

a. The equation Ax D b has a unique least-squares solution for each b in Rm.

b. The columns of A are linearly independent.

c. The matrix ATA is invertible.

When these statements are true, the least-squares solution Ox is given by

Ox D .ATA/�1AT b (4)

The main elements of a proof of Theorem 14 are outlined in Exercises 27–29, which
also review concepts from Chapter 4. Formula (4) for Ox is useful mainly for theoretical
purposes and for hand calculations when ATA is a 2 � 2 invertible matrix.

When a least-squares solution Ox is used to produceAOx as an approximation to b, the
distance from b to AOx is called the least-squares error of this approximation.

EXAMPLE 3 Given A and b as in Example 1, determine the least-squares error in
the least-squares solution of Ax D b.
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SOLUTION From Example 1,

b D

24 2

0

11

35 and AOx D

24 4 0

0 2

1 1

35� 1

2

�
D

24 4

4

3

35
Hence

b � AOx D

24 2

0

11

35 � 24 4

4

3

35 D 24�2

�4

8

35
and

kb � AOxk D
p

.�2/2 C .�4/2 C 82 D
p

84

The least-squares error is
p

84. For any x in R2, the distance between b and the vector

(2, 0, 11)
b

0

84!

(0, 2, 1)

(4, 0, 1)
Ax ˆ

x1

x2

x3

Col A

FIGURE 3 Ax is at least
p

84. See Figure 3. Note that the least-squares solution Ox itself does not
appear in the figure.

Alternative Calculations of Least-Squares Solutions
The next example shows how to find a least-squares solution of Ax D b when the
columns of A are orthogonal. Such matrices often appear in linear regression problems,
discussed in the next section.

EXAMPLE 4 Find a least-squares solution of Ax D b for

A D

2664
1 �6

1 �2

1 1

1 7

3775; b D

2664
�1

2

1

6

3775
SOLUTION Because the columns a1 and a2 of A are orthogonal, the orthogonal
projection of b onto ColA is given by

Ob D
b�a1

a1 � a1

a1 C
b�a2

a2 � a2

a2 D
8

4
a1 C

45

90
a2 (5)

D

2664
2

2

2

2

3775C
2664
�3

�1

1=2

7=2

3775 D
2664
�1

1

5=2

11=2

3775
Now that Ob is known, we can solve AOx D Ob. But this is trivial, since we already

know what weights to place on the columns of A to produce Ob. It is clear from (5) that

Ox D
�

8=4

45=90

�
D

�
2

1=2

�
In some cases, the normal equations for a least-squares problem can be ill-

conditioned; that is, small errors in the calculations of the entries of ATA can sometimes
cause relatively large errors in the solution Ox. If the columns of A are linearly inde-
pendent, the least-squares solution can often be computed more reliably through a QR
factorization of A (described in Section 6.4).1

1 The QR method is compared with the standard normal equation method in G. Golub and C. Van Loan,
Matrix Computations, 3rd ed. (Baltimore: Johns Hopkins Press, 1996), pp. 230–231.
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THEOREM 15 Given anm � nmatrixAwith linearly independent columns, letA D QR be a QR
factorization of A as in Theorem 12. Then, for each b in Rm, the equation Ax D b
has a unique least-squares solution, given by

Ox D R�1QT b (6)

PROOF Let Ox D R�1QT b. Then

AOx D QROx D QRR�1QT b D QQT b

By Theorem 12, the columns of Q form an orthonormal basis for ColA. Hence, by
Theorem 10,QQTb is the orthogonal projection Ob of b onto ColA. ThenAOx D Ob, which
shows that Ox is a least-squares solution of Ax D b. The uniqueness of Ox follows from
Theorem 14.

Numerical Notes

Since R in Theorem 15 is upper triangular, Ox should be calculated as the exact
solution of the equation

Rx D QT b (7)

It is much faster to solve (7) by back-substitution or row operations than to
compute R�1 and use (6).

EXAMPLE 5 Find the least-squares solution of Ax D b for

A D

2664
1 3 5

1 1 0

1 1 2

1 3 3

3775; b D

2664
3

5

7

�3

3775
SOLUTION The QR factorization of A can be obtained as in Section 6.4.

A D QR D

2664
1=2 1=2 1=2

1=2 �1=2 �1=2

1=2 �1=2 1=2

1=2 1=2 �1=2

3775
24 2 4 5

0 2 3

0 0 2

35
Then

QT b D

24 1=2 1=2 1=2 1=2

1=2 �1=2 �1=2 1=2

1=2 �1=2 1=2 �1=2

35
2664

3

5

7

�3

3775 D
24 6

�6

4

35
The least-squares solution Ox satisfies Rx D QT b; that is,24 2 4 5

0 2 3

0 0 2

3524 x1

x2

x3

35 D 24 6

�6

4

35
This equation is solved easily and yields Ox D

24 10

�6

2

35.
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Practice Problems

1. LetA D

24 1 �3 �3

1 5 1

1 7 2

35 and b D

24 5

�3

�5

35. Find a least-squares solution ofAx D b,

and compute the associated least-squares error.

2. What can you say about the least-squares solution of Ax D b when b is orthogonal
to the columns of A?

6.5 Exercises
In Exercises 1–4, find a least-squares solution of Ax D b by (a)
constructing the normal equations for Ox and (b) solving for Ox.

1. A D

24�1 2

2 �3

�1 3

35, b D 24 4

1

2

35

2. A D

24 2 1

�2 0

2 3

35, b D 24�5

8

1

35

3. A D

2664
1 �2

�1 2

0 3

2 5

3775, b D
2664

3

1

�4

2

3775

4. A D

24 1 1

1 �4

1 1

35, b D 24 9

2

5

35
In Exercises 5 and 6, describe all least-squares solutions of the
equation Ax D b.

5. A D

2664
1 1 0

1 1 0

1 0 1

1 0 1

3775, b D
2664

1

3

8

2

3775

6. A D

26666664
1 1 0

1 1 0

1 1 0

1 0 1

1 0 1

1 0 1

37777775, b D
26666664

7

2

3

6

5

4

37777775
7. Compute the least-squares error associated with the least-

squares solution found in Exercise 3.

8. Compute the least-squares error associated with the least-
squares solution found in Exercise 4.

In Exercises 9–12, find (a) the orthogonal projection of b onto
ColA and (b) a least-squares solution of Ax D b.

9. A D

24 1 5

3 1

�2 4

35, b D 24 4

�2

�3

35

10. A D

24 1 2

�1 4

1 2

35, b D 24 3

�1

5

35

11. A D

2664
1 �1 �4

1 �4 1

3 0 1

5 1 0

3775, b D
2664

3

�2

�4

7

3775

12. A D

2664
1 1 2

2 0 �1

�1 1 0

0 2 �1

3775, b D
2664

3

9

9

3

3775
13. Let A D

24 3 4

�2 1

3 4

35, b D 24 11

�9

5

35, u D � 5

�1

�
, and v D�

5

�2

�
. Compute Au and Av, and compare them with b.

Could u possibly be a least-squares solution of Ax D b?
(Answer this without computing a least-squares solution.)

14. Let A D

24 2 1

�3 �4

3 2

35, b D 24 5

4

4

35, u D � 4

�5

�
, and v D�

6

�5

�
. Compute Au and Av, and compare them with b. Is

it possible that at least one of u or v could be a least-squares
solution of Ax D b? (Answer this without computing a least-
squares solution.)

In Exercises 15 and 16, use the factorization A D QR to find the
least-squares solution of Ax D b.

15. A D

24 2 3

2 4

1 1

35 D 24 2=3 �1=3

2=3 2=3

1=3 �2=3

35� 3 5

0 1

�
, b D

24 7

3

1

35

16. A D

2664
3 5

3 0

3 0

3 5

3775 D
2664

1=2 1=2

1=2 �1=2

1=2 �1=2

1=2 1=2

3775� 6 5

0 5

�
; b D

2664
9

�8

5

�3

3775
In Exercises 17–26, A is an m � n matrix and b is in Rm. Mark
each statement True or False (T/F). Justify each answer.

17. (T/F) The general least-squares problem is to find an x that
makes Ax as close as possible to b.
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18. (T/F) If b is in the column space of A, then every solution of
Ax D b is a least-squares solution.

19. (T/F) A least-squares solution of Ax D b is a vector Ox that
satisfies AOx D Ob, where Ob is the orthogonal projection of b
onto Col A.

20. (T/F) A least-squares solution of Ax D b is a vector Ox such
that kb � Axk � kb � AOxk for all x in Rn.

21. (T/F) Any solution of AT Ax D AT b is a least-squares solu-
tion of Ax D b.

22. (T/F) If the columns of A are linearly independent, then the
equation Ax D b has exactly one least-squares solution.

23. (T/F) The least-squares solution ofAx D b is the point in the
column space of A closest to b.

24. (T/F) A least-squares solution of Ax D b is a list of weights
that, when applied to the columns of A, produces the orthog-
onal projection of b onto Col A.

25. (T/F) The normal equations always provide a reliable method
for computing least-squares solutions.

26. (T/F) IfA has a QR factorization, sayA D QR, then the best
way to find the least-squares solution ofAx D b is to compute
Ox D R�1QT b.

27. Let A be an m � n matrix. Use the steps below to show that a
vector x in Rn satisfies Ax D 0 if and only if ATAx D 0. This
will show that NulA D NulATA.

a. Show that if Ax D 0, then ATAx D 0.

b. Suppose ATAx D 0. Explain why xTATAx D 0, and use
this to show that Ax D 0.

28. Let A be an m � n matrix such that ATA is invertible. Show
that the columns of A are linearly independent. [Careful:
You may not assume that A is invertible; it may not even be
square.]

29. Let A be an m � n matrix whose columns are linearly inde-
pendent. [Careful: A need not be square.]

a. Use Exercise 27 to show that ATA is an invertible matrix.

b. Explain why A must have at least as many rows as
columns.

c. Determine the rank of A.

30. Use Exercise 27 to show that rankATA D rankA. [Hint:How
many columns doesATA have?How is this connectedwith the
rank of ATA?]

31. Suppose A is m � n with linearly independent columns and
b is in Rm. Use the normal equations to produce a formula
for Ob, the projection of b onto ColA. [Hint: Find Ox first. The
formula does not require an orthogonal basis for ColA.]

32. Find a formula for the least-squares solution ofAx D bwhen
the columns of A are orthonormal.

33. Describe all least-squares solutions of the system

x C 2y D 3

x C 2y D 1

T 34. Example 2 in Section 4.8 displayed a low-pass linear fil-
ter that changed a signal fykg into fykC1g and changed a
higher-frequency signal fwkg into the zero signal, where
yk D cos.�k=4/ and wk D cos.3�k=4/. The following cal-
culations will design a filter with approximately those prop-
erties. The filter equation is

a0ykC2 C a1ykC1 C a2yk D ´k for all k .8/

Because the signals are periodic, with period 8, it suffices
to study equation (8) for k D 0; : : : ; 7. The action on the
two signals described above translates into two sets of eight
equations, shown below:

k D 0

k D 1
:::

k D 7

266666666664

ykC2

0

ykC1

.7

yk

1
�:7 0 :7

�1 �:7 0

�:7 �1 �:7

0 �:7 �1

:7 0 �:7

1 :7 0

:7 1 :7

377777777775
24 a0

a1

a2

35 D
266666666664

ykC1

.7
0

�:7

�1

�:7

0

:7

1

377777777775

k D 0

k D 1
:::

k D 7

266666666664

wkC2

0 �

wkC1

.7

wk

1
:7 0 �:7

�1 :7 0

:7 �1 :7

0 :7 �1

�:7 0 :7

1 �:7 0

�:7 1 �:7

377777777775
24 a0

a1

a2

35 D
266666666664

0

0

0

0

0

0

0

0

377777777775
Write an equationAx D b, whereA is a 16 � 3matrix formed
from the two coefficient matrices above and where b inR16 is
formed from the two right sides of the equations. Find a0, a1,
and a2 given by the least-squares solution of Ax D b. (The
.7 in the data above was used as an approximation for

p
2=2,

to illustrate how a typical computation in an applied problem
might proceed. If .707 were used instead, the resulting filter
coefficients would agree to at least seven decimal places
with

p
2=4; 1=2, and

p
2=4, the values produced by exact

arithmetic calculations.)
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Solutions to Practice Problems

1. First, compute

ATA D

24 1 1 1

�3 5 7

�3 1 2

3524 1 �3 �3

1 5 1

1 7 2

35 D 24 3 9 0

9 83 28

0 28 14

35
AT b D

24 1 1 1

�3 5 7

�3 1 2

3524 5

�3

�5

35 D 24 �3

�65

�28

35
Next, row reduce the augmented matrix for the normal equations, ATAx D AT b:24 3 9 0 �3

9 83 28 �65

0 28 14 �28

35 � 24 1 3 0 �1

0 56 28 �56

0 28 14 �28

35 � � � � � 24 1 0 �3=2 2

0 1 1=2 �1

0 0 0 0

35
The general least-squares solution is x1 D 2C 3

2
x3, x2 D �1 � 1

2
x3, with x3 free.

For one specific solution, take x3 D 0 (for example), and get

Ox D

24 2

�1

0

35
To find the least-squares error, compute

Ob D AOx D

24 1 �3 �3

1 5 1

1 7 2

3524 2

�1

0

35 D 24 5

�3

�5

35
It turns out that Ob D b, so kb � Obk D 0. The least-squares error is zero because b
happens to be in ColA.

2. If b is orthogonal to the columns of A, then the projection of b onto the column
space of A is 0. In this case, a least-squares solution Ox of Ax D b satisfies AOx D 0.

6.6 Machine Learning and Linear Models

Machine Learning
Machine learning uses linear models in situations where the machine is being trained to
predict the outcome (dependent variables) based on the values of the inputs (independent
variables). Themachine is given a set of training datawhere the values of the independent
and dependent variables are known. The machine then learns the relationship between
the independent variables and the dependent variables. One type of learning is to fit a
curve, such as a least-squares line or parabola, to the data. Once the machine has learned
the pattern from the training data, it can then estimate the value of the output based on a
given value for the input.
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Least-Squares Lines
A common task in science and engineering is to analyze and understand relationships
among several quantities that vary. This section describes a variety of situations in which
data are used to build or verify a formula that predicts the value of one variable as a
function of other variables. In each case, the problem will amount to solving a least-
squares problem.

For easy application of the discussion to real problems that you may encounter later
in your career, we choose notation that is commonly used in the statistical analysis of
scientific and engineering data. Instead of Ax D b, we write Xˇ D y and refer to X as
the design matrix, ˇ as the parameter vector, and y as the observation vector.

The simplest relation between two variables x and y is the linear equation
y D ˇ0 C ˇ1x.1 Experimental data often produce points .x1; y1/; : : : ; .xn; yn/ that,
when graphed, seem to lie close to a line. We want to determine the parameters ˇ0 and
ˇ1 that make the line as “close” to the points as possible.

Suppose ˇ0 and ˇ1 are fixed, and consider the line y D ˇ0 C ˇ1x in Figure 1.
Corresponding to each data point .xj ; yj / there is a point .xj ; ˇ0 C ˇ1xj / on the line
with the same x-coordinate. We call yj the observed value of y and ˇ0 C ˇ1xj the
predicted y-value (determined by the line). The difference between an observed y-value
and a predicted y-value is called a residual.

ResidualResidual
Point on line

Data pointy

xjx1 xn

x
y 5 b0 1 b1x

(xj, b0 1 b1xj)

(xj, yj)

FIGURE 1 Fitting a line to experimental data.

There are several ways to measure how “close” the line is to the data. The usual
choice (primarily because the mathematical calculations are simple) is to add the squares
of the residuals. The least-squares line is the line y D ˇ0 C ˇ1x that minimizes the
sum of the squares of the residuals. This line is also called a line of regression of y
on x, because any errors in the data are assumed to be only in the y-coordinates. The
coefficients ˇ0, ˇ1 of the line are called (linear) regression coefficients.2

If the data points were on the line, the parameters ˇ0 and ˇ1 would satisfy the
equations

Predicted Observed
y-value y-value

ˇ0 C ˇ1x1 = y1

ˇ0 C ˇ1x2 = y2

:::
:::

ˇ0 C ˇ1xn = yn

1 This notation is commonly used for least-squares lines instead of y D mxC b.
2 If the measurement errors are in x instead of y, simply interchange the coordinates of the data .xj ; yj /

before plotting the points and computing the regression line. If both coordinates are subject to possible error,
then you might choose the line that minimizes the sum of the squares of the orthogonal (perpendicular)
distances from the points to the line.
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We can write this system as

Xˇ D y; where X D

26664
1 x1

1 x2
:::

:::

1 xn

37775 ; ˇ D

�
ˇ0

ˇ1

�
; y D

26664
y1

y2
:::

yn

37775 (1)

Of course, if the data points don’t lie on a line, then there are no parameters ˇ0, ˇ1 for
which the predicted y-values in Xˇ equal the observed y-values in y, and Xˇ D y has
no solution. This is a least-squares problem, Ax D b, with different notation!

The square of the distance between the vectors Xˇ and y is precisely the sum of
the squares of the residuals. The ˇ that minimizes this sum also minimizes the distance
between Xˇ and y. Computing the least-squares solution of Xˇ D y is equivalent to
finding the ˇ that determines the least-squares line in Figure 1.

EXAMPLE 1 Find the equation y D ˇ0 C ˇ1x of the least-squares line that best fits
the data points .2; 1/, .5; 2/, .7; 3/, and .8; 3/.

SOLUTION Use the x-coordinates of the data to build the design matrix X in (1) and
the y-coordinates to build the observation vector y:

X D

2664
1 2

1 5

1 7

1 8

3775; y D

2664
1

2

3

3

3775
For the least-squares solution of Xˇ D y, obtain the normal equations (with the new
notation):

XTXˇ D XTy

That is, compute

XTX D

�
1 1 1 1

2 5 7 8

�2664
1 2

1 5

1 7

1 8

3775 D � 4 22

22 142

�

XTy D
�

1 1 1 1

2 5 7 8

�2664
1

2

3

3

3775 D � 9

57

�

The normal equations are �
4 22

22 142

��
ˇ0

ˇ1

�
D

�
9

57

�
Hence�

ˇ0

ˇ1

�
D

�
4 22

22 142

��1�
9

57

�
D

1

84

�
142 �22

�22 4

��
9

57

�
D

1

84

�
24

30

�
D

�
2=7

5=14

�
Thus the least-squares line has the equation

y D
2

7
C

5

14
x

See Figure 2.
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2

4

y

x
8642 91 753

3

1

Data points
Least-squares line

FIGURE 2 The least-squares line y D 2
7
C

5
14

x.

EXAMPLE 2 If amachine learns the data fromExample 1 by creating a least-squares
line, what outcome will it predict for the inputs 4 and 6?

SOLUTION The machine would perform the same calculations as in Example 1 to
arrive at the least-squares line

y D
2

7
C

5

14
x

as a reasonable pattern to use to predict the outcomes.

For the value x D 4, the machine will predict an output of y D
2

7
C

5

14
.4/ D

12

7
.

For the value x D 6, the machine will predict an output of y D
2

7
C

5

14
.6/ D

17

7
.

See Figure 3.

2

Learning data points
Input 6 Output 17

7

Learned line
Predicted point

Machine Learned Output

4

y

x
8642 91 753

3

1

FIGURE 3 Machine-learned output.

A common practice before computing a least-squares line is to compute the average
x of the original x-values and form a new variable x� D x � x. The new x-data are said
to be in mean-deviation form. In this case, the two columns of the design matrix will
be orthogonal. Solution of the normal equations is simplified, just as in Example 4 in
Section 6.5. See Exercises 23 and 24.

The General Linear Model
In some applications, it is necessary to fit data points with something other than a straight
line. In the examples that follow, the matrix equation is still Xˇ D y, but the specific
form of X changes from one problem to the next. Statisticians usually introduce a
residual vector �, defined by � D y �Xˇ, and write

y D Xˇ C �

Any equation of this form is referred to as a linearmodel. OnceX and y are determined,
the goal is to minimize the length of �, which amounts to finding a least-squares solution
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of Xˇ D y. In each case, the least-squares solution Ǒ is a solution of the normal
equations

XTXˇ D XTy

Least-Squares Fitting of Other Curves
When data points .x1; y1/; : : : ; .xn; yn/ on a scatter plot do not lie close to any line, it
may be appropriate to postulate some other functional relationship between x and y.

The next two examples show how to fit data by curves that have the general
form

y D ˇ0f0.x/C ˇ1f1.x/C � � � C ˇkfk.x/ (2)

where f0; : : : ; fk are known functions and ˇ0; : : : ; ˇk are parameters that must be
determined. As we will see, equation (2) describes a linear model because it is linear
in the unknown parameters.

For a particular value of x, (2) gives a predicted, or “fitted,” value of y. The
difference between the observed value and the predicted value is the residual. The
parameters ˇ0; : : : ; ˇk must be determined so as to minimize the sum of the squares
of the residuals.

EXAMPLE 3 Suppose data points .x1; y1/; : : : ; .xn; yn/ appear to lie along some
sort of parabola instead of a straight line. For instance, if the x-coordinate denotes the
production level for a company, and y denotes the average cost per unit of operating at
a level of x units per day, then a typical average cost curve looks like a parabola that
opens upward (Figure 4). In ecology, a parabolic curve that opens downward is used to

Units produced
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t
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r 
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it

x

y

FIGURE 4

Average cost curve.
model the net primary production of nutrients in a plant, as a function of the surface area
of the foliage (Figure 5). Suppose we wish to approximate the data by an equation of the
form

y D ˇ0 C ˇ1x C ˇ2x2 (3)

Describe the linear model that produces a “least-squares fit” of the data by equation (3).

SOLUTION Equation (3) describes the ideal relationship. Suppose the actual values of
the parameters are ˇ0, ˇ1, ˇ2. Then the coordinates of the first data point .x1; y1/ satisfy
an equation of the form

y1 D ˇ0 C ˇ1x1 C ˇ2x2
1 C �1

where �1 is the residual error between the observed value y1 and the predicted y-value
ˇ0 C ˇ1x1 C ˇ2x2

1 . Each data point determines a similar equation:

Surface area
of foliage

x

y
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FIGURE 5

Production of nutrients.

y1 D ˇ0 C ˇ1x1 C ˇ2x2
1 C �1

y2 D ˇ0 C ˇ1x2 C ˇ2x2
2 C �2

:::
:::

yn D ˇ0 C ˇ1xn C ˇ2x2
n C �n
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It is a simple matter to write this system of equations in the form y D Xˇ C �. To find
X , inspect the first few rows of the system and look for the pattern.26664

y1

y2

:::

yn

37775 D
266664

1 x1 x2
1

1 x2 x2
2

:::
:::

:::

1 xn x2
n

377775
264 ˇ0

ˇ1

ˇ2

375 C
266664

�1

�2

:::

�n

377775
y D X ˇ C �

EXAMPLE 4 If data points tend to follow a pattern such as in Figure 6, then an

x

y

FIGURE 6

Data points along a cubic curve.

appropriate model might be an equation of the form

y D ˇ0 C ˇ1x C ˇ2x2
C ˇ3x3

Such data, for instance, could come from a company’s total costs, as a function of the
level of production. Describe the linear model that gives a least-squares fit of this type
to data .x1; y1/; : : : ; .xn; yn/.

SOLUTION By an analysis similar to that in Example 2, we obtain

Observation Design Parameter Residual
vector matrix vector vector

y D

266664
y1

y2

:::

yn

377775 ; X D

266664
1 x1 x2

1 x3
1

1 x2 x2
2 x3

2

:::
:::

:::
:::

1 xn x2
n x3

n

377775 ; ˇ D

266664
ˇ0

ˇ1

ˇ2

ˇ3

377775; � D

266664
�1

�2

:::

�n

377775

Multiple Regression
Suppose an experiment involves two independent variables—say, u and v—and one
dependent variable, y. A simple equation for predicting y from u and v has the form

y D ˇ0 C ˇ1uC ˇ2v (4)

A more general prediction equation might have the form

y D ˇ0 C ˇ1uC ˇ2v C ˇ3u2
C ˇ4uv C ˇ5v2 (5)

This equation is used in geology, for instance, to model erosion surfaces, glacial cirques,
soil pH, and other quantities. In such cases, the least-squares fit is called a trend
surface.

Equations (4) and (5) both lead to a linear model because they are linear in the
unknown parameters (even though u and v are multiplied). In general, a linear model
will arise whenever y is to be predicted by an equation of the form

y D ˇ0f0.u; v/C ˇ1f1.u; v/C � � � C ˇkfk.u; v/

with f0; : : : ; fk any sort of known functions and ˇ0; : : : ; ˇk unknown weights.
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EXAMPLE 5 In geography, local models of terrain are constructed from data
.u1; v1; y1/; : : : ; .un; vn; yn/, where uj , vj , and yj are latitude, longitude, and altitude,
respectively. Describe the linear model based on (4) that gives a least-squares fit to such
data. The solution is called the least-squares plane. See Figure 7.

FIGURE 7 A least-squares plane.

SOLUTION We expect the data to satisfy the following equations:

y1 D ˇ0 C ˇ1u1 C ˇ2v1 C �1

y2 D ˇ0 C ˇ1u2 C ˇ2v2 C �2

:::
:::

yn D ˇ0 C ˇ1un C ˇ2vn C �n

This system has the matrix form y D Xˇ C �, where

Observation Design Parameter Residual
vector matrix vector vector

y D

26664
y1

y2

:::

yn

37775 ; X D

26664
1 u1 v1

1 u2 v2

:::
:::

:::

1 un vn

37775 ; ˇ D

24 ˇ0

ˇ1

ˇ2

35; � D

26664
�1

�2

:::

�n

37775
Example 5 shows that the linear model for multiple regression has the same abstract

form as the model for the simple regression in the earlier examples. Linear algebra gives
us the power to understand the general principle behind all the linear models. Once X

is defined properly, the normal equations for ˇ have the same matrix form, no matterSTUDY GUIDE offers additional
resources for understanding
the geometry of a linear model.

how many variables are involved. Thus, for any linear model where XTX is invertible,
the least-squares Ǒ is given by .XTX/�1XTy.

Practice Problem

When the monthly sales of a product are subject to seasonal fluctuations, a curve that
approximates the sales data might have the form

y D ˇ0 C ˇ1x C ˇ2 sin .2�x=12/

where x is the time in months. The term ˇ0 C ˇ1x gives the basic sales trend, and
the sine term reflects the seasonal changes in sales. Give the design matrix and the
parameter vector for the linear model that leads to a least-squares fit of the equation
above. Assume the data are .x1; y1/; : : : ; .xn; yn/.
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6.6 Exercises
In Exercises 1–4, find the equation y D ˇ0 C ˇ1x of the least-
squares line that best fits the given data points.

1. .0; 1/, .1; 1/, .2; 2/, .3; 2/

2. .1; 0/, .2; 2/, .3; 7/, .4; 9/

3. .�1; 0/, .0; 1/, .1; 2/, .2; 4/

4. .2; 3/, .3; 2/, .5; 1/, .6; 0/

5. If a machine learns the least-squares line that best fits the data
in Exercise 1, what will the machine pick for the value of y

when x D 4?

6. If a machine learns the least-squares line that best fits the data
in Exercise 2, what will the machine pick for the value of y

when x D 3?

7. If a machine learns the least-squares line that best fits the data
in Exercise 1, what will the machine pick for the value of y

when x D 3? How closely does this match the data point at
x D 3 fed into the machine?

8. If a machine learns the least-squares line that best fits the data
in Exercise 2, what will the machine pick for the value of y

when x D 4? How closely does this match the data point at
x D 4 fed into the machine?

9. If you enter the data from Exercise 1 into a machine and it
returns a y value of 20 when x D 2:5, should you trust the
machine? Justify your answer.

10. If you enter the data from Exercise 2 into a machine and it
returns a y value of �1 when x D 1:5, should you trust the
machine? Justify your answer.

11. Let X be the design matrix used to find the least-squares line
to fit data .x1; y1/; : : : ; .xn; yn/. Use a theorem in Section 6.5
to show that the normal equations have a unique solution
if and only if the data include at least two data points with
different x-coordinates.

12. Let X be the design matrix in Example 2 corresponding to a
least-squares fit of a parabola to data .x1; y1/; : : : ; .xn; yn/.
Suppose x1, x2, and x3 are distinct. Explain why there is only
one parabola that fits the data best, in a least-squares sense.
(See Exercise 11.)

13. A certain experiment produces the data .1; 2:5/, .2; 4:3/,
.3; 5:5/, .4; 6:1/, .5; 6:1/. Describe the model that produces
a least-squares fit of these points by a function of the form

y D ˇ1x C ˇ2x2

Such a function might arise, for example, as the revenue from
the sale of x units of a product, when the amount offered for
sale affects the price to be set for the product.

a. Give the design matrix, the observation vector, and the
unknown parameter vector.

T b. Find the associated least-squares curve for the data.

c. If a machine learned the curve you found in (b), what
output would it provide for an input of x D 6?

14. A simple curve that oftenmakes a goodmodel for the variable
costs of a company, as a function of the sales level x, has
the form y D ˇ1x C ˇ2x2 C ˇ3x3. There is no constant term
because fixed costs are not included.

a. Give the design matrix and the parameter vector for the
linear model that leads to a least-squares fit of the equation
above, with data .x1; y1/; : : : ; .xn; yn/.

T b. Find the least-squares curve of the form above to fit
the data .4; 1:58/, .6; 2:08/, .8; 2:5/, .10; 2:8/, .12; 3:1/,
.14; 3:4/, .16; 3:8/, and .18; 4:32/, with values in thou-
sands. If possible, produce a graph that shows the data
points and the graph of the cubic approximation.

c. If a machine learned the curve you found in (b), what
output would it provide for an input of x D 9?

15. A certain experiment produces the data .1; 7:9/, .2; 5:4/, and
.3;�:9/. Describe the model that produces a least-squares fit
of these points by a function of the form

y D A cos x C B sin x

16. Suppose radioactive substances A andB have decay constants
of .02 and .07, respectively. If a mixture of these two sub-
stances at time t D 0 containsMA grams of A andMB grams
of B, then a model for the total amount y of the mixture
present at time t is

y DMAe�:02t CMBe�:07t .6/

Suppose the initial amounts MA and MB are unknown, but a
scientist is able tomeasure the total amounts present at several
times and records the following points .ti ; yi /: .10; 21:34/,
.11; 20:68/, .12; 20:05/, .14; 18:87/, and .15; 18:30/.

a. Describe a linear model that can be used to estimate MA

and MB.

T b. Find the least-squares curve based on (6).

Halley’s Comet last appeared in 1986 and will reappear in
2061.
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T 17. According to Kepler’s first law, a comet should have an ellip-
tic, parabolic, or hyperbolic orbit (with gravitational attrac-
tions from the planets ignored). In suitable polar coordinates,
the position .r; #/ of a comet satisfies an equation of the form

r D ˇ C e.r � cos#/

where ˇ is a constant and e is the eccentricity of the orbit,
with 0 � e < 1 for an ellipse, e D 1 for a parabola, and e > 1

for a hyperbola. Suppose observations of a newly discovered
comet provide the data below. Determine the type of orbit,
and predict where the comet will be when # D 4:6 (radians).3

# .88 1.10 1.42 1.77 2.14

r 3.00 2.30 1.65 1.25 1.01

T 18. A healthy child’s systolic blood pressure p (in millimeters of
mercury) and weightw (in pounds) are approximately related
by the equation

ˇ0 C ˇ1 lnw D p

Use the following experimental data to estimate the systolic
blood pressure of a healthy child weighing 100 pounds.

w 44 61 81 113 131

lnw 3.78 4.11 4.39 4.73 4.88

p 91 98 103 110 112

T 19. To measure the takeoff performance of an airplane, the hori-
zontal position of the plane was measured every second, from
t D 0 to t D 12. The positions (in feet) were: 0, 8.8, 29.9,
62.0, 104.7, 159.1, 222.0, 294.5, 380.4, 471.1, 571.7, 686.8,
and 809.2.

a. Find the least-squares cubic curve y D ˇ0 C ˇ1t C

ˇ2t2 C ˇ3t3 for these data.

b. If a machine learned the curve given in part (a), what
would it estimate the velocity of the plane to be when
t D 4:5 seconds?

20. Let x D
1

n
.x1 C � � � C xn/ and y D

1

n
.y1 C � � � C yn/.

Show that the least-squares line for the data
.x1; y1/; : : : ; .xn; yn/must pass through .x; y/. That is, show

that x and y satisfy the linear equation y D Ǒ0 C Ǒ1x. [Hint:

Derive this equation from the vector equation y D X Ǒ C �.
Denote the first column of X by 1. Use the fact that the
residual vector � is orthogonal to the column space of X and
hence is orthogonal to 1.]

3 The basic idea of least-squares fitting of data is due to K. F. Gauss (and,
independently, to A. Legendre), whose initial rise to fame occurred in
1801 when he used the method to determine the path of the asteroid Ceres.
Forty days after the asteroid was discovered, it disappeared behind the sun.
Gauss predicted it would appear ten months later and gave its location. The
accuracy of the prediction astonished the European scientific community.

Given data for a least-squares problem, .x1; y1/; : : : ; .xn; yn/, the
following abbreviations are helpful:P

x D
Pn

iD1 xi ;
P

x2 D
Pn

iD1 x2
i ;P

y D
Pn

iD1 yi ;
P

xy D
Pn

iD1 xi yi

The normal equations for a least-squares line y D Ǒ0 C Ǒ1x may
be written in the form

n Ǒ0 C Ǒ1
P

x D
P

y

Ǒ
0

P
x C Ǒ1

P
x2 D

P
xy

.7/

21. Derive the normal equations (7) from the matrix form given
in this section.

22. Use a matrix inverse to solve the system of equations in (7)
and thereby obtain formulas for Ǒ0 and Ǒ1 that appear inmany
statistics texts.

23. a. Rewrite the data in Example 1 with new x-coordinates
in mean deviation form. Let X be the associated design
matrix. Why are the columns of X orthogonal?

b. Write the normal equations for the data in part (a), and
solve them to find the least-squares line, y D ˇ0 C ˇ1x�,
where x� D x � 5:5.

24. Suppose the x-coordinates of the data .x1; y1/; : : : ; .xn; yn/

are in mean deviation form, so that
P

xi D 0. Show that if
X is the design matrix for the least-squares line in this case,
then XTX is a diagonal matrix.

Exercises 25 and 26 involve a design matrix X with two or more
columns and a least-squares solution Ǒ of y D Xˇ. Consider the
following numbers.

(i) kX Ǒ k2—the sum of the squares of the “regression term.”
Denote this number by SS(R).

(ii) ky �X Ǒ k2—the sum of the squares for the error term. De-
note this number by SS(E).

(iii)
kyk2—the “total” sum of the squares of the y-values. Denote
this number by SS(T).

Every statistics text that discusses regression and the linear model
y D Xˇ C � introduces these numbers, though terminology and
notation vary somewhat. To simplify matters, assume that the
mean of the y-values is zero. In this case, SS(T) is proportional
to what is called the variance of the set of y-values.

25. Justify the equation SS(T) D SS(R)C SS(E). [Hint: Use
a theorem, and explain why the hypotheses of the theo-
rem are satisfied.] This equation is extremely important in
statistics, both in regression theory and in the analysis of
variance.

26. Show that kX Ǒ k2 = Ǒ T XTy. [Hint: Rewrite the left side
and use the fact that Ǒ satisfies the normal equations.] This
formula for SS(R) is used in statistics. From this and from
Exercise 25, obtain the standard formula for SS(E):

SS(E) D yT y � Ǒ
T

XT y
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Solution to Practice Problem

Construct X and ˇ so that the kth row of Xˇ is the predicted y-value that corresponds

x

y

Sales trend with seasonal
fluctuations.

to the data point .xk ; yk/, namely

ˇ0 C ˇ1xk C ˇ2 sin.2�xk=12/

It should be clear that

X D

264 1 x1 sin.2�x1=12/
:::

:::
:::

1 xn sin.2�xn=12/

375 ; ˇ D

24 ˇ0

ˇ1

ˇ2

35

6.7 Inner Product Spaces
Notions of length, distance, and orthogonality are often important in applications
involving a vector space. For Rn, these concepts were based on the properties of the
inner product listed in Theorem 1 of Section 6.1. For other spaces, we need analogues of
the inner product with the same properties. The conclusions of Theorem 1 now become
axioms in the following definition.

DEFINITION An inner product on a vector space V is a function that, to each pair of vectors u
and v in V , associates a real number hu; vi and satisfies the following axioms, for
all u, v, and w in V and all scalars c:

1. hu; vi D hv; ui

2. huC v;wi D hu;wi C hv;wi

3. hcu; vi D chu; vi

4. hu; ui � 0 and hu; ui D 0 if and only if u D 0

A vector space with an inner product is called an inner product space.

The vector space Rn with the standard inner product is an inner product space, and
nearly everything discussed in this chapter for Rn carries over to inner product spaces.
The examples in this section and the next lay the foundation for a variety of applications
treated in courses in engineering, physics, mathematics, and statistics.

EXAMPLE 1 Fix any two positive numbers—say, 4 and 5—and for vectors
u D .u1; u2/ and v D .v1; v2/ in R2, set

hu; vi D 4u1v1 C 5u2v2 (1)

Show that equation (1) defines an inner product.

SOLUTION Certainly Axiom 1 is satisfied, because hu; vi D 4u1v1 C 5u2v2 D

4v1u1 C 5v2u2 D hv; ui. If w D .w1; w2/, then

huC v;wi D 4.u1 C v1/w1 C 5.u2 C v2/w2

D 4u1w1 C 5u2w2 C 4v1w1 C 5v2w2

D hu;wi C hv;wi
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This verifies Axiom 2. For Axiom 3, compute

hcu; vi D 4.cu1/v1 C 5.cu2/v2 D c.4u1v1 C 5u2v2/ D chu; vi

For Axiom 4, note that hu; ui D 4u2
1 C 5u2

2 � 0, and 4u2
1 C 5u2

2 D 0 only if u1 D u2 D

0, that is, if u D 0. Also, h0; 0i D 0. So (1) defines an inner product on R2.

Inner products similar to (1) can be defined onRn. They arise naturally in connection
with “weighted least-squares” problems, in which weights are assigned to the various
entries in the sum for the inner product in such a way that more importance is given to
the more reliable measurements.

From now on, when an inner product space involves polynomials or other functions,
we will write the functions in the familiar way, rather than use the boldface type for
vectors. Nevertheless, it is important to remember that each function is a vector when it
is treated as an element of a vector space.

EXAMPLE 2 Let t0; : : : ; tn be distinct real numbers. For p and q in Pn, define

hp; qi D p.t0/q.t0/C p.t1/q.t1/C � � � C p.tn/q.tn/ (2)

Inner product Axioms 1–3 are readily checked. For Axiom 4, note that

hp; pi D Œp.t0/�2 C Œp.t1/�2 C � � � C Œp.tn/�2 � 0

Also, h0; 0i D 0. (The boldface zero here denotes the zero polynomial, the zero vector in
Pn.) If hp; pi D 0, then p must vanish at nC 1 points: t0; : : : ; tn. This is possible only
if p is the zero polynomial, because the degree of p is less than nC 1. Thus (2) defines
an inner product on Pn.

EXAMPLE 3 Let V be P2, with the inner product from Example 2, where t0 D 0,
t1 D

1
2
, and t2 D 1. Let p.t/ D 12t2 and q.t/ D 2t � 1. Compute hp; qi and hq; qi.

SOLUTION

hp; qi D p.0/q.0/C p
�

1
2

�
q
�

1
2

�
C p.1/q.1/

D .0/.�1/C .3/.0/C .12/.1/ D 12

hq; qi D Œq.0/�2 C Œq
�

1
2

�
�2 C Œq.1/�2

D .�1/2
C .0/2

C .1/2
D 2

Lengths, Distances, and Orthogonality
Let V be an inner product space, with the inner product denoted by hu; vi. Just as in Rn,
we define the length, or norm, of a vector v to be the scalar

kvk D
p
hv; vi

Equivalently, kvk2 D hv; vi. (This definition makes sense because hv; vi � 0, but the
definition does not say that hv; vi is a “sum of squares,” because v need not be an element
of Rn.)

A unit vector is one whose length is 1. The distance between u and v is ku � vk.
Vectors u and v are orthogonal if hu; vi D 0.
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EXAMPLE 4 Let P2 have the inner product (2) of Example 3. Compute the lengths
of the vectors p.t/ D 12t2 and q.t/ D 2t � 1.

SOLUTION

kpk2 D hp; pi D Œp.0/�2 C
�
p
�

1
2

��2
C Œp.1/�2

D 0C Œ3�2 C Œ12�2 D 153

kpk D
p

153

From Example 3, hq; qi D 2. Hence kqk D
p

2.

The Gram–Schmidt Process
The existence of orthogonal bases for finite-dimensional subspaces of an inner product
space can be established by the Gram–Schmidt process, just as inRn. Certain orthogonal
bases that arise frequently in applications can be constructed by this process.

The orthogonal projection of a vector onto a subspace W with an orthogonal basis
can be constructed as usual. The projection does not depend on the choice of orthogonal
basis, and it has the properties described in the Orthogonal Decomposition Theorem and
the Best Approximation Theorem.

EXAMPLE 5 Let V be P4 with the inner product in Example 2, involving evaluation
of polynomials at �2, �1, 0, 1, and 2, and view P2 as a subspace of V . Produce an
orthogonal basis for P2 by applying the Gram–Schmidt process to the polynomials 1, t ,
and t2.

SOLUTION The inner product depends only on the values of a polynomial at
�2; : : : ; 2, so we list the values of each polynomial as a vector in R5, underneath the
name of the polynomial:1

Polynomial: 1 t t2

Vector of values:

266664
1

1

1

1

1

377775;

266664
�2

�1

0

1

2

377775;

266664
4

1

0

1

4

377775
The inner product of two polynomials in V equals the (standard) inner product of their
corresponding vectors in R5. Observe that t is orthogonal to the constant function 1. So
take p0.t/ D 1 and p1.t/ D t . For p2, use the vectors in R5 to compute the projection
of t2 onto Span fp0; p1g:

ht2; p0i D ht
2; 1i D 4C 1C 0C 1C 4 D 10

hp0; p0i D 5

ht2; p1i D ht
2; ti D �8C .�1/C 0C 1C 8 D 0

The orthogonal projection of t2 onto Span f1; tg is 10
5

p0 C 0p1. Thus

p2.t/ D t2
� 2p0.t/ D t2

� 2

1 Each polynomial in P4 is uniquely determined by its value at the five numbers �2; : : : ; 2. In fact, the
correspondence between p and its vector of values is an isomorphism, that is, a one-to-one mapping onto R5

that preserves linear combinations.
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An orthogonal basis for the subspace P2 of V is

Polynomial p0 p1 p2

Vector of values

266664
1

1

1

1

1

377775;

266664
�2

�1

0

1

2

377775;

266664
2

�1

�2

�1

2

377775 (3)

Best Approximation in Inner Product Spaces
A common problem in applied mathematics involves a vector space V whose elements
are functions. The problem is to approximate a function f in V by a function g from a
specified subspace W of V . The “closeness” of the approximation of f depends on the
way kf � gk is defined. We will consider only the case in which the distance between
f and g is determined by an inner product. In this case, the best approximation to f by
functions in W is the orthogonal projection of f onto the subspace W .

EXAMPLE 6 Let V be P4 with the inner product in Example 5, and let p0, p1,
and p2 be the orthogonal basis found in Example 5 for the subspace P2. Find the best
approximation to p.t/ D 5 � 1

2
t4 by polynomials in P2.

SOLUTION The values of p0; p1, and p2 at the numbers �2, �1, 0, 1, and 2 are listed
in R5 vectors in (3) above. The corresponding values for p are �3, 9/2, 5, 9/2, and �3.
Compute

hp; p0i D 8; hp; p1i D 0; hp; p2i D �31

hp0; p0i D 5; hp2; p2i D 14

Then the best approximation in V to p by polynomials in P2 is

Op D projP2
p D

hp; p0i

hp0; p0i
p0 C

hp; p1i

hp1; p1i
p1 C

hp; p2i

hp2; p2i
p2

D
8
5
p0 C

�31
14

p2 D
8
5
�

31
14

.t2
� 2/:

This polynomial is the closest to p of all polynomials in P2, when the distance between
polynomials is measured only at �2, �1, 0, 1, and 2. See Figure 1.

t

y

2

2

p(t)

p(t)ˆ

FIGURE 1
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The polynomialsp0,p1, andp2 in Examples 5 and 6 belong to a class of polynomials
that are referred to in statistics as orthogonal polynomials.2 The orthogonality refers to
the type of inner product described in Example 2.

Two Inequalities
Given a vector v in an inner product space V and given a finite-dimensional subspace
W , we may apply the Pythagorean Theorem to the orthogonal decomposition of v with
respect to W and obtain

kvk2 D k projW vk2 C kv � projW vk2

See Figure 2. In particular, this shows that the norm of the projection of v onto W does
not exceed the norm of v itself. This simple observation leads to the following important

W

v

0
||projWv|| projW v

||v 2 projW v||
||v||

FIGURE 2

The hypotenuse is the longest side.
inequality.

THEOREM 16 The Cauchy–Schwarz Inequality

For all u, v in V ,
jhu; vij � kuk kvk (4)

PROOF If u D 0, then both sides of (4) are zero, and hence the inequality is true in this
case. (See Practice Problem 1.) If u ¤ 0, let W be the subspace spanned by u. Recall
that kcuk D jcj kuk for any scalar c. Thus

k projW vk D

 hv; ui
hu; ui

u

 D jhv; uij
jhu; uij

kuk D
jhv; uij
kuk2

kuk D
jhu; vij
kuk

Since k projW vk � kvk, we have
jhu; vij
kuk

� kvk, which gives (4).

The Cauchy–Schwarz inequality is useful in many branches of mathematics. A few
simple applications are presented in the exercises. Our main need for this inequality here
is to prove another fundamental inequality involving norms of vectors. See Figure 3.

0 u

v

||u 1 v||

u 1 v

||v||

||u||

FIGURE 3

The lengths of the sides of a
triangle.

THEOREM 17 The Triangle Inequality

For all u; v in V ,
kuC vk � kuk C kvk

PROOF kuC vk2 D huC v; uC vi D hu; ui C 2hu; vi C hv; vi

� kuk2 C 2jhu; vij C kvk2

� kuk2 C 2kuk kvk C kvk2 Cauchy–Schwarz

D .kuk C kvk/2

The triangle inequality follows immediately by taking square roots of both sides.

2 See Statistics and Experimental Design in Engineering and the Physical Sciences, 2nd ed., by Norman
L. Johnson and Fred C. Leone (New York: John Wiley & Sons, 1977). Tables there list “Orthogonal
Polynomials,” which are simply the values of the polynomial at numbers such as �2, �1, 0, 1, and 2.
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An Inner Product for C [a, b] (Calculus required)
Probably the most widely used inner product space for applications is the vector space
C Œa; b� of all continuous functions on an interval a � t � b, with an inner product that
we will describe.

We begin by considering a polynomial p and any integer n larger than or equal to
the degree of p. Then p is in Pn, and we may compute a “length” for p using the inner
product of Example 2 involving evaluation at nC 1 points in Œa; b�. However, this length
of p captures the behavior at only those nC 1 points. Since p is in Pn for all large n, we
could use a much larger n, with many more points for the “evaluation” inner product.
See Figure 4.

t
ba

t
ba

p(t) p(t)

FIGURE 4 Using different numbers of evaluation points in Œa; b� to compute
kpk2.

Let us partition Œa; b� into nC 1 subintervals of length �t D .b � a/=.nC 1/, and
let t0; : : : ; tn be arbitrary points in these subintervals.

a t0

Dt

tj btn

If n is large, the inner product on Pn determined by t0; : : : ; tn will tend to give a large
value to hp; pi, so we scale it down and divide by nC 1. Observe that 1=.nC 1/ D

�t=.b � a/, and define

hp; qi D
1

nC 1

nX
jD0

p.tj /q.tj / D
1

b � a

24 nX
jD0

p.tj /q.tj /�t

35
Now, let n increase without bound. Since polynomials p and q are continuous functions,
the expression in brackets is a Riemann sum that approaches a definite integral, and we
are led to consider the average value of p.t/q.t/ on the interval Œa; b�:

1

b � a

Z b

a

p.t/q.t/ dt

This quantity is defined for polynomials of any degree (in fact, for all continuous
functions), and it has all the properties of an inner product, as the next example shows.
The scale factor 1=.b � a/ is inessential and is often omitted for simplicity.

EXAMPLE 7 For f , g in C Œa; b�, set

hf; gi D

Z b

a

f .t/g.t/ dt (5)

Show that (5) defines an inner product on C Œa; b�.
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SOLUTION Inner product Axioms 1–3 follow from elementary properties of definite
integrals. For Axiom 4, observe that

hf; f i D

Z b

a

Œf .t/�2 dt � 0

The function Œf .t/�2 is continuous and nonnegative on Œa; b�. If the definite integral of
Œf .t/�2 is zero, then Œf .t/�2 must be identically zero on Œa; b�, by a theorem in advanced
calculus, in which case f is the zero function. Thus hf; f i D 0 implies that f is the
zero function on Œa; b�. So (5) defines an inner product on C Œa; b�.

EXAMPLE 8 Let V be the space C Œ0; 1� with the inner product of Example 7, and
let W be the subspace spanned by the polynomials p1.t/ D 1, p2.t/ D 2t � 1, and
p3.t/ D 12t2. Use the Gram–Schmidt process to find an orthogonal basis for W .

SOLUTION Let q1 D p1, and compute

hp2; q1i D

Z 1

0

.2t � 1/.1/ dt D .t2
� t /

ˇ̌̌̌1
0

D 0

So p2 is already orthogonal to q1, and we can take q2 D p2. For the projection of p3

onto W2 D Span fq1; q2g, compute

hp3; q1i D

Z 1

0

12t2
� 1 dt D 4t3

ˇ̌̌̌1
0

D 4

hq1; q1i D

Z 1

0

1 � 1 dt D t

ˇ̌̌̌1
0

D 1

hp3; q2i D

Z 1

0

12t2.2t � 1/ dt D

Z 1

0

.24t3
� 12t2/ dt D 2

hq2; q2i D

Z 1

0

.2t � 1/2 dt D
1

6
.2t � 1/3

ˇ̌̌̌1
0

D
1

3

Then

projW2
p3 D

hp3; q1i

hq1; q1i
q1 C

hp3; q2i

hq2; q2i
q2 D

4

1
q1 C

2

1=3
q2 D 4q1 C 6q2

and
q3 D p3 � projW2

p3 D p3 � 4q1 � 6q2

As a function, q3.t/ D 12t2 � 4 � 6.2t � 1/ D 12t2 � 12t C 2. The orthogonal basis
for the subspace W is fq1; q2; q3g.

Practice Problems

Use the inner product axioms to verify the following statements.

1. hv; 0i D h0; vi D 0.

2. hu; vC wi D hu; vi C hu;wi.
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6.7 Exercises
1. Let R2 have the inner product of Example 1, and let

x D .1; 1/ and y D .5;�1/.

a. Find kxk, kyk, and jhx; yij2.

b. Describe all vectors .´1; ´2/ that are orthogonal to y.

2. Let R2 have the inner product of Example 1. Show that
the Cauchy–Schwarz inequality holds for x D .3;�4/ and
y D .�4; 3/. [Suggestion: Study jhx; yij2.]

Exercises 3–8 refer to P2 with the inner product given by evalua-
tion at �1, 0, and 1. (See Example 2.)

3. Compute hp; qi, where p.t/ D 4C t , q.t/ D 5 � 4t2.

4. Compute hp; qi, where p.t/ D 4t � 3t2, q.t/ D 1C 9t2.

5. Compute kpk and kqk, for p and q in Exercise 3.

6. Compute kpk and kqk, for p and q in Exercise 4.

7. Compute the orthogonal projection of q onto the subspace
spanned by p, for p and q in Exercise 3.

8. Compute the orthogonal projection of q onto the subspace
spanned by p, for p and q in Exercise 4.

9. Let P3 have the inner product given by evaluation at �3, �1,
1, and 3. Let p0.t/ D 1, p1.t/ D t , and p2.t/ D t2.

a. Compute the orthogonal projection of p2 onto the sub-
space spanned by p0 and p1.

b. Find a polynomial q that is orthogonal to p0 and
p1, such that fp0; p1; qg is an orthogonal basis for
Span fp0; p1; p2g. Scale the polynomial q so that its vec-
tor of values at .�3;�1; 1; 3/ is .1;�1;�1; 1/.

10. Let P3 have the inner product as in Exercise 9, with p0; p1,
and q the polynomials described there. Find the best approx-
imation to p.t/ D t3 by polynomials in Span fp0; p1; qg.

11. Let p0, p1, and p2 be the orthogonal polynomials described
in Example 5, where the inner product on P4 is given by eval-
uation at �2, �1, 0, 1, and 2. Find the orthogonal projection
of t3 onto Span fp0; p1; p2g.

12. Find a polynomial p3 such that fp0; p1; p2; p3g (see Ex-
ercise 11) is an orthogonal basis for the subspace P3 of
P4. Scale the polynomial p3 so that its vector of values is
.�1; 2; 0;�2; 1/.

13. Let A be any invertible n � n matrix. Show that for u, v in
Rn, the formula hu; vi D .Au/� .Av/ D .Au/T .Av/ defines
an inner product on Rn.

14. Let T be a one-to-one linear transformation from a vector
space V into Rn. Show that for u, v in V , the formula
hu; vi D T .u/�T .v/ defines an inner product on V .

Use the inner product axioms and other results of this section to
verify the statements in Exercises 15–18.

15. hu; cvi D chu; vi for all scalars c.

16. If fu; vg is an orthonormal set in V , then ku � vk D
p

2.

17. hu; vi D 1
4
kuC vk2 � 1

4
ku � vk2.

18. kuC vk2 C ku � vk2 D 2kuk2 C 2kvk2.

In Exercises 19–24, u; v, and w are vectors. Mark each statement
True or False (T/F). Justify each answer.

19. (T/F) If hu; ui D 0, then u D 0.

20. (T/F) If hu; vi D 0, then either u D 0 or v D 0.

21. (T/F) huC v;wi D hw; ui C hw; vi.

22. (T/F) hcu; cvi D chu; vi.

23. (T/F) jhu; uij D hu; ui.

24. (T/F) jhu; vij � kuk kvk.

25. Given a � 0 and b � 0, let u D
�p

a
p

b

�
and v D

�p
b
p

a

�
. Use

the Cauchy–Schwarz inequality to compare the geometric
mean

p
ab with the arithmetic mean .aC b/=2.

26. Let u D
�

a

b

�
and v D

�
1

1

�
. Use the Cauchy–Schwarz in-

equality to show that�
aC b

2

�2

�
a2 C b2

2

Exercises 27–30 refer toV D C Œ0; 1�, with the inner product given
by an integral, as in Example 7.

27. Compute hf; gi, where f .t/ D 1 � 3t2 and g.t/ D t � t3.

28. Compute hf; gi, where f .t/ D 5t � 2 and g.t/ D 7t3 � 6t2.

29. Compute kf k for f in Exercise 27.

30. Compute kgk for g in Exercise 28.

31. Let V be the space C Œ�1; 1� with the inner product of Exam-
ple 7. Find an orthogonal basis for the subspace spanned by
the polynomials 1, t , and t2. The polynomials in this basis are
called Legendre polynomials.

32. Let V be the space C Œ�2; 2� with the inner product of Exam-
ple 7. Find an orthogonal basis for the subspace spanned by
the polynomials 1, t , and t2.

T 33. Let P4 have the inner product as in Example 5, and let p0, p1,
p2 be the orthogonal polynomials from that example. Using
your matrix program, apply the Gram–Schmidt process to the
set fp0; p1; p2; t3; t4g to create an orthogonal basis for P4.

T 34. Let V be the space C Œ0; 2�� with the inner product of Exam-
ple 7. Use the Gram–Schmidt process to create an orthogonal
basis for the subspace spanned by f1; cos t; cos2 t; cos3 tg.
Use a matrix program or computational program to compute
the appropriate definite integrals.
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Solutions to Practice Problems

1. By Axiom 1, hv; 0i D h0; vi. Then h0; vi D h0v; vi D 0hv; vi, by Axiom 3, so
h0; vi D 0.

2. By Axioms 1, 2, and then 1 again, hu; vC wi D hvC w; ui D hv; ui C hw; ui D
hu; vi C hu;wi.

6.8 Applications of Inner Product Spaces
The examples in this section suggest how the inner product spaces defined in Section
6.7 arise in practical problems. Like in Section 6.6, important components of machine
learning are analyzed.

Weighted Least-Squares
Let y be a vector of n observations, y1; : : : ; yn, and suppose we wish to approximate y by
a vector Oy that belongs to some specified subspace of Rn. (In Section 6.5, Oy was written
as Ax so that Oy was in the column space of A.) Denote the entries in Oy by Oy1; : : : ; Oyn.
Then the sum of the squares for error, or SS(E), in approximating y by Oy is

SS(E) D .y1 � Oy1/2
C � � � C .yn � Oyn/2 (1)

This is simply ky � Oyk2, using the standard length in Rn.
Now suppose the measurements that produced the entries in y are not equally

reliable. The entries in y might be computed from various samples of measurements,
with unequal sample sizes. Then it becomes appropriate to weight the squared errors in
(1) in such a way that more importance is assigned to the more reliable measurements.1

If the weights are denoted by w2
1 ; : : : ; w2

n, then the weighted sum of the squares for
error is

Weighted SS(E) D w2
1.y1 � Oy1/2

C � � � C w2
n.yn � Oyn/2 (2)

This is the square of the length of y � Oy, where the length is derived from an inner product
analogous to that in Example 1 in Section 6.7, namely

hx; yi D w2
1x1y1 C � � � C w2

nxnyn

It is sometimes convenient to transform a weighted least-squares problem into an
equivalent ordinary least-squares problem. Let W be the diagonal matrix with (positive)
w1; : : : ; wn on its diagonal, so that

W y D

26664
w1 0 � � � 0

0 w2

:::
: : :

:::

0 � � � wn

37775
26664

y1

y2

:::

yn

37775 D
26664

w1y1

w2y2

:::

wnyn

37775
with a similar expression for W Oy. Observe that the j th term in (2) can be written as

w2
j .yj � Oyj /2

D .wj yj � wj Oyj /2

1Note for readers with a background in statistics: Suppose the errors in measuring the yi are independent
random variables with means equal to zero and variances of �2

1 ; : : : ; �2
n . Then the appropriate weights in (2)

are w2
i D 1=�2

i . The larger the variance of the error, the smaller the weight.
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7.1 Diagonalization of Symmetric Matrices
A symmetricmatrix is a matrixA such thatAT = A. Such a matrix is necessarily square.
Its main diagonal entries are arbitrary, but its other entries occur in pairs—on opposite
sides of the main diagonal.

EXAMPLE 1 Of the following matrices, only the first three are symmetric:

Symmetric:
�

1 0

0 �3

�
;

24 0 �1 0

�1 5 8

0 8 �7

35;

24 a b c

b d e

c e f

35
Nonsymmetric:

�
1 �3

3 0

�
;

24 1 �4 0

�6 1 �4

0 �6 1

35;

24 5 4 3 2

4 3 2 1

3 2 1 0

35
To begin the study of symmetric matrices, it is helpful to review the diagonalization

process of Section 5.3.

EXAMPLE 2 If possible, diagonalize the matrix A D

24 6 �2 �1

�2 6 �1

�1 �1 5

35.
SOLUTION The characteristic equation of A is

0 D ��3
C 17�2

� 90�C 144 D �.� � 8/.� � 6/.� � 3/

Standard calculations produce a basis for each eigenspace:

� D 8 W v1 D

24�1

1

0

35I � D 6 W v2 D

24�1

�1

2

35I � D 3 W v3 D

24 1

1

1

35
These three vectors form a basis for R3. In fact, it is easy to check that fv1; v2; v3g is an
orthogonal basis for R3. Experience from Chapter 6 suggests that an orthonormal basis
might be useful for calculations, so here are the normalized (unit) eigenvectors.

u1 D

24�1=
p

2

1=
p

2

0

35 ; u2 D

24�1=
p

6

�1=
p

6

2=
p

6

35; u3 D

24 1=
p

3

1=
p

3

1=
p

3

35
Let

P D

24�1=
p

2 �1=
p

6 1=
p

3

1=
p

2 �1=
p

6 1=
p

3

0 2=
p

6 1=
p

3

35 ; D D

24 8 0 0

0 6 0

0 0 3

35
Then A D PDP�1, as usual. But this time, since P is square and has orthonormal
columns, P is an orthogonal matrix, and P�1 is simply P T . (See Section 6.2.)

Theorem 1 explains why the eigenvectors in Example 2 are orthogonal—they cor-
respond to distinct eigenvalues.
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THEOREM 1 If A is symmetric, then any two eigenvectors from different eigenspaces are
orthogonal.

PROOF Let v1 and v2 be eigenvectors that correspond to distinct eigenvalues, say, �1

and �2. To show that v1 � v2 D 0, compute

�1v1 � v2 D .�1v1/T v2 D .Av1/T v2 Since v1 is an eigenvector

D .vT
1 AT /v2 D vT

1 .Av2/ Since AT D A

D vT
1 .�2v2/ Since v2 is an eigenvector

D �2vT
1 v2 D �2v1 � v2

Hence .�1 � �2/v1 � v2 D 0. But �1 � �2 ¤ 0, so v1 � v2 D 0.

The special type of diagonalization in Example 2 is crucial for the theory of sym-
metric matrices. An n � n matrix A is said to be orthogonally diagonalizable if there
are an orthogonal matrix P (with P�1 D P T ) and a diagonal matrix D such that

A D PDPT
D PDP�1 (1)

Such a diagonalization requires n linearly independent and orthonormal eigenvec-
tors. When is this possible? If A is orthogonally diagonalizable as in (1), then

AT
D .PDPT /T

D P T T DT P T
D PDPT

D A

Thus A is symmetric! Theorem 2 below shows that, conversely, every symmetric matrix
is orthogonally diagonalizable. The proof is much harder and is omitted; the main idea
for a proof will be given after Theorem 3.

THEOREM 2 An n � n matrix A is orthogonally diagonalizable if and only if A is a symmetric
matrix.

This theorem is rather amazing, because the work in Chapter 5 would suggest that
it is usually impossible to tell when a matrix is diagonalizable. But this is not the case
for symmetric matrices.

The next example treats a matrix whose eigenvalues are not all distinct.

EXAMPLE 3 Orthogonally diagonalize the matrix A D

24 3 �2 4

�2 6 2

4 2 3

35, whose
characteristic equation is

0 D ��3
C 12�2

� 21� � 98 D �.� � 7/2.�C 2/

SOLUTION The usual calculations produce bases for the eigenspaces:

� D 7 W v1 D

24 1

0

1

35; v2 D

24�1=2

1

0

35 I � D �2 W v3 D

24 �1

�1=2

1

35
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Although v1 and v2 are linearly independent, they are not orthogonal. Recall from

Section 6.2 that the projection of v2 onto v1 is
v2 � v1

v1 � v1

v1, and the component of v2

orthogonal to v1 is

z2 D v2 �
v2 � v1

v1 � v1

v1 D

24�1=2

1

0

35 � �1=2

2

24 1

0

1

35 D 24�1=4

1

1=4

35
Then fv1; z2g is an orthogonal set in the eigenspace for � D 7. (Note that z2 is a linear
combination of the eigenvectors v1 and v2, so z2 is in the eigenspace. This construction
of z2 is just the Gram–Schmidt process of Section 6.4.) Since the eigenspace is two-
dimensional (with basis v1; v2/, the orthogonal set fv1; z2g is an orthogonal basis for the
eigenspace, by the Basis Theorem. (See Section 2.9 or 4.5.)

Normalize v1 and z2 to obtain the following orthonormal basis for the eigenspace
for � D 7:

u1 D

24 1=
p

2

0

1=
p

2

35 ; u2 D

24�1=
p

18

4=
p

18

1=
p

18

35
An orthonormal basis for the eigenspace for � D �2 is

u3 D
1

k2v3k
2v3 D

1

3

24�2

�1

2

35 D 24�2=3

�1=3

2=3

35
By Theorem 1, u3 is orthogonal to the other eigenvectors u1 and u2. Hence fu1; u2; u3g

is an orthonormal set. Let

P D Œ u1 u2 u3 � D

264 1=
p

2 �1=
p

18 �2=3

0 4=
p

18 �1=3

1=
p

2 1=
p

18 2=3

375 ; D D

24 7 0 0

0 7 0

0 0 �2

35
Then P orthogonally diagonalizes A, and A D PDP�1.

In Example 3, the eigenvalue 7 has multiplicity two and the eigenspace is two-
dimensional. This fact is not accidental, as the next theorem shows.

The Spectral Theorem
The set of eigenvalues of a matrix A is sometimes called the spectrum of A, and the
following description of the eigenvalues is called a spectral theorem.

THEOREM 3 The Spectral Theorem for Symmetric Matrices

An n � n symmetric matrix A has the following properties:

a. A has n real eigenvalues, counting multiplicities.

b. The dimension of the eigenspace for each eigenvalue � equals the multiplicity
of � as a root of the characteristic equation.

c. The eigenspaces are mutually orthogonal, in the sense that eigenvectors corre-
sponding to different eigenvalues are orthogonal.

d. A is orthogonally diagonalizable.
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Part (a) follows from Exercise 28 in Section 5.5. Part (b) follows easily from part
(d). (See Exercise 37.) Part (c) is Theorem 1. Because of (a), a proof of (d) can be given
using Exercise 38 and the Schur factorization discussed in Supplementary Exercise 34
in Chapter 6. The details are omitted.

Spectral Decomposition
SupposeA D PDP�1, where the columns of P are orthonormal eigenvectors u1; : : : ; un

of A and the corresponding eigenvalues �1; : : : ; �n are in the diagonal matrix D. Then,
since P�1 D P T ,

A D PDPT
D
�
u1 � � � un

�264 �1 0
: : :

0 �n

375
264 uT

1
:::

uT
n

375
D
�

�1u1 � � � �nun

�264 uT
1
:::

uT
n

375
Using the column–row expansion of a product (Theorem 10 in Section 2.4), we can write

A D �1u1uT
1 C �2u2uT

2 C � � � C �nunuT
n (2)

This representation of A is called a spectral decomposition of A because it breaks
up A into pieces determined by the spectrum (eigenvalues) of A. Each term in (2) is
an n � n matrix of rank 1. For example, every column of �1u1uT

1 is a multiple of u1.
Furthermore, each matrix ujuT

j is a projection matrix in the sense that for each x in
Rn, the vector .ujuT

j /x is the orthogonal projection of x onto the subspace spanned by
uj . (See Exercise 41.)

EXAMPLE 4 Construct a spectral decomposition of the matrix A that has the or-
thogonal diagonalization

A D

�
7 2

2 4

�
D

�
2=
p

5 �1=
p

5

1=
p

5 2=
p

5

��
8 0

0 3

��
2=
p

5 1=
p

5

�1=
p

5 2=
p

5

�
SOLUTION Denote the columns of P by u1 and u2. Then

A D 8u1uT
1 C 3u2uT

2

To verify this decomposition of A, compute

u1uT
1 D

�
2=
p

5

1=
p

5

��
2=
p

5 1=
p

5
�
D

�
4=5 2=5

2=5 1=5

�
u2uT

2 D

�
�1=
p

5

2=
p

5

��
�1=
p

5 2=
p

5
�
D

�
1=5 �2=5

�2=5 4=5

�
and

8u1uT
1 C 3u2uT

2 D

�
32=5 16=5

16=5 8=5

�
C

�
3=5 �6=5

�6=5 12=5

�
D

�
7 2

2 4

�
D A
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Numerical Notes

When A is symmetric and not too large, modern high-performance computer al-
gorithms calculate eigenvalues and eigenvectors with great precision. They apply
a sequence of similarity transformations to A involving orthogonal matrices. The
diagonal entries of the transformedmatrices converge rapidly to the eigenvalues of
A. (See the Numerical Notes in Section 5.2.) Using orthogonal matrices generally
prevents numerical errors from accumulating during the process. When A is
symmetric, the sequence of orthogonal matrices combines to form an orthogonal
matrix whose columns are eigenvectors of A.

A nonsymmetric matrix cannot have a full set of orthogonal eigenvectors, but
the algorithm still produces fairly accurate eigenvalues. After that, nonorthogonal
techniques are needed to calculate eigenvectors.

Practice Problems

1. Show that if A is a symmetric matrix, then A2 is symmetric.

2. Show that if A is orthogonally diagonalizable, then so is A2.

7.1 Exercises
Determine which of the matrices in Exercises 1–6 are symmetric.

1.
�

4 3

3 �8

�
2.

�
4 �3

�3 �4

�

3.
�

3 5

3 7

�
4.

24 1 3 5

3 1 �6

5 4 1

35
5.

24�2 4 5

4 �2 3

5 3 �2

35 6.

24 2 1 1 2

3 3 3 2

1 1 2 1

35
Determine which of thematrices in Exercises 7–12 are orthogonal.
If orthogonal, find the inverse.

7.
�

1=
p

2 �1=
p

2

1=
p

2 1=
p

2

�
8.

�
1 2

2 �1

�

9.
�
�3=5 4=5

4=5 3=5

�
10.

24 2=3 1=3 �2=3

�2=3 2=3 �1=3

1=3 2=3 2=3

35
11.

24�2=3 1=3 2=3

0 2=3 �1=3

5=3 2=3 4=3

35

12.

2664
1=2 1=2 1=2 1=2

1=
p

12 1=
p

12 1=
p

12 �3=
p

12

1=
p

6 1=
p

6 �2=
p

6 0

1=
p

2 �1=
p

2 0 0

3775
Orthogonally diagonalize the matrices in Exercises 13–22, giv-
ing an orthogonal matrix P and a diagonal matrix D. To save

you time, the eigenvalues in Exercises 17–22 are the following:
(17) �5, 5, 8; (18) 1, 2, 5; (19) 8, �1; (20) �3, 15; (21) 3, 5, 9;
(22) 4, 6.

13.
�

4 1

1 4

�
14.

�
2 �3

�3 2

�

15.
�

5 6

6 10

�
16.

�
5 �4

�4 11

�

17.

24 1 1 6

1 6 1

6 1 1

35 18.

24 2 �1 1

�1 4 �1

1 �1 2

35

19.

24 4 �2 4

�2 7 2

4 2 4

35 20.

24 5 �8 4

�8 5 �4

4 �4 �1

35

21.

2664
5 4 1 1

4 5 1 1

1 1 5 4

1 1 4 5

3775 22.

2664
5 0 1 0

0 5 0 1

1 0 5 0

0 1 0 5

3775

23. Let A D

24 5 �1 �1

�1 5 �1

�1 �1 5

35 and v D

24 1

1

1

35. Verify that 3 is
an eigenvalue ofA and v is an eigenvector. Then orthogonally
diagonalize A.
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24. Let A D

24 3 �1 1

�1 3 �1

1 �1 3

35, v1 D

24�1

0

1

35, and v2 D24 1

�1

1

35. Verify that v1 and v2 are eigenvectors of A. Then

orthogonally diagonalize A.

In Exercises 25–32, mark each statement True or False (T/F).
Justify each answer.

25. (T/F) An n � n matrix that is orthogonally diagonalizable
must be symmetric.

26. (T/F) There are symmetric matrices that are not orthogo-
nally diagonalizable.

27. (T/F) An orthogonal matrix is orthogonally diagonalizable.

28. (T/F) If B D PDP T , where P T D P�1 and D is a diago-
nal matrix, then B is a symmetric matrix.

29. (T/F) For a nonzero v in Rn, the matrix vvT is called a
projection matrix.

30. (T/F) If AT D A and if vectors u and v satisfy Au D 3u and
Av D 4v, then u � v D 0.

31. (T/F) An n � n symmetric matrix has n distinct real
eigenvalues.

32. (T/F) The dimension of an eigenspace of a symmetric matrix
is sometimes less than the multiplicity of the corresponding
eigenvalue.

33. Show that if A is an n � n symmetric matrix, then (Ax/�y D
x�.Ay/ for all x; y in Rn.

34. Suppose A is a symmetric n � n matrix and B is any n �m

matrix. Show that BTAB , BTB , and BBT are symmetric
matrices.

35. Suppose A is invertible and orthogonally diagonalizable.
Explain why A�1 is also orthogonally diagonalizable.

36. Suppose A and B are both orthogonally diagonalizable and
AB D BA. Explain why AB is also orthogonally diagonaliz-
able.

37. Let A D PDP�1, where P is orthogonal and D is diagonal,
and let � be an eigenvalue of A of multiplicity k. Then
� appears k times on the diagonal of D. Explain why the
dimension of the eigenspace for � is k.

38. SupposeA D PRP�1, whereP is orthogonal andR is upper
triangular. Show that if A is symmetric, then R is symmetric
and hence is actually a diagonal matrix.

39. Construct a spectral decomposition of A from Example 2.

40. Construct a spectral decomposition of A from Example 3.

41. Let u be a unit vector in Rn, and let B D uuT .

a. Given any x in Rn, compute Bx and show that Bx is
the orthogonal projection of x onto u, as described in
Section 6.2.

b. Show that B is a symmetric matrix and B2 D B .

c. Show that u is an eigenvector of B . What is the corre-
sponding eigenvalue?

42. Let B be an n � n symmetric matrix such that B2 = B . Any
such matrix is called a projection matrix (or an orthogonal
projection matrix). Given any y in Rn, let Oy D By and
z D y � Oy.
a. Show that z is orthogonal to Oy.

b. Let W be the column space of B . Show that y is the sum
of a vector inW and a vector inW ?. Why does this prove
that By is the orthogonal projection of y onto the column
space of B?

Orthogonally diagonalize the matrices in Exercises 43–46. To
practice the methods of this section, do not use an eigenvector
routine from your matrix program. Instead, use the program to find
the eigenvalues, and, for each eigenvalue �, find an orthonormal
basis for Nul.A � �I/, as in Examples 2 and 3.

T 43.

2664
6 2 9 �6

2 6 �6 9

9 �6 6 2

�6 9 2 6

3775

T 44.

2664
:63 �:18 �:06 �:04

�:18 :84 �:04 :12

�:06 �:04 :72 �:12

�:04 :12 �:12 :66

3775

T 45.

2664
:31 :58 :08 :44

:58 �:56 :44 �:58

:08 :44 :19 �:08

:44 �:58 �:08 :31

3775

T 46.

266664
8 2 2 �6 9

2 8 2 �6 9

2 2 8 �6 9

�6 �6 �6 24 9

9 9 9 9 �21

377775
Solutions to Practice Problems

1. .A2/T D .AA/T D ATAT , by a property of transposes. By hypothesis, AT D A. So
.A2/T D AA D A2, which shows that A2 is symmetric.

2. IfA is orthogonally diagonalizable, thenA is symmetric, by Theorem 2. By Practice
Problem 1, A2 is symmetric and hence is orthogonally diagonalizable (Theorem 2).
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7.2 Quadratic Forms
Until now, our attention in this text has focused on linear equations, except for the sums
of squares encountered in Chapter 6 when computing xTx. Such sums and more general
expressions, called quadratic forms, occur frequently in applications of linear algebra
to engineering (in design criteria and optimization) and signal processing (as output
noise power). They also arise, for example, in physics (as potential and kinetic energy),
differential geometry (as normal curvature of surfaces), economics (as utility functions),
and statistics (in confidence ellipsoids). Some of the mathematical background for such
applications flows easily from our work on symmetric matrices.

A quadratic form on Rn is a function Q defined on Rn whose value at a vector x
in Rn can be computed by an expression of the form Q.x/ D xTAx, where A is an n � n

symmetric matrix. The matrix A is called the matrix of the quadratic form.
The simplest example of a nonzero quadratic form is Q.x/ D xTIx D kxk2. Exam-

ples 1 and 2 show the connection between any symmetric matrix A and the quadratic
form xTAx.

EXAMPLE 1 Let x D
�

x1

x2

�
. Compute xTAx for the following matrices:

a. A D

�
4 0

0 3

�
b. A D

�
3 �2

�2 7

�
SOLUTION

a. xTAx D Œ x1 x2 �

�
4 0

0 3

��
x1

x2

�
D Œ x1 x2 �

�
4x1

3x2

�
D 4x2

1 C 3x2
2 .

b. There are two�2 entries inA.Watch how they enter the calculations. The .1; 2/-entry
in A is in boldface type.

xTAx D Œ x1 x2 �

�
3 �2
�2 7

��
x1

x2

�
D Œ x1 x2 �

�
3x1 � 2x2

�2x1 C 7x2

�
D x1.3x1 � 2x2/C x2.�2x1 C 7x2/

D 3x2
1 � 2x1x2 � 2x2x1 C 7x2

2

D 3x2
1 � 4x1x2 C 7x2

2

The presence of �4x1x2 in the quadratic form in Example 1(b) is due to the �2

entries off the diagonal in the matrix A. In contrast, the quadratic form associated with
the diagonal matrix A in Example 1(a) has no x1x2 cross-product term.

EXAMPLE 2 For x inR3, letQ.x/ D 5x2
1 C 3x2

2 C 2x2
3 � x1x2 C 8x2x3. Write this

quadratic form as xTAx.

SOLUTION The coefficients of x2
1 , x2

2 , x2
3 go on the diagonal of A. To make A sym-

metric, the coefficient of xi xj for i ¤ j must be split evenly between the .i; j /- and
.j; i/-entries in A. The coefficient of x1x3 is 0. It is readily checked that

Q.x/ D xTAx D Œ x1 x2 x3 �

24 5 �1=2 0

�1=2 3 4

0 4 2

3524 x1

x2

x3

35
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EXAMPLE 3 Let Q.x/ D x2
1 � 8x1x2 � 5x2

2 . Compute the value of Q.x/ for x D�
�3

1

�
,
�

2

�2

�
, and

�
1

�3

�
.

SOLUTION
Q.�3; 1/ D .�3/2

� 8.�3/.1/ � 5.1/2
D 28

Q.2;�2/ D .2/2
� 8.2/.�2/ � 5.�2/2

D 16

Q.1;�3/ D .1/2
� 8.1/.�3/ � 5.�3/2

D �20

In some cases, quadratic forms are easier to use when they have no cross-product
terms—that is, when the matrix of the quadratic form is a diagonal matrix. Fortunately,
the cross-product term can be eliminated by making a suitable change of variable.

Change of Variable in a Quadratic Form
If x represents a variable vector in Rn, then a change of variable is an equation of the
form

x D P y; or equivalently; y D P�1x (1)

where P is an invertible matrix and y is a new variable vector in Rn. Here y is the
coordinate vector of x relative to the basis of Rn determined by the columns of P . (See
Section 4.4.)

If the change of variable (1) is made in a quadratic form xTAx, then

xTAx D .P y/TA.P y/ D yTP TAP y D yT.P TAP /y (2)

and the new matrix of the quadratic form is P TAP . Since A is symmetric, Theorem 2
guarantees that there is an orthogonalmatrix P such that P TAP is a diagonal matrix D,
and the quadratic form in (2) becomes yTDy. This is the strategy of the next example.

EXAMPLE 4 Make a change of variable that transforms the quadratic form in Ex-
ample 3 into a quadratic form with no cross-product term.

SOLUTION The matrix of the quadratic form in Example 3 is

A D

�
1 �4

�4 �5

�
The first step is to orthogonally diagonalize A. Its eigenvalues turn out to be � D 3 and
� D �7. Associated unit eigenvectors are

� D 3 W

"
2=
p

5

�1=
p

5

#
I � D �7 W

"
1=
p

5

2=
p

5

#
These vectors are automatically orthogonal (because they correspond to distinct eigen-
values) and so provide an orthonormal basis for R2. Let

P D

"
2=
p

5 1=
p

5

�1=
p

5 2=
p

5

#
; D D

�
3 0

0 �7

�
Then A D PDP�1 and D D P�1AP D P TAP , as pointed out earlier. A suitable change
of variable is

x D P y; where x D
�

x1

x2

�
and y D

�
y1

y2

�
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Then
x2

1 � 8x1x2 � 5x2
2 D xTAx D .P y/TA.P y/

D yTP TAPy D yTDy

D 3y2
1 � 7y2

2

To illustrate the meaning of the equality of quadratic forms in Example 4, we can
compute Q.x/ for x D .2;�2/ using the new quadratic form. First, since x D P y,

y D P�1x D P T x

so

y D

"
2=
p

5 �1=
p

5

1=
p

5 2=
p

5

#�
2

�2

�
D

"
6=
p

5

�2=
p

5

#
Hence

3y2
1 � 7y2

2 D 3.6=
p

5/2
� 7.�2=

p
5/2
D 3.36=5/ � 7.4=5/

D 80=5 D 16

This is the value of Q.x/ in Example 3 when x D .2;�2/. See Figure 1.

R

R2

R2

160
Multiplication

by P

x

y

yTDy

xTAx

FIGURE 1 Change of variable in xTAx.

Example 4 illustrates the following theorem. The proof of the theorem was essen-
tially given before Example 4.

THEOREM 4 The Principal Axes Theorem

Let A be an n � n symmetric matrix. Then there is an orthogonal change of
variable, x D P y, that transforms the quadratic form xTAx into a quadratic form
yTDy with no cross-product term.

The columns ofP in the theorem are called the principal axes of the quadratic form
xTAx. The vector y is the coordinate vector of x relative to the orthonormal basis of Rn

given by these principal axes.

A Geometric View of Principal Axes
Suppose Q.x/ D xTAx, where A is an invertible 2 � 2 symmetric matrix, and let c be a
constant. It can be shown that the set of all x in R2 that satisfy

xTAx D c (3)
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either corresponds to an ellipse (or circle), a hyperbola, two intersecting lines, or a single
point, or contains no points at all. If A is a diagonal matrix, the graph is in standard
position, such as in Figure 2. If A is not a diagonal matrix, the graph of equation (3) is

x1

x2

a

5 1,  a . b . 0
a2 b2

x2 x2
21

b

x1

x2

a

b

— —1

Ellipse

5 1,  a . b . 0
a2 b2

x2 x2
21— —2

Hyperbola

FIGURE 2 An ellipse and a hyperbola in standard position.

rotated out of standard position, as in Figure 3. Finding the principal axes (determined
by the eigenvectors of A) amounts to finding a new coordinate system with respect to
which the graph is in standard position.

(a) 5x2 2 4x1x2 1 5x2 5 48

x1

x2 y1y2

1

1

1 2

x2

(b) x2 2 8x1x2 2 5x2 5 16

x1

y1

y2

11

1 2

FIGURE 3 An ellipse and a hyperbola not in standard position.

The hyperbola in Figure 3(b) is the graph of the equation xTAx D 16, whereA is the
matrix in Example 4. The positive y1-axis in Figure 3(b) is in the direction of the first
column of the matrix P in Example 4, and the positive y2-axis is in the direction of the
second column of P .

EXAMPLE 5 The ellipse in Figure 3(a) is the graph of the equation 5x2
1 � 4x1x2 C

5x2
2 D 48. Find a change of variable that removes the cross-product term from the

equation.

SOLUTION The matrix of the quadratic form is A D

�
5 �2

�2 5

�
. The eigenvalues of

A turn out to be 3 and 7, with corresponding unit eigenvectors

u1 D

"
1=
p

2

1=
p

2

#
; u2 D

"
�1=
p

2

1=
p

2

#
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Let P D Œ u1 u2 � D

"
1=
p

2 �1=
p

2

1=
p

2 1=
p

2

#
. Then P orthogonally diagonalizes A, so the

change of variable x D P y produces the quadratic form yT Dy D 3y2
1 C 7y2

2 . The new
axes for this change of variable are shown in Figure 3(a).

Classifying Quadratic Forms
When A is an n � n matrix, the quadratic form Q.x/ D xTAx is a real-valued function
with domain Rn. Figure 4 displays the graphs of four quadratic forms with domain R2.
For each point x D .x1; x2/ in the domain of a quadratic form Q, the graph displays the
point .x1; x2; ´/ where ´ D Q.x/. Notice that except at x D 0, the values of Q.x/ are
all positive in Figure 4(a) and all negative in Figure 4(d). The horizontal cross-sections
of the graphs are ellipses in Figures 4(a) and 4(d) and hyperbolas in Figure 4(c).

(a)  z 5 3x2 1 7x2

x2
x1

x3

1 2 (b)  z 5 3x2
1

x1 x2

x3

(c)  z 5 3x2 2 7x2

x2x1

x3

21 (d)  

x3

x2x1

z 523x2 2 7x2
21

FIGURE 4 Graphs of quadratic forms.

The simple 2 � 2 examples in Figure 4 illustrate the following definitions.

DEFINITION A quadratic form Q is

a. positive definite if Q.x/ > 0 for all x ¤ 0,

b. negative definite if Q.x/ < 0 for all x ¤ 0,

c. indefinite if Q.x/ assumes both positive and negative values.

Also, Q is said to be positive semidefinite if Q.x/ � 0 for all x, and to be negative
semidefinite if Q.x/ � 0 for all x. The quadratic forms in parts (a) and (b) of Figure 4
are both positive semidefinite, but the form in (a) is better described as positive definite.

Theorem 5 characterizes some quadratic forms in terms of eigenvalues.

THEOREM 5 Quadratic Forms and Eigenvalues

Let A be an n � n symmetric matrix. Then a quadratic form xTAx is

a. positive definite if and only if the eigenvalues of A are all positive,

b. negative definite if and only if the eigenvalues of A are all negative, or

c. indefinite if and only if A has both positive and negative eigenvalues.
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PROOF By the Principal Axes Theorem, there exists an orthogonal change of variable

x2

x1

x3

Positive definite

x D P y such that

Q.x/ D xTAx D yTDy D �1y2
1 C �2y2

2 C � � � C �ny2
n (4)

where �1; : : : ; �n are the eigenvalues of A. Since P is invertible, there is a one-to-
one correspondence between all nonzero x and all nonzero y. Thus the values of Q.x/

for x ¤ 0 coincide with the values of the expression on the right side of (4), which
is obviously controlled by the signs of the eigenvalues �1; : : : ; �n, in the three ways
described in the theorem.

EXAMPLE 6 Is Q.x/ D 3x2
1 C 2x2

2 C x2
3 C 4x1x2 C 4x2x3 positive definite?

SOLUTION Because of all the plus signs, this form “looks” positive definite. But the
matrix of the form isx2

x1

x3

Negative definite

x2

x1

x3

Indefinite

A D

24 3 2 0

2 2 2

0 2 1

35
and the eigenvalues of A turn out to be 5, 2, and �1. So Q is an indefinite quadratic
form, not positive definite.

The classification of a quadratic form is often carried over to the matrix of the form.
Thus a positive definite matrix A is a symmetric matrix for which the quadratic form
xTAx is positive definite. Other terms, such as positive semidefinite matrix, are defined
analogously.

Numerical Notes

A fast way to determine whether a symmetric matrix A is positive definite is
to attempt to factor A in the form A D RTR, where R is upper triangular with
positive diagonal entries. (A slightly modified algorithm for an LU factorization
is one approach.) Such a Cholesky factorization is possible if and only if A is
positive definite. See Supplementary Exercise 23 at the end of Chapter 7.

Practice Problem

Describe a positive semidefinite matrix A in terms of its eigenvalues.

7.2 Exercises

1. Compute the quadratic form xTAx, when A D

�
3 1=4

1=4 1

�
and

a. x D
�

x1

x2

�
b. x D

�
8

1

�
c. x D

�
1

4

�

2. Compute the quadratic form xTAx, for A D

24 4 1 0

1 1 3

0 3 0

35
and

a. x D

24x1

x2

x3

35 b. x D

24�3

�1

4

35 c. x D

2641=
p

5

1=
p

5

1=
p

5

375
3. Find the matrix of the quadratic form. Assume x is in R2.

a. 4x2
1 � 6x1x2 C 5x2

2 b. 5x2
1 C 4x1x2

4. Find the matrix of the quadratic form. Assume x is in R2.

a. 7x2
1 C 18x1x2 � 7x2

2 b. 8x1x2
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5. Find the matrix of the quadratic form. Assume x is in R3.

a. 5x2
1 C 3x2

2 � 7x2
3 � 4x1x2 C 6x1x3 � 2x2x3

b. 8x1x2 C 10x1x3 � 6x2x3

6. Find the matrix of the quadratic form. Assume x is in R3.

a. 5x2
1 � 3x2

2 C 7x2
3 C 8x1x2 � 4x1x3

b. 6x2
3 � 4x1x2 � 2x2x3

7. Make the change of variable, x D P y, that transforms the
quadratic form x2

1 C 12x1x2 C x2
2 into a quadratic form with

no cross-product terms. Give P and the new quadratic form.

8. Let A be the matrix of the quadratic form

7x2
1 C 5x2

2 C 9x2
3 � 8x1x2 C 8x1x3

It can be shown that the eigenvalues of A are 1, 7, and 13.
Find an orthogonal matrix P such that the change of variable
x D P y transforms xTAx into a quadratic form with no cross-
product term. Give P and the new quadratic form.

Classify the quadratic forms in Exercises 9–18. Then make a
change of variable, x D P y that transform the quadratic form into
one with no cross-product terms. Write the new quadratic form.
Construct P using the methods of Section 7.1.

9. 6x2
1 � 4x1x2 C 3x2

2 10. 3x2
1 C 8x1x2 � 3x2

2

11. 4x2
1 � 8x1x2 � 2x2

2 12. �2x2
1 � 4x1x2 � 2x2

2

13. x2
1 � 4x1x2 C 4x2

2 14. 5x2
1 C 12x1x2

T 15. �3x2
1 � 7x2

2 � 10x2
3 � 10x2

4 C 4x1x2 C 4x1x3C

4x1x4 C 6x3x4

T 16. 4x2
1 C 4x2

2 C 4x2
3 C 4x2

4 C 8x1x2 C 8x3x4 � 6x1x4C

6x2x3

T 17. 11x2
1 C 11x2

2 C 11x2
3 C 11x2

4 C 16x1x2 � 12x1x4C

12x2x3 C 16x3x4

T 18. 2x2
1 C 2x2

2 � 6x1x2 � 6x1x3 � 6x1x4 � 6x2x3�

6x2x4 � 2x3x4

19. What is the largest possible value of the quadratic
form 4x2

1 C 9x2
2 if x D .x1; x2/ and xTx D 1, that is, if

x2
1 C x2

2 D 1? (Try some examples of x)

20. What is the largest possible value of the quadratic form
7x2

1 � 5x2
2 if x

Tx D 1?

In Exercises 21–30,matrices are n � n and vectors are inRn. Mark
each statement True or False (T/F). Justify each answer.

21. (T/F) The matrix of a quadratic form is a symmetric matrix.

22. (T/F) The expression kxk2 is not a quadratic form.

23. (T/F) A quadratic form has no cross-product terms if and
only if the matrix of the quadratic form is a diagonal matrix.

24. (T/F) If A is symmetric and P is an orthogonal matrix,
then the change of variable x D P y transforms xTAx into a
quadratic form with no cross-product term.

25. (T/F) The principal axes of a quadratic form xTAx are eigen-
vectors of A.

26. (T/F) If the eigenvalues of a symmetric matrix A are all
positive, then the quadratic form xTAx is positive definite.

27. (T/F) A positive definite quadratic form Q satisfies Q.x/ >

0 for all x in Rn.

28. (T/F) An indefinite quadratic form is neither positive
semidefinite nor negative semidefinite.

29. (T/F) A Cholesky factorization of a symmetric matrix A has
the form A D RTR, for an upper triangular matrix R with
positive diagonal entries.

30. (T/F) IfA is symmetric and the quadratic form xTAx has only
negative values for x ¤ 0, then the eigenvalues of A are all
positive.

Exercises 31 and 32 show how to classify a quadratic form

Q.x/ D xTAx, whenA D

�
a b

b d

�
and detA ¤ 0, without find-

ing the eigenvalues of A.

31. If �1 and �2 are the eigenvalues of A, then the characteristic
polynomial of A can be written in two ways: det.A � �I/

and .� � �1/.� � �2/. Use this fact to show that �1 C �2 D

aC d (the diagonal entries of A) and �1�2 D detA.

32. Verify the following statements:

a. Q is positive definite if detA > 0 and a > 0.

b. Q is negative definite if detA > 0 and a < 0.

c. Q is indefinite if detA < 0.

33. Show that if B is m � n, then BTB is positive semidefinite;
and ifB is n � n and invertible, thenBTB is positive definite.

34. Show that if an n � n matrix A is positive definite, then there
exists a positive definite matrixB such thatA D BTB . [Hint:
Write A D PDPT , with P T D P�1. Produce a diagonal ma-
trix C such that D D C TC , and let B D PCP T . Show that
B works.]

35. LetA andB be symmetric n � nmatrices whose eigenvalues
are all positive. Show that the eigenvalues of AC B are all
positive. [Hint: Consider quadratic forms.]

36. Let A be an n � n invertible symmetric matrix. Show that
if the quadratic form xTAx is positive definite, then so is the
quadratic form xTA�1x. [Hint: Consider eigenvalues.]

STUDY GUIDE offers additional
resources on diagonalization and
quadratic forms.
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Solution to Practice Problem

Make an orthogonal change of variable x D P y, and write

xTAx D yT Dy D �1y2
1 C �2y2

2 C � � � C �ny2
n

as in equation (4). If an eigenvalue—say, �i—were negative, then xTAx would be
negative for the x corresponding to y D ei (the i th column of In). So the eigenvalues
of a positive semidefinite quadratic form must all be nonnegative. Conversely, if the
eigenvalues are nonnegative, the expansion above shows that xTAx must be positive
semidefinite.

x2
x1

x3

Positive semidefinite

7.3 Constrained Optimization
Engineers, economists, scientists, and mathematicians often need to find the maximum
or minimum value of a quadratic form Q.x/ for x in some specified set. Typically, the
problem can be arranged so that x varies over the set of unit vectors. This constrained op-
timization problem has an interesting and elegant solution. Example 6 and the discussion
in Section 7.5 will illustrate how such problems arise in practice.

The requirement that a vector x in Rn be a unit vector can be stated in several
equivalent ways:

kxk D 1; kxk2 D 1; xTx D 1

and
x2

1 C x2
2 C � � � C x2

n D 1 (1)

The expanded version (1) of xTx D 1 is commonly used in applications.
When a quadratic formQ has no cross-product terms, it is easy to find themaximum

and minimum of Q.x/ for xTx D 1.

EXAMPLE 1 Find themaximum andminimum values ofQ.x/ D 9x2
1 C 4x2

2 C 3x2
3

subject to the constraint xTx D 1.

SOLUTION Since x2
2 and x2

3 are nonnegative, note that

4x2
2 � 9x2

2 and 3x2
3 � 9x2

3

and hence

Q.x/ D 9x2
1 C 4x2

2 C 3x2
3

� 9x2
1 C 9x2

2 C 9x2
3

D 9.x2
1 C x2

2 C x2
3/

D 9

whenever x2
1 C x2

2 C x2
3 D 1. So the maximum value ofQ.x/ cannot exceed 9 when x is

a unit vector. Furthermore, Q.x/ D 9 when x D .1; 0; 0/. Thus 9 is the maximum value
of Q.x/ for xTx D 1.

To find the minimum value of Q.x/, observe that

9x2
1 � 3x2

1 ; 4x2
2 � 3x2

2

and hence
Q.x/ � 3x2

1 C 3x2
2 C 3x2

3 D 3.x2
1 C x2

2 C x2
3/ D 3

whenever x2
1 C x2

2 C x2
3 D 1. Also, Q.x/ D 3 when x1 D 0, x2 D 0, and x3 D 1. So 3

is the minimum value of Q.x/ when xTx D 1.


